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Abstract 

Industrial robots generate monitoring data rich in sensitive information, often making 

enterprises reluctant to share, which impedes the use of data in fault diagnosis modeling. 

Dataset distillation (DD) is an effective approach to condense large dataset into smaller, 

synthesized forms, focusing solely on fault-related features, which facilitates secure and 

efficient data transfer for diagnostic purposes. However, the challenge of achieving satisfactory 

fault diagnosis accuracy with distilled data stems from the computational complexity in data 

distillation process. To address this problem, this paper proposes a Modified KernelWarehouse 

(MKW) network-based DD method to achieve accurate fault diagnosis with the distilled dataset. 

In this algorithm, DD first generates distilled training and testing dataset, followed by the 

training of an MKW-based network based on these distilled datasets. Specifically, MKW 

reduces network complexity through the division of static kernels into disjoint kernel cells, 

which are then computed as linear mixtures from a shared warehouse. An experimental study 

based on the real-world robotic dataset reveals the effectiveness of the proposed approach. The 

experimental results indicate that the proposed method can achieve a fault diagnosis accuracy 

of 86.3% when only trained with distilled data. 
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1 Introduction 

The advance of Industry 4.0 has revolutionized industrial asset maintenance through 

breakthroughs in the Industrial Internet-of-Thing, cyber-physical systems, and artificial 

intelligence [1]. These assets have become more automated, intelligent, and intricate, 

presenting new challenges in fault diagnosis [2]. Fault diagnosis in these advanced systems is 

crucial because it aids in early anomaly detection and helps prevent potential downtimes, which 

could result in significant financial losses and safety risks [3, 4]. With the growing complexity 

of industrial robots, the methods for fault diagnosis have evolved, necessitating advanced 

analytical techniques to manage these intricate systems effectively. Therefore, to ensure the 

safety and efficiency of production, it is necessary to conduct intelligent fault diagnosis on 

industrial robots. 

 

Fault diagnosis involves the evaluation and interpretation of measurement signals to monitor 

the condition of mechanical equipment, either under static conditions or during operation [5, 

6]. In industrial robot fault diagnosis, the signals collected from reducers and motors under 

different axes are typically transformed into time-frequency data using Continuous Wavelet 

Transform (CWT) [7]. However, the time-frequency data might include detailed insights into 

production methods, machinery performance, and productivity figures, all crucial for 

maintaining a company’s competitive advantage. Moreover, as IIoT applications become more 

prevalent, they pose risks of privacy breaches. Challenges include data leakage during cloud 

storage and sharing, compounded by variable access rights and lack of access constraints [8]. 

Companies resist consolidating their data in a single, centralized spot for collaborative model 



training. This creates a paradoxical situation where companies are inclined to engage in a shared 

data ecosystem, they are reluctant to exchange their unprocessed commercial data with others 

[9]. Hence, it is important to draw more attention to industrial privacy-preserving.  

 

Recent advancements in privacy protection for fault diagnosis have become increasingly crucial 

in the field of industrial data processing [10]. These advancements aim to preserve sensitive 

information inherent in monitoring data. DD is a centralized privacy-preserving approach, 

aiming to lessen storage and transmission loads from large data sets and streamline model 

training, ensuring the distilled data maintains essential information for effective classification 

[11]. By employing DD, enterprises can condense and encrypt large volumes of data into more 

manageable forms, ensuring the preservation of sensitive information [12]. This method 

enhances data security and transfer efficiency and improves data processing, making it useful 

for managing large, complex industrial datasets. The main challenge for DD lies in distilling a 

smaller dataset and achieving high fault diagnosis accuracy. The performance of the distilled 

dataset on a larger network is significantly worse than that of simple networks. This is because 

the distilled dataset is small in size, while complex networks are hard to be trained on such a 

limited dataset. However, when the size of the distilled dataset grows, it will greatly increase 

the computational burden of the dataset distillation algorithm. Therefore, investigating a 

lightweight and efficient network becomes a potential solution [13].  

 

Lightweight Convolutional Neural Networks (CNNs) have evolved to address the need for 

efficient deep learning models that are optimized for performance with limited computational 



resources. Nonetheless, current lightweight CNN still struggles with design complexity, 

optimization, and scalability challenges. KernelWarehouse (KW), as a general form of dynamic 

convolution, represents another special form of reducing the number of network parameters 

[14]. The KW method innovates by redefining kernel concepts and assembly in dynamic 

convolution, using smaller but more numerous kernels. The ‘warehouse’ could store the 

parameters and share them within the convolution layers. It enhances convolutional parameter 

dependencies within the same layer and across successive layers by dividing the kernel and 

sharing resources. However, this approach encounters challenges in optimization, especially 

when the number of kernel cells is considerably large. In these situations, the KW often lacks 

stability, causing variable training accuracy and convergence problems, which can prolong the 

network fine-tuning time needed to reach the desired performance. 

 

To address these challenges, this paper proposes an optimized method named MKW, which 

improves the attention mechanism, enabling networks equipped with KW to effectively 

integrate with DD. This optimization strategy aims to enhance the network’s stability and 

computational efficiency and increase its accuracy and effectiveness in processing noisy data. 

The main contribution can be concluded: (1) A lightweight CNN-based method for industrial 

robot time-frequency data for fault diagnosis is proposed. (2) The MKW method effectively 

reduces training instability and slow training times in the KW approach by incorporating a more 

stable and effective attention function. (3) An experimental study was implemented based on 

the industrial robot, which reveals that the proposed approach shows merits in comparison with 

other CNN architecture models. The remainder of this article is organized as follows: Section 



2 reviews the related works on recent advances in the construction of Differential Privacy and 

lightweight CNNs. The methodology of this paper is given in Section 3; The experimental setup 

is presented in Section 4 and the results are demonstrated in Section 5; Finally, Section 6 

discusses the experimental results and Section 7 provides the conclusion. 

 

2 Literature Review 

With the rapid advancements of IIoT technology and the ongoing deepening of global network 

information, privacy protection has become a key issue in industrial intelligent manufacturing. 

Despite significant progress in this field over the past decade, there remains a substantial 

research gap in the effectiveness of privacy data in the context of Differential Privacy (DP) and 

lightweight neural networks. This literature review aims to explore and evaluate existing 

research in these areas, revealing not only the developmental trajectory and main points of 

contention in the field but also identifying the potential challenges faced by this research. By 

reviewing related literature, this review will provide an overview of the current state and 

shortcomings of these complex technological areas, as well as the challenges to be faced by this 

research. 

 

2.1 Recent advances in Privacy Preserving 

The concept of DP was first proposed by Dwork et al. [15]. This technique guarantees the 

privacy and utility of a dataset with a rigorous theoretical foundation [16]. The algorithm aims 

to promote the use of privacy-preserving methods in healthcare and other sectors, providing 



support to researchers and practitioners as they navigate the complex challenges involved in 

achieving broad implementation. Cheu et al. [17] proposed the analytical exploration of a 

shuffled model for distributed differentially private algorithms, positioned between the local 

and central models. The Sparse Vector Technique is key in maintaining DP and has a unique 

ability to provide certain query responses without apparently compromising privacy. 

 

Federated learning (FL) has gained considerable interest in recent years, the key concern in FL 

is the safeguarding of privacy. Stacey et al. [18] proposed an FL system which has the ability 

to protect against inference on the messages shared during training and the final trained model, 

while also ensuring that the resultant model possesses satisfactory predictive accuracy. Liu et 

al. [19] introduced a Privacy-Enhanced Federated Learning framework, which utilizes 

homomorphic encryption as its core technology. This framework allows the server to penalize 

malicious actors by effectively extracting gradient data through the logarithmic function. Wei 

et al. [20] designed the principle of Local Differential Privacy and suggested a User-Level 

Differential Privacy algorithm. This approach is designed to tackle the issue of a curious server 

attempting to deduce private information from the shared models uploaded by Mobile 

Terminals. Wu et al. [21] introduced a DP mechanism to resist various background knowledge 

attacks. In order to protect users’ privacy and improve the test accuracy of  FL, Zhao et al. [22] 

designed a new normalization method with the enforcement of DP on the extracted features. 

Additionally, to attract more customers to participate in the crowdsourcing FL task, they 

designed an incentive mechanism to award participants. Metha et al. [23] proposed an FL 

framework to address data scarcity and privacy concerns in semantic segmentation for additive 



manufacturing, and innovated in privacy protection by implementing FL for semantic 

segmentation in additive manufacturing, enabling collaborative model training without direct 

data sharing, thus preserving data confidentiality. Chen et al. [24] devised the Decentralized 

Wireless Privacy Preserving Federated Learning algorithm, primarily aimed at improving 

wireless IoT networks. This algorithm addresses the key issues found in traditional FL 

architectures, such as limited fault tolerance, high communication overhead, and difficulties in 

accessing private data. By organizing workers in a peer-to-peer and server-less structure and 

enabling the parallel exchange of privacy-protected data through analog transmission over 

wireless channels, the algorithm enhances both efficiency and privacy in FL systems. Wu et al. 

[25] introduced a framework for privacy-preserving data mining in edge computing, utilizing 

private random decision trees. This framework is designed to provide strong privacy guarantees 

while maintaining a reasonable data utility level. The algorithm further increased data utility 

while still providing strong privacy preservation. This improvement is crucial for the practical 

applicability of the framework in real-world scenarios. 

 

DD keeps the model fixed and instead attempts to distill the knowledge from a large training 

dataset into a small one [11]. Dong et al. [12] highlighted the role of DD in enhancing data 

privacy protection, presenting it as a means to prevent accidental data breaches. They integrated 

DD methods into the privacy sector and provided a theoretical analysis of its relationship with 

differential privacy. Chen et al. [26] further employed DD to create high-dimensional data under 

DP assurances, enabling private data sharing with reduced memory and computational 

requirements. Significant progress has been made to approve the performance of DD. Zhou et 



al. [27] proposed an algorithm by utilizing neural Feature Regression with Pooling to improve 

the effectiveness of the distilled dataset. Timothy et al. [28] introduced a meta-learning 

algorithm named Kernel Inducing Points, which significantly improved previous DD methods. 

Zhao et al. [29] optimized the distillation method by matching gradient matching loss. They 

also proposed a novel dataset condensation method based on distribution matching, improving 

efficiency and potential [30]. This method identified two major issues in traditional approaches: 

imbalanced feature numbers and unvalidated embeddings for distance computation. To address 

these issues, they designed three innovative techniques: partitioning and expansion 

augmentation, efficient and enriched model sampling, and class-aware distribution 

regularization. Cazenavette et al. [31] introduced a novel approach in DD by matching training 

trajectories, and refining distilled data to steer networks towards performance comparable to 

training with real data. This technique involves multiple training iterations using the distilled 

data, followed by optimization based on the disparity between parameters trained synthetically 

and those trained with real dataset. 

