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Abstract—Smart Grids combine advanced communication
technologies with traditional power systems, enhancing perfor-
mance and reliability but also introducing cyber and physical vul-
nerabilities. This paper presents a comprehensive framework to
identify and prioritize key assets within these interconnected lay-
ers. The proposed framework employs graph-based integration to
create nodes for cyber hosts and vulnerabilities, as well as power
system components, assigning specific attributes to each. The
framework establishes clear connections between cyber assets
and power system elements by prioritizing cyber vulnerabilities
through impact scores and graph metrics like closeness centrality
and identifying key power components using electric degree
and betweenness centrality. Scenario simulations are utilized
to evaluate the impacts of disruptions across layers, revealing
potential attack pathways and assessing associated risks. This
integrated approach offers a detailed analysis of interconnected
vulnerabilities, aiding in the development of targeted mitigation
strategies to enhance the security of the overall smart grids.

I. INTRODUCTION

The increasing interconnection and automation of mod-

ern power systems through Information and Communication

Technology (ICT) have transformed traditional power grids

into Smart Grids (SGs). This integration enhances operational

efficiency and reliability but also introduces new vulnerabil-

ities [1], [2]. SGs consist of both cyber (ICT) and physical

(power grid) components, forming complex, interconnected

networks that require robust protection mechanisms against

cybersecurity threats [3].

Understanding the interdependencies between cyber and

physical layers is crucial. Several incidents highlight these

risks, such as the Stuxnet worm causing physical damage to

industrial systems, the BlackEnergy malware attack leading to

power outages in Ukraine, and the SolarWinds attack demon-

strating potential cascading failures [4]–[6]. These events un-

derscore the need for a framework that identifies critical assets

across both layers and maps potential attack paths. In 2022,

a study showed how false data injection attacks could disrupt

SCADA systems significantly [7]. The 2021 Colonial Pipeline

ransomware attack disrupted fuel supply across the Eastern

United States, highlighting infrastructure vulnerabilities [8].

Additionally, the 2021 Florida water treatment plant attack

demonstrated the risks to public health from cyber threats [9].

These incidents highlight the need for an integrated approach

to identify and mitigate risks in SG systems. Traditional risk

assessment methods are often insufficient for such complex

systems, relying on expert judgments or predefined conditions

[10]. Instead, a data-driven framework is needed to accurately

identify and assess critical assets, leveraging real-time infor-

mation from the cyber and power system layers [11].

Detecting interdependencies between cyber and physical

components is crucial for understanding cascading impacts

when systems are compromised. Complex network analysis of-

fers a strategy to study relationships and dependencies between

cross-domain system components, revealing critical nodes

and links whose failure could cause significant disruptions

[12], [13]. Modern power systems, viewed as complex net-

works, represent components like generators and substations

as nodes, and transmission lines as edges [10], [14]. In the ICT

layer, network analysis, anomaly detection, intrusion detection,

and vulnerability assessment can identify critical nodes [15].

Topological and flow-based metrics help prioritize security

by identifying critical nodes. Analyzing interactions between

cyber and physical components is essential for identifying

vulnerabilities and developing security measures [16].

Therefore, this paper aims to build a comprehensive frame-

work for physical and cyber layers in SGs. To the best of our

knowledge, this is the first work that uses a graph-based model

for the integration of cyber and physical layers to assess asset

criticality. The key contributions of this paper are:

• Developed CPSs Graph-Based Model: The model helps

to integrate component systems and identify critical paths

and critical assets.

• Identification of Critical Assets (Physical Layer): Con-

structing a graph for physical layer and employing topo-

logical power metrics to identify critical power compo-

nents.

• Identification of Critical Assets (Cyber Layer): Classify-

ing assets in the cyber layer, assigning vulnerabilities, and

mapping potential attack paths.

• Integrated Analysis: Combining the analyses of both

layers into a single comprehensive view that highlights

the critical interdependencies and vulnerabilities within

the SG infrastructure.



