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Abstract— Accurately segmenting strawberries within real-
world production settings not only helps the development of
automated harvesting robots but also allows for precise calcula-
tion of the number and size of strawberries, providing accurate
yield information for agricultural planning and resource opti-
mization. This paper proposes lightweight and efficient CNN
models specifically designed for strawberry instance segmenta-
tion, consisting of an efficient self-attention-based backbone, a
feature pyramid network (FPN), and a decoder with an instance
branch and a mask branch. The proposed models surpass the
original and simplified Mask R-CNN with significant 21.46 and
22.97 AP gains respectively, with the Base backbone achieving
the highest AP of 70.22. Additionally, our models demonstrate
efficiency by requiring much fewer parameters (17.42M) and
floating-point operations (78.3G) compared to Mask R-CNN
(35.08M / 877.4G), making them suitable for deployment on
devices with limited computational resources.

I. INTRODUCTION

The rapid progress of artificial intelligence has made
digitization, precision, and intelligent agriculture crucial el-
ements in advancing the modernization of the agricultural
sector. In recent years, various methods for harvesting robots
have been developed for fruits and crops, such as apple
[1], green citrus [2], radiata pine [3] and asparagus spear
[4]. Strawberries are a type of high-value fruit, involving
labour-intensive cultivation and harvesting processes with a
considerable dependency on manual operations. Therefore,
the introduction of automated harvesting robots not only
helps alleviate the challenges posed by labour shortages
but also significantly enhances production efficiency and
sustainability. In this development, strawberry instance seg-
mentation plays a pivotal role.

Instance segmentation is a computer vision task that aims
to accurately identify and segment individual instances of
objects in an image. Unlike semantic segmentation, which
identifies object categories, instance segmentation provides
unique identifiers for each instance of an object [5]. As
instance segmentation models provide independent identifi-
cation for each strawberry, robots can accurately locate each
strawberry instance, execute precise harvesting actions, and
avoid damage to plants and ensure the picking of only fruits.
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For the past few years, convolutional neural network
(CNN) models have been widely used in fruit detection
and segmentation. MangoNet was proposed to segment and
count mangoes in open-field RGB images, showing promise
for precise yield estimation [6]. FoveaMask was created for
green fruit segmentation, incorporating a position attention
module in the embedding mask branch to gather essential
information from pixels [7]. DaSNet-v2 introduces a one-
stage detection network that combines both instance and
semantic segmentation, which allows the network to conduct
fruit instance and branches semantic segmentation simultane-
ously [1]. Mask R-CNN [8] was applied to showcase strong
performance in the detection, segmentation, and tracking of
grape clusters [9]. Mask R-CNN was improved by using
ResNet and DenseNet as the feature extraction backbone,
improve the accuracy of apple recognition in challenging
scenarios with overlaps, agglomerations, and occlusions [10].
Concerning strawberry instance segmentation, there are some
existing works ([11], [12], [13]), most of which are based
on Mask R-CNN. Mask R-CNN is an effective segmenta-
tion model, it demonstrates good performance in generating
accurate segmentation masks for each object.

However, training and inference with Mask R-CNN de-
mand substantial computational resources, making it chal-
lenging to deploy in resource-constrained environments. To
solve this problem, we propose lightweight, effective and
efficient CNN models. The contributions of this paper are:

• Our models outperform state-of-the-art Mask R-CNN
with higher AP and fewer parameters and floating-point
operations.

• Efficient Self-Attention is applied in the backbone to
extract semantic features.

• The CoordConv module and Instance Activation Maps
are incorporated to add position and instance-aware
weighted maps to the decoder.

II. DATASET

The StrawDI Db1 database [12] comprises 3100 images
captured in strawberry plantations at various times through-
out a complete picking campaign. These images are orga-
nized into training, validation, and testing subsets, encom-
passing 2800, 100, and 200 images, respectively. A statistical
overview is presented in Table I. It is worth noting that the
StrawDI Db1 dataset offers instance-level annotations for all
sets. Example annotations are illustrated in Fig. 1.



TABLE I
STATISTICS OF THE STRAWDI DB1 DATASET.

