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A B S T R A C T

Objective: Silica nanoparticles (SNPs) have been extensively studied and used in different dental applications to
promote improved physicochemical properties, high substance loading efficiency, in addition to sustained de-
livery of substances for therapeutic or preventive purposes. Therefore, this study aimed to review the SNPs
applications in nanomaterials and nanoformulations in dentistry, discussing their effect on physicochemical
properties, biocompatibility and ability to nanocarry bioactive substances.
Data resources: Literature searches were conducted on PubMed, Web of Science, and Scopus databases to identify
studies examining the physicochemical and biological properties of dental materials and formulations containing
SNPs. Data extraction was performed by one reviewer and verified by another
Study selection: A total of 50 were reviewed. In vitro studies reveal that SNPs improved the general properties of
dental materials and formulations, such as microhardness, fracture toughness, flexural strength, elastic modulus
and surface roughness, in addition to acting as efficient nanocarriers of substances, such as antimicrobial,
osteogenic and remineralizing substances, and showed biocompatibility
Conclusions: SNPs are biocompatible, improve properties of dental materials and serve as effective carriers for
bioactive substances
Clinical significance: Overall, SNPs are a promising drug delivery system that can improve dental materials bio-
logical and physicochemical and aesthetic properties, increasing their longevity and clinical performance.
However, more studies are needed to elucidate SNPs short- and long-term effects in the oral cavity, mainly on in
vivo and clinical studies, to prove their effectiveness and safety.

1. Introduction

In the last few years, the growing scientific evolution in the field of
nanotechnology has brought promising perspectives to modern medi-
cine, allowing greater understanding and agility in the prevention,
diagnosis, and treatment of many pathologies at the nanoscale [1,2].
Several nanomaterials are used in biomedical applications because they
offer, among other advantages, the ability to signal, transport, and
release drugs, genes, and proteins in a controlled and targeted way,

overcoming the drawbacks of conventional systemic treatments [1,3].
This is because, at the nanoscale, the particles have a high surface area
and small size, which contributes to their reactivity and easy diffusion
across biological barriers [4].
Examples of these nanomaterials are organic nanoparticles (NPs),

such as liposomes, polymers, dendrimers, and micelles, among others,
and inorganic NPs, such as those composed of iron oxide, graphene,
gold, silver, titanium, as well as silica nanoparticles (SNPs) [5,6].
Among the inorganic NPs, SNPs have received particular attention for
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applications in dentistry [7–17], improving physicochemical properties
and clinical performance [9,18–21], and promoting high loading effi-
ciency and controlled release of substances with therapeutic and/or
preventive effects in materials and formulation, such as antimicrobial
[18,22–24] and osteogenic substances [17,25], which can be success-
fully applied in diagnostic, preventive, restorative, and conservative
dentistry [4]. The SNPs have different morphologies, including
non-porous, hollow/rattle, mesoporous, amorphous, core-shell, yolk/-
shell, Janus, and rod-shaped SNPs (Fig. 1), and can be synthesized using
various raw materials and methods, with the Stöber synthesis method
[26] being the pioneer and is widely used [26,27].
In this context, this review overviews the perspectives and applica-

tions of SNPs in dentistry, subcategorized by their use in (I) dental
materials, including dental specialties such as prosthesis, restorative
dentistry and orthodontics; and (II) other applications, which include
SNPs use in formulations or biomaterials related to specialties such as
endodontics, implantology and periodontics, for example, but that do
not involve incorporating NPs into dental materials. Furthermore, the
general characteristics, such as form, structure and synthesis, and in
vitro cellular biocompatibility of SNPs are discussed.

2. Methods

This is a narrative literature review. A search was performed in
PubMed, Web of Science and Scopus online databases using the
following terms: “silica nanoparticles” and “dentistry” associated with
“prosthodontics”, “coating agents”, “composite resin”, “dental adhe-
sive”, “dental cement”, “orthodontics”, “endodontic”, “dental implants”
or “periodontics”.
The studies were selected in two stages. In the first stage, a pre-

liminary search was performed based on the titles and abstracts of the
articles, followed by the removal of duplicate articles. Then, were
considered eligible for the full text reading in vitro and in vivo studies
that addressed the use of SNPs in some segments of dentistry. We
excluded review articles (narrative and systematic), articles that con-
sisted only of the abstract, without the full text, letters to the editor,
editorials and summaries published in the annals of scientific events.
There was no restriction on publication date and language. Data
regarding the general physicochemical properties and biological activity

were extracted from the studies included in this review.

3. Results

692 studies were found, of which 642 were excluded after applying
the inclusion criteria and reading the full text, resulting in 50 articles
included in results of this narrative literature review (Fig. 2). Based on
the studies found, the selected articles were allocated to the following
themes: prosthodontics (dental prosthesis), restorative dentistry, or-
thodontics, and other applications, such as endodontics, dental im-
plants, and periodontics, based on the use of SNPs in dental materials or
formulations by dental specialty.

3.1. Use of SNPs in dental materials

Nanoparticles such as SNPs have been extensively studied and used
in dentistry, notably in specialty dental biomaterials employed in
restorative dentistry, dental implants, orthodontics, and prosthesis. The
main purposes of incorporating SNPs in dental materials are to improve
their physicochemical properties and interaction with the oral cavity, as
well as to act as nanocarriers of therapeutic substances [28]. Their use
has also been tested in other formulations as nanocarriers of substances
such as antimicrobials and osteogenic substances [17,21,22,29], for
example. These topics are discussed in the following sections. Table 1
summarizes the application of SNPs in dental materials focusing on
biological activities and mechanical/optical properties presented in the
articles discussed in these topics.