II. RELATED WORK

Several existing frameworks for criticality assessments in

Cyber-Physical Systems (CPSs) have been proposed. How-

ever, current research has not adequately addressed the open

issues discussed earlier. Existing frameworks typically focus

on identifying critical assets within a specific domain, such

as electric systems or cyber assets, without considering the

interdependencies between cross-domain assets linking the

cyber and power layers. For instance, Aghabegloo et al. pro-

posed a BIA-based quantitative framework for analyzing the

criticality of built physical assets, focusing on sustainability

and resilience [17]. While this framework effectively assesses

physical assets, it does not account for the interconnected

nature of cyber and physical systems in SG. Alvarez et

al. introduced a conceptual model for asset management in

electrical systems, emphasizing the management of physical

infrastructure [18]. Although comprehensive in addressing

electrical systems, this framework lacks the integration of

cyber assets and the potential vulnerabilities arising from

cyber-physical interdependencies. Rahman et al. presented a

graph-theoretic approach for modeling and assessing cyber-

security risks in manufacturing systems [19]. This approach

highlights the importance of understanding cyber threats and

vulnerabilities but does not extend its analysis to the physical

impacts on interconnected components in an SG context.

Le et al. conducted a CVSS-based attack analysis using a

graphical security model, applying it to an SG case study

[20]. While this work focuses on cyber threats within SGs,

it primarily considers cyber assets and does not thoroughly

examine the physical consequences of cyber incidents on the

power infrastructure.

Many frameworks focus on business impact analysis, eval-

uating the functionality, health, and maintenance of physical

assets. They often assess the economic outcomes of asset

failures or the operational status of physical components.

While important, these aspects do not address vulnerabilities

arising from cyber-physical interdependencies.

Conversely, some frameworks exclusively address the criti-

cality of compromised cyber assets by examining attack paths,

identifying vulnerabilities, and considering potential attacks

[21], [22]. These analyses are valuable for understanding cyber

threats but fall short in evaluating the physical consequences

of interconnected physical components.

A significant gap in existing research is the lack of a com-

prehensive framework that integrates both cyber and physical

dimensions to assess the criticality of assets. Current method-

ologies do not sufficiently account for how cyber incidents can

propagate through interconnected systems and affect physical

infrastructure, highlighting the need for a new approach.

III. PROPOSED FRAMEWORK, INTEGRATED GRAPH-BASED

MODEL AND VULNERABILITY ANALYSIS

A. Proposed Framework

The proposed framework integrates the cyber and power

system layers to provide a holistic view of asset criticality

within SGs. This integration is achieved through a series of

steps involving data collection, graph construction, vulnerabil-

ity assessment, and analysis of interdependencies as shown in

Figure 1.

1) Pre-Processing and Information Gathering: Pre-

processing and information gathering form the foundation of

the proposed framework, providing essential data to model

the SG’s cyber and power infrastructure accurately.

Active Discovery: This step involves collecting detailed

information about network hosts, including IP addresses,

operating systems (OS), open ports, and services. Network

scanning tools like Nmap [23] identify active devices, open

ports, running services, and OS details. Service enumeration

tools such as Metasploit and Nessus gather detailed infor-

mation about running services and potential vulnerabilities

[24]. Passive Discovery: This approach involves monitoring

network traffic to identify communication links between hosts

without actively probing the network, thus avoiding disrup-

tions, especially in OT environments. Network traffic analysis

tools like Wireshark and Zeek capture and analyze traffic,

detect anomalies, and map communication patterns [24]. Flow

monitoring techniques such as NetFlow and sFlow collect data

from network devices, providing an overview of traffic patterns

and identifying key communication paths and potential choke

points [25]. Power System Discovery: This step involves

identifying and collecting data from power system compo-

nents such as buses, transmission lines, and transformers,

including their power measurements. PowerWorld Simulator

and its SimAuto API are used to extract this information,

modeling these components as nodes and edges in the graph

[26]. PowerWorld Simulator provides detailed insights into

the electrical grid’s behavior, helping to identify critical nodes

(buses) and edges (transmission lines and transformers). The

SimAuto API allows for automated extraction of data from

PowerWorld simulation cases, including power measurements,

bus information, and connectivity of transmission lines and

transformers, which are then used to build the power system

graph.