Metric Category Train Val Test

Ratio of size
Small (area ≤ 322) 0.21 0.22 0.22

Medium (322 < area ≤ 962) 0.48 0.44 0.48
Big(area > 962) 0.31 0.34 0.30

Mean/standard
deviation

Number of strawberry instances 5.8/2.9 5.7/2.7 5.7/2.8
Ratio of strawberry pixels per image (%) 5.6/2.7 5.7/2.4 5.4/2.5

Fig. 1. Example annotations of the StrawDI Db1 dataset.

III. PROPOSED MODEL

A. Meta architecture

Our proposed model is designed to be lightweight and
efficient in performing strawberry instance segmentation, of
which the architecture is shown in Fig. 2. It is constructed by
two main parts: an encoder and a decoder. The encoder con-
sists of a backbone and a Feature Pyramid Network (FPN)
[14], which extracts contextual information from images and
builds multi-scale features for later prediction. The decoder is
anchor-free and does not require a Region Proposal Network
(RPN) to generate anchors, it mainly contains two branches
and predicts class and masks directly based on features
extracted by the encoder.

B. Encoder

1) Backbone: Modelling in computer vision has been
dominated by CNNs for a long time. On the other hand,
the tremendous success of Transformer [15] in the language
domain inspired the emergence of Vision Transformer (ViT
[16]) [17]. Compared with CNNs, ViT offers a powerful
approach to capturing global dependencies and contextual
understanding in images. The attention mechanism plays a
crucial role in capturing relationships between different parts
of an image in ViT, enabling ViT to attend to and aggregate
information from all image patches simultaneously. There-
fore, instead of directly using CNNs like ResNet [18] as
the backbone in previous similar work [19], we propose an
efficient attention-based backbone to extract the feature from
input images.

The vanilla self-attention is calculated by Eq. (1). Firstly,
the input embedding, including positional encoding, is lin-
early transformed into three sets of vectors: query Q, key K
and value V . Then, the attention scores are computed using
the scaled dot-product attention mechanism. For each token,
its attention to other tokens is determined by the dot product
of its query vector with the key vectors of other tokens. Next,
The result is scaled by the square root of the dimension
of key

√
dk. The attention scores are normalized using

the Softmax function to obtain attention weights. Finally,
the value V are multiplied by the attention weights, and
the resulting weighted vectors are summed to produce the
attention output.

Attention = Softmax(
QKT

√
dk

)V (1)

The vanilla self-attention in ViT undergoes a sequence of
steps that contribute to its progressive and effective mod-
elling of relationships between different parts of an input im-
age [16]. However, the vanilla self-attention has a quadratic
time and space complexity concerning the sequence length,
which makes them computationally expensive.

• Efficient Self-Attention To alleviate the problem, we
adopt the Efficient Self-Attention (ESMA, [20]) as the
basic block of our backbone, the detail is shown in Fig.
3. Firstly, a set of linear layers is adopted on 2D input
token [n, dm] to obtain query Q. Then, the input token
is reshaped to 3D one [n, h,w] and performs a depth-
wise convolution operation to reduce to [n, h/s, w/s]
by a factor s. Next, similar to the vanilla self-attention,
the attention scores are computed using the scaled
dot-product attention mechanism. Before the Softmax
operation, PWConv is used to model the interactions
among different heads, which is a 1 × 1 pixel-wise
convolutional layer, as shown in Eq. (2). In the end,
the resultant values from each head are concatenated
and subjected to a linear projection to create the final
output.

ESMA = Softmax(PWConv(
QKT

√
dk

))V (2)

PE(x) = x× σ(DWConv(x)) (3)

• Patch Embedding Attention is originally designed for
processing sequences of data, to apply it to images, it
is necessary to convert the spatial information of the
3D image into a 2D sequence. Here we use a stack
of three 3 × 3 convolutional layers with stride=3/1/2,
padding=1/1/1, as shown in Eq. (3). Batch Normaliza-
tion and ReLU activation are applied sequentially for
the first two layers. The first two convolutional layers
downsample and adjust channel dimensions, while the
third further reduces spatial dimensions and increases
output channels. Positional encoding is applied after
the third convolutional layer, making it suitable for
integration into our attention-based backbone.