3.1.1. Materials used in dental prosthetics
Poly(methyl)methacrylate (PMMA) is widely used for denture base

prosthesis and provisional crowns. The material displays inherent
favorable features, such as easy handling, low cost, stability in the oral
environment, acceptable esthetic results, and color-matching capability
[11]. However, PMMA has some drawbacks attributed to inadequate
mechanical properties, which allow frequent denture base fracture [30].
Over the years, many studies have been conducted to improve PMMA
properties by adding different types of NPs, such as SNPs [9,12,13,31,
32]. The SNPs exhibit high surface activity and solid interfacial inter-
action with the organic matrix [33] and at specific concentrations can

Fig. 1. Illustration of the different types of SNPs: (I) non-porous (compact NPs, no pores); (II) hollow/rattle (large central cavity); (III) mesoporous (pores with
variable and adjustable sizes); (IV) amorphous (shapeless); (V) core-shell (silica core or outer shell); (VI) yolk/shell (hybrid structures with a movable core inside a
hollow shell of the same or different material); (VII) Janus (heterogeneous surface); and (VIII) rod-shaped SNPs (flattened, non-spherical NPs). Illustration made by
the authors using canva.com.
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Fig. 2. Flowchart of the selection process in the literature review.
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Table 1
Application of SNPs on dental materials: biological activities and mechanical/optical properties.

Dental Materials

Material NPs SNPs
concentration

Antibacterial activity Dentin hypersensitivity and
remineralization activity

Physicochemical properties References

PMMA SNPs 0.023 % - - ↑ microhardness, fracture toughness, and did not change the glass
transition temperature

[9]

T-Sil and SNPs pure 0.25 % - - ↑ fracture toughness, and dynamic thermomechanical properties.
No statistically significant differences were detected among the T-
Sil/SNPs oure

[12]

MPS 1 % - - ↑ flexural strength, flexural modulus, fracture toughness, and
clinically acceptable color change

[13]

SNPs 0.05 % - - ↑ flexural strength, and flexural modulus [21]
SNPs 0.5 % - - ↑ hardness and showed acceptable surface roughness and

translucence
[31,32]

SNPs 0.5 % - - ↑ flexural strength [34]
SNPs 0.05 – 1 % ↓ C. albicans adhesion for slide count and direct

culture methods
- ↑ surface roughness and surface hardness, ↓ contact angle and

translucency (concentration-dependent)
[39]

SNPs 5 % - - ↑ flexural strength, hardness, and resilience, and ↓ surface
roughness

[33]

MSNs with amphotericin
B

2.5 – 5 % ↓ C. albicans and S. oralis adhesion. A long-term
antimicrobial effect was observed for 2 weeks
(2.5 %)

- ↓ flexural strength, ↑ surface roughness (5 %) and hydrophobicity [40]

MSNs with silver-
sulfadiazine

0.5,
2.5 - 5 %

Immediate and long-term anti-adhesive effects
against C. albicans and S. oralis (2.5 – 5 %)

- ↑ surface hardness, flexural strength and did not change the
flexural modulus (0.5 %)

[41]

PMMA SNPs 0.5 – 0.75 % - - ↑ hydrophobicity, and increased the coating layer durability after
brushing-wear simulation

[46]

SNPs 0.8 % ↓ S. aureus adhesion - ↑ hydrophobicity, and showed good transparency [44]
SNPs 2.5 – 10 % - - ↑ surface hardness and elastic modulus, and did not change the

surface roughness after aging for 6 and 12 months
[47]

Composite resin UHA-SNPs 5 %, 10 %, 20 %
and 30 %

- - ↑ compressive and tensile strength, microhardness, flexural
strength, and flexural modulus. The fillers % did not influence
these parameters

[16]

CHX-SNPs 30 % Effective against Streptococcus genus bacteria - ↑ flexural strength, flexural modulus and did not interfere the
degree of conversion. After water storage ↓ flexural strength

[18]

SNPs 30 - 40 % - - ↑ fracture toughness, flexural strength, and microhardness [19]
CHX-MSN 5 % Effective against plankton and biofilm growth

of L. casei and S. mutans
- ↑ flexural strength, flexural modulus, and constant surface

roughness (after 1 month in water)
[22]

Zn-MSN 15 % Effective against S. mutans (surface plate test
and gram staining method)

- ↑ flexural strength, flexural modulus, compressive strength, and
microhardness

[24]

Composite resin Cu-MBGN 5 % - - ↑ degree of conversion, flexural strength, flexural modulus, and
microhardness

[29]

QASi 5 %, 8 % and 10 % - - ↑ gel effect, degree of conversion, flexural modulus, flexural and
compressive strength

[59]

SNPs 5 – 10 % - - ↑ flexural strength, flexural modulus, and wear resistance, and ↓
polymerization shrinkage

[58]

QASi - - ↓ enamel demineralization - [61]
Dental adhesives Silanized SNPs 0.2 % - - ↑ flexural strength, fracture toughness and µTBS. Also, showed less

roughness and few adhered fragments
[20]

OCT-MSN 10 % Effective against biofilm of S. mutans - - [53]
SNPs 15 % - - ↑ µTBS and acceptable degree of conversion [70]
SNPs 0.2 % - - ↑ flexural strength and microshear bond strength [65]
MSN/CHX-PLGA 5 % Effective against biofilm of S. mutans - ↑ µTBS [66]
CHX-MSN 5 % Effective against S. mutans - ↑ MTBS and did not interfere the degree of conversion [67]
silver-loaded SNPs 1 % No antibacterial activity against S. mutans - No interference in degree of conversion, shear and complex

viscosity, water sorption and linear shrinkage
[68]

Dental adhesives L-arginine-loaded MSNs 0.5 % Effective against S. mutans and L. casei - ↑ flexural strength, degree of conversion and µTBS [69]
Proanthocyanidin-MSN 20 % - - ↓ physicochemical properties except µTBS [71]

(continued on next page)
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Table 1 (continued )

Dental Materials

Material NPs SNPs
concentration

Antibacterial activity Dentin hypersensitivity and
remineralization activity

Physicochemical properties References

Glass ionomer
cement

SNPs 0.5 % - - Did not interfere in µSBS [72]
HTCC 3 % ↓ growth S. mutans - ↑ flexural strength, flexural modulus, microhardness, and wear

resistance
[73]

SNPs 5 % - - ↓ microleakage rates [74]
nanoZrO2 –SiO2– HA 5 % - - ↑ compressive and flexural strengths and did not influence surface

roughness
[76]

nanoZrO2 –SiO2– HA 5 % - - ↑ fracture toughness and ↓ water sorption [77]
DH tratament Ca3(PO4)2-MSNs - - Occluded the dentinal tubules

and formed a deeper seal
which penetrated about
105 µm deep

- [81]