2) Graph Modelling: Graph modelling is a crucial step in

representing the interconnected components of the SG’s cyber

and power systems. This step involves constructing individual

graphs for the cyber and power layers and then integrating

them to analyze interdependencies.

In the cyber layer, nodes represent hosts (e.g., servers,

routers, control systems) and vulnerabilities (e.g., specific

software flaws or misconfigurations). Edges represent com-

munication links between hosts (e.g., network connections)

and the links between vulnerabilities and the hosts they affect.

Each node and edge in the cyber graph can have attributes such

as the type of host, the nature of the vulnerability, the protocol

used for communication, and the likelihood of a vulnerability

being exploited. In the power system layer, nodes represent

power system components such as buses, substations, gener-

ators, and transformers. Edges represent physical connections

such as transmission lines and transformers, with attributes

including power flow, voltage levels, and line impedance.
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Fig. 1. The proposed framework of critical assets identification in cross-domain ICT and power systems.

Nodes and edges in the power layer are assigned attributes

such as power measurements, operational status, and capacity.

3) Graph Analysis: Graph analysis involves applying vari-

ous metrics to the constructed graphs to identify critical nodes

and edges, understand network vulnerabilities, and assess po-

tential attack paths. This analysis is crucial for understanding

the resilience and robustness of the SG infrastructure.

Cyber Layer Analysis: Betweenness Centrality (BC) mea-

sures a node’s importance by the frequency it appears on

the shortest paths between other nodes [15]. Vulnerability

BC identifies vulnerabilities existing on hosts that appear on

many shortest paths in the network, indicating their critical

role in communication. High BC for a vulnerability suggests

its potential for widespread disruption if compromised. Host

BC applies to network hosts, highlighting critical nodes for

communication that, if compromised, could impact network

integrity. Attack path mapping involves identifying possible

routes for attackers using techniques like attack trees and

Bayesian networks. Critical asset identification uses graph-

theoretic metrics to identify high-impact assets, prioritizing

them for security enhancements. Power System Analysis:

Electric degree centrality measures the number of direct

electrical connections a node has within the power system.

Nodes with high electric degree centrality are vital for power

distribution and their failure can cause significant disruptions.

Electric BC evaluates the importance of nodes based on power

flow. Nodes with high electric BC are crucial for maintaining

grid stability, as they lie on many shortest paths for power

flow. Their failure could result in widespread and cascading

outages.

4) Interdependencies Analysis: Understanding Cross-

Domain Impacts: The analysis examines how vulnerabilities

in the cyber layer can affect the power layer and vice versa.

This involves understanding the interdependencies between the

two layers and how an issue in one layer can propagate to the

other. For example, a relay (cyber node) that controls a trans-

mission line (physical edge) will have an edge representing this

control relationship. The combined graph thus includes edges

that connect cyber nodes, illustrating how cyber vulnerabilities

can impact physical systems. Techniques such as dependency

graphs and multi-layer network analysis are used to model

these interdependencies. Comprehensive Vulnerability As-

sessment: The comprehensive graph provides a unified view

of the SG’s vulnerabilities, helping to identify critical assets

that are vulnerable to attacks from multiple vectors. This

holistic approach ensures that all potential vulnerabilities are

considered, and the most critical assets are prioritized for

protection.

The framework uses integrated data collection and graph

modeling for seamless integration and sub-network analysis.

Graph modeling handles large, complex networks effectively

and can add attributes to each node for localized microgrid

analysis, and dynamic configuration. This scalability makes

the framework suitable for complex smart grids, microgrids,

and advanced control systems.

B. Integrated Graph-Based and Vulnerability Analysis

A network can be presented as a connected graph

G{V,E,W}, where G(V ) represents vertices (nodes) and

G(E) represents edges (connections) that link nodes together.

