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Abstract — In power systems, maintaining a balance between 

generation and load is crucial. Traditional discrete-time dispatch 

methods often fall short, as they do not account for continuous-

time changes in the load profiles throughout the time span. This 

oversight can lead to inaccuracies in tracing load profiles and even 

cause ramping resource shortages. In this paper, we propose the 

idea of continuous-time generation trajectories as dispatch results, 

to align with continuous-time load profiles. To ensure the solvabil-

ity of the continuous-time dispatch, we propose an iterative dis-

patch methodology, which includes two stages: trajectory con-

struction and constraint verification. In the trajectory construc-

tion stage, we use a parametric programming model to divide the 

continuous-time load profiles into multiple segments. Subse-

quently, we build the generation trajectories for each segment us-

ing parametric solutions. In the constraint verification stage, we 

specifically check the continuous-time ramping constraints. This 

stage identifies the infeasible trajectories, which will be updated 

during the next iteration. We repeat this iterative process until 

each unit has a feasible continuous-time generation trajectory 

throughout the time span. The effectiveness of our methodology is 

demonstrated in an illustrative 5-bus system and an actual 661-bus 

system. 

 
Index Terms—Continuous-time dispatch, Continuous-time gen-

eration trajectories, Discrete-time dispatch, Parametric program-

ming. 

I. INTRODUCTION 

A. Research Motivation 

ower systems achieve a balance between generation and 

load through commitment, dispatch, and control [1]. Ide-

ally, continuous-time dispatch is required to match continuous-

time load profiles, representing a perfect balance between gen-

eration and load. Obtaining continuous-time results (continu-

ous-time generation trajectories) in the dispatch problem ena-

bles direct sampling and derivation of discrete-time results. 

Thus, continuous-time results serve as a more general and pre-

cise criterion for dispatch decisions, predicting outcomes under 

broader operational conditions. 

However, traditional dispatch methods operate on a discrete-

time horizon to ensure solvability. While discrete-time dispatch 

models are mathematically manageable, they bring numerous 

challenges. Discrete-time methods invariably result in intra-in-

terval energy deviations in both centralized systems (in most 

US markets) and self-scheduling systems (in most European 

markets). These deviations indicate less efficient dispatch and 

cause deterministic frequency deviations in actual operation, 

significantly impacting system security and reliability. For ex-

ample, an energy deviation of 1300 MW can cause a frequency 

deviation of 50 mHz in load-frequency control areas, whereas 

frequency deviations exceed 100 mHz around the turn of the 

hour [2][3]. Frequency deviations offer relevant insights into 

intra-interval energy deviations from an operational perspec-

tive. Indeed, temporary episodes of energy shortfalls and sur-

pluses can also impact energy quality, load curtailment, and re-

newable consumption [4][5].  

Notably, there is no direct method to measure the benefits of 

continuous-time results, since they have yet to be implemented 

in practice. Instead, we assess the deficiencies of discrete-time 

results through the lens of the tracing limitation and the ramping 

resource shortage. Discrete-time dispatches convert continu-

ous-time load profiles into hourly demands (or other time inter-

vals, such as 30, 15 or 5 minutes), using a linear spline approx-

imation to estimate the continuous-time balance. This discrete-

time conversion naturally leads to intra-interval energy devia-

tions and further requires the imbalance costs [6]. The tracing 

limitation refers to the inability of generation outputs to match 

continuous-time load profiles throughout the time span. More-

over, the continuous-time ramping behaviors of units are not 

captured by the discrete-time model, which simplifies continu-

ous-time ramping constraints into discrete-time ones. The 

ramping resource shortage describes a unit's failure to meet its 

continuous-time ramping constraints.   

In market-based power systems, operators (system or market 

operators) are responsible for ensuring the procurement of en-

ergy and ancillary services to support real-time balance [7]. 

Discrete-time dispatch not only omits critical intra-interval load 

profiles (tracing limitation) but also leads to an overestimation 

of ramping capabilities (ramping resource shortage). There is 

increasing evidence that such issues significantly impact the 

balance [8]. These intra-interval energy deviations indirectly 

highlight the advantages of continuous-time dispatch. 

These intra-interval energy deviations stem from the dis-

crete-time model, and we aim to convert the discrete-time re-

sults into continuous-time ones. In this paper, we propose a 

methodology to build feasible continuous-time generation tra-

jectories for all units and ensure adherence to the continuous-

time ramping constraints of each unit. Continuous-time gener-

ation trajectories can more accurately respond to intra-interval 

changes in load profiles, thereby alleviating issues such as the 

tracing limitation and the ramping resource shortage. Although 

this methodology faces the challenge of predicting continuous-
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time load profiles, it represents a practical step towards achiev-

ing continuous-time balance. 

B. Literature Review 

In market-based power systems, operators aim to ensure the 

procurement of energy and ancillary services. However, as load 

variations and renewables increase, intra-interval imbalances, 

including temporary episodes of energy shortfalls and surpluses, 

occur frequently and require further management. These short-

falls and surpluses illustrate the failure of discrete-time dispatch 

to accurately trace continuous-time load profiles. 

In practice, this tracing limitation affects the transition from 

day-ahead dispatch (such as hourly intervals) to real-time oper-

ations (such as 5-minute intervals). In real-time operations, the 

load profiles are divided into two components: the forecasted 

day-ahead load profiles and the deviations from these profiles 

to the actual real-time loads. Even perfect day-ahead forecasts 

can lead to energy deviations due to model errors, which arise 

from the inconsistent resolution of load profiles. This is because 

intra-interval load variations are always excluded in day-ahead 

dispatch. Additionally, day-ahead load profiles are always im-

perfect, with forecast errors due to uncertainties. As a result, 

current uncertainties stem from both model errors and forecast 

errors. 

Recent research has developed two main streams within the 

discrete-time framework to address these issues. 

1) Modeling Emerging Resources: These approaches focus 

on modeling emerging resources within the existing discrete-

time framework. These resources introduce additional cost 

components and constraints, which require special adjustments 

to the dispatch model. For instance, probabilistic formulations 

have been instrumental in determining additional energy re-

sources for the forecasted scenarios [9][10]. Additionally, spe-

cialized flexible response products [11] and ramping mileages 

[12] have been introduced as new types of ancillary services to 

address ramping issues. The integration of ramping polytope 

and cut generation techniques has improved ramping abilities 

by adding ramping constraints [13].   

These emerging resources in the US market (as well as bal-

ancing services in the European market) are on standby in real-

time to compensate for intra-interval energy deviations. They 

are poised to enhance the ability to trace load variations under 

corresponding conditions. However, these resources and corre-

sponding constraints have not yet been verified against contin-

uous-time load profiles. Moreover, they also complicate market 

structures. Such complexity raises concerns regarding the fair 

allocation of additional costs. 

2) Enhancing Time Resolution: Another line of research fo-

cuses on high-time resolution formulations to more accurately 

trace continuous-time load profiles [14]. These formulations 

tighten dispatch intervals to better approximate continuous-

time load profiles [15]. This enhancement is relatively easy to 

achieve because these methods do not fundamentally alter the 

mathematical formulation. However, the increased time resolu-

tion presents computational challenges. Therefore, some re-

searchers have proposed adaptive formulations to balance com-

putational efficiency and accuracy. Clustering methods have 

been used to develop time-adaptive formulations [16]. Further-

more, clustering results can achieve feasible dispatch outcomes 

at the original time resolution [17]. However, tracing load 

within denser intervals remains a concern, as the results are still 

inherently in discrete-time, not continuous-time.  