 

2.2 The research on lightweight convolutional neural networks 

In the field of image recognition, the application of CNNs is becoming increasingly widespread, 

the fundamental of CNN involves applying convolution extraction to localized regions within 

an image [32]. The core principle of CNNs involves the use of convolutional filters to extract 

features from localized image regions, a technique that has been significantly refined over the 

years. Over the past decade, the fields of deep learning and computer vision have experienced 

significant development. Many groundbreaking CNN architectures such as AlexNet [33] have 



emerged, greatly enhancing performance on the ImageNet dataset. The increasing complexity 

of CNN models presents a challenge for devices with limited processing capabilities, 

necessitating the development of more efficient, lightweight models. The drive for smaller, 

faster, yet accurate CNNs aims to reduce computational demands and bring advanced image 

recognition to mobile and edge devices. This endeavor promises to broaden the applications of 

CNNs, ensuring better performance and quicker responsiveness across various platforms, from 

smartphones to self-driving cars. So, there is an ongoing effort to create more compact neural 

network models. The goal is to maintain the precision of these models, making them smaller 

and faster. To enhance power efficiency and ensure portability for embedded platforms. Some 

small-size CNN architectures were proposed, like MobileNet [34], ShuffleNet [35] and 

SqueezeNet [36]. Zhu et al. [34] explored network lightweighting and performance 

optimization by using the MobileNet. They adapted the structure for one-dimensional signal 

processing, incorporating wavelet convolution to improve feature extraction and robustness, 

and demonstrated effective noise-resistant classification performance in experiments on gears 

and bearings. ShuffleNet enhances efficiency and reduces parameters using pointwise group 

convolution and channel shuffle, allowing for complex structures with multiple convolutional 

layers but lower complexity and enhanced feature encoding. Luo et al. [35] utilized a 

combination of multiple features and an enhanced version of ShuffleNet V2 that achieved high 

fault recognition accuracy for rolling bearings at variable speeds, while maintaining a moderate 

model size, effectively enhancing accuracy without significantly increasing the model’s size. 

Wang et al. [37] introduced a novel approach for thorough intelligent diagnosis, utilizing the 

ShuffleNet Lightweight Convolution Neural Network (SLCNN). The SLCNN not only excels 



in various performance measures but also proves effective in precise and reliable fault diagnosis 

of power equipment. Moreover, a comparison of feature maps revealed that insulation defects 

are less distinct in appearance and boundaries compared to mechanical faults, indicating greater 

challenges in diagnosing insulation issues. SqueezeNet was first proposed by Iandola et al. [36]. 

This architecture achieved AlexNet-level accuracy with significantly fewer parameters, making 

it highly efficient for deployment in environments with limited computational resources. Zhong 

et al. [38] designed a Self-Attention Ensemble Lightweight Model with Transfer Learning 

(SLTL) method. This method addressed the challenges of creating a lightweight model and 

reducing the reliance on large training datasets in the context of bearing fault classification 

using deep learning.  

 

2.3 A brief summary  

The main concept of DD involves creating a smaller dataset from a larger original one to 

achieve comparable performance. The existing research on DD indicates that constructing a 

distilled dataset could be challenging. The process of generating a distilled dataset is still 

bonded with limited network architecture. Large and complex models usually perform worse 

than simple networks. In order to establish DD with a wider application towards different 

networks and datasets. The lightweight convolution networks could be a potential solution to 

it.  

 

Existing lightweight CNN architectures have the potential to become smaller, faster, and more 

accurate compared to typical large CNNs, aiming to fulfill the requirements of limited 



computational resources. However, the current lightweight networks are often challenged in 

balancing the complexity and performance of the model. Hence, the challenges for constructing 

DD with a lightweight model are: (1) When performing a dataset distillation task, the network 

architecture is limited to perform an effective distillation task; (2) The existing lightweight 

convolutional network may not be able to handle the balance between complexity and 

performance of the model, which may lead to bad performance to the distilled dataset. 

Therefore, it is worthwhile to investigate an MKW approach that takes advantage of lightweight 

to achieve DD. 

 

3 Methodology 

In this section, the overall flow of constructing DD and the proposed MKW algorithm is 

elaborated. The overall flowchart of the construction is shown in Figure 1. First, CWT is used 

to convert the time-series data collected from industrial robots into time-frequency images. The 

transformed data could hardly be reversed into time-frequency signals due to the potential 

information loss and computational complexity. For the collected original time-series data, 

CWT adjusts to different scales by scaling and shifts the same mother wavelet function, offering 

better time resolution at high frequencies and better frequency resolution at low frequencies. 

These images contain key information related to manufacturer privacy, such as operational 

patterns. To protect these private data, the paper employs the DD algorithm. Specifically, a 

CNN is used to generate a distilled dataset for training and testing. The distilled dataset is 

specially designed to retain diagnostic features from the original time-frequency images while 

encrypting the private information. Then, we use a model based on the proposed MKW method 



to perform a fault diagnosis with the distilled data. Thus, model training can solely rely on the 

distilled dataset, without needing to access the real-time frequency data that contain private 

data. 
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Figure 1. The overall flow of the methodology. 

After generating the distilled dataset, the distilled dataset is trained in a new lightweight CNN 

named MKW-NET, the architecture is based on the MKW method for fault diagnosis. 



Compared to traditional CNNs, this network has a simpler structure but fewer parameters, 

making it more suitable for efficient industrial fault diagnosis while protecting privacy. The 

model trained on the distilled dataset can ultimately output fault prediction results and their 

accuracy.  

 

3.1 MKW-Network architecture  

The fundamental concept of MKW redefines the fundamental concepts of ‘kernel’ and 

‘assembling kernel’ in dynamic convolutions from the perspectives of reducing kernel 

dimensions and significantly increasing the number of kernels. Specifically, MKW first divides 

the static kernels of any convolutional layer of a CNN into 𝑚𝑚 disjoint kernel units with the same 

dimensions, then computes each kernel unit as a linear mix based on a predefined ‘warehouse’ 

composed of 𝑛𝑛  kernel units. This warehouse is also shared across multiple adjacent 

convolutional layers. The static kernel is finally replaced by sequentially assembling the 

corresponding 𝑚𝑚  mixtures, thereby generating a high degree of freedom to fit the desired 

parameter budget. The main structure of MKW is shown in Figure 2. 

 

Dynamic convolution differs from regular convolution in that it learns a mixed convolutional 

kernel made from a linear blend of 𝑛𝑛 static kernels, weighted by their sample-related attention. 

However, existing designs generally have issues with parameter efficiency due to increasing 

the number of dynamic convolutional kernels by a factor of 𝑛𝑛. MKW addresses this by cleverly 

using kernel partition and warehouse sharing. This enhances the dependency of convolutional 

parameters within the same layer and across consecutive layers while reducing the number of 



kernels in a typical dynamic convolutional network.  
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Figure 2. The main structure of MKW. 

In MKW, a larger number of kernel cells are linearly mixed from a shared warehouse, which 

serves not only a single convolutional layer but also spans across 𝑙𝑙 − 1 other convolutional 

layers in the network at the same hierarchical level. Consequently, the selection of an optimal 

attention function becomes pivotal. The attention function in MKW plays a crucial role in 

dynamically generating weights for kernel cells stored in a ‘warehouse’.  This function operates 

by normalizing sets of feature logits, which are derived from the network’s second fully 

connected (FC) layer, in parallel. By adjusting each kernel cell’s importance based on input 

data characteristics, it enables targeted feature extraction. This process streamlines 

convolutional layer focus, improving efficiency in recognizing and processing key information. 

The ideal attention mechanism should simultaneously distribute diverse attention to all linear 

mixtures, thereby empowering the 𝑙𝑙  convolutional layers to extract meaningful features 

effectively and hierarchically. To address this intricate optimization problem, we propose an 



innovative attention function. In this function, the attention allocated to the 𝑖𝑖th kernel cell in 

the static kernel 𝐖𝐖  is informed by the feature logits 𝑧𝑧𝑖𝑖1, . . . , 𝑧𝑧𝑖𝑖𝑖𝑖  derived from the network’s 

second FC layer. 

 𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖
∑ |𝑧𝑧𝑖𝑖𝑖𝑖|𝑛𝑛
𝑝𝑝=1

 , 𝑗𝑗 ∈ {1, … ,𝑛𝑛} (1) 

where  𝑧𝑧𝑖𝑖𝑖𝑖
∑ |𝑧𝑧𝑖𝑖𝑖𝑖|𝑛𝑛
𝑝𝑝=1

 is a linear normalization function which can have negative attention outputs 

that are essential to encourage the network to learn adversarial attention relationships among 

all linear mixtures sharing the same warehouse. 

 

For a convolutional layer, let x ∈ ℝℎ×𝑤𝑤×𝑐𝑐  and 𝑦𝑦 ∈ ℝℎ×𝑤𝑤×𝑓𝑓  represent the input with 𝑐𝑐 feature 

channels of resolution ℎ × 𝑤𝑤  and the output with 𝑓𝑓  feature channels of the same resolution 

respectively. The output of normal convolutional layers is computed as follows: 

 y = 𝐖𝐖 ∙ x    (2) 

The normal convolution uses a single static kernel composed of 𝑓𝑓 convolutional filters of size 

𝑘𝑘 × 𝑘𝑘. In contrast, dynamic convolution 𝐖𝐖 replaces this static kernel 𝛼𝛼n𝐖𝐖n, a linear mix of n 

static kernels of the same dimensions, weighted by their input-related scalar attentions 𝛼𝛼1 …𝛼𝛼𝑚𝑚. 

MKW differs from the existing dynamic convolution method in that it applies this attention 

mixing to densely local-scaled static kernels through kernel partitioning and warehouse sharing, 

rather than to a single, large-scale kernel. 

 

The basic idea of kernel partition is to explicitly enhance parameter dependencies within the 

same convolutional layer, reducing kernel dimensions and increasing the number of kernels. 

First, the static convolutional kernel 𝐖𝐖  in a regular convolutional layer is divided into 𝑚𝑚 



disjoint parts w1 … w𝑚𝑚, referred to as ‘kernel cells’, each having the same dimensions. Kernel 

partition can be defined as follows: 

 𝐖𝐖 = 𝐰𝐰1 ∪ …∪𝐰𝐰𝑚𝑚 (3) 

After kernel partition, the kernel cells w1 … w𝑚𝑚 are treated as ‘local kernels’ 𝐸𝐸 = {𝑒𝑒1 … 𝑒𝑒𝑚𝑚}, 

and a ‘warehouse’ containing n kernel units is defined, where each unit 𝑒𝑒1 … 𝑒𝑒𝑚𝑚 has the same 

dimensions as 𝐰𝐰1 …𝐰𝐰𝑚𝑚. 

 

Then, the ‘warehouse’ 𝐸𝐸 = {𝑒𝑒1 … 𝑒𝑒𝑚𝑚}  is shared within the same convolutional layer. The 

authors represent each kernel cell w1 … w𝑚𝑚 as follows: 

 w𝑖𝑖 = 𝛼𝛼𝑖𝑖1𝑒𝑒1 + ⋯+ 𝛼𝛼𝑖𝑖𝑖𝑖𝑒𝑒n (4) 

where 𝑖𝑖 ∈ {1, … ,𝑚𝑚}, the scalar attention 𝛼𝛼in is generated by the attention module 𝜙𝜙(𝑥𝑥) based 

on the input 𝑥𝑥. Finally, in a regular convolutional layer, the static convolutional kernel 𝐖𝐖 is 

replaced by sequentially assembling its corresponding 𝑚𝑚 linear mixtures. 

 

Building on the basic objective of kernel partition, the main goal of warehouse sharing is to 

explicitly enhance parameter dependencies between consecutive convolutional layers. This 

approach aims to further improve MKW’s parameter efficiency and representational capability. 

 

Specifically, in a convolution neural network, a single warehouse 𝐸𝐸 = {𝑒𝑒1 … 𝑒𝑒𝑚𝑚}  is shared 

among 𝑙𝑙 adjacent convolutional layers in the same stage building block to represent each kernel 

unit. This allows for the use of a larger 𝑛𝑛 setting in kernel partitioning. This is easy to implement, 

as modern convolution neural networks often adopt a modular design scheme, where the static 

convolutional kernels in the same stage layers usually have the same dimensions. 



Let 𝑛𝑛  be the number of kernel units in a ‘warehouse’ shared by 𝑙𝑙  convolutional layers of a 

convolutional network and let the total number of kernel units across these convolutional layers 

be (when 𝑙𝑙 = 1, 𝑚𝑚𝑡𝑡 = 𝑚𝑚). Then, it can serve as a scaling factor, indicating the convolutional 

parameter budget of MKW relative to regular convolution. In this case, the authors do not 

consider the number of parameters in the attention module 𝜙𝜙, which generates n scalar attention, 

because it is much smaller than the total number of parameters in regular convolutions across 

the convolutional layers. 

 

3.2 Dataset Distillation by Matching Training Trajectories 

The DD method, which matches the training trajectory, is based on the teacher-student network 

structure. The architecture of the teacher-student network is similar to the principles of KD. In 

this setup, the teacher network undergoes initial training with the original dataset and then 

retains its parameters, which serve to direct the process of distilling the dataset. The teacher 

network is trained on the original dataset and captures the training trajectory in its parameters. 

The parameters guide the student network in effectively minimizing gradient loss to achieve 

the best distilled dataset. The purpose of guiding the DD by the teacher trajectory is to match 

the parameters of the trained student network on the distillation dataset 𝒟𝒟distill  with the 

parameters of the teacher network on the original dataset 𝒟𝒟original  to achieve better training 

results. The method is mainly divided into training of the teacher-student network structure, 

DD using parameter pruning, and generation of the optimized distillation dataset. 

 

For the parameter training of the teacher-student network structure, there are 𝑁𝑁  teacher 



networks are first pre-trained on 𝒟𝒟original and their snapshot parameters are saved in each epoch. 

The teacher parameters are defined as the time series of parameters {𝜃𝜃𝑖𝑖}0𝐼𝐼  . Meanwhile, the 

student parameters are defined as 𝜃𝜃�𝑖𝑖, and they are trained on the distilled dataset at each training 

step 𝑖𝑖. At each distillation step, we first draw parameters from one of the teacher parameters of 

random step 𝑖𝑖 and use it to initialize the student parameters as 𝜃𝜃�𝑖𝑖 = 𝜃𝜃𝑖𝑖 . The number of updates 

to the student parameters and teacher parameters are set to 𝐽𝐽 and 𝐾𝐾, where 𝐽𝐽 ≪ 𝐾𝐾. For each 

student’s update parameter 𝑗𝑗, we extract a minibatch 𝑏𝑏𝑖𝑖,𝑗𝑗 from the distilled dataset as follows. 

 𝑏𝑏𝑖𝑖,𝑗𝑗 ~ 𝒟𝒟distill (5) 

Once the student network is set up, the network updates its parameters through 𝑁𝑁 rounds of 

gradient descent, focusing on minimizing the classification loss from synthetic data. The update 

process for the student parameters is described by the following equation: 

 𝜃𝜃�𝑡𝑡+𝑛𝑛+1 = 𝜃𝜃�𝑡𝑡+𝑛𝑛 − 𝛼𝛼∇ℓ(𝐴𝐴( 𝒟𝒟distill); 𝜃𝜃�𝑡𝑡+𝑛𝑛) (6) 

The classification loss is calculated by the cross-entropy. Cross-entropy is a measure used in 

machine learning to quantify the difference between two probability distributions, typically the 

true distribution of labels in a dataset and the distribution predicted by a model. It is commonly 

used as a loss function for classification problems, where a lower cross-entropy value indicates 

that the model’s predictions are closer to the true labels. 

 𝐻𝐻(𝑦𝑦,𝑦𝑦�) = −∑ (𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑦𝑦�𝑖𝑖))𝑖𝑖  (7) 

Subsequently, after updating the parameters of the student network, the parameters that are 

difficult to match are constructed, and the final loss 𝐿𝐿 between the ending student and teacher 

parameters is calculated as follows. 

 𝐿𝐿 =
�𝜃𝜃�𝑡𝑡+𝑁𝑁−𝜃𝜃𝑡𝑡+𝑀𝑀

∗ �2
2

�𝜃𝜃�𝑡𝑡−𝜃𝜃𝑡𝑡+𝑀𝑀
∗ �2

2  (8)  



4 Experimental Study 

4.1 Distilled Dataset Generation 

In this paper, a brand of time-frequency data for a six-axis industrial robot was verified, which 

includes multiple normal/abnormal robot drive feedback current data. The data samples were 

collected every second from reducers and motors on different robot axes, covering seven 

operating states, with specific faults detailed in Table 1. 

Table 1. The specific fault data. 