Edges can include weights, represented as G(Wv1,v2) indicat-

ing the strength of the connection. Complex network analysis

uses topological metrics to determine node criticality. Node

Degree Centrality assigns importance based on the number of

links a node has, with highly connected nodes deemed critical

[10].

1) Power System Vulnerabilities Assessment In Integrated

Graph-Based: Utilizing graph theory to assess power system
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vulnerabilities has gained importance recently [27]–[29]. This

method identifies components likely to fail (e.g., transmission

lines, substations) and provides scalable analysis for large

networks. Figure 2 (b) illustrates the types of vulnerability

assessments used.

In complex network vulnerability analysis, power com-

ponents like substations, generators, and loads are nodes,

while transmission lines and transformers are edges connecting

power buses (Figure 2 (a)). Analysis can use pure topological

methods or extended approaches including electrical attributes

as network weights. However, this analysis often focuses on

physical components, ignoring compromised cyber compo-

nents linked to these systems.

2) ICT Vulnerabilities Assessment In Integrated Graph-

Based: Vulnerability assessment in ICT can be performed

using graph theory by modeling links between assets and

associated vulnerabilities [30], [31]. This involves document-

ing ICT topology to represent nodes (e.g., hosts and their

vulnerabilities) through network active identification, which

includes information about hosts like IP addresses, OS, open

ports, and services. Another method is identifying host con-

nections by passively monitoring network traffic to establish

edges (communication protocols) in the graph.

Identifying critical ICT components involves using graph

theory topological metrics to find critical vulnerabilities, such

as BC to locate vulnerabilities acting as bridges between

assets. These vulnerabilities could lead to widespread exploita-

tion if compromised. By examining assets connected to critical

vulnerabilities, critical assets can be determined, as they are

more vulnerable to potential attacks.

IV. DEMONSTRATION AND EXAMPLE OF THE PROPOSED

FRAMEWORK

The following section demonstrates the application of the

proposed framework for critical asset identification in a SG,

using the Ukraine cyber attack as a case study. The attack

steps included initial access via spear-phishing and credential

theft, remote access via VPN, lateral movement within the

network, deployment of KillDisk malware on SCADA hosts,

and manipulation of control systems to open breakers, causing

widespread outages by disrupting communication between

SCADA systems and RTUs/PLCs and impacting physical

components like transformers and substations [32].

A. Pre-Processing and Information Gathering

In the cyber layer, information was gathered to mimic

the cyber infrastructure similar to the Ukraine cyber attack

scenario. In the power and OT assets layer, buses serve as

main distribution points for electrical power, feeders distribute

power from substations to consumers, and transformers and

substations regulate voltage and power distribution.

B. Graph Modelling

1) Cyber Layer and Analysis: The cyber layer visualization

(Figure 3) shows IP addresses representing hosts or devices

in the power system infrastructure, each managing the grid.

Detailed breakdown: 192.168.1.1 hosts SCADA1 and RTU1;

192.168.1.2 hosts SCADA2 and PLC1; 192.168.1.3 hosts

RTU2 and PLC2; 192.168.1.4 hosts SCADA3; 192.168.1.5

hosts SCADA4 and RTU3; 192.168.1.6 hosts SCADA5;

192.168.1.7 hosts HMI1, VPN1, and UPS1. These IPs rep-

resent devices and systems similar to those in the Ukraine

power grid cyber attack. Open ports are represented as nodes to

illustrate potential entry points or vulnerabilities, highlighting

services and their connectivity, which is crucial for understand-

ing the network’s attack surface.

Fig. 3. Cyber layer graph

2) Power System Layer: The power system layer includes

physical components as shown in Figure 4. In the Ukraine

attack, once the attackers had control over the SCADA sys-

tems, they were able to manipulate these physical components,

causing widespread outages.