To facilitate different scenarios, three different backbone
variants (Tiny, Small and Base) are designed. The pipeline
of the backbone is shown in Fig. 3, and the specification of
backbone variants is shown in Table II, of which N is the
number of blocks, C is the number of embedded dimensions
and H is the number of self-attention heads.
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Fig. 2. The architecture of our proposed model.
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Fig. 3. Left: The pipeline of backbone. Right: Efficient Self-Attention.

TABLE II
BACKBONE ARCHITECTURE VARIANTS.

Stage Stride Backbone-T Backbone-S Backbone-B
S0: Stem 1/4 C=64 C=64 C=96
S1: ESAB 1/4 N=2 C=64 H=1 N=2 C=64 H=1 N=2 C=96 H=1
S2: ESAB 1/8 N=2 C=128 H=2 N=2 C=128 H=2 N=2 C=192 H=2
S3: ESAB 1/16 N=2 C=256 H=4 N=6 C=256 H=4 N=4 C=384 H=4
S4: ESAB 1/32 N=2 C=512 H=8 N=2 C=512 H=8 N=2 C=768 H=8

2) Feature Pyramid Network: The FPN introduces a top-
down architecture where higher-resolution feature maps from
earlier stages of the backbone are combined with lower-
resolution feature maps from later stages. This is achieved
through lateral connections, which involve upsampling the
higher-level features and element-wise addition with the
lower-level features. The pyramid typically consists of fea-
ture maps at different resolutions, different levels represent
features at different scales. These scales correspond to dif-
ferent receptive fields and are crucial for handling objects
of various sizes. Here we apply a convolutional layer to
aggregate the features of three levels into one at last.

C. Decoder

We adopt the simple decoder of SparseInst [21] to decode
the features to predictions, which mainly consists of two
branches. Before entering any branch, the feature generated
by the Encoder passes the CoordConv Module Fcoord.

• The CoordConv Module Fcoord is implemented as
a simple extension of standard convolution [22]. The
details of Fcoord are shown in Fig. 2. Given an input
feature [C,H,W ], two coordinate channels i and j with
the size of [1, H,W ] are created. Specifically, within i,
the first row is filled with 0, the second row is filled with
1, the third row is filled with 2, etc. The j channel is
similar but with columns filled in with constant values
instead of rows. Then, both i and j coordinate values
are linearly scaled to fall in the range [–1, 1]. Finally,
channels i and j are concatenated with the input feature,
resulting in an output [C + 2, H,W ]. For convolution
over two dimensions, two coordinates (i, j) are sufficient
to completely specify an input pixel. It is noted that
two channels are generated by coordinates thus no extra



parameters are introduced, which is friendly to building
a lightweight model.

1) Instance Branch: This branch consists of an Instance
Activation Map (IAM) and three prediction heads. The
Instance Activation Map (IAM) was inspired by CAM [23],
which suggests that objects can probably be found in infor-
mative regions. The features extracted from the highlighted
areas are rich in semantic information and exhibit instance
awareness, aiding in the recognition and differentiation of
strawberries. The details of Fiam is shown in Fig. 2. Fiam

is a 3 × 3 convolutional layer with 4 groups to aggregate
instance features by concatenating features from a group.
Given an input feature [C,H,W ], the output computed by
Fiam is with the shape [C ′, H,W ], in which C ′ is the pre-set
number of instance activation maps. Then the sparse instance
features can be calculated by multiplying output (normalize
to 1) and transposed input. Finally, the sparse instance-aware
features are forwarded to three prediction heads to predict
score, class and kernel.

2) Mask Branch: Validated by similar work SOLOv2
[24], it is feasible to use trained parameters as the kernel
to perform mask prediction. Given the feature generated by
FPN and the instance-aware mask kernels generated by the
instance branch, the segmentation mask for each instance can
be produced by mi = wi ·M , where mi is the i-th predicted
mask and corresponding kernel wi, and M is the features.
The final segmentation masks adopt bilinear interpolation to
upsample to the original resolution.