Label axis Data volume Status Label 

0 1 ~ 6 axis 180,000 1 axis reducer, 2 axis motor fault Class 0 

1 1 ~ 6 axis 180,000 1 axis reducer, 3 axis motor fault Class 1 

2 

3 

4 

5 

1 ~ 6 axis 

1 ~ 6 axis 

1 ~ 6 axis 

1 ~ 6 axis 

180,000 

180,000 

180,000 

180,000 

3 axis reducer, 4 axis motor fault 

3 axis reducer fault 

2 axis motor fault 

4 axis reducer fault 

Class 2 

Class 3 

Class 4 

Class 5 

6 1 ~ 6 axis 300,000 Normal Class 6 

In the experiment, 180,000 data points from seven different operating states were used, and the 

image dataset generated through CWT was shuffled and reorganized. To be specific, label 0 to 

2 represent various types of compound faults, indicating scenarios where multiple issues occur 

simultaneously. Conversely, label 3 to 5 are assigned to single fault conditions, each depicting 

a single type of fault in motor. Importantly, the label 6 is designated for normal data. The dataset 

was used along with a three-layer CNN to generate the distilled training and testing dataset. 

The neural network architecture used for generating a distilled dataset primarily followed the 

simple CNN architecture designed by Gidaris and Komodakis [39]. This architecture consists 

of multiple convolutional blocks, each containing a 3 × 3 convolutional layer and three 2 × 2 

average pooling layers, with functions like filter, instance normalization, and ReLU, with a 

stride of 2. After the convolutional blocks, a single linear layer generates logs. The size of the 



images is 32 × 32, and ZCA whitening was applied to the dataset. ZCA whitening is a linear 

transformation used to decorrelate source signals and an important preprocessing step for 

reducing the redundancy of the input data.  

 

In the experiment, distillation training was conducted for 10,000 iterations, aiming to increase 

the quantity of the distilled dataset training for more stable network training. The training subset 

of the distilled dataset comprised data saved from iterations 9,000 to 10,000. For testing 

purposes, the distilled dataset included data from the later iterations, specifically 9,700 to 

10,000. The final distilled dataset used for verification maintained a ratio of 2:8 between the 

testing and training dataset. It utilized a batch of 50 images per class, resulting in the distillation 

of 350 images in each iteration. This process was repeated across all seven categories present 

within the dataset. 

 

4.2 Experimental setup 

To verify the effectiveness of DD on the industrial dataset, this experiment utilized Accuracy 

to express the effect of lightweight network classification with the following equation. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

  (9) 

where TP represents the number of correctly identified categories, FP represents the number of 

other categories incorrectly identified as such, and FN represents the number of categories 

misidentified as other categories. 

 

The model employs a three-layer MKW architecture for the convolutional neural network, 



which adheres to the concept of MKW’s shared convolutional layers for enhanced feature 

extraction. A three-layer MKW architecture for a convolutional neural network, adhering to the 

concept of MKW’s shared convolutional layers. This design substantially reduces parameter 

count compared to traditional networks, boosting efficiency. The convolutional layers of the 

MKW-NET share convolutional parameters following the idea of MKW, with each block 

containing a 3 × 3 convolutional layer, batch normalization layer, ReLU activation function, 

and three 2 × 2 average pooling layers. In this experiment, the effectiveness of MKW-NET was 

validated via two sets of experiments. The first experiment verifiable the distilled industrial 

time-frequency dataset by MKW-NET. The learning rate, batch size and layer number are 

adjusted in each trial. Specifically, the mean and standard deviation of the outcomes from the 

5-fold experiments were recorded as the result. The hyperparameters of MKW-NET are detailed 

in Table 2. 

Table 2. The details of hyperparameters of MKW-NET. 

Hyperparameter Value 

Learning rate 0.005 

Batch size 128 

Number of epochs 100 

Convolutional kernel size for patch embedding 

Average pooling size 

7*7 

2 

In the second experiment, a benchmarking experiment was set up to reveal the effectiveness of 

MKW-NET. Five current mainstream algorithms were used as benchmarking algorithms, where 

the parameters of the networks, such as learning rate, training epoch, and batch size, were 

determined after multiple trials. The network structures used in the experiment are detailed 

below:  

 



1. Compact Convolutional Transformer (CCT) [40]: A lightweight Transformer for image 

classification. In this experiment, the number of convolutional layers and the number of 

encoders were both set to 2. 

2. ViT-Tiny [41]: ViT-Tiny has far fewer parameters than the standard ViT. In this 

experiment, ViT’s patch size was set to 4, and the network depth to 2. 

3. ConvNext [42]: An improved network based on the foundational architecture of 

convolutional neural networks and ViT, with the network depth set to 4 layers in this 

experiment. 

4. MobilenetV2 [43]: Designed for computer vision applications on mobile and edge devices, 

MobilenetV2 uses the original 6 residual blocks. 

5. Resnet [44]: ResNet addresses deep neural network training difficulties, gradient 

vanishing, and explosion by introducing residual blocks.  

In each trial, the experiment was conducted five times, and the mean of the results was marked. 

These tests were carried out on a server running Ubuntu 16.0, equipped with an Intel i9-10920X 

3.50Ghz CPU and an Nvidia GeForce RTX 3090 graphics card. The setup included Python 

3.8.12 and the Pytorch 1.10.1 package for algorithm development. The evaluation focused on 

overall accuracy, encompassing both individual and compound fault categories, to assess the 

algorithm’s effectiveness. Additionally, the size of the model and its FLOPs (floating-point 

operations per second) were used as benchmarks to measure the computational efficiency of 

the experiment. 

 



5 Experimental Result 

Figure 3 illustrates the performance of MKW-NET in terms of accuracy over 100 training 

epochs with different learning rates ranging from 0.001 to 0.1. Observations reveal that a 

learning rate of 0.005 achieves the most steady and robust improvement in accuracy, stabilizing 

around 85% after about 30 epochs. In comparison, a learning rate of 0.01 also trends towards a 

similar accuracy level but with greater fluctuations, suggesting less stability. Notably, the 

network experiences increased volatility with a learning rate of 0.05, leading to significant 

variations in accuracy across epochs. The most pronounced instability is seen with a learning 

rate of 0.1, where the accuracy shows sharp declines at several points, underscoring the 

detrimental impact of higher learning rates on model performance. Table 3 delineates the 

relationship between the convolutional network depth and its performance metrics. As the 

number of layers increases from two to six, there is a progressive improvement in test accuracy, 

indicating the network’s enhanced learning capacity with additional layers. Especially, the test 

accuracy peaks at five layers with a value of 90.97%. However, the training time also escalates 

with each additional layer, reaching a substantial duration of 1328.71 minutes for the six-layer 

configuration. Despite the longer training times, the six-layer network does not perform better 

in test accuracy than the five-layer one, suggesting diminishing returns with further complexity. 

Table 3. The mean accuracy of different convolutional layers. 

Numbers of layer #Params (M) FLOPs(M) Training time (min) Test accuracy 

2 0.013 0.45 113.53 80.12% 

3 0.043 0.56 136.03 86.46% 

4 0.13 0.67 177.57 89.43% 

5 0.44 1.01 412.07 90.97% 

6 0.79 8.70 1328.71 86.67% 



 

Figure 3. The accuracy of fault diagnosis with different learning rates. 

Table 4 displays the model size, FLOPs, and classification results for MKW-NET in this 

experiment. Overall, due to MKW’s kernel sharing mechanism and the proposed optimized 

attention function, MKW-NET has the least network parameters, FLOPs, and the highest 

classification accuracy. MKW-NET’s model size is significantly smaller, with only 0.043M 

parameters, which is substantially less than most of the other algorithms listed. This indicates 

a highly efficient model that requires fewer resources for storage and quicker processing during 

inference. The FLOPs of MKW-NET are impressively low at just 0.56M, which suggests that 

it is computationally less expensive to run, making it suitable for environments with limited 

computational capacity. Also, the net also achieved an optimal balance between computational 

cost and algorithmic performance. This balance is crucial for practical applications where both 

efficiency and accuracy are valued. It is clear that MKW-NET achieves the highest overall 



accuracy on the distilled dataset, outperforming the second-best algorithm by 1.86%. Its model 

size is just 0.043 million parameters, considerably smaller than others. In contrast, 

MobilenetV2’s tiny version requires 0.13 million parameters, and CCT is approximately 0.28 

million. While similar in size to tiny-VIT, MKW-NET is significantly more efficient with 4.2% 

fewer FLOPs, and tiny-VIT’s classification accuracy is 63.09%. On the distilled dataset, 

MobilenetV2 and CCT, with relatively smaller parameter counts, have overall accuracies of 

78.64% and 61.28%, respectively. Among these algorithms, CCT performs the worst. In 

comparison to MKW-NET, Convnext has a much larger model size, with FLOPs reaching 

1722.58M, which far exceeds other algorithms. 

Table 4. The comparison of computational cost and algorithm performance. 

Algorithms #Params (M) FLOPs(M) Test accuracy 

MKW-NET(Proposed) 0.043 0.56 87.40% 

CCT [40] 0.28 50.70 61.28% 

ViT-tiny [41] 0.13 13.46 63.09% 

Convnext [42] 36.43 1722.58 75.02% 

MobilenetV2 [43] 2.23 6.67 78.64% 

ResNet [44] 11.18 37.22 85.54% 

Figure 4 provides a comparative t-SNE visualization between the original and the distilled 

dataset. Within the original dataset, the visual patterns of classes 1, 2, and 3 are characterized 

by a dispersed arrangement, which implies that the boundaries between these classes are not 

clearly defined. This scattered distribution could make it challenging for classification 

algorithms to distinguish between the classes accurately. On the other hand, the distilled dataset 

presents a stark contrast, with each class demonstrating a more cohesive and distinct clustering 

indicative of well-defined separations. The reduction in overlap between different classes in the 

distilled dataset is significant, suggesting that the feature space has been effectively condensed 

and refined. Such clarity in the feature representation is likely to result in a more precise 



classification model for the lightweight networks, as the clearer demarcation of class 

boundaries aids in reducing misclassification errors and improves the model’s ability to 

generalize from the distilled data to new, unseen instances. This enhanced separation and 

definition of classes could prove to be beneficial for applications where precise and reliable 

classification is critical. 

(a)Original dataset (b)Distilled dataset

 

Figure 4. The t-SNE between the original dataset and the distilled dataset. 

Figure 5 presents the confusion matrices for each dataset. In the confusion matrix of the original 

dataset, category 1 has 43 samples correctly classified but also has 8 samples misclassified into 

other categories, mainly category 2. For category 2, there are 124 samples correctly classified, 

but 140 samples are misclassified as category 0, indicating issues with recognizing category 2. 

The performance for category 3 to 6 is relatively good, which has a high number of correct 

classifications. The confusion between categories is relatively low, particularly from category 

3 to 6, suggesting that the model distinguishes these categories with relative accuracy. Overall, 

the model performs reasonably well on the original dataset, particularly in certain categories. 



However, there is lower accuracy in recognizing category 2 and some confusion between 

categories 1 and 2. The confusion matrix for the distilled dataset indicates an increase in the 

number of correctly classified samples and an improvement in the efficacy of sample 

classification after distillation. The model correctly classifies 9652 samples for category 0, with 

704 samples misclassified as category 1. For category 2, there are 9164 correct classifications, 

but 1907 samples are incorrectly classified as category 1, suggesting that while the recognition 

rate for category 2 is high, there is a relative abundance of confusion with category 1. Categories 

3 and 6 show a high number of correct classifications, with 11955 and 12250 samples 

respectively. However, confusion between categories in certain areas is quite pronounced, 

especially between categories 1 and 2, as well as between categories 4 and 5. Figure 6 provides 

a comparison of data before and after distillation. It is clear that the structure of the original 

data has been greatly changed, including the privacy information.  

(a)Original dataset (b)Distilled dataset

 

Figure 5. The confusion matrices between the original dataset and the distilled dataset. 
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Figure 6. (a) original dataset (0 iteration); (b) distilled dataset (10000 iteration) 

 

6 Discussion 

The MKW-Net offers a way to decrease the number of network parameters, making it useful in 

dataset distillation. This network excels in fault diagnosis within distilled dataset, offering 

precise detection and analysis of anomalies. The comparison of the original and distilled time-

frequency dataset reveals that the distillation process effectively encrypts most time-frequency 

data containing sensitive private information. At the same time, it retains crucial information 

for classification, striking a balance between preserving data utility and addressing privacy 

concerns by eliminating unnecessary details while maintaining key features needed for fault 

diagnosis. The t-SNE visualization reveals that the distilled dataset displays a more defined 



clustering by category, indicating effective feature extraction. This suggests that the distillation 

process not only refines the dataset by removing outliers but also retains essential information, 

thus optimizing it for machine learning applications. Figure 5 compares confusion matrices 

from the original and distilled dataset. The original dataset shows decent classification 

performance, with categories demanding the single faults or normal demonstrating particularly 

high accuracy. However, category 2 frequently gets incorrectly labeled as category 0, and there 

is a noticeable mix-up between categories 1 and 2. CWT provides variable time-frequency 

resolution for the original dataset, enhancing time resolution at high frequencies and frequency 

resolution at low frequencies. Yet, this trade-off might make features in some frequency bands 

less clear, affecting classification. Additionally, boundary effects may lead to inaccurate 

representations at signal edges, adversely impacting accuracy, particularly when signal lengths 

differ or edge information is crucial. Simpler images, characterized by less noise and more 

distinct features, decrease the likelihood of misclassification and facilitate the extraction of 

distinctive features from time-frequency data, thereby improving differentiation between 

categories. From the confusion matrix it could easily depicted that the compound faults are easy 

to trigger the confusion, as the rest of original dataset trigger less confusion while classifying. 

In contrast, the distillation process has modified the original classification pattern, making it 

much easier to classify categories 0,1 and 2, which are now more distinct and separable, and to 

a lesser extent between categories 4 and 5. Figure 6 clearly shows the comparison between the 

original and distilled dataset. Since the challenges in reversing the CWT transformed time-

frequency, the distilled dataset could hardly perform a restore for its condensed and 

differentiated information. Moreover, the distilled dataset is not the traditional time-frequency 



dataset. Based on the above discussion, the privacy information has been successfully protected. 

These experimental results indicate that the distilled dataset significantly alters the label 

distribution of the original dataset, demonstrating that the privacy features in the original dataset 

have also been correspondingly altered. However, there are still several issues to be resolved 

with the dataset distillation method and our proposed MKW network, which we have identified 

and verified through our experiments. In this paper, we adjust variables such as learning rate, 

the number of network convolutional layers, and the quantity of convolutional kernels. Also, to 

comprehensively assess our method, we compare it with current popular lightweight 

architectures as well as transformer-based architectures. Figure 3 shows that a moderate 

learning rate, especially 0.005, results in stable and reliable accuracy. In contrast, learning rates 

that are too high or too low could result in unstable training results, impacting the network’s 

ability to classify distilled data. For example, while a higher learning rate such as 0.01 can 

achieve accuracy comparable to 0.005, it tends to result in less stable training. From the results 

of Table 3, as the number of network layers increases, the corresponding training time for the 

network also rises. However, as the network expands to six layers, the training duration 

significantly increases. This suggests that although MKW has enhanced the network’s stability, 

the training efficiency for configurations with multiple layers and numerous kernel cell still 

requires improvement. Moreover, Table 4 shows that complex networks or those needing a lot 

of computing power usually perform worse on the distilled datasets, as for the similar 

performance, the MKW-Net has a lower compute complexity and fewer network parameters. It 

can be seen that the performance of MKW-Net shows merits in comparison with other 

algorithms for its less complexity and network parameters. This implies that the synthesized 



features of the distilled dataset might not fit well with these complex models. It highlights 

ongoing issues with the quality and stability of distilled data, as well as the poor training 

performance of large networks on the dataset.  

 

Future research in DD should focus on improving methods to work better with complex neural 

networks like Transformers. The main challenge of DD is to find a balance between the network 

complexity and the performance of the distilled data. For DD, it’s important to enhance how 

well it works with different types of networks by improving gradient matching during the 

distillation process. Moreover, the latest neural network should not only focus on the 

performance of dataset classification but also pay more attention to computational requirements, 

as complex networks are not particularly widely used in industrial fault diagnosis. The final 

goal is to develop a distillation method that fits well with the wide range of time-frequency data 

and can be used in different fault diagnosis scenarios. This approach could be highly beneficial 

for companies seeking to safeguard sensitive information such as production processes, 

machinery efficiency, and output statistics, ensuring both confidentiality and competitive 

advantage in their industry. 

 

7 Conclusions 

As the era of Industry 4.0 accelerates, protecting the process privacy information contained 

within industrial datasets has become a critical priority, essential for preserving a company’s 

competitive edge and ensuring operational security. Addressing the challenge of encrypting an 

industrial robot dataset, this paper introduces a novel, lightweight CNN-based DD approach 



that leverages the MKW method. This approach adeptly condenses a voluminous dataset into a 

manageable number of images per class, all while capturing the essential features necessary for 

accurate classification. Our experimental findings affirm the superiority of our approach, which 

outperforms larger neural networks in classifying a distilled dataset. Future work should focus 

on developing refined DD methods suitable for complex neural network structures, especially 

Transformers. The focus will be on developing networks that are lighter and use less computing 

power while still maintaining good performance. 
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