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As connected and autonomous vehicles proliferate, the Controller Area Network (CAN) bus has become the 
predominant communication standard for in-vehicle networks due to its speed and efficiency. However, the 
CAN bus lacks basic security measures such as authentication and encryption, making it highly vulnerable to 
cyberattacks. To ensure in-vehicle security, intrusion detection systems (IDSs) must detect seen attacks and 
provide a robust defense against new, unseen attacks while remaining lightweight for practical deployment. 
Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches 
with manual feature extraction. These approaches overlook other exploitable features, making it challenging to 
adapt to new unseen attack variants and compromising security. This paper introduces a cutting-edge, novel, 
lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations. The proposed 
IDS employs a multi-stage approach: an artificial neural network (ANN) in the first stage to detect seen attacks, 
and a Long Short-Term Memory (LSTM) autoencoder in the second stage to detect new, unseen attacks. To 
understand and analyze diverse driving behaviors, update the model with the latest attack patterns, and preserve 
data privacy, we propose a theoretical framework to deploy our IDS in a hierarchical federated learning (H-FL) 
environment. Experimental results demonstrate that our IDS achieves an F1-score exceeding 0.99 for seen attacks 
and exceeding 0.95 for novel attacks, with a detection rate of 99.99%. Additionally, the false alarm rate (FAR) is 
exceptionally low at 0.016%, minimizing false alarms. Despite using DL algorithms known for their effectiveness 
in identifying sophisticated and zero-day attacks, the IDS remains lightweight, ensuring its feasibility for real-

world deployment. This makes our model robust against seen and unseen attacks.
1. Introduction

In connected and autonomous vehicles (CAVs), many mechanical 
components have been replaced by electronic components [1]. These 
vehicles contain numerous Electronic Control Units (ECUs) connected 
via various standard automobile in-vehicle communication protocols, 
such as Controller Area Network (CAN), FlexRay, Local Interconnect 
Network (LIN), and Media Oriented System Transport (MOST). Among 
these protocols, CAN is considered the de facto protocol for in-vehicle 
communication [2] due to its features including high speed, noise can-

cellation, and ease of use. Although it was initially developed for in-

dustrial machines, it has since been adopted for in-vehicle network 
communications. However, it lacks basic security features such as sender 
authentication and encryption [3]. The main reasons for not implement-
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ing these security measures in in-vehicle networks are the intensive 
use of the vehicle’s limited computational resources and the resultant 
increased latency, which could potentially lead to a failure to meet crit-

ical safety-related deadlines [4,5]. Thus, any security measure designed 
should be lightweight to ensure ease of deployment.

Furthermore, interconnectivity in modern vehicles introduces attack 
surfaces that expose the vehicle to cyberattacks. The attack surfaces can 
be accessed physically or remotely [6]. Physical access can be made 
via USB, CD player, onboard diagnostic (OBD)-II port, and so on. In 
addition, remote access can be made via short-range wireless technolo-

gies such as Bluetooth and radio frequency identification (RFID) and 
long-range wireless technologies such as Wi-Fi and long-term evolution 
(LTE). Therefore, the system is vulnerable to various cyberattacks, po-

tentially resulting in severe consequences, including the loss of human 
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life [7]. There may be adverse consequences if an intruder manages to 
infiltrate the CAN bus system and introduce malicious messages. For 
instance, an unauthorized individual with access to the in-vehicle net-

work can tamper with vital functionalities like braking, door locking 
mechanisms, and steering, thereby presenting a notable safety hazard. 
An example of a cybersecurity breach in the automotive industry can 
be found in [8], where two hackers were able to exploit vulnerabili-

ties in a Jeep’s system and remotely control it to perform dangerous 
maneuvers, including abruptly turning the steering wheel and suddenly 
applying the parking brake at high speeds, leading to catastrophic ac-

cidents. In the same way, hackers were able to exploit a vulnerability 
in the infotainment system of a General Motors car, allowing them to 
gain unauthorized access and steal data remotely [9]. In 2018, the Keen 
Security Lab revealed several vulnerabilities in BMW cars that allow 
cyber-attackers to inject unified diagnostic services (UDS) packets into 
the CAN network, evading the central gateway [10]. Moreover, in 2020, 
a Toyota Lexus was the target of an attack by exploiting a Bluetooth vul-

nerability, causing unexpected physical motions in the vehicle [11].