D. Loss Function

We follow by DETR [25], which treats the label assign-
ment problem as a bipartite matching problem. Firstly, a pair-
wise dice-based matching score C(i, k) for i-th prediction
and k-th ground-truth object is introduced in Eq. (4), which
is determined by classification scores and dice coefficients
of segmentation masks.

C(i, k) = p1−α
i,ck

·Dice(mi, tk)
α (4)

where α is a weight for two predictions segmentation=0.8,
classification=0.2, ck is the category label for the k-th
ground-truth target and pi,ck is the probability for the cate-
gory ck of i-th prediction. The Dice is defined in Eq. (5)

Dice(m, t) =
2Σx,ymxy · txy

Σx,ym2
xy +Σx,yt2xy

(5)

where mxy and txy refer to the value of pixel located at x,y
in predicted mask m and ground truth t respectively. Then,
Hungarian algorithm is adopted to solve the matching matrix
and find the best match between K ground-truth targets and
N predictions. The training loss is defined in Eq. (6)

L = λc · Lcls + λs · Ls + Lmask (6)

where Lcls is focal loss [26] for classification, Lmask is
the dice loss for mask, and the Ls is the binary cross entropy
loss for score. λc and λs are loss weights that are set to 2.0
and 1.0.

IV. EXPERIMENTS AND RESULTS

A. Experiments

1) Implementation Details: We conducted experiments on
Detectron2 [27] using Python 3.9.13 and PyTorch 1.13 on a
computer with an Intel Xeon Gold 6152 @2.1 GHz CPU, 2
Nvidia Tesla P100 GPUs and 32.0GB Memory. The training
and testing set of StrawDI Db1 is used to train and test our
proposed model.

During training, the batch size is set to 16 with 27K
iterations in all, we use AdamW optimizer and the initial
learning rate is set to 0.005 and divided by 10 at iteration 18K
and 24K. No pre-trained weights are used and the parameters
of the backbone are initialized by a normal distribution.
The training data augmentation strategy contains random
horizontal flipping, resizing the input images such that the
short edge is one of 416, 448, 480, 512, 544, 576, 608 or
640 pixels while the longest is at most 853.

During inference, the data augmentation strategy is only
the resizing input images such that the shortest edge is 640
pixels while the longest is at most 853.

2) Evaluation Metrics: In this study, the average precision
(AP) and average recall (AR) are selected to measure the
performance of segmentation models. The definitions of
precision and recall are shown in Eq. (7) and Eq. (8).

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

where TP is the number of cases in which the target is
a strawberry and is correctly detected, FP is the number
of cases in which the target is not a strawberry, but is
wrongly detected, and FN is the number of cases in the
target is a strawberry, but it is not detected. The mean average
precision (AP) serves as our primary metric for evaluating
model performance. It is computed by averaging across 10
Intersection over Union (IoU) thresholds, ranging from 0.50
to 0.95.

3) Main results: Fig. 4 illustrates the training loss of
our proposed model with different backbones. The losses
stabilized at the end of the training, indicating that models
are fully trained and converged.

Mask R-CNN is a state-of-the-art instance segmentation
model that has been applied to strawberry images. An
original [11] and a simplified version [12] of Mask R-CNN
have been used to perform strawberry instance segmentation.
Additionally, a fully convolutional neural network [13] has
been proposed to solve the same task more efficiently. Table
III summarizes the results of their models [13] and our
proposed models on the StrawDI Db1 dataset testing set. As
shown, our proposed model with a Base backbone achieves
the highest AP with 70.22.

Firstly, all of our proposed models demonstrate significant
improvement over previous work, even our lowest performer,
the Tiny backbone, has an AP 21.46, 22.97, and 14.21 higher



TABLE III
INSTANCE SEGMENTATION RESULTS ON STRAWDI DB1 TESTING SET.