NCMS paste - - Formed a CaHPO4⋅2 H2O
precipitation with a 100 µm
depth and ↓ dentin
permeability

- [82]

nHA-MSN - - Completely occluded the
dentinal tubules by forming
precipitates

Did not influence µTBS between dentin/adhesive [83]

Ag-BGN-MSN 3 % ↓ optical density of L. casei growth Occluded the dentinal tubule
and formed a membrane-like
layer

µTBS similar to the control, but significantly different to the BG and
MSN group

[84]

MSNs with EPD treatment - - Occluded the dentinal tubule
with infiltration of 7 – 8 µm
and tightly associated with
the tubular inwalls

No significant difference for SBS [85]

Orthodontics
Composite
adhesives

Silver SNPs 250 and 500 ppm ↓ optical density of S. mutans and S. sobrinus. No
inhibition zones observed after 48 h

- Addition of silver SNPs ↑ surface roughness. No significant
difference in SBS and debonding pattern

[88]

TPU SNPs 1 % - - ↑ hydrophobicity, improved elasticity, tension relaxation, and
provided shape memory effect

[92]

Orthodontic
brackets

Ag-SNPs 1–3 % ↓ S. mutans biofilm formation (3 %) - ↑ SBS (1 %) [89]
silica-hydroxyapatite-
silver hybrid NPs

2 % - - ↑ SBS and did not influence the adhesive remnant index score [90]

Orthodontic
wires

Coating SNPs - - - ↓ frictional resistance, and rough surface and resistance to the
friction produced between the wire and the bracket interface

[93]

PMMA - poly(methyl)methacrylate; SNPs – silica nanoparticle; MSNs - Mesoporous silica nanoparticle; T-Sil - silica nanoparticle modified with triethoxyvinylsilane; MPS - γ-methacryloxypropyltrimethoxysilane; UHA-
SNPs – urchin-like hudroxyapatite; Cu-MBGN – copper-doped MSN bioactive glass nanospheres; CHX-MSN –chlorhexidine-loaded mesoporous silica nanoparticle; QASi – quartenary ammonium compounds; Zn-MSN –
zinc-loaded mesoporous silica nanoparticle; OCT-SNPs – octenidine dihydrochloride-loaded silica nanoparticle; Nano-HA-SiO2 - nano-hydroxyapatite-silica; MSN/CHX-PLGA - chlorhexidine-loaded mesoporous silica
nanoparticle modified with poly-(latic-co-glycolic acid); NCMS – calcium oxide-loaded mesoporous silica nanoparticle; HTTC - quaternized chitosan-coated mesoporous silica nanoparticles; EPD – electrophoretic
deposition; Ag-BGN-MSN - silver-doped bioactive glass/mesoporous silica nanoparticle; nHA-MSN - nanohydroxyapatite/mesoporous silica nanoparticle; TPU - Thermoplastic Polyurethane Elastomer, SBS - shear bond
strength.

L.Pavanello
etal.

Dental Materials 40 (2024) 1729–1741 

1733 



enhance the physical, thermal, and optical properties of the organic
polymer [31].

In vitro studies have investigated the most appropriate SNP concen-
tration in PMMA for denture base and provisional crowns to improve
general mechanical properties, and most reports suggest the use of low
[9,12,21,31,32,34] over the high concentrations [33]. The studies
showed that higher concentrations caused extensive agglomeration,
whereas not observed with lower concentrations, indicating that low
concentrations are prone to a more homogenous distribution of the NPs
in the polymer [9,34]. The uniform particle dispersion and impregna-
tion in the matrix is crucial to avoid the development of stress concen-
tration areas, impairing the mechanical properties of the resin [9,35].
To enhance the bonding between the reinforcement particles and the

PMMA polymer [36] coupling and reinforcement agents such as
γ-methacryloxypropyltrimethoxysilane (MPS) [13] and triethox-
yvinylsilane (T-Sil) [12], can be used. It was observed these agents
improved the overall PMMA mechanical properties in low concentra-
tions [12,13], and showed clinically acceptable color change [13].
Since those materials could be placed in esthetic locations, investi-

gating the effects of SNPs incorporation on their optical properties is also
important because it is suggested that the shape, size, and distribution of
NPs also impact PMMA esthetic properties by influencing the material’s
translucence [31]. It was noted that incorporating SNPs into acrylic
PMMA powder facilitated the filling of cracks and gaps between polymer
chains, resulting in a homogeneous PMMA/NPs matrix. However,
despite achieving a homogeneous matrix in the modified PMMA, higher
concentrations of SNPs led to a reduction in the material’s translucency
[32]. Therefore, the proportion of the SNPs should be minimum to
guarantee uniform distribution without agglomerations. In this context,
silanization could enhance the dispersion based on the chemical in-
teractions between the OH– of the SNPs particles and the hydrolysable
groups of the silane coupling agent [37].
Another important aspect of SNPs incorporation into PMMA is the

antibacterial effects provided by its addition [38], since the potential for
biofilm accumulation due to the surface porosities and food-retentive
configuration is a common issue faced by patients using PMMA-based
prostheses or provisional crowns and bridges. The biofilm formation,
in turn, increases the possibility of Candida albicans (C. albicans) adhe-
sion, eventually leading to denture stomatitis [31]. Therefore, adding
NPs with antimicrobial potential is highly desirable. However, the
required NPs concentration, type, and overall features to decrease the
biofilm formation cannot be detrimental to the mechanical properties. In
this context, the nano-filled-reinforced PMMA must exhibit an antimi-
crobial potential without interfering or, preferably, while increasing the
mechanical aspects.
The incorporation of SNPs alone [39] or combined with antimicro-

bial agents such as amphotericin B [40] and silver-sulfadiazine [41] in
PMMA denture-based material decreased C. albicans [39–41] and
Streptococcus oralis (S. oralis) [40,41] adhesion. It is suggested that the
effects against C. albicans and S. oralis can be the direct contact of SNPs
with the cell that may inhibit the normal reproduction process since the
NPs may cross the fungal cell membrane and disrupt the metabolic
pathway, affecting the membrane function and shape [41], and sus-
tained release of silver ion (~ 10 ppm in 28 days) [41], can be potent for
achieving long-term microbial anti-adhesive effects. Furthermore, the
contact angle of the PMMA nano-filled material decreased, increasing
the acrylic resin’s wettability and thus reducing C. albicans’ ability to
adhere to a hydrophobic surface [39–41]. Regarding mechanical prop-
erties, the incorporating SNPs, and silver-sulfadiazine-MSN (meso-
porous silica nanoparticles) increased the surface hardness [39,41],
while decreasing flexural strength as particle concentration increased
[40]. Moreover, the incorporation of amphotericin B into PMMA
increased the surface roughness [39,40], exceeding the 0.2 µm threshold
at which biofilm formation tends to occur [42,43].
SNPs were also added to PMMA prosthesis coating agents. The

advantage of coating materials is changing the surface properties of

denture-based and provisional crowns and bridges, without compro-
mising PMMA bulk, and optical or clinical esthetics properties.
Furthermore, investigations have demonstrated that SNPs added to the
coating agents can hamper oral biofilm formation, by changing PMMA
surface hydrophobicity [44–46], enhancing the mechanical properties
of these agents [46,47], without compromising the optical properties
[44]. Generally, low concentrations of SNPs were sufficient to promote
these properties [44,46]. In the long-term, the coating agent applied to
the PMMA surface is expected to wear out due to the intraoral chemical
and mechanical degradation. However, another advantage of the
coating material is the possibility of reapplying it to the PMMA surface.
In this context, incorporating SNPs into PMMA denture base materials
seems to be a feasible alternative to extend the SNPs beneficial effects
[14].

3.1.2. Materials used in maxillofacial prosthesis
In the field of maxillofacial prosthesis, SNPs have been investigated

for their potential to enhance the properties of dental materials and
improve the performance of maxillofacial prostheses, used to treat
congenital and acquired abnormalities in the head and neck area.
Maxillofacial prostheses offer a convenient option, providing patients
with a typical appearance, aesthetic appeal, and social recognition [48].
Studies have investigated the effect of SNPs on silicone elastomers, a
polymer used in the manufacture of maxillofacial prostheses [10,49].
The results indicate that the nanoparticles increased the mechanical
properties of experimental elastomers [10,49], probably due to the
reinforcement provided by the effective interaction between the SNPs
and the polymeric matrix [10].
Furthermore, when associated with magnesium for biodegradable

implants for maxillofacial applications, there was a significant increase
in fracture strain and a reduction in the rate of corrosion in lower con-
centrations. On the other hand, increasing the concentration of nano-
particles did not reduce the cell viability of osteoblastic cell line MC3T3-
E1. Additionally, the wettability properties indicated amore hydrophilic
surface, which is favorable for cell adhesion and proliferation as it
promotes interfacial reactions between the surface and proteins, thereby
enhancing cellular response [50].

3.1.3. Materials used in restorative dentistry
For years, dentistry has benefited from materials to restore the aes-

thetics and function of the dental elements. The clinical performance
and longevity of dental restorations depends on the procedure, factors
related to the material used, and patient factors [51,52]. In this section,
will be discussed the effect of SNPs on material-related factors, such as
physicochemical, optical, and antimicrobial properties, in addition to
the remineralizing activity of restorative materials.

3.1.3.1. Composite resins. Composite resins have been widely used in
restorative dentistry since the 1990s. They offer several advantages,
including aesthetic similarity to natural teeth, ease of application, good
mechanical properties, and biocompatibility [53,54]. Since the 2000s,
pioneering studies [55,56] have investigated the use of SNPs in com-
posite resins to enhance their mechanical properties, longevity, and
clinical success. Today, various commercial products incorporate SNPs
in their composition [57].

In vitro studies have investigated the influence of silica particles size
[58], and different SNPs concentrations on the physicochemical prop-
erties of experimental composite resins, alone or combined with other
substances [16,18,19,29,59]. In general, it was observed that adding
SNPs in higher concentration to composites improved overall mechan-
ical properties compared to silica microparticles [58], but reduced the
contrast ratio [60]. Usually, inorganic microparticles have difficulty
dispersing homogeneously in the polymeric matrix, generating ag-
glomerates that compromise the mechanical resistance of the material,
while SNPs can fill the gaps in the resinous matrix, improving the
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general properties. Moreover, these findings indicate that the increase in
filler particles content generates higher material compaction, reducing
crack propagation, but affect the translucency of composites [58,60].
Additionally, studies have been carried out to develop dental com-

posite resins with high clinical performance and antimicrobial activity,
by associating SNPs and other substances. SNPs combined with urchin-
like hydroxyapatite [16], copper-doped mesoporous bioactive glass
nanospheres [29], quaternary ammonium [59,61], zinc [24], and
chlorhexidine (CHX) [18,22] promoted antimicrobials activity against
oral biofilm adhesion such as Lactobacillus casei (L. casei) [22] and
Streptococcus genus bacteria biofilm [18,22,24] without significantly
compromising their physicochemical properties [16,18,22,24,59,61].
Additionally, it was observed a sustained release of zinc [24], and CHX
[18,22]. These findings are promising because a material that demon-
strates potential to reduce oral biofilm adhesion and pathogenicity,
without altering the composite-tooth microbiome and general proper-
ties [62], is highly desirable in dentistry because it is known that the
acidic by-products generated by oral biofilms influence the balance
between demineralization and remineralization of teeth, resulting in
surface changes that promote the development of caries [63,64].

3.1.3.2. Dental adhesives. In addition to composite resins, incorporating
inorganic filler particles with bioactive substances can be a strategy to
increase the physicochemical properties of the adhesive layer and the
bond strength of dental adhesives, used mainly to ensure adequate
adhesion of restorative composites to tooth structure and to avoid de-
ficiencies that can lead to failure of restorations [65], preventing the
onset and progression of oral infections caused by cariogenic bacteria
[53,66–69].
Different SNPs concentrations on the physicochemical properties of

dental adhesives were investigated and it was observed that low con-
centrations improve the physicochemical properties [20,65,66,69,70]
compared to higher concentrations like PMMA materials. This
improvement is attributed to the homogeneous dispersion of nano-
particles at lower concentrations, facilitating the formation of a resilient
structure, while higher concentrations tend to form clusters that nega-
tively affect adhesive properties [67]. Similar findings were obtained
with the addition of L-arginine-loaded MSNs [69] and
chlorhexidine-loaded MSNs [66,67]. Divergently, dental adhesives with
low concentrations of silver-loaded SNPs [68] showed no statistical
difference for the degree of conversion, shear and complex viscosity,
water sorption, linear shrinkage, when compared to the control group
(no particles).
Another approach to improving the physicochemical properties and

reducing the hydrolytic degradation of restorative materials is by
modifying the SNPs surface to increase the compatibility between the
inorganic matrix and the organic matrix [37]. Despite this, the func-
tionalization of MSN with organosilanes and loadeding with proantho-
cyanidin resulted in decreased overall physicochemical properties of
dental adhesive[71]. It is proposed that post-functionalization, certain
amino groups from organosilanes may have linked to collagen hydroxyl
groups, favoring the interaction of the adhesive with dentin and, as a
result, there was high bond strength, but the effect of functionalization
in reducing the other properties analyzed is uncertain.
Regarding antimicrobial activity, adhesives containing CHX exhibi-

ted a notable reduction in the metabolic activity and cell viability of
Streptococcus mutans (S. mutans) and, proportionally to the increase in
the concentration of nanoparticles [66,67]. Interestingly, the release
profile of CHX was better at pH 5.0 than at 7.4 from SNPs, suggesting the
potential for drug release modulation in response to acidogenesis and
bacterial infections [66]. Similar findings were obtained with adhesives
containing octenidine dihydrochloride (OCT) [53] and L-arginine, an
amino acid that, when metabolized by oral bacteria, neutralizes the
acidic environment that contributes to primary or recurrent caries
development and progression [69], while silver showed less pronounced

effects, possibly due to their lower silver content [68].

3.1.3.3. Glass ionomer cement. Glass ionomer cements have wide
application in dentistry due to their characteristics, such as biocom-
patibility, chemical bonding to the dental substrate and release and
recharge of fluorine ions. Despite the benefits, these materials have
disadvantages that limit their use in areas with a higher incidence of
occlusal forces, such as the formation of marginal gaps in restorations,
fractures and wear out [72–77]. To improve the mechanical properties
and overcome the main limitations, the addition of SNPs [72,74], qua-
ternized chitosan nanoparticles (HTCC-MSN) [73], and nano
zirconia-silica-hydroxyapatite (nanoZrO2 –SiO2– HA) [76,77] was
investigated in glass ionomer cements.
Adding SNPs to glass ionomer cements resulted in reduced micro-

leakage rate between the tooth surface and the restoration, supposedly
due to the formation of siloxane bonds between the SNPs and the organic
material of the cement [74]. However, there were no significant dif-
ferences between the microshear bond strength (μSBS) with low con-
centration of SNPs [72], suggesting that low SNPs content may not have
been enough to increase the µSBS, potentially causing incomplete
cement maturation. Therefore, glass ionomer cements containing
HTCC-MSN [73] and nanoZrO2–SiO2–HA [76,77] exhibited higher me-
chanical properties at lower concentration, while increasing particle
concentration tended to reduce these properties[76,77], reinforcing the
findings of other studies in different restorative materials [9,20,32,34,
39,65–67,69,70]. Based on these results, it is assumed that SNPs, alone
or associated with other substances, can increase the packing density in
the cement matrix, generating a homogeneous and resistant material
[73,76,77]. In addition to the reinforcement of silica molecules, it is
worth highlighting the hardening effect of ZrO2 and the hydroxyapatite
additive, which can contribute to the good results [76,77].
In addition to the mechanical properties, it was also observed that

materials with HTCC-MSN inhibited the growth of S. mutans in a
concentration-dependent manner [73] and that
nano-hydroxyapatite-silica (nano-HA-SiO2) were compatible with the
human dental pulp stem cells (DPSC) in 24 h and 72 h between con-
centrations of 3.125 and 100 mg/mL [75].

3.1.4. Materials used in the treatment of dentin hypersensitivity
Dentin hypersensitivity (DH) is characterized by a sensitivity to non-

harmful environmental stimuli, such as thermal, tactile, osmotic, or
chemical [78,79] and is a common problem in clinical dentistry with an
incidence of 4 to 74 % [80,81]. In vitro, the SNPS, particularly MSNs
containing calcium oxide [82], calcium phosphate [81], hydroxyapatite
[83] and bioactive glass-coated and silver (Ag-BGN-MSN) [84] have
been applied to occlusion of dentinal tubules in severe DH treatment,
providing acid-fast stability, and promoting tissue remineralization.
Pastes with MSNs containing calcium oxide and calcium phosphate

diffused deep into the dentinal tubules and formed calcium phosphate
precipitates [81,82] highlighting their therapeutic potential for tissue
remineralization. Similarly, pastes with hydroxyapatite-loaded SNPs
can act as a calcium phosphate reservoir and contribute to dental
mineralization, with low cytotoxicity even at the highest dosage. In
addition to completely occluding the dentinal tubules with hydroxyap-
atite nanocrystals, this particle strongly combines with the tubular wall,
which allows greater tubular infiltration [83].
Bioactive glasses containing SNPs showed remineralizing potential

due to their osteoconductive effect and ionic dissolution [81,84]. From
this dissolution, the formation of apatite hydroxycarbonate precipitates
accelerates the occlusion of dentinal tubules [84]. Moreover, dentinal
tubules were also effectively occluded by MSNs alone. Using electro-
phoretic equipment, it was observed that specimens fixed to the positive
electrode had an effective occlusion of the dentinal tubules when
compared to specimens fixed to the negative electrode, probably due to
negative charge of the SNPs. Furthermore, the shear strength between
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the dentin and the adhesive system was not affected after electropho-
retic deposition application [85].