Fig. 4. Power system layer graph

3) Interdependencies and Cyber-Physical Graph: The com-

bined graph (Figure 5) integrates the cyber and power system

layers, highlighting interdependencies. The Ukraine cyber

attack showed how cyber vulnerabilities can cause physical

disruptions. Key interdependencies include SCADA systems

to substations, communication networks to RTUs/PLCs, and

VPN and remote access. The simulation considers interactions

between cyber components (SCADA, RTUs, PLCs, HMIs,

VPNs, UPS) and physical components (substations, feeders,

transformers), showing how failures in the cyber layer can

lead to cascading failures in the physical layer.

4) Detailed Diagram of Cascading Failures : The cascad-

ing failures diagram (Figure 6) illustrates how the initial cyber

attack propagated through interconnected layers, leading to

widespread power outages. This visualization identifies critical

points of failure and the impact of compromised cyber compo-

nents on physical infrastructure. Initial points of compromise

include VPN and open ports, propagation through SCADA

systems leads to control over substations and transformers,

and cascading failures result in widespread outages as feeders

and buses are disrupted.

Fig. 5. Integrated Cyber-Physical graph

Fig. 6. Detailed diagram of cascading failures In Cyber-Physical graph

TABLE I
SUMMARY OF IDENTIFIED CRITICAL ASSETS

Type Asset Metric Value

Vulnerable Cyber

Assets

192.168.1.7 Vulnerabilities # 9
192.168.1.1 Vulnerabilities # 8
192.168.1.2 Vulnerabilities # 8
192.168.1.3 Vulnerabilities # 8
192.168.1.5 Vulnerabilities # 8

Critical Assets by

Betweenness

Centrality

192.168.1.7 BC 0.237
192.168.1.1 BC 0.164
192.168.1.3 BC 0.164
192.168.1.5 BC 0.164
192.168.1.2 BC 0.164

Critical Assets by

Attack Path

Frequency

VPN1 FAP 74
Substation1 FAP 4
Substation4 FAP 4
Substation11 FAP 3
Substation21 FAP 3

Table I summarizes the critical assets in the SG, catego-

rized by their vulnerabilities, (BCs), and frequency in attack

paths (FAPs). Vulnerable cyber assets, like 192.168.1.7 and

192.168.1.1, have the highest number of vulnerabilities, mak-

ing them prime targets for cyber attacks. For instance, an attack

path could start with initial access via VPN1, exploiting vul-

nerabilities in 192.168.1.7 to gain control of SCADA systems,

and then manipulating RTUs/PLCs to disrupt Substation1 and

Substation4, ultimately causing widespread outages. Critical

assets with high BC, such as 192.168.1.7, are crucial for net-

work communication and stability. Assets frequently appearing

in attack paths, like VPN1 and key substations (Substation1,

Substation4), indicate their high risk and criticality.

V. CONCLUSION

The proposed framework integrates the cyber and power

grid layers, models interdependencies, and performs compre-

hensive asset criticality analysis. Applying this framework

to the Ukraine cyber attack demonstrated its capability to

identify and prioritize critical assets, enhancing grid resilience.

The cyber layer includes hosts, services, and devices like

SCADA systems, RTUs, PLCs, HMI, VPN, and UPS, with

visualizations highlighting their relationships. The power grid

layer consists of buses, transformers, and substations, showing



physical connections crucial for understanding cyber attack

impacts. The combined graph illustrates layers interdependen-

cies, showing how cyber layer failures propagate to the power

grid, leading to cascading failures. The cascading failures

diagram shows the attack’s impact, marking failed nodes in red

to identify critical points of failure and overall grid stability.

Critical assets were identified using vulnerability analysis, BC,

and FAPs. Vulnerable cyber assets (192.168.1.7, 192.168.1.1),

were prime targets for cyber attacks. Assets with high BC

(192.168.1.7), are crucial for network communication. VPN1

and key substations (e.g., Substation1, Substation4) frequently

appeared in attack paths, indicating high risk. The Ukraine cy-

ber attack simulation validated the framework’s effectiveness,

confirming that identified critical assets were most impacted,

underscoring the framework’s accuracy and reliability.
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