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ABSTRACT 

High-fidelity modelling techniques provide high-precision simulations required for the 
construction of digital twin (DT), facilitating high-level mapping of physical systems in virtual 
space. The integration of DT and high-fidelity modelling enables real-time monitoring, fault 
diagnosis, performance evaluation and optimization of physical entities. These techniques 
have been explored in different industrial sectors and on various topics in recent years, such 
as predictive maintenance (PdM). Existing literature on high-fidelity DT has extensively 
covered major aspects such as framework construction and applications, advances in 
applications in various fields, and integration with the Internet of Things (IoT) or machine 
learning (ML) technologies. However, there is limited research on how high-fidelity modelling 
methods interact with DT to aid and optimize PdM. To comprehensively analyze the state-of-
the-art of high-fidelity DT modelling in PdM, this paper focuses on how high-fidelity DT 
modelling facilitates three key PdM tasks: health indicator estimation, remaining useful life 
prediction and fault diagnosis. For each task, discussion will be subdivided into two parts: 1) 
high-fidelity modelling methods, and 2) the process of integrating these methods into DT-
driven predictive analytics. The advantages of high-fidelity DT modelling brings to PdM are 
also summarized. Finally, challenges and opportunities for future research are discussed. 
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1 INTRODUCTION 

High-fidelity modelling not only provides a comprehensive portrayal of the system structure, 
but also details the interactions between the internal elements of the system and the 
environment. With the continuous advancement of manufacturing intelligence, the 
importance of high-fidelity modelling technology is becoming more and more apparent. In the 
construction process of digital twin (DT), this technology lays the foundation for accurate 
correspondence and synchronous updating between physical entities and their virtual 
counterparts by providing high-fidelity simulation models. By integrating high-fidelity 
modelling technology, the virtual entity constructed by DT is not only a one-to-one mapping 
and description of the physical object, but also effectively achieves real-time monitoring of 
the state of the physical entity, rapid diagnosis of maintenance faults, and comprehensive 
evaluation of the overall performance of the system through the seamless integration of the 
real-time data flow and dynamic feedback mechanism [1]. Relying on the precision and 
accuracy of high-fidelity models, DT technology accurately maps system states and response 
behaviors in the real world, building a virtual environment for simulation experiments, system 
optimization and decision support. 
In recent years, high-fidelity DT has been utilized in several industrial sectors [2]. Particularly  
in the field of predictive maintenance (PdM), manufacturers use high-fidelity DT models to 
achieve accurate prediction of possible failures in equipment operation, to rationalize 
scheduled maintenance and reduce downtime, to optimize the re-engineering of production 
processes, and to greatly improve the operational efficiency of the entire production system 
[3]. This ability based on digital simulation and prediction not only greatly improves the 
maintainability and reliability of the production process, but also extends the life cycle of the 
physical assets, saves substantial maintenance costs and potential economic losses for the 
enterprise, and becomes an important technical support to ensure the competitiveness of the 
manufacturing industry.  
A significant amount of existing academic research focuses on building comprehensive DT 
frameworks across multiple areas of expertise, exploring scenarios for their application in 
different industries, and examining the latest advances in DT across various domains. 
Additionally, existing research has paid considerable attention to the integration and 
intersection of DT with cutting-edge technologies, such as the Internet of Things (IoT), 
machine learning (ML), and cloud computing. These convergences not only advance the 
development of DT technology, but also offer the possibility of intelligent upgrading in many 
industries. However, despite the coverage of these topics in the literature, the question of 
which high-fidelity modelling approaches can be employed in DT for PdM and how high-fidelity 
modelling approaches work together with DT to assist and optimize PdM is still an area that 
has been relatively little explored in depth.  
To comprehensively analyze the state-of-the-art in high-fidelity DT modelling in PdM, this 
review focuses on how high-fidelity DT modelling facilitates three fundamental PdM tasks:  
health indicator estimation, prediction of remaining useful life (RUL), and faults diagnosis [4]. 
Each of these tasks is critical to the effective implementation of a PdM strategy. 
The paper is structured as follows: Section 2 includes the search framework used to review 
different high-fidelity DT modelling papers for PdM. Section 3 is a comprehensive review of 
the relevant literature on the integration of high-fidelity DT modelling with the three main 
objectives of PdM. Also included is a discussion of the key results of the important reviews. 
Section 4 explores the challenges and future opportunities for the application of high-fidelity 
DT modelling in PdM. Section 5 concludes the full paper. 
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2 RESEARCH METHODOLOGY 

2.1 Research questions 

Table 1 presents the research questions and their motivations for the systematic literature 
review. 

