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Abstract 

The significance of ammonia (NH3) in various human activities is evident through its 

extensive utilisation as a feedstock in fertilizers, industrial chemicals, and emission 

after-treatment systems. Ammonia's potential as a zero-carbon fuel and hydrogen (H2) 

carrier has ignited scientific interest in its application as a fuel in combustion systems. 

However, harnessing ammonia as a fuel source for energy applications presents 

notable challenges due to its low flammability and the potential for high emissions. 

Blending NH3 with H2 presents a prospect for enhancing combustibility, albeit with a 

notable increase in NOx emissions, particularly in fuel-rich conditions. To address 

these challenges and underscore the underlying factors, a comprehensive 

understanding and analysis of the kinetic chemistry of NH3 is imperative, particularly 

concerning the examination of the overall combustion characteristics of NH3 flames 

employing a kinetic reaction mechanism. While numerous studies[1–16] have been 

conducted to analyse the gas-phase chemical kinetics of NH3, aimed at enhancing 

prediction accuracy, the outcomes have been less than promising, largely due to 

constraints in the applicability of their refined models. These studies relied upon 

experimental data from existing literature [17–27], supplemented by experiments 

conducted within the scope of the respective studies under specific operational 

conditions. The limitations in kinetic model applicability can be clarified by either 

kinematic discrepancies resulting in deviations in the rate parameters of the reactions 

or mechanistic deficiencies, leading to a lack of important chemical routes. These 

deficiencies significantly impact the ultimate outcomes, highlighting the necessity for 

a more comprehensive understanding of the intricate chemistry underlying the system. 
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The current study focuses on tuning Arrhenius parameters of the rate constants within 

pre-defined uncertainty limits [28,29] using code Optima++ [30,31] to fit experimental 

observations from previous studies with the consideration of their associated 

uncertainty. The study proposes the San Diego mechanism as a baseline for 

improvement due to its exceptional small size (21 species and 64 reactions) and its 

fair overall performance demonstrated in prior study by Szanthoffer et al. [32]. 

Optimisation targets comprised 1311 laminar burning velocity data points in 185 data 

series measured in wide range of conditions, ensuring comprehensive coverage for 

robust model development. 

The refined model showed high prediction accuracy of laminar burning velocities 

across wide range of operational conditions, surpassing all other kinetic models 

documented in the literature. 
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