3.1.5. Orthodontics
In the oral cavity, despite the numerous advantages, fixed ortho-

dontic appliances modify the symbiotic microbiome by accumulating
cariogenic biofilm that reduces the oral pH to acidic levels which can
cause causes dental demineralization, appearance of white spot lesions
around the orthodontic brackets, inflammation of the periodontium, and
increase in the risk of caries, particularly in patients with poor oral
hygiene during treatment [86,87]. Therefore, orthodontic appliances
are reported as a risk factor for adhesion and bacterial multiplication,
including orthodontic adhesives, that have surface roughness and may
have areas with gaps around the brackets at the adhesive-enamel
interface. An alternative to this situation is incorporating antimicro-
bial drugs to orthodontic adhesives to prevent the accumulation of
biofilm without negatively interfering with the mechanical properties of
the material [88].
Experimental adhesives with silver nanoparticles associated with SNPs

[88] and coated with silica [89], and silica-hydroxyapatite-silver hybrid
nanoparticles [90] did not interfere with mechanical properties in low
concentrations [88–90]. However, for bonding orthodontic brackets, for
example, the use of higher concentrations of particles is recommended
due to the lower risks caused to the dental enamel during bracket
detachment [90]. In addition, adhesives containing silver exhibited anti-
microbial activity against S. mutans [88,89] and Streptococcus sobrinus
(S. sobrinus), bacteria associated with the initiation of oral biofilm for-
mation [88]. It can be considered that the antibacterial effect is syner-
gistic, since the silver ions released from the nanoparticles can bind in
different structures and cause damage to the bacterial cell and the SNPs
can penetrate the bacterial cells and interfere with its metabolism through
the interaction of the silane group of the particles with biological mole-
cules of the cell membrane, such as proteins and lipids [91].
The SNPs were also investigated when added to elastomeric ligatures

of fixed appliances that hold the orthodontic wire to the bracket [92]
and to coating orthodontic wire [93], as an alternative to the main
limitations, such as water absorption and tension relaxation [92] and to
reduce friction between parts, facilitating orthodontic movement [93].
For successful orthodontic treatment, elastomeric ligatures must provide
sufficient strength for corrective tooth movement with a minimal ten-
sion relaxation to avoid causing pain to the patient and have acceptable
elasticity and stretching to not fail during treatment period [92,94]. Due
to conditions of the oral cavity and changes in the molecular structure,
elastomeric ligatures may show a reduced viscoelastic strength, which
compromise tooth movements and the success of orthodontic treatment.
Therefore, materials that have elastic memory effect are clinically
desirable for stabilizing the degree of strength for a longer period [94].
Thermoplastic polyurethane (TPU) elastomer with SNPs showed

improved properties such as hydrophobicity, elasticity, tension relaxa-
tion, and shape memory effect, which are crucial for orthodontic ap-
plications. Furthermore, the sample showed an acceptable initial force
for tooth [92]. Moreover, coating orthodontic wires with SNPs resulted
in a smoother and more resistant surface compared to titanium dioxide
coating, reducing friction between the wire and the bracket interface, in
dry and wet environments (artificial saliva) [93]. Considering that
frictional resistance is a factor that can reduce tooth movement and the
surface roughness of the wire can favor the adhesion of oral pathogenic
microorganisms, the results obtained are promising.

3.2. Other applications of SNPs in dentistry

In addition to the application of SNPs in dental materials, they can
also be used for other purposes in dentistry, performing anti-
inflammatory, antimicrobial, osteogenic, as well as improvements in
the mechanical properties of implants, and aesthetic and functional
materials used extraorally [10,17,49,95,96]. Some examples are MSNs

which, when loaded with antimicrobial, anti-inflammatory and osteo-
genic substances, have shown promising results in the treatment of
periodontal disease [8,97] and bone regeneration [17,25].
The association of nanoparticles with bioactive materials for bone

metabolism, such as calcium, magnesium and strontium revealed the
formation of apatite hydroxycarbonate on their surface and biocom-
patibility with human periodontal ligament fibroblasts (hPDLFs) [17].
MSN hydrogel loaded with carboxymethyl chitosan and clindamycin
exhibited biomineralizing properties and biocompatibility in human
mesenchymal stem cells (hMSCs), in addition to antimicrobial activity
against Streptococcus sanguinis [25]. The mineralization mechanism has
not been fully clarified, but it is suggested that after cellular internali-
zation, the nanoparticles may mediate chemical signals that activate
gene expression and/or alkaline phosphatase activity, responsible for
promoting ideal concentrations of inorganic phosphate and decrease
extracellular pyrophosphate, facilitating local mineralization [25,98].
SNPs loaded with curcumin also exhibited biocompatibility in dental

pulp stem cells and dose-dependent antimicrobial activity against Por-
phyromonas gingivalis, the bacteria involved in periodontitis. Among
other mechanisms, it is presumed that curcumin can damage the bac-
terial membrane, inhibit bacterial proliferation, or generate the gener-
ation of reactive oxygen species (ROS) [97]. Furthermore, MSNs with
flavonoids such as baicalein and baicalin were able to down-regulate the
expression of pro-inflammatory cytokines. Despite the potential in vitro
effect in modulating the immune-inflammatory response, baicalein
significantly reduced the viability of primary human gingival epithelial
cells (hGECs) in a dose-dependent, with formation of cellular voids. In
contrast, baicalin has not been shown to be cytotoxic [8].
SNPs were also tested as components of implant cleaning creams to

remove organic residues and reduce the abrasion often caused by con-
ventional toothpastes. The addition of hydrated SNPs in experimental
implant paste resulted in greater protection against abrasion and
reduction of organic contaminants such as carbon when compared to
conventional dentifrices [95]. Conventional toothpastes contain com-
pounds such as organic compounds, fluoride ions and abrasives, which
affect surface stability, chemical properties, cause corrosion, increase
roughness and cause significant damage to the implant surface [99,100].
For the number of bacteria, both the conventional dentifrices and the
cream developed in the study showed significant bacterial removal [95].

3.3. Biocompatibility and toxicity of SNPs

As the use of SNPs has expanded to various applications, including in
medicine, the potential exposure of humans to these substances has
increased. It is therefore important to ensure that SNPs are biocompat-
ible and safe for use in humans [101,102]. Studies to date are incon-
clusive and, in some cases, controversial. Cohesive data on
pharmacokinetics is lacking, considering the different variables that
interfere with biological effects [2,5,6]. Furthermore, the production
method and physicochemical properties of SNPs, particularly their
nanometric particle size, have been cited as potential factors that may
negatively impact human safety and health [101,102].
The particle size is very important to measure the biocompatibility of

nanomaterials and nanoformulations. The basis of this hypothesis is that
NPs with smaller sizes have greater cytotoxicity since they diffuse more
rapidly to tissues. However, there is no consensus on the effect of size on
toxicity [101]. Table 2 shows results from SNPs biocompatibility in
dentistry, associating the NPs size, time, and exposure dose with relative
cytotoxicity. The SNPs mean size ranged from 52.85 to 425 nm and no
study observed cytotoxicity for the investigated nanoparticles. These
findings confirm the uncertainty about the nanoparticle size effect on in
vitro and in vivo biocompatibility. In addition, generally, studies
included in this review focus on evaluating physicochemical properties
and short-term nanocarriers of substances. Note that few in vitro studies
address biocompatibility in oral cells and, consequently, in vivo evi-
dence to support SNPs clinical safety is lacking.
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Table 2
Summary of studies on SNPs biocompatibility and toxicity.

Material type SNPs type Cell or animal species studied Particle* /pore size•
(nm)

Exposure dose and exposure
time

Experimental
methods

Results Reference

- MSNs – MCM− 41 (nano-BE and nano-BA) Human gingival epithelial
cells

367 ± 94 * 12.5, 25, 50, 100, and
200 μg mL− 1

24 h rated

CCK− 8 Biocompatible
*

[8]

Superhydrophobic coating material for
denture surface

Not specified Dental pulp cells Not informed 0.5, 0.8, or 1.0 %
24, 48, and 72 h rated

MTT Biocompatible [14]

- MSN (MSN Mg- and Sr-doped NPs for
moxifloxacin)

Periodontal ligament
fibroblasts

151.9 to 534.7 * 60, 125, and 250 μg mL− 1

24 h rated
MTT Biocompatible [17]

Composite resins MSN (Zn-MSN) Osteoblasts MC3T3-E1 138 * 0 %, 2 %, 5 %, 10 % and
15 %
1, 3, and 5 days rated

Live/Dead staining
and
MTT

Biocompatible [24]

PMMA MSN with amphotericin B Immortalized human oral
keratinocytes

85.2 ± 7.7 *
3.54 ± 0.41•

0, 0.5, 1, 2.5 or 5 %
24 h rated

WST Biocompatible [40]

PMMA Silver-sulfadiazine-loaded MSN Immortalized human oral
keratinocytes

85.2 ± 7.7 *
3.54 ± 0.41 to 3.50
± 0.31•

0.5, 1, 2.5, or 5 %
24 h rated

WST Biocompatible [41]

Dental Adhesive Octenidine dihydrochloride-loaded MSN Human gingival fibroblasts 424 ± 75 * 0, 5, 15, or 50 ng mL− 1

24 h rated
WST Biocompatible [53]

Dental Adhesive CHX/MSN-PLGA Dental pulp stem cells ~ 78 * 5 or 10 %
Exposure time uninformed

MTT Biocompatible [66]

Glass ionomer cement nano-HA-SiO2 Human Dental Pulp Stem
Cells

Not informed 5 %
24 h

MTT Biocompatible [75]

Biocomposite MSN
(nHA@MSN)

Human dental pulp cells 150 – 350 * 0, 10, 20, 40, 80, 160, 320,
640 μg mL− 1

24 h rated

CCK− 8 Biocompatible [83]

- MSN
(Ag-BGN@MSN)

100 – 350 * 1 %, 3 % and 5 %
24, 48 and 72 h rated

MTT Biocompatible [84]

Composite hydrogels Clindamycin-releasing mesoporous silica/
carboxymethyl chitosan

Human mesenchymal stem
cells

1,33 cm3g− 1• 1, 2 and 7 days MTT Biocompatible [25]

- Curcumin-loaded silica nanoparticles Dental pulp stem cells 110 ± 1,23 * 24 h MTT Biocompatible [97]
- Magnesium-loaded silica nanoparticles MC3T3-E1 16 – 25 µm* 0.5 %, 1 %, and 1.5 %

1, 3 and 5 days
Live/Dead staining Biocompatible [50]

Experimental methods: MTT – [3-(4,5-dimethylthyazol-2-yl)− 2,5-diphenyltetrazolium] bromide, WST-1 –water-soluble tetrazolium, CCK-8 – Cell Counting Kit-8; LDH – Pierce lactate dehydrogenase. MSNs - Mesoporous
silica nanoparticle; MSN/CHX-PLGA - chlorhexidine-loaded mesoporous silica nanoparticle modified with poly-(latic-co-glycolic acid); Zn-MSN – zinc-loaded mesoporous silica nanoparticle; Ag-BGN-MSN - silver-doped
bioactive glass/mesoporous silica nanoparticle; Ag-MSN – silver-doped mesoporous silica nanoparticle; Nano-BA and Nano-BE - baicalein and baicalin encapsulated in amine-modified MSNs; nano-HA-SiO2 – nano-
hydroxyapatite-silica; nHA@MSN – nanohydroxyapatite/mesoporous silica nanoparticles.
*At high concentrations (200 μg mL− 1), nano-BE reduced cell viability, but biocompatibility was confirmed by the stability of the LDH (Pierce Lactate Dehydrogenase) test
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Although not well established, the main mechanism involved in the
cytotoxicity of SNPs is believed to be the induction of oxidative stress
(generation of reactive oxygen species – ROS), which oxidize the poly-
unsaturated fatty acids of the cell membrane, leading to cell necrosis or
apoptosis. The shape, particle, and pore size in turn influence the level of
intracellular ROS and, consequently, toxicity [6,102].
The systematic review byMurugadoss et al. [102] found that in vitro,

SNPs showed cytotoxicity and genotoxicity in different cell lines and
induced ROS, apoptosis, and autophagy (intrinsic or mitochondrial
pathway) in a size and dose-dependent manner. Furthermore, SNPs
induced ROS and adversely affected the cardiovascular system, resulting
in platelet, aggregation, endothelial dysfunction with pro-inflammatory
signs, and red blood cell hemolysis. In vivo, rats and mice were exposed
to SNPs by the administration routes – oral, inhalation, topical, and
parenteral, single dose or long-term. The administration route and the
SNPs physicochemical properties influenced the toxicokinetic with
adverse effects mainly on the lungs, kidneys, liver, and brain. Interest-
ingly, toxic effects occurred in animals exposed to a single dose whereas
those exposed chronically showed no local or systemic toxicity. The
authors conclude that the correlation between the findings remains
unestablished due to the different methodologies used [102].
Indeed, adverse immune reactions and the production of inflamma-

tory mediators have been observed in response to SNPs, and the extent
of these effects can depend on various factors such as size, dose, surface
charge of the nanoparticles, and the type of immune cell. Larger pore
sizes (> 30 nm) induce less intracellular ROS in macrophages and have
fewer pro-inflammatory effects in both cell culture and animal models
[6]. Overall, the effects of SNPs on the immune system are complex and
can vary depending on many factors. Further research is needed to fully
understand the immunological effects of SNPs and to guide their safe use
in various applications.

4. Discussion

Research on SNPs, especially MSN, has become an emerging field
over the years, due to their promising physicochemical properties,
uniform pore distribution (pore diameters between 2 and 50 nm), and in
vitro and in vivo biocompatibility. In addition, these nanoparticles have
the advantages of simple and economical synthesis, easy scale-up, and
the possibility of surface modification with functional molecules to
improve stability [103–105]. Several studies have synthesized and
characterized SNPs and given their potential use in a wide range of
areas, investigated their effect on dental materials and formulations [10,
32,46,65,72,89,90,95].
The first reason for this is that SNPs can be synthesized by different

methods, such as Stöber, sol-gel and microemulsion methods, using
different materials, which results in particles with different morphol-
ogies [3,26,101,106,107]. Secondly, SNPs have characteristics that
favor their use for various purposes. In the field of dentistry, significant
research has been dedicated to enhancing the overall properties of
intraoral [9,16,18,31,37,58,73,94] and extraoral dental materials [10,
49,50]. These improvements aim to benefit various dental applications,
including prosthetics, restorative dentistry, orthodontics, and address-
ing oral conditions such as dentin hypersensitivity and periodontitis.
Researchers have also explored the use of SNPs as nanocarriers for
adsorbing or loading hydrophilic and hydrophobic bioactive substances
[22,25,40,61,67,68,83] for the prevention and treatment of oral con-
ditions within the dental field.
The addition of SNPs can impact the mechanical properties of ma-

terials, with a positive effect depending on the concentrations used. In
general, low concentrations of SNPs were more appropriate to improve
the physicochemical properties of PMMA-based dental prostheses [9,31,
32,34,39], maxillofacial prostheses [10,49], adhesives [20,65–67,69,
70], cements [76,77] and orthodontic materials [89] as they present a
more homogeneous distribution in the matrices, being able to provide
greater reinforcement and resistance to the experimental materials. On

the contrary, with higher concentrations of SNPs there was a tendency
for agglomeration with heterogeneous distribution of particles in the
matrices and, consequently, impairment of physicochemical properties
[9,19,20,34,39,40,65,67,76,77,88,90].
Furthermore, SNPs associated or not with other substances have

demonstrated potential for the treatment of painful symptoms in
dentistry, such as dentin hypersensitivity due to obliteration of dentinal
tubules [81–84], remineralizing ability [17,25,81–83],
anti-inflammatory activity [8] and antimicrobial activity against oral
bacteria [25,53,66,67,69,73,88,89,95,97].
Although often desirable, it is worth noting that the addition of

nanoparticles to dental materials to obtain antimicrobial properties
often results in a reduction in physicochemical properties [22]. Because
of this, the development of dental materials that present antimicrobial
activity to reduce the pathogenicity of oral biofilm with adequate gen-
eral properties, without drastically altering the microbiome and the
viability of oral cells, is the target of many studies [22,52]. To the best of
our knowledge, only one self-etching adhesive (CLEARFIL SE Protect)
with antimicrobial activity has been marketed to date. However, this
product does not have SiNPs in its formulation as described by the
company. Indeed, there is a challenge in translating in vitro studies into
materials that can be clinically used while maintaining quality standards
and promoting antimicrobial activity.
While in vitro studies have yielded promising results and signifi-

cantly contributed to our comprehension of particle behavior in mate-
rials, formulations, oral tissues, and microorganisms, thus advancing the
potential therapeutic application of SNPs in dentistry, it is crucial to
acknowledge that this study method is confined to controlled experi-
mental variables. Consequently, it may not fully represent the real oral
conditions that materials and formulations will encounter. Hence, it is
noted that there exists a substantial gap in the literature concerning the
actual short-term and long-term impact of SNPs within the oral cavity.
This is due to the scarcity of in vivo studies, with only one such study
discovered [61]. Additionally, this study was confined to assessing tooth
enamel demineralization over a four-week period.
Moreover, there has been limited exploration of the biocompatibility

of SNPs in oral cells, with all the available studies being conducted
exclusively in vitro (Table 2). Although silica is considered a non-
cytotoxic substance for the organism and is already used in several
areas, at the nanoscale, it is suggested that the particles diffuse more
quickly into tissues, potentially contributing to greater cytotoxicity [99,
106], although there is no consensus on the effect of particle size on
toxicity [101]. The studies included in this review showed SNPs with
different sizes, ranging between ~78 nm [66] and ~424 nm [53] were
not cytotoxic to oral cells, and also the size of the particles did not seem
to interfere with the physicochemical and antimicrobial properties.
Although SNPs have shown promise in dentistry, more in vivo

studies are needed to elucidate the physicochemical and biological ef-
fects of SNPs in the oral cavity. Additionally, there is a need for more
long-term studies evaluating the safety and biocompatibility of SNPs in
vivo. This includes studying the potential accumulation of nanoparticles
in tissues and organs, as well as their potential toxicity and inflamma-
tory responses over time. The development of standardized protocols for
testing and evaluating the safety of SNPs is also necessary to ensure their
safe and effective use in various applications.

5. Conclusions

The potential applications of SNPs in dental materials are vast and
promising, and further research is needed to fully explore and optimize
their properties for these applications. It will be important to carefully
evaluate the biocompatibility and safety of these materials through in
vitro and in vivo studies before they can be used in clinical practice, in
addition to studies to verify their long-term biological and physico-
chemical properties in nanomaterials and nanoformulations, intraorally
or extraorally,
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