Table 1： Research Questions and Motivations for the Review 

Research Questions Motivations 

What are the strengths of integrating high-
fidelity modelling with DT for PdM?  

Helping researchers weigh the pros and cons 
of using high-fidelity based methods versus 
other approaches to solving the PdM 
problem. 

What is the process of integrating high-
fidelity modelling methods into DT-driven 
predictive analytics?  

By presenting the integration process and 
highlighting key steps and considerations to 
help practitioners and researchers to 
effectively design, improve and implement 
these complex systems. 

What are the challenges and opportunities for 
future research of high-fidelity DT modelling 
for PdM? 

Motivating researchers to undertake targeted 
research efforts to address these challenges 
and advance the field, and point to promising 
directions for future research. 

2.2 Search strategy 

To assess the research status of DT on PdM, a comprehensive literature review was conducted 
using keywords such as "High-Fidelity Modelling," "Digital Twin," and "Predictive Maintenance." 
The search spanned five major databases: ScienceDirect, Springer Link, ACM Digital Library, 
IEEE Xplore Digital Library, and Scopus. Articles were excluded if they focused on low-fidelity 
or traditional modelling techniques, DT applications outside PdM, were not written in English, 
or lacked full text. Articles were included if they specifically addressed high-fidelity DT 
modelling for PdM and introduced innovative approaches. The initial search yielded 3898 
results, which were filtered 1604 based on exclusion criteria. Further screening based on 
inclusion criteria resulted in 68 studies. Additional sources identified through snowballing and 
manual searches added 54 more publications [5, 6], with 41 finally meeting all criteria after 
quality assessment. 

3 HIGH-FIDELITY DIGITAL TWIN MODELLING FOR PREDICTIVE MAINTENANCE 

High-fidelity modelling involves the creation of detailed, accurate simulations that represent 
the physical and operational characteristics of real-world systems. It contains intricate details 
of physical phenomena and is capable of accurately reproducing real-world conditions. This 
contrasts with low-fidelity or simplified modelling techniques. The latter, while conducive to 
computational efficiency and shorter turnaround times, tend to ignore details that are critical 
to the overall behavior and performance of the system. High-fidelity modelling provides a 
powerful foundation for creating digital copies of physical systems [7]. These models are 
essential for the development of DT, which are dynamic and virtual counterparts of physical 
assets, integrating real-time data and advanced analytics to reflect and predict the behavior 
of these assets [8]. The synergy between high-fidelity modelling and DT improves the accuracy 
and reliability of DT, enabling them to effectively perform complex predictive tasks [9]. 
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Meanwhile, the rapid development of big data analytics, the IoT and cloud computing 
technologies in recent years has further enhanced the capabilities of high-fidelity DT 
modelling techniques, enabling them to collect finer-grained data and enhance predictive 
analytics [10]. 
When applied to PdM, this synergy helps to provide insights into the health of an asset, leading 
to PdM decisions to pre-emptively address potential failures [11]. In contrast, DT with low-
fidelity models may not be able to capture these nuances, which may lead to inaccurate 
predictions and suboptimal maintenance schedules. High-fidelity DT modelling leverages these 
detailed simulations to health indicator estimation, RUL prediction and diagnose failures in 
real-time [4]. In addition, high-fidelity DT can provide a comprehensive view of the 
equipment's operational status, which can help in the early detection and resolution of 
potential problems, leading to more accurate troubleshooting [12]. 
This chapter relies on the literature screened in 2.2 to provide an in-depth discussion of high-
fidelity DT modelling in the field of PdM. Specifically, it covers the architecture of high-fidelity 
DT modelling applied to PdM and how it enhances research in the three core tasks of PdM, 
namely health indicator estimation, RUL prediction, and fault diagnosis. 