Recent advancements have proposed a continuous-time 

model using spline functions for continuous-time dispatch [18] 

and pricing approaches [19]. Additionally, these advancements 

extend to stochastic models [20]. Due to necessary approxima-

tions for solvability, such as quadratic or cubic interpolation, 

some energy deviations still exist between the continuous-time 

generation trajectories and continuous-time load profiles. Nev-

ertheless, these methods provide forward-looking and practical 

insights with acceptable accuracy loss. 

To sum up, from a discrete-time perspective, uncertainties 

stem from both model errors and forecast errors. Currently, an-

cillary services or balancing services after the day-ahead market 

can handle these uncertainties. However, this approach can ob-

scure the true sources of the uncertainties and dampen incen-

tives to improve intra-interval forecasting capabilities.  

The continuous-time model is a promising approach to cor-

rect model errors. From a continuous-time perspective, intra-

interval changes can be directly balanced, eliminating the need 

for rebalancing caused by model errors. However, the current 

model still struggles to provide feasible continuous-time gener-

ation trajectories that accurately match the continuous-time 

load profiles, incurring some energy deviations. 

C. Contributions 

We propose a methodology to build continuous-time dis-

patch results (continuous-time generation trajectories) once the 

continuous-time load profiles are known. More specifically, we 

propose an iterative dispatch methodology to build feasible 

continuous-time generation trajectories for all units over a spec-

ified time span. These trajectories adhere to each unit's contin-

uous-time ramping constraints and ensure alignment with con-

tinuous-time load profiles. Notably, this iterative dispatch 

methodology does not approximate or sample the known load 

profiles but instead directly builds the continuous-time genera-

tion trajectories to balance them. 

The transition from discrete-time models to continuous-time 

formulations introduces inherent complexities. With the emer-

gence of variational optimization, variables and constraints be-

come infinite-dimensional vectors or matrices. Furthermore, 

continuous-time ramping constraints are transformed into dif-

ferential constraints. 

To ensure the solvability of continuous-time dispatch, we 

propose an iterative dispatch methodology that comprises two 

stages: trajectory construction and constraint verification. Dur-

ing the trajectory construction stage, a parametric programming 

model is employed to transform the continuous-time dispatch 

into a parametric programming problem. This model uses time 

as a parameter, converting decision variables and constraints 

from infinite-dimensional to finite-dimensional, and subse-

quently divides continuous-time load profiles into multiple seg-

ments. For these segments, generation trajectories are calcu-

lated through parametric solutions. In the constraint verification 
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stage, the differential constraints and the continuity of trajecto-

ries are externally checked. Generation trajectories that violate 

differential constraints are flagged and set for updates during 

the next trajectory construction stage. By using feasible trajec-

tories, continuous-time generation trajectories are finally repre-

sented by piecewise affine functions of time. 

The continuous-time generation trajectories effectively 

bridge the gap between day-ahead dispatch and real-time oper-

ations, facilitating smoother operational transitions. We present 

operational processes specifically designed for this application, 

with case studies that confirm the effectiveness. 

II. MATHEMATICAL FORMULATION 

To thoroughly explain the transition from the discrete-time 

model to the continuous-time formulation, this section begins 

by outlining the linear optimization in the discrete-time dis-

patch. Then, the discussion transitions to variational optimiza-

tion related to the continuous-time formulation. Finally, the as-

sumptions behind the model and the reasons for the simplifica-

tions are discussed. 

A. Discrete-time Dispatch Model 

In this paper, three foundational terms are introduced for pre-

cise articulations and analyses: ‘period’, ‘interval’, and ‘seg-

ment’. The ‘period’ is the time span for which dispatch results 

are required. The ‘interval’ denotes the subdivisions of time 

within the overarching ‘period’. The ‘segment’ refers to the 

continuous-time load profiles correlated with each ‘interval’. 

 

Fig. 1. Three foundational terms in this paper. 

As shown in Fig. 1, the traditional discrete-time framework 

divides the period =[S,T] into N intervals. t0=S represents the 

start of the period and tN=T represents the end. The intervals are 

represented as n=[tn, tn+1], 
1

0 n

N

n

−

== , where n is the interval 

index. The intervals are uniform in length, denoted as t=tn+1−tn. 

The discrete-time load profiles, denoted as D(tn), are sampled 

from the continuous-time load profiles D(t). The discrete-time 

load profiles D(tn) are the segment endpoints and the tn values 

are the corresponding interval endpoints. The decision variables 

G(tn) are optimized to satisfy the discrete-time load profiles 

D(tn). The discrete-time dispatch is presented below. 
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where k is the unit index and K is the total number of units. The 

expression C(G(tn))=KCk(Gk(tn)) denotes the sum of the pro-

duction costs for all units within interval n. The superscripts 

min and max represent the minimum and maximum production 

of unit k, respectively. 
D

kR /
U

kR represent the downward/upward 

ramping capacities per unit of time for unit k, respectively. 

The objective function (1) aims to minimize production costs 

for G(tn)=(G1(tn),…,GK(tn))Tr, where the superscript Tr repre-

sents the transpose. Constraints (2) model the power balance at 

segment endpoints. Constraints (3) set bounds on the produc-

tion of the units. Constraints (4) describe the ramping limita-

tions of the units. 

The disparity in time resolution is represented through the 

different interval lengths of t. To unify the expression associ-

ated with t, 
D

kR and 
U

kR within the constraints (4) are ex-

pressed per unit of time. Then, the constraints (4) incorporate 

the interval length of t as an additional component. 

Typically, the discrete-time dispatch for all units is provided 

as the generation levels at interval endpoints. The continuous-

time action of a single unit k can be understood as a generation 

trajectory, characterized by piecewise constant behavior. This 

concept is exhibited in technical literature, such as in source 

[21]. A rigorous interpretation of piecewise constant generation 

trajectory exists. It suggests that units should instantaneously 

transition to the subsequent generation levels at the start of each 

interval, as shown in Fig. 2(a). However, this generation trajec-

tory is unrealistic for a physical unit. 

 

(a)                                                             (b)  

Fig. 2. Generation trajectory from discrete-time dispatch for a single unit k (a) 
constant generation trajectory, (b) linear generation trajectory. 

In practice, operations are conducted to ensure a smooth tran-

sition along the linear generation trajectory. Fig. 2(b) illustrates 

the linear generation trajectory of unit k, defined by two interval 

endpoints. For example, Gk(tn) and Gk(tn+1) determine the linear 

generation trajectory withinn=[tn, tn+1]. The unit k adheres to 

the linear generation trajectory, transitioning from one discrete-

time generation level to the next one. For t∈n, the linear 

generation trajectory of the unit k is presented below. 