Model Backbone AP AP50 AP75 APsmall APmedium APlarge

Mask R-CNN [11] Res50 45.36 76.57 47.09 07.35 50.03 78.03
Mask R-CNN’ [12] Res50 43.85 74.24 45.13 07.54 51.77 75.90

FCNN [13] Res50 52.61 69.24 57.84 16.96 65.26 53.31

Our model
Tiny 66.82 85.99 71.78 28.53 70.25 87.67
Small 69.39 87.32 73.96 30.04 71.85 92.15
Base 70.22 87.70 76.05 31.44 73.63 90.29

than the original, simplified Mask R-CNN and FCNN respec-
tively. Secondly, model performance gains are progressively
enhanced as backbone complexity and capacity increases.
For example, models with Small and Base backbones deliver
2.57 and 3.4 higher AP than the Tiny backbone. We assume
that more features can be provided by more layers and
bigger embedded dimensions, which is helpful in locating
the targets. Thirdly, the AP50 of our models are larger than
AP75, and of which gaps between AP50 and AP75 are
narrower than the original and simplified Mask R-CNNs,
indicating that our models usually output high-accurate re-
sults regardless of different IoU criteria. Finally, our models
demonstrate better performance when dealing with medium
and large strawberries than small strawberries. We suggest
that the reasons for this can be that small strawberries have a
similar colour to leaves and are normally covered, and they
can be lost when resizing the input images to smaller ones.

TABLE IV
PARAMS AND FLOP OF THE MODELS.

Model Backbone Param/M FLOPs/G
Mask R-CNN[27] Res50 35.08 877.4

Our model
Tiny 17.42 78.3
Small 20.58 86.9
Base 33.54 111.7

Fig. 4. Training loss of our proposed model.

4) Model complexity: To measure the model size and
complexity, the number of learnable parameters and the num-
ber of floating-point operations during training are computed.
Previous work ([11], [12], [13]) did not provide information
about their model size and complexity, therefore we compare
the complexity between Mask R-CNN with Res50 from
Detectron2 and our proposed model, the results are shown
in the Table IV.

• Learnable Parameters (Params): Learnable parame-
ters are the variables in a neural network that are learned
from the training data, which include weights and biases
in the case of fully connected or convolutional layers.
All of our models have fewer parameters compared to
Mask R-CNN, among which the Tiny backbone has
less than half the number of parameters compared to
Mask R-CNN. This indicates that our model design is
lightweight and efficient, making the models suitable
for resource-constrained environments.

• Floating-Point Operations (FLOPs): Floating-point
operations are arithmetic operations (additions and mul-
tiplications) involving floating-point numbers. FLOPs
is a measure of the computational workload during
the forward pass. Here we use 100 images from the
testing set to compute the FLOPs. Our proposed models
generally require significantly fewer FLOPs for each
image during inference compared to Mask R-CNN. This
suggests that our models are computationally efficient.

In summary, our proposed models not only have fewer
parameters and require fewer floating-point operations during
inference compared to the Mask R-CNN but also demon-
strate a trade-off between model complexity and compu-
tational efficiency, which offer options for scenarios with
strict resource constraints. The models with Tiny and Small
backbones offer lightweight options for scenarios with strict
resource constraints, while the Base backbone provides a
higher-capacity variant for tasks that demand more accurate
strawberry segmentation.

B. Visualization

We visualize the performance of our model in Fig. 5. The
model can segment strawberries under various conditions.
There are some difficult cases in which strawberries are
located at the side of the image or are partially covered,
however our proposed models can segment them accurately.



Fig. 5. Visualization of our proposed model segmentation.

V. CONCLUSIONS

Accurately detecting and segmenting each strawberry
within real-world production environments is pivotal for the
development of automatic strawberry harvesting robots. In
this paper, we propose lightweight and attention-based CNN
models for strawberry instance segmentation. The simple
models consist of an encoder (a backbone and a FPN)
and a decoder. Our models outperform the original and
simplified Mask R-CNN with significant 21.46 and 22.97 AP
improvements respectively, among which the one with Base
achieves the highest AP of 70.22. Besides, our models re-
quire much fewer parameters and FLOPs compared to Mask
R-CNN. In summary, this study introduces lightweight, effi-
cient, and effective models designed for strawberry instance
segmentation. These models hold promise for deployment
on embedded devices with limited computational resources
in the future.
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