3.1 High-fidelity DT framework for PdM 

Several scholars have proposed reference frameworks for high-fidelity DT modelling 
applications [13-17]. The continuous improvement and development of high-fidelity DT 
technology provides an advanced and extensive technology platform for PdM. This platform 
integrates real-time data synchronization and analytics between physical devices and their 
digital copies for precise monitoring and management. Through the integration of PdM and 
high-fidelity DT modelling, specific high-fidelity DT-driven PdM frameworks are generated, 
including physical entities, virtual entities, and connecting components between them [13, 
18-24]. To this end, the National Institute of Standards and Technology (NIST) is actively 
involved in the development of the ISO 23247 standard, which aims to provide a standardized 
framework for high-fidelity DT modelling and PdM [25, 26].  
Based on the existing work [27], Figure 1 shows a framework of high-fidelity DT for PdM. This 
framework incorporates advanced high-fidelity modeling techniques alongside DT technology 
to span the entire PdM process—from initial data collection through to application. Data is 
first collected from the physical layer through sensor networks, including device data, process 
data, and product data. The data is delivered via wireless network to the edge devices and 
then uploaded to the cloud center. Next, the data is further analyzed by using high-fidelity 
modelling approaches to simulate the environment with high accuracy. Finally, the information 
provided by the DT is used, in conjunction with relevant modelling techniques like ML, to 
model physical equipment for RUL prediction and fault diagnosis. These results will optimize 
PdM decisions such as spare parts management, maintenance planning and operations 
scheduling, and improve the accuracy and reliability of PdM. 
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Figure 1：Framework for High-fidelity Modelling in DT for PdM 

3.2 High-fidelity DT modelling for three core predictive maintenance tasks  

3.2.1 High-fidelity DT modelling for health indicator construction and RUL prediction  

Within the field of PdM, the prediction of health indicator and RUL is particularly critical. RUL 
prediction is used to estimate the remaining life of a machine, and health indicator prediction 
assesses the health of the equipment. health indicator can be used as a feature or an input of 
the RUL prediction model to take into account the current health of the equipment and to 
increase the precision of the prediction. Nagi et al. indicated that constructing multi-stage 
degradation trends based on health indicator to assist RUL prediction is effective, replacing a 
single model with lower accuracy by multi-model predictions [28]. The application of health 
indicator can exhibit three major attributes: detectability, separability and trendability [29]. 
Therefore, the construction of health indicator is particularly critical and can only be 
recognized as optimal when these three requirements are met. 
Many scholars have proposed estimating health indicator by integrating high-fidelity modelling 
methods and DT. For example, Peng et al. outlined the health indicator that are available for 
each level of power converter, while the DT and physical model are used to estimate the 
circuit parameters using a particle swarm optimization algorithm [30]. Yu et al. proposed a 
health state assessment method for optoelectronic systems formulated with reference to the 
DT model and using the optical transfer function as a health metric [31]. Qin et al. are based 
on an exponential transient maintenance strategy to accurately locate essential components 
such as bearings [32]. This is done by analyzing statistical parameters obtained from 
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monitoring signals to determine trend characteristics such as root mean square (RMS). RMS 
indicates energy or amplitude levels and is used in conjunction with DT as a measure of 
component health. Also, the use of ML techniques in conjunction with DT to build health 
indicator has become a prominent topic. Spectral amplitude modulation using Support Vector 
Machines (SVMs) and k-Nearest Neighbor (k-NN) is used to compute the impactivity of signals 
and to determine the health status of machines [33]. Most of the DL methods used to construct 
health indicator are based on autoencoder (AE) schemes, such as LSTM-AE [34], BiRNN-ED [35]. 
Additionally, a number of methods for RUL prediction that integrate high-fidelity modelling 
approaches and DT have also been proposed. For example, Lee et al. used DT with physical 
models from finite element analysis (FEA) to consider failure mechanisms [12]. Sikorska et al. 
focused on building statistical models (autoregressive (AR) models) from extensive empirical 
knowledge and deriving RUL models from observations [36]. Data-driven ML methods are also 
heavily used. For example, Zemouri et al. used Recurrent Neural Networks (RNN)) to predict 
the RUL of mechanical components [37]. Liu et al. utilized DT and convolutional neural 
network (CNN) approaches for gas turbine performance degradation assessment and RUL 
prediction from an airline operator's perspective [38]. Lv et al. used a combination of DT with 
BLS algorithm and deep learning algorithm to predict RUL of air source heat pumps [22]. Figure 
2 illustrates the high-fidelity DT-driven health indicator and RUL prediction process. 

 
Figure 2: The Process of High-fidelity DT-driven Health Indicator and RUL Prediction 

Firstly, it implements multi-source data collection, covering sensors, simulations, statistics 
and other types of data, and carries out data analysis and model construction. Based on the 
feature weights of the relevant algorithms, the cloud computing platform formulates the data 
collection programme, specifies the required feature set and sampling frequency, and conveys 
it to the edge computing devices for execution. After completing data collection, the high-
fidelity data for analysis and processing is transmitted to the cloud platform. The next step 
focuses on updating and iterating the model, involving geometric, data analysis and physical 
models, with the aim of improving the model's high-fidelity and accurate representation of 
real-world assets. The third step is dedicated to data fusion processing, integrating multi-
source high-fidelity data information. After updating the DT with high-fidelity using real-time 
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monitoring data, the DT simulation is applied to analyze the predicted key features about the 
health of the asset. High-fidelity modelling techniques are applied to integrate and fuse the 
simulation results, monitoring data and statistical data for analysis. The fourth step is the 
construction of predictive models for health indicator and RUL based on the fused high-fidelity 
data. The health indicator model is constructed based on the fused data using relevant 
algorithms, and the RUL is predicted based on the health indicator curves constructed in the 
high-fidelity DT. Finally, based on the prediction results of health indicator and RUL, the 
performance of the assets in the DT is evaluated with high-fidelity and the optimal 
maintenance and operation plans are planned in the framework of the high-fidelity DT. 

3.2.2 High-fidelity DT modelling for construction of fault diagnosis model 

Fault diagnosis involves high-fidelity monitoring of the operating conditions of a machine and 
analyzing the mechanism in the event of a fault or anomaly. When a fault occurs, it can be 
visually located, isolated, diagnosed and analyzed based on the characteristics of the 
machine's high-fidelity DT model, thus determining the location of the faulty component and 
the root cause of the fault [39]. However, building such high-fidelity models relies heavily on 
rich domain knowledge. The use of ML and deep learning networks to model collected data 
with high-fidelity and adaptively learn machine diagnostic knowledge has become a popular 
approach for intelligent fault diagnosis [23]. For example, Convolutional Neural Network (CNN), 
which can efficiently extract key fault features from input data, have been successfully 
applied in the construction of fault diagnosis models for rolling bearings, gears, and hydraulic 
pumps in mechanical equipment [40]. Transfer learning, as a popular deep learning technique, 
has made a significant contribution to the field of fault diagnosis [41]. Cao et al. proposed a 
deep convolutional neural network (CNN) based transfer learning method [42]. Training with 
experimental data on gear failures shows that the method can perform adaptive feature 
extraction without preprocessing using a small dataset. DT have played an important role in 
advancing  the fault diagnosis techniques, and have been particularly notable for building 
predictive model implementations [43]. Xu et al. explored a new methodology based on DT 
technology aimed at staged fault detection on an automotive body side manufacturing 
assembly line [18]. The initial phase of the approach relies on the simulation of a high-fidelity 
body model in a DT system from which data is extracted. Subsequently, transfer learning 
techniques are applied to a trained stacked sparse autoencoder (SSAE) model to implement 
real-time state monitoring of the system under test. 
Referring to [18], Figure 3 shows the high-fidelity DT-driven fault diagnosis process. Relying 
on the high-fidelity DT model, this process is able to simulate the characteristics and analyze 
the performance of fault condition, so as to obtain high-fidelity fault data samples. Based on 
this, the relevant high-fidelity modelling algorithm (e.g. deep transfer learning) is then 
applied to construct an intelligent diagnostic model for both unknown and known faults. 

 
Figure 3: The Process of High-fidelity DT-driven Fault Diagnosis  
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4 CHALLENGES AND OPPORTUNITIES FOR FUTURE RESEARCH 

The integration of high-fidelity DT modelling into health indicator estimation, RUL prediction, 
and fault diagnosis presents many challenges and opportunities for future research. This 
section will discuss key areas where further research is needed to improve the effectiveness 
and adoption of DT in PdM. 

(1) Data quality and completeness. In performing high-fidelity DT model implementations, it 
becomes a major challenge to ensure the quality and integrity of the data. To perform 
predictive maintenance work accurately, one needs to rely on extensive and high-quality 
data sets. However, data collected in industrial equipment often suffers from high noise, 
missing values, and inconsistent formats [44]. To solve these problems, it is necessary to 
apply powerful data preprocessing techniques such as noise reduction processing, missing 
data estimation techniques, and data format normalisation.  

(2) Fusion of multi-source data. The fusion of multi-source data is of key importance in 
building an integrated high-fidelity DT model that accurately reflects the state of physical 
assets. Multiple data types, such as sensor data, maintenance records, and operation logs, 
can provide different perspectives on equipment status[45]. Integrating these 
heterogeneous data sources presents significant challenges due to differences in data 
structure, sampling rate, and accuracy. Recent advances in machine learning such as 
convolutional neural networks (CNN) and recurrent neural networks (RNN) offer potential 
solutions for data fusion[38]. Future research should be devoted to exploring methods for 
seamlessly integrating data from multiple sources and using deep learning techniques to 
improve the fidelity and predictive power of DT models. 

(3) Standardisation of high-fidelity DT framework for PdM. Another key challenge is the lack 
of standardisation of high-fidelity digital twin technology frameworks for predictive 
maintenance. Currently, digital twin technology exhibits significant inconsistencies in 
terms of model accuracy and reliability due to varying means of implementation adopted 
by different industries and organisations[46]. In order to promote consistency and 
interoperability of digital twins across different platforms and applications, it becomes 
particularly important to develop standardised protocols and frameworks developed 
specifically for digital twin technology. Such a standardisation process should cover 
specific guidelines for data collection, model validation and performance evaluation. 

(4) Comprehensive assessment methods. Efficient evaluation mechanisms play an integral 
role in determining the performance of high-fidelity DT models for PdM applications. 
Recent research results tend to adopt hybrid evaluation methods, such as those 
incorporating statistical analysis and ML [47]. For future research directions, efforts should 
be focused on constructing a comprehensive evaluation strategy aimed at providing a 
comprehensive analysis of the performance of DT models and driving their continuous 
optimisation. 

5 CONCLUSIONS 

In conclusion, integrating high-fidelity modelling techniques with DT technology is essential 
to advance PdM across industries. This paper explores how high-fidelity DT modelling can 
enhance three key PdM tasks: health indicator estimation, RUL prediction and fault diagnosis. 
A detailed study of high-fidelity modelling approaches and their integration with DT-driven 
PdM analysis reveals the unique benefits these techniques offer. Specifically, their 
convergence can lead to a deeper understanding of system health and lifetime, as well as 
improved management efficiencies. Despite significant progress in the use of high-fidelity DT 
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in PdM, challenges such as data quality and integrity, multi-source data fusion, the need for 
standardised high-fidelity DT frameworks, and comprehensive assessment methods still need 
to be overcome. Addressing these challenges will not only improve the effectiveness of PdM, 
but also expand the scope and applicability of high-fidelity DT in different industries. 
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