( )
( ) ( )( )

( ) ( )
1

,
k n k n

nk n k n

G t G t
G t t t G t t

t

+
= − + 

−



 (5) 

The linear generation trajectory of the unit k is a common 

treatment in the discrete-time framework. However, it serves as 

an approximation because the method in (5) utilizes the finite 

difference between two generation levels. By focusing on inter-

val endpoints, it entirely neglects variations in continuous-time 

load profiles. Therefore, it causes a failure to accurately achieve 

the continuous-time balance. 

B. Continuous-time Dispatch Model 

Recognizing the limitations of discrete-time dispatch, we 

propose the idea of continuous-time generation trajectories as 
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dispatch results to offer a more accurate solution. The transition 

from the discrete-time dispatch to the continuous-time formu-

lation causes essential changes. To start, increasing the time res-

olution of the discrete-time model (1)-(4) allows for broader 

coverage of continuous-time load profiles D(t). As t→0, the 

derivative function of generation trajectory (of a single unit k) 

is finally defined in (6). 

( )
( ) ( )( )1

0
lim ,

k n

n

k n'

k
t

G t G t
G t t

t

+

 →




−
          (6) 

When time resolution becomes infinitely fine (t=0, N→∞), 

the ramping constraints (4) are totally reformulated below. 

( )D ' U

k k kR G t R                            (7) 

The continuous-time dispatch is formulated below. 

 
( )

( )( )( )min
t

C t dtG
G                             (8) 

( ) ( ). .            ,  kK
D t ts t G t =                          (9) 

( )min max , ,k k kG G t G k t                    (10) 

( ) , ,D ' U

k k kR G t R k t                      (11) 

where C(G(t))=KCk(Gk(t)) represents the sum of production 

costs of all units at time t. 

The objective function (8) aims to minimize the total contin-

uous-time production costs for G(t)= (G1(t),…,GK(t))Tr 

throughout the period =[S,T]. Since time t can take any value 

within the period , the decision variables and constraints are 

infinite-dimensional. Moreover, constraints (11) introduce the 

derivative functions of G(t). The model (8)-(11) provides feasi-

ble continuous-time generation trajectories, represented by G(t), 

to match the continuous-time load profiles D(t). 

The model (8)-(11) includes three types of infinite-dimen-

sional constraints, and constraints (11) become differential con-

straints. These typical formulations mark the model’s transfor-

mation into a variational optimization problem. The incorpora-

tion of D(t) in the continuous-time model allows for the exact 

modeling of continuous-time ramping constraints, which can-

not be achieved in the discrete-time dispatch model. 

Fig. 3 compares the generation trajectory of a single unit k 

across the intervals. The generation levels at interval endpoints, 

such as t=tn and t=tn+1, are set to align with the discrete-time 

results, ensuring a relevant comparison. 

 

(a)                                                             (b)  

Fig. 3. Different generation trajectory for a single unit k (a) discrete-time gen-

eration trajectory, (b) continuous-time generation trajectory. 

Fig. 3(a) illustrates the linear generation trajectory of unit k 

from discrete-time dispatch, which cannot achieve a continu-

ous-time balance. Conversely, the continuous-time generation 

trajectory Gk(t), shown in Fig. 3(b), is explicitly expressed as a 

function of t. If the continuous-time load profiles D(t) are non-

linear, the generation trajectory Gk(t) should reflect these fea-

tures. The derivative function 
' ( )kG t , which satisfies differen-

tial constraints, is also verified directly. If all units follow the 

continuous-time generation trajectories G(t), the continuous-

time load profiles D(t) can be accurately traced while satisfying 

the continuous-time ramping constraints. 

C. Assumptions and Simplifications 

The continuous-time unit commitment is not within the scope 

of this paper. A foundational assumption is that the commit-

ment results are fixed throughout the period. However, if the 

committed units are insufficient, this assumption may lead to 

infeasible dispatch results. To address this, we propose two out-

put forms for continuous-time dispatch: continuous-time gener-

ation trajectories and recommitment instructions. If the initial 

commitment results are infeasible in the continuous-time dis-

patch, the recommitment instructions indicate this infeasibility 

and signal the need for additional units. 

Another foundational assumption is that the continuous-time 

load profiles D(t) are known in advance. Considering that there 

are differential constraints in the model (8)-(11), the derivative 

function of D(t) must exist. For the methodology proposed later 

in the paper, the specific functional form of the continuous-time 

load profiles is not crucial. The requirements for the predeter-

mined continuous-time load profiles are that they must be sin-

gle-valued functions of time and have derivative functions. In 

this paper, we focus on model errors arising from discrete-time 

dispatch and aim to achieve a continuous-time balance. There-

fore, the accurate acquisition of load profiles D(t) is important, 

but it is not within the scope of this paper. Some discussions on 

continuous-time load forecasting can be found in Refs. [22] and 

[23]. 

In this paper, we apply simplifications to continuous-time 

dispatch to enhance clarity and focus. The startup, shutdown, 

and no-load costs, which are typically associated with commit-

ment results, are omitted since the commitment results are pre-

determined in continuous-time dispatch. Additionally, specific 

constraints, such as transmission constraints, are also omitted. 

Our methodology simplifies the analysis, allowing us to focus 

on continuous-time ramping constraints and avoid interactions 

with more complex constraints. 

III. THE OUTLINE OF ITERATIVE DISPATCH METHODOLOGY 

Currently, continuous-time generation trajectories can bridge 

the gap caused by the inconsistent resolution of load profiles 

between day-ahead dispatch and real-time operations. While 

day-ahead dispatch produces hourly results, real-time opera-

tions require more granular 5-minute intervals within a rolling 

60-minute period. This difference may render real-time opera-

tions infeasible, even when real-time loads perfectly align with 

day-ahead forecasts. The reason is that intra-hourly load pro-

files are excluded in day-ahead dispatch, which we refer to as 

model errors in Section I.B. Moreover, any deviation between 

the actual real-time loads and day-ahead forecasts leads to fore-

cast errors, further complicating real-time operations. Both 

types of errors can result in discrepancies between day-ahead 

dispatch and real-time operations, making it difficult to pinpoint 



 5 

the exact sources of these errors.   

Continuous-time generation trajectories can address this is-

sue. They are adaptable to any time resolution and theoretically 

eliminate the approximation errors in the discrete-time model. 

More importantly, they can incorporate sub-hourly loads into 

day-ahead dispatch, which addresses the root cause of discrep-

ancies. As a result, the transition from day-ahead dispatch to 

real-time operations is affected solely by the forecast errors as-

sociated with continuous-time load profiles. 

Considering this application, we aim to build continuous-

time generation trajectories for an hourly (60-minute) period  

=[S,T]. This period starts at S=0 (minute) and ends at T=60 (mi-

nute). The operational process is visually summarized in Fig. 4. 

Notably, continuous-time generation trajectories are scalable 

for a 24-hour cycle, provided that this process is replicated 

throughout all 24 hours. 

 
Fig. 4.  Operational process of iterative dispatch methodology. 

Before applying the iterative dispatch methodology, initial 

inputs are derived from the day-ahead market, which includes 

the hourly commitment and dispatch. According to Section 

II.C, the assumption is that the commitment results remain con-

stant within hourly periods. These inputs act as adaptations for 

the actual process, ensuring that the output at the start and end 

intervals aligns with and protects the existing hourly results. 

The initialization sets G(0) and G(60) from hourly day-ahead 

commitment and dispatch. Additionally, we have prior 

knowledge of the continuous-time load profiles D(t) within the 

hourly period  from the load forecasting. These load profiles 

are also inputs, and we aim to accurately balance them. Utiliz-

ing these inputs, the iterative dispatch methodology systemati-

cally outputs either continuous-time generation trajectories, or 

recommitment instructions. 

After the initialization, the continuous-time dispatch model 

(8)-(11) can be formulated for the hourly period  . However, 

this model is not readily solvable due to the infinite-dimen-

sional decision space and the differential constraints. Instead, 

we propose the iterative dispatch methodology to build contin-

uous-time generation trajectories for the hourly period , fol-

lowing the process in Fig. 4. Our methodology comprises a tra-

jectory construction stage and a constraint verification stage. 

 

(a)                                                        (b)  

 

(c)                                                        (d)  

Fig. 5. The basic idea of iterative dispatch methodology (a) segments of the load 

profiles, (b) generation trajectories for units, (c) identification of the infeasible 
range, (d) the updating range and the next trajectory construction stage. 

During the trajectory construction stage, we manage the infi-

nite-dimensional problem by employing a parametric program-

ming model. As shown in Fig. 5(a), we segment the continuous-

time load profiles D(t) by identifying critical regions (critical 

regions outlined with black lines), which are determined by 

changes in active constraints. These segments, informed by the 

model’s inherent constraints rather than subjective decisions, 

result in variable-length intervals, as depicted by the red end-

points in Fig. 5(a). The piecewise affine functions of decision 

variables corresponding to these segments serve as generation 

trajectories, as shown in Fig. 5(b). 
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The subsequent constraint verification stage is tasked with 

verifying these generation trajectories against the continuous-

time ramping constraints and ensuring their continuity. This 

stage is crucial because differential constraints are not modeled 

in the trajectory construction stage. Generation trajectories that 

do not adhere to continuous-time ramping constraints—like 

Gk(t) during intervals [t1, t2] and [t5, t6] in Fig. 5(c)—are identi-

fied as ramping violations. By detecting these violations, we in-

troduce new interval endpoints. We then utilize a discrete-time 

adaptive dispatch to assist in judging continuity and define the 

infeasible range, such as the range [t1, t6] in Fig. 5(c). 

For the next trajectory construction stage, the updating range, 

like the range [t1, t6] in Fig. 5(d), is set to further rebuild gener-

ation trajectories. During the next iteration, the generation tra-

jectories, like those within ranges [t0, t1] and [t6, t7], are verified 

as feasible trajectories and they remain unchanged. The dotted 

lines in Fig. 5(d) represent the identified critical regions in the 

next trajectory construction stage. Using these critical regions, 

we further rebuild the generation trajectories within the updat-

ing range. 

The iterative dispatch methodology, illustrated in Fig. 5(a)-

(d), progressively refines the continuous-time load profiles D(t), 

rebuilds generation trajectories, and checks the differential con-

straints. The iterative process repeats until either feasible con-

tinuous-time generation trajectories are attained throughout the 

period or recommitment instructions are issued. Notably, each 

iterative process relies on the feasible trajectories determined 

during the previous constraint verification stage. Our method-

ology does not guarantee the optimality of the original continu-

ous-time dispatch model (8)-(11). Furthermore, as shown in 

Fig. 4, some conditional operations determine the path of the 

process, which are detailed in the following sections. 

IV. TRAJECTORY CONSTRUCTION STAGE 

This stage recasts the infinite-dimensional problem into a fi-

nite-dimensional one. It offers a segmentation of continuous-

time load profiles D(t) based on changes in active constraints. 

Subsequently, this stage builds generation trajectories for each 

segment to balance the corresponding continuous-time load 

profiles D(t).  

A. Parametric Programming Model 

In this paper, we introduce a parametric programming model 

that incorporates time t as a distinctive parameter, reflecting 

that decisions change over time. This model defines the con-

straints for all t in the range U=[SU,TU], where SU and TU denote 

the start and end of the U, respectively. The superscript U rep-

resents the range during the trajectory construction stage. Load 

profiles DP are also incorporated as an individual parameter, 

capturing the variations in continuous-time load profiles. The 

superscript P represents the parametric profiles in the paramet-

ric programming model. The parametric programming model is 

formulated below. 

( )
( )( )

,

min ,
P P

P P

t D

C t D
G

G                             (12) 

( ). .          , P PP

kK
s Dt G t D=                            (13) 

( )min max, ,P

k k

P

kG D G kG t                    (14) 

( ) ( )( )) ,( ( ),P

k

D U U P U U

k k kR kG tT t G T D R T t−   − −   (15) 

( ) ( )( )( ) ( ), ,k

P

k

D U P U U U

k kR t S D G S R t S kG t−   − −   (16) 

where decision variables GP(t,DP) depend on parameters t and 

DP. The Gk(SU) and Gk(TU) are the given dispatch results of unit 

k at the start and end of U, respectively. 

The objective function (12) aims to minimize the production 

costs for GP(t,DP)=( 1 ( , )P PG t D ,…, ( , )P P

KG t D )Tr. Constraints 

(13) model the power balance for t∈U. Constraints (14) set 

bounds on the production of units. Constraints (15)-(16) de-

scribe the ramping limitations with two given dispatch results, 

forcing the ( , )P P

kG t D  to align with given dispatch results 

Gk(SU) and Gk(TU) at t=SU and t=TU. 

The U is initialized as period  =[S,T]=[0,60] for the first 

iteration, as shown in Fig. 4. The given dispatch results, G(0) 

and G(60), are provided by the day-ahead hourly results. In sub-

sequent iterations, U=[SU,TU] is adjusted to match the updating 

range. G(SU) and G(TU) are provided by the discrete-time adap-

tive model in the constraint verification stage. 

By treating time t as a parameter, the infinite-dimensional 

problem is represented as a finite-dimensional one with para-

metric profiles. Given the inherent temporal nature of the con-

tinuous-time load profiles D(t), it is more appropriate to repre-

sent D(t) within the time t directly in the parametric program-

ming model. However, the introduction of non-linear load pro-

files results in non-linear constraints. Therefore, we strategi-

cally treat the load profiles as an independent parameter. The 

objective is to maintain the linearity within the parametric prob-

lem’s formulation. 

Significantly, the model (12)-(16) does not include the con-

tinuous-time ramping constraints (11). This exclusion arises be-

cause the derivative of Gk(t) challenges the model's linearity. 

This limitation requires us to check the continuous-time ramp-

ing constraints separately later. 

The output of the model (12)-(16) includes some critical re-

gions and a compact representation of the parametric solutions. 

These parametric solutions link the parameters t and DP to de-

cision variables GP(t,DP) through piecewise affine functions 

within the corresponding critical regions. These parametric so-

lutions serve as the basis for subsequent analysis. 

B. Segments of Continuous-time Load Profiles 

We divide the continuous-time load profiles D(t) into multi-

ple segments based on the parametric solutions. By incorporat-

ing piecewise affine functions of GP(t,DP) into constraints (13)

-(16), these constraints are divided into active and inactive con-

straints, which become parametric constraints. 

 
( )

( )

,

,

P

J

P

I

t D

t D

 =




h 0

h 0
                            (17) 

where subscript J and I represent the active and inactive con-

straints, respectively. hJ and hI represent the active and inactive 

constraints expressed by parameters, respectively. 

This categorization facilitates the identification of constraints 

that influence the decision space. The decision variables 
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GP(t,DP) that are bounded by the same inactive constraints can 

be gathered into a single region, denoted as Ωi. In order to dis-

tinguish each region and its affine functions, we introduce the 

subscript i as the region index. The region Ωi forms a polyhe-

dron defined by the parametric constraints. 

( ) ( ) 2

,, : ,P P

i I it D t D  h 0             (18) 

Feasibility is ensured by incorporating GP(t,DP) into the in-

active inequalities of Ωi. Additionally, the Karush-Kuhn-

Tucker conditions are applied through λi(t,DP). Moreover, tak-

ing into account the parameter bounds, the critical region Hi is 

defined in (19). 

( ) ( ) ( ) 2

,, : , , , ,P P P

I i

U

i

U

iH t D t D t D S t T    h 0 0

(19) 

Once we determine all the critical regions throughout U, we 

then introduce the continuous-time load profiles D(t) for t∈
U. Intersections of D(t) with critical regions pinpoint segments 

of D(t) within these critical regions. Each segment is marked by 

two interval endpoints: the incidence tn and the exit tn+1. For in-

stance, Fig. 5(a) illustrates interval endpoints in red, dividing 

D(t) into three segments between t0 and t3. 

As we iterate, the updating rangeU=[SU,TU] is set from the 

results based on the previous constraint verification stage. The 

U is subdivided and its corresponding critical regions are also 

changed. Other intervals that remain unchanged retain their last 

parametric solutions and critical regions. For instance, the de-

lineated critical regions (dotted line) in Fig. 5(d) intersect with 

D(t) during the updating range [t1, t6], while the results of in-

tervals [t0, t1] and [t6, t7] remain unchanged. 

After several iterations, if continuous-time load profiles D(t) 
intersect N critical regions throughout the period , we segment 

 into N intervals. These intervals are represented as n=[tn, tn+1] 

and the entire period =
1

0 n

N

n

−

=  is divided accordingly. The 

transition from one critical region to the next occurs at respec-

tive interval endpoints. 

However, if continuous-time load profiles D(t) exit a critical 

region without entering a new one, it indicates an absence of 

relevant critical regions for certain segments. In such instances, 

the continuous-time dispatch problem becomes infeasible due 

to the violation of some constraints, rendering generation tra-

jectories unachievable. The trajectory construction stage then 

issues recommitment instructions, as depicted in Fig. 4. 

C. Generation Trajectories for Each Segment 

Each interval n=[tn, tn+1] corresponds to a distinct segment 

of the D(t). Within these intervals, decision variables GP(t,DP) 

are described by the same piecewise affine functions. For clear 

representation, the piecewise affine functions are marked as 

( , )P P

n t DG  for a distinct interval n. These functions link with 

critical regions Hi and are expressed below. 

( ), ,P P

n i i nP

t
tt D

D

 
+ 


=


 G A B                 (20) 

where Ai is a K×2 constant matrix. Bi is a column vector of di-

mension K×1. 

The matrices Ai and Bi correspond to the affine functions as-

sociated with the critical region Hi. The region index i is asso-

ciated with the interval index n. 

By introducing D(t) to replace DP, the decision variables 

( , )P P

n t DG  are rewritten as 
C

nG (t) below. 

( )
( )

,C

n i i n

t
tt

D t

 
+ =





G A B                (21) 

The affine functions 
C

nG (t) represent generation trajectories 

for all units within the interval n, which are functions of a 

single dependent variable (time t). The superscript C denotes 

the generation trajectories from the trajectory construction stage. 

If the continuous-time load profiles D(t) are not linear, the gen-

eration trajectories 
C

nG (t) will also be non-linear. 

If the continuous-time load profiles D(t), for t∈, intersect 

the N critical regions, generation trajectories GC(t)=[ 0

C
G (t),…,

1

C

N −G (t)] can be represented by the piecewise affine functions. 

However, if some segments lack relevant critical regions, it in-

dicates that the affine functions cannot be derived from (21), 

resulting in infeasible dispatch for these segments. It is neces-

sary to recommit more units, as previously discussed in Section 

IV.B. 

V. CONSTRAINT VERIFICATION STAGE 

To achieve a linear formulation, the trajectory construction 

stage does not model differential constraints. We propose the 

constraint verification stage to verify the generation trajectories 

against the continuous-time ramping constraints and ensure the 

continuity of the generation trajectories.  

A. Continuous-time Ramping Verification 

The trajectory construction stage lacks continuous-time 

ramping constraints, leading to potential infeasibilities in gen-

eration trajectories ( )C

n tG  during transitions from tn to tn+1 

within the interval n. Based on the assumption described in 

Section II.C, the derivative functions of continuous-time load 

profiles D(t) are calculated and denoted as D’(t). Then, we cal-

culate the derivative functions 
' ( )n tG according to (21). 

( )
( )

'

'

1
,i nn t t

D t





 
 

= G A                    (22) 

These derivative functions are crucial as they enable us to 

directly check continuous-time ramping constraints. We com-

pare the derivative functions 
' ( )n tG against the downward /up-

ward ramping capacities (
D

kR /
U

kR ) for each unit k, as outlined 

in (23). 

( )'

, , D U

k k n k nR G t R t                      (23) 

Ramping violations of (23) trigger a subdivision of the gen-

eration trajectories, categorized into those that comply with (23) 

and those that violate (23). This subdivision identifies interval 

endpoints where (23) is not satisfied. 

Consequently, each iteration undergoes two identifications 

of interval endpoints: initially during the trajectory construction 

stage, where interval endpoints are identified through critical 

regions; and subsequently during the constraint verification 

stage, where ramping violations are considered for the trajecto-

ries. As shown in Fig. 5(c), the generation trajectory Gk(t) of 

unit k exhibits ramping violations from t1 to t2 and t5 to t6, which 
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determine additional four interval endpoints. As a result, three 

segments of continuous-time load profiles D(t) in Fig. 5(a) are 

further refined to seven segments in Fig. 5(d). 

Verification at interval endpoints presents a challenge due to 

the differing affine functions, such as 1

C

n−G (tn) and 
C

nG (tn). 

They are effective in adjacent intervals [tn-1, tn] and [tn, tn+1] re-

spectively. However, the derivative functions at the endpoints 

may not always exist as shown in (24). Therefore, the verifica-

tion of continuity at the endpoints cannot use (23). 

( ) ( )' '

1
0 0

lim limn n n nt t
 

 
+ +−

→ →
−  +G G              (24) 

To ensure the continuity of the interval endpoints, the differ-

ing affine functions must satisfy (25). 

( ) ( )1
0 0

lim limn n

C C

n nt t
 

 
+ +−

→ →
− = +G G             (25) 

B. Discrete-time Adaptive Dispatch 

The trajectory construction stage only models ramping con-

straints based on two specific dispatch results, omitting contin-

uous-time ramping constraints. Section V.A elaborates on using 

(23) to identify ramping violations and determine correspond-

ing endpoints. However, addressing these ramping violations 

may necessitate simultaneous adjustments at several endpoints, 

due to the continuous nature of ramping issues. The generation 

trajectories with the affected endpoints may be inaccurate and 

these trajectories also require further adjustments. Notably, 

simply satisfying (25) at certain endpoints does not ensure that 

they are unaffected by the changes at other endpoints. Therefore, 

identifying the affected endpoints becomes a crucial task. We 

propose a discrete-time adaptive dispatch model to address this 

issue. This model provides additional information and support 

in identifying the affected endpoints when verifying the conti-

nuity of endpoints. 

After the continuous-time ramping verification, we assume 

that there is a total of N intervals. The discrete-time adaptive 

dispatch, specifically designed for the interval endpoints, dif-

fers from the earlier models in Section II.A. Here, the length of 

intervals is not uniform but adaptive. The length of interval n 

is denoted as tn =tn+1−tn, with the subscript n added. The deci-

sion variables GD(tn) are marked with the superscript D to indi-

cate results from discrete-time adaptive dispatch. The discrete-

time adaptive dispatch is formulated below. 

( )
( )( )( )

1

0
min

D
n

N D

n nnt
C t t

−

=


G

G                         (26) 

( ) ( ). .       ,   D

k nK ns nt G D tt =                            (27) 

( )min max , ,k n k

D

kG t G k nG                      (28) 

( ) ( )( )1 , ,DD U

kk n n n k

D

k nR nG Gt t t R t k+ −         (29) 

( ) ( ) ( ) ( )0 0 , 60D D

Nt t= =G G G G              (30) 

Constraints (29) represent ramping constraints at endpoints. 

Constraints (30) ensure that dispatch results align with inputs 

from the day-ahead market dispatch. Infeasibility in the model 

(26)-(30) implies that the units cannot match the discrete-time 

load profiles D(tn). In this case, the continuous-time dispatch is 

also infeasible, because it imposes stricter ramping constraints 

from a continuous-time perspective. Such infeasibility necessi-

tates the recommitment of units, as depicted in Fig. 4. 

Conversely, feasibility in the model (26)-(30) verifies the 

ramping constraints at endpoints. If the discrete-time adaptive 

results and generation trajectories achieve consistency at some 

endpoints, these endpoints are isolated from adjacent points. In 

such scenarios, ramping constraints (29) are inactive at these 

isolated endpoints, ensuring that the piecewise affine functions 

of generation trajectories remain unaffected. 

Then, (31) serves as the criterion for verifying continuity in-

stead of (25). If both 1

C

n−G (tn) and 
C

nG (tn) match GD(tn), the 

continuity of endpoint tn is verified. Otherwise, the endpoint tn 

is affected by the adjacent endpoints and it is discontinuous. 

The discontinuity of endpoint tn implies that constraints (29) be-

come active at endpoint tn, suggesting the need for a more pre-

cise division of critical regions and for new affine functions of 

generation trajectories. 

( ) ( ) ( )1
0 0

lim limDC C

n nn n nt t t
 

 
+ +−

→ →
− = = +G GG      (31) 

The mismatch errors in (32) serve as convergence conditions. 

The generation trajectories are considered continuous at inter-

val endpoint tn only when the mismatch errors across all units 

are sufficiently small. Conversely, if the interval endpoints are 

discontinuous, the generation trajectories will be rebuilt in the 

next iteration. 

( ) ( ) ( )

( ) ( ) ( )11

 D

n n n n

D

n n

C

n

C

n nn

t t t

t t t−−

 = −


= − GG

GG


                (32) 

C. Feasible Trajectories and Updating Ranges 

When generation trajectories within the interval n-1=[tn-1, tn] 

comply with (23) and show continuity at endpoints, these tra-

jectories are considered feasible. If all generation trajectories 

from t0 to tn satisfy these criteria, then [t0, tn] is preserved as a 

feasible trajectory range. Similarly, if all generation trajectories 

from tm to tN are feasible, then [tm, tN] is preserved. Therefore, 

starting from the t0=S and tN=T of the period, two feasible tra-

jectory ranges emerge in each iteration. These ranges are instru-

mental in identifying the infeasible range. 

The infeasible range indicates the occurrence of inaccurate 

generation trajectories. For example, as depicted in Fig. 6, a dis-

continuous endpoint tn+1 indicates an inability to reach 
D

kG (tn+1) 

when transitioning from tn to tn+1. Thus, the generation trajecto-

ries within [tn, tn+1] are inaccurate. In this case, if [t0, tn] is a 

feasible trajectory range, tn marks the start of the infeasible 

range. Similarly, if [tm, tN] is a feasible trajectory range and tm-1 

is discontinuous, then the tm marks the end of the infeasible 

range. Although some generation trajectories within the infea-

sible range [tn, tm] may be feasible, they are rebuilt to consider 

the effect of discontinuities at tn+1 and tm-1. Thus, each iteration 

results in a single infeasible range and the infeasible range is 

flanked by two feasible trajectory ranges. 

Based on the infeasible range, the updating ranges are set for 

the next iteration. Fig. 4 illustrates conditional operations guid-

ing each iteration. These conditional operations result in two 

patterns of updating ranges. In the first pattern, as shown in Fig. 

6(a), the updating range U=[SU,TU] aligns with the infeasible 

range [tn, tm], considering dispatch results GD(tn) and GD(tm) in 

the next trajectory construction stage. Then, the next iteration 

subdivides the updating range [tn, tm] to build new generation 
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trajectories and generate a new infeasible range. 

If the new infeasible range remains unchanged, the iteration 

must proceed to the second pattern. This means that the end-

points tn+1 and tm-1 remain discontinuous and their correspond-

ing ramping constraints cannot be ignored. Then, we refine the 

updating ranges to [tn, tn+1] or [tm-1, tm], as depicted in Fig. 6(b). 

The second pattern provides two updating ranges, and either of 

them can be chosen for the next iteration. Take updating range 

[tn, tn+1] as an example, the given results GD(tn) and GD(tn+1) are 

introduced in the next iteration. Since the new generation tra-

jectories must pass through GD(tn) and GD(tn+1), this iteration 

must change the infeasible range. Notably, a similar method can 

be applied to the updating range [tm-1, tm]. 

Therefore, the updating ranges are dynamically set in two 

patterns, adapting to changes in the infeasible range. The ulti-

mate goal is to achieve that all continuous-time generation tra-

jectories are feasible, marked by the absence of the infeasible 

range. The process, governed by two conditional operations, is 

shown in Fig. 4. 

 

(a) 

 

(b) 

Fig. 6.  Illustration of discontinuities and two patterns of updating ranges deter-

mined by the unit k (a) the first pattern, (b) the second pattern. 

To sum up, the external constraint verification stage itera-

tively identifies and updates any infeasible generation trajecto-

ries until they adhere to the complete continuous-time ramping 

constraints (differential constraints). In each iteration, inequal-

ity (23) is used to externally verify the continuity of generation 

trajectories, while equality (31) is used to ensure the continuity 

of endpoints. By setting the mismatch errors to be sufficiently 

small, the endpoints achieve practical continuity. Mathemati-

cally, this continuity is only an approximation. 

VI. CASE STUDIES 

In practice, ISOs, regardless of their market structure, imple-

ment additional scheduling stages that bridge the gap between 

the day-ahead market and real-time operations. The operational 

process discussed in Section III aims to build hourly continu-

ous-time generation trajectories. These trajectories are crucial 

in smoothing the transition from day-ahead dispatch to real-

time operations, and they support additional scheduling stages. 

We first validate our methodology in an illustrative 5-bus sys-

tem, demonstrating its ability to identify ramping resource 

shortages and build continuous-time generation trajectories. 

We then extend this validation to an actual 661-bus system, 

confirming the scalability and effectiveness of the proposed 

methodology. 

Since there are no actual continuous-time load profiles and 

the available load data are all discrete-time, we need to prede-

termine continuous-time load profiles. In Section II.C, we state 

that the predetermined continuous-time load profiles must be 

single-valued functions of time and have derivative functions. 

In this paper, we use 5-minute forecast load data (original data) 

within the 60-minute dispatch period (=[0,60]), and then we 

choose the most common polynomial to fit continuous-time 

load profiles as inputs.  

These load profiles are fitted in advance with a seventh-de-

gree polynomial function and then used as inputs. The continu-

ous-time load profiles D(t) are formulated as seventh-degree 

polynomial functions (33).  

( ) 7 6

1 2 7 8..  .D t t t t   = + + + +               (33) 

where α1~α8 are the polynomial fitting coefficients. 

Optimizations are solved by CPLEX v12.7.1 in the 

MATLAB environment on a ThinkPad X1 2021 with an Intel(R) 

Core (TM) i5-1135G7 CPU. The parametric solutions are ob-

tained by the publicly available MPT3 tool. The convergence 

conditions are set at 0.001 MW. The results of continuous-time 

generation trajectories, represented by piecewise functions of 

time, are detailed in [24]. 

A. Ramping Resource Shortages in 5-bus System 

 

Fig. 7.  The Illustrative 5-bus System. 

Fig. 7 showcases the illustrative 5-bus system, comprising 

two thermal units, Gen1 and Gen2.  

Table I details the physical characteristics of the two units. 
   TABLE I 

CHARACTERISTICS OF UNITS IN THE ILLUSTRATIVE 5-BUS SYSTEM 

Resource Type 
Bid 

($/MWh) 

Max. bid 

capacities 

(MW) 

Min. bid 

capacities 

(MW) 

D

kR / U

kR  

(MW/h) 

Gen1 thermal 25 700 200 120 

Gen2 thermal 30 500 200 80 

Initially, we demonstrate the ability of our methodology to 

identify ramping resource shortages, highlighting the limita-

tions of hourly day-ahead results. At t=0, Gen1 (205.32MW) is 

online while Gen2 is offline. At t=60, Gen1 (200.34MW) is 

online while Gen2 remains offline. Here, only Gen1 follows the 

continuous-time load profiles D(t). 

In Fig. 8(a), the red segment indicates an absence of the rel-

evant critical region. The red segment intersects a black line  at 

t=31.44 and t=41.39. The slope (black line) of 2.00 MW/min 
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(120MW/h) represents Gen1's ramping limitation. Then, con-

necting points on the red segment to D(60) results in a slope 

steeper than Gen1's ramping limitation, indicating that the sys-

tem experiences ramping resource shortages from t=31.44 to 

t=41.39.  

This result identifies the red segment as infeasible due to 

ramping resource shortages and thus, the continuous-time dis-

patch is infeasible. It necessitates issuing recommitment in-

structions for additional units to enhance the ramping capacities. 

Consequently, the proposed methodology enables proactive ac-

tions for ramping resource shortages between the day-ahead 

dispatch and real-time operations. 

Fig. 8.  Identification of ramping resource shortages (a) segments of continu-

ous-time load profiles, (b) an enlargement of the infeasible segment. 

B. Continuous-time Generation Trajectories in 5-bus System 

An additional scenario is presented to build continuous-time 

generation trajectories. The physical characteristics of the units 

are consistent with Table I. Specifically, the coefficient α8 is 

increased by 200 MW to align with the units' minimum output, 

while keeping other coefficients from Section VI.A unchanged.  

At t=0, Gen1 and Gen2 are online, with outputs of 

205.32MW and 200MW, respectively. At t=60, Gen1 and Gen2 

remain online and have outputs of 200.34MW and 200MW, re-

spectively. These results are used to execute initialization.  

Post-initialization, the iterative dispatch methodology en-

compasses various sub-results derived from both the trajectory 

construction and constraint verification stages. To demonstrate 

the full process, we present different results. M1 represents the 

piecewise affine functions forming the continuous-time gener-

ation trajectories from the trajectory construction stage. M2 

shows the outcomes of the discrete-time adaptive dispatch from 

the constraint verification stage. SE displays the dispatch results 

for the interval endpoints as determined by M2. 

The trajectory construction stage for hourly =[0,60] identi-

fies three critical regions as shown in Fig. 9(a), where continu-

ous-time load profiles D(t) intersect two critical regions and are 

divided into three segments. Fig. 9(b) delineates the continu-

ous-time generation trajectories (M1) for each segment. 

During the constraint verification stage, some trajectories vi-

olate the ramping constraints outlined in (23). This is depicted 

in Fig. 9(c), where the continuous-time load profiles with ramp-

ing violations are marked in red. These violations lead to four 

new segment endpoints, making a total of eight. Fig. 9(d) pre-

sents discrete-time adaptive dispatch results (M2), showing fea-

sible trajectory ranges [0, 9.62] and [51.69,60]. Mismatches at 

t3=23.47 and t6=41.39 show their discontinuities and identify 

the infeasible range [9.62, 51.69].  Subsequently, the updating 

range [9.62, 51.69] is established based on the first pattern. 

The trajectory construction stage for the updating range [9.62, 

51.69], as illustrated in Fig. 9(e), determines two additional seg-

ment points, t3=27.63 and t4=30.96. The number of segment 

endpoints increases to ten. Fig. 9(f) compares the generation 

trajectories (M1) and the discrete-time adaptive dispatch results 

(M2) for each segment. The infeasible range still exists after the 

constraint verification stage, prompting a new updating range 

[23.48, 31.44] based on the first pattern. 

      
(a)                                                            (b) 

 

 
(a)                                                         (b)                                                         (c)                                                          (d) 

  
(e)                                                         (f)                                                         (g)                                                          (h) 

Fig. 9. Results for the illustrative 5-bus system during iterative dispatch methodology. 
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After seven iterations, our methodology divides the continu-

ous-time load profiles into twenty segments and the final results 

are shown in Fig. 9(g). The generation trajectories (M1) and the 

discrete-time adaptive dispatch (M2) achieve the convergence 

conditions at SE and they are deemed all continuous (Fig. 9(h)). 

Finally, the continuous-time generation trajectories, repre-

sented by explicit piecewise affine functions [24], are success-

fully obtained. 

C. Results in Actual 661-bus System 

In this case, we formulate continuous-time load profiles D(t) 

as seventh-degree polynomial functions as inputs, by employ-

ing the forecasted real-time load data at 5-minute intervals over 

a 60-minute period. In the final results, nine units have active 

ramping constraints, while the rest maintain consistent opera-

tion at their maximum or minimum generation levels. For sim-

plicity, Fig. 10 represents the output of nine units, focusing on 

their alignment with net load profiles (minus the power outputs 

of other units with fixed generation levels). 

As depicted in Fig. 10(a), after 11 iterations, the continuous-

time net load profiles are segmented into 43 segments, and con-

tinuous-time generation trajectories are built for all units. Fig. 

10(b) shows that the net load profiles (black line) are precisely 

traced by the power outputs of nine units (shown in different 

colors), indicating that the sum of piecewise affine functions 

can align with the functions of the net load profiles. The final 

affine functions for these nine units are elaborated in [24]. The 

accurate alignment indicates that the model errors inherent in 

the current discrete-time model are effectively addressed and 

our methodology achieves continuous-time balance. This result 

demonstrates that our methodology can enhance the precision 

of load tracing in power systems. 

Fig. 10. Results (a) final segments of continuous-time net load profiles, (b) con-

tinuous-time balance between generation trajectories and load profiles. 

We continue to analyze the computational performance of 

the proposed methodology. The iterative dispatch methodology 

requires two calculations in each iteration: one for the paramet-

ric programming model (M1) in the trajectory construction 

stage, and one for the discrete-time adaptive dispatch (M2) in 

the constraint verification stage.  

To demonstrate computational performance, Table Ⅱ pro-

vides the time taken for each calculation across 11 iterations. 

The parametric programming model (M1) is a two-dimensional 

problem, and its computational performance depends on the 

specific conditions of the updating range in each iteration, par-

ticularly the length of the updating range and the number of in-

active constraints. These varying conditions in each iteration 

cause the computational performance of M1 to be somewhat 

unstable.  

For the discrete-time adaptive dispatch (M2), the number of 

segment endpoints increases with each iteration. Initially, the 

calculation time of M2 increases rapidly as more segment end-

points are determined. However, as the updating range shortens, 

the number of new endpoints and the calculation time increase 

more slowly. Due to the variability in segment endpoints and 

constraints, the computational performance of M2 is also some-

what unstable. 
TABLE Ⅱ 

THE COMPUTATIONAL TIME IN THE ACTUAL 661-BUS SYSTEM 

Iterations Total time (s) M1 (s) M2 (s) 

1 8.7785 8.7750 0.0035 
2 11.4531 11.4484 0.0047 
3 12.1563 12.1506 0.0057 
4 12.6332 12.6257 0.0075 
5 9.8907 9.8833 0.0074 
6 13.6094 13.6012 0.0082 
7 7.6250 7.6161 0.0089 
8 8.7032 8.6945 0.0087 
9 8.0000 7.9918 0.0082 

10 7.9857 7.9777 0.0080 
11 11.4688 11.4608 0.0080 

We also analyze the economic performance of the proposed 

methodology by comparing the production costs of four differ-

ent discrete-time methods over an hourly period. The discrete-

time methods include 60, 15, 5, and 1-minute intervals. Fig. 11 

provides the comparison results for different discrete-time in-

tervals. The discrete-time cost values use the production costs 

at the start of each interval (red points) to represent the entire 

intervals (red lines). Notably, the production costs from the con-

tinuous-time dispatch results are also piecewise affine functions 

of time (black curves).  

In Fig. 11, it is clear that the production costs of the discrete-

time methods exhibit model errors (blue shaded areas) when 

 
(a)                                                          (b) 

 

 
   (a)                                                           (b) 

 
(c)                                                          (d) 

Fig. 11. Comparison results for different discrete-time intervals (a) 60-minute 

interval, (b) 15-minute interval, (c) 5-minute interval, (d) 1-minute interval. 
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compared with the continuous-time production costs. These er-

rors reveal that the discrete-time production costs are approxi-

mations of the continuous-time costs. As the time step de-

creases, the approximation becomes more accurate. 

Based on Fig. 11, we use specific values to further analyze 

the economic performance. The continuous-time production 

costs are integrated from the piecewise affine functions 

throughout the hourly period to directly obtain the total produc-

tion costs. The discrete-time production costs are calculated for 

each interval first and then summed to obtain the total produc-

tion costs. In Table III, it can be seen that as the time step be-

comes smaller, the total production costs gradually approach 

the costs of continuous-time dispatch. 

Additionally, we estimate the imbalance costs by calculating 

the absolute value of the approximation errors (blue shaded ar-

eas). The logic behind this estimation is as follows: In the con-

tinuous-time dispatch, the units’ output balances the continu-

ous-time load profiles. However, in discrete-time dispatch, the 

units only balance the load profiles at the starting point of the 

interval and maintain a fixed output within the dispatch interval. 

The difference in output between the discrete-time and contin-

uous-time results represents an intra-interval imbalance (the 

marginal costs of units are assumed to be fixed in this estima-

tion). As the time step becomes smaller, the imbalance costs 

also decrease, as shown in Table III and illustrated by the 

shrinking blue shaded areas in Fig. 11. 

By adding the total production costs and the imbalance costs, 

the final costs are obtained. As shown in Table III, the final 

costs of discrete-time results are greater than or equal to those 

of continuous-time results. The final costs of the 60-minute in-

terval are equal to the continuous-time result because the 60-

minute output only has one blue shaded area in Fig. 11(a). For 

the other three discrete-time results, when considering the ab-

solute value of approximation errors (imbalance costs of each 

interval), the final costs are all greater than the continuous-time 

results. 

Practically, intra-interval imbalances require much more ex-

pensive resources, such as specific ancillary services or even 

emergency resources, making the imbalance costs and final 

costs much higher than estimated here. If we adopt continuous-

time dispatch, the additional imbalance costs caused by dis-

crete-time intervals can be eliminated. Essentially, this is the 

economic advantage of eliminating model errors. 
TABLE Ⅲ 

THE ECONOMIC PERFORMANCE OF DIFFERENT METHODS 

Method 
Total produc-

tion costs 
($/Hour) 

Imbalance costs 
($/Hour) 

Final costs 
($/Hour) 

60-minute interval 1.5595e+05 1.1262e+03 1.5707e+05 
15-minute interval 1.5699e+05 4.8665e+02 1.5748e+05 
5-minute interval 1.5705e+05 1.5674e+02 1.5721e+05 
1-minute interval 1.5706e+05 3.0336e+01 1.5710e+05 
continuous-time 1.5707e+05 — 1.5707e+05 

VII. CONCLUSION AND FUTURE WORK 

This paper aims to balance continuous-time load profiles by 

providing continuous-time dispatch results. This continuous-

time balance eliminates the approximation errors inherent in the 

discrete-time model. The iterative dispatch methodology con-

sists of two stages: trajectory construction and constraint veri-

fication. This proposed methodology can build feasible contin-

uous-time generation trajectories, represented as piecewise af-

fine functions of time.  

Case studies confirm the effectiveness of our methodology in 

aligning continuous-time generation trajectories with continu-

ous-time load profiles. This alignment signifies progress to-

wards a continuous-time balance. In practice, the applications 

of our methodology include the identification of ramping re-

source shortages and the facilitation of smooth transitions from 

day-ahead dispatch to real-time operations. 

Further research is necessary to develop robust forecasting 

techniques for building continuous-time load profiles. These 

advancements are crucial for bringing our methodology to real 

implementation in actual control centers of power utilities. 
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