Such attacks not only raise concerns about information security and 
privacy but also directly impact the safety of drivers, passengers, and the 
surrounding area. Therefore, the security of the CAN bus has become a 
topic of significant research interest. According to McKinsey’s analysis in 
[12], almost all newly sold vehicles worldwide, approximately 95%, will 
feature connectivity by 2030, underscoring the critical need for robust 
CAN bus security measures. It has been proven that IDSs are an effec-

tive method for identifying cyberattacks on in-vehicle networks. An IDS 
monitors and identifies malicious activity on the network. In the context 
of in-vehicle networks, the IDS is often installed in an ECU and receives 
and analyzes incoming network traffic. If any abnormal messages are 
identified, it will notify other ECUs. In computer network systems, IDSs 
are used to detect and prevent intrusions. However, many conventional 
network security measures cannot be applied directly to in-vehicle net-

works. Therefore, there is a critical need for a robust IDS for in-vehicle 
networks.

Many studies have developed various in-vehicle IDSs using machine 
learning (ML) approaches. However, existing approaches overlook three 
crucial aspects of in-vehicle IDS requirements: robustness, limited com-

puting resources, and deployment environment. Robustness in an IDS 
is the ability to detect seen attacks while staying ahead of attackers by 
identifying new, unseen attacks that the model has not been trained on. 
Ensuring the robustness of the IDS will significantly enhance the safety 
and security of in-vehicle networks. To design lightweight IDSs deploy-

able in resource-constrained environments, many existing solutions rely 
solely on CAN ID features or use traditional ML approaches with man-

ual feature extraction, neglecting other exploitable features and thus 
compromising security. Moreover, various researchers have deployed 
their IDSs using a traditional centralized learning approach, which in-

volves transmitting large volumes of data to the cloud for training. This 
approach raises significant issues, including privacy concerns, high com-

munication overhead, and longer response times. This paper aims to 
address these gaps by proposing a robust and lightweight in-vehicle IDS 
capable of defending against both seen and new, unseen attacks, and 
which can be deployed in a federated learning (FL) environment. To do 
so, we have laid down concrete objectives:

• Identify the limitations of existing in-vehicle IDSs and design a 
novel IDS to address these gaps.

• Understand CAN bus data to develop a hybrid IDS.

• Conduct data preprocessing for DL applications.

• Evaluate the hybrid IDS for both seen and unseen attacks, consid-

ering the model size.

• Compare the model’s performance against previous studies.

• Propose a hierarchical federated learning (H-FL) IDS to increase the 
2

robustness of the IDS.
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1.1. Contributions

This paper proposes a novel multi-stage IDS for in-vehicle network 
security capable of detecting both seen and unseen attacks. Furthermore, 
to take advantage of diverse driving scenarios and behaviors across dif-

ferent locations while ensuring user privacy protection, we propose a 
novel theoretical framework for deploying the proposed IDS in an H-FL 
environment. The main contributions can be summarized as follows:

• To provide a literature review on the current research on ML ap-

proaches capable of detecting seen and unseen attacks, and to iden-

tify the limitations of existing in-vehicle IDSs.

• It examines CAN bus data to extract valuable insights, aiding re-

searchers in enhancing their understanding and improving security 
solutions in this field.

• It proposes a robust multi-stage IDS to detect seen and unseen mali-

cious traffic using DL algorithms, achieving an F1-score exceeding 
0.95 and a detection rate (DR) of 99.99% for previously unseen at-

tacks.

• We have developed a novel method for detecting unseen attacks by 
utilizing an LSTM-autoencoder. This approach captures the sequen-

tial dependencies within a single CAN message, encompassing both 
the CAN ID and its payload.

• Focusing on the size, the proposed novel hybrid model is lightweight 
at 2.98 MB, demonstrating its feasibility for real-world deployment.

• This paper proposes a novel framework for deploying the proposed 
IDS in an H-FL environment.

This paper advances the field of in-vehicle IDSs by addressing key 
limitations of existing solutions. It leverages the power of DL algorithms 
and integrates two stages of detection to enhance robustness, deploy-

ing the IDS in an H-FL environment. These improvements set a new 
standard for further advancements toward achieving an optimally se-

cure in-vehicle network, making it more difficult for attacks to succeed. 
Moreover, our analysis of CAN bus data provides valuable insights for re-

searchers, aiding in the development of more effective security measures 
for in-vehicle networks. Our work paves the way for future research to 
explore advanced DL models, ultimately enhancing the security and reli-

ability of CAVs. By pushing existing boundaries, we seek to contribute to 
a securer and more resilient automotive cybersecurity landscape. To the 
best of our knowledge, this is the first study to utilize a hybrid approach 
in in-vehicle IDSs to detect seen and unseen attacks using DL algorithms 
rather than traditional ML algorithms and to propose deploying the in-

vehicle IDS in an H-FL.

The remainder of this paper is organized as follows. Section 2

presents the background of the CAN bus protocol and attack methods. 
Section 3 discusses the related work. Section 4 presents the methodology 
of the proposed IDS. Section 5 presents and evaluates the experimental 
results. Section 6 provides discussions. Finally, Section 7 concludes the 
paper and presents potential directions for future work.

2. Background and attack methods

In this section, we provide background information on CAN bus pro-

tocol security and attack methods.

2.1. Controller area network protocol

The CAN bus is the primary communication protocol between mul-

tiple ECUs in in-vehicle networks. Robert Bosch developed the CAN bus 
protocol in 1985 to reduce the weight of wires, complexity, and cost 
[13]. Due to its high speed and efficiency, the CAN bus is widely used as 
the default communication standard for in-vehicle communication sys-

tems [14]. The CAN bus is a message-based broadcast protocol where 
ECUs transmit data in a predefined data frame as messages to all ECUs. 

Despite its importance, the CAN bus protocol lacks security features in 
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Fig. 1. CAN Bus Attacks
its design, making it vulnerable to attacks on confidentiality, integrity, 
and availability [3,15,16].

2.2. Attack methods

As mentioned in the 2.1 subsection, the CAN bus is vulnerable to 
various cyberattacks due to its broadcast nature and lack of built-in en-

cryption or authentication [3]. To launch an attack, the attacker must 
first gain access to the CAN bus system, which is possible through differ-

ent methods like the OBD-II port or wireless technologies [16,6]. Having 
successfully gained access, the attacker can inject harmful messages and 
launch various attacks such as DoS, spoofing, and frame fuzzification at-

tacks. These attacks are depicted in Fig. 1.

Denial-of-Service Attack (DoS): The goal of a DoS attack is to 
consume the CAN bus bandwidth by transmitting a large volume of mes-

sages, which may result in unexpected system behavior. As the identifier 
sets the message priority, the attacker sends many messages with identi-

fier = 0 to the CAN bus (see Fig. 1a). This message will have the highest 
priority [14].

Spoofing Attack: In this type of attack, an unauthorized attacker 
targets specific CAN IDs and tries to inject fabricated messages to con-

trol particular functions (see Fig. 1b). Because the CAN IDs are spoofed 
and look legitimate, it becomes challenging to distinguish between le-

gitimate and fabricated messages, leading to system malfunction [14].

Frame Fuzzification Attack: An attacker injects random messages, 
which appear to be legitimate traffic, into the CAN bus network sys-

tem (see Fig. 1c). Frame fuzzification attacks can compromise the ECUs 
and cause unexpected behavior in the vehicle, leading to problems like 
steering wheel shaking, unpredictable signal light on/off switching, and 
automatic gear shifts [17].

3. Related work

This section reviews state-of-the-art research focused on the devel-

opment of in-vehicle IDSs capable of detecting both seen and unseen 
attacks, and their limitations. It also reviews existing federated-based 
in-vehicle IDSs, examines the broader impact of in-vehicle network se-

curity on urban transportation systems, and highlights the novelty of 
our research within this context.

3.1. In-vehicle IDSs and limitations

Research on developing in-vehicle IDSs has significantly increased 
over the past few years due to the critical need to enhance the security 
of in-vehicle networks and identify cyberattacks. Researchers have ex-

plored a wide range of approaches to developing these systems. In this 
paper, we focus on studies that develop in-vehicle IDSs using DL and ML 
approaches. An IDS can be either a signature-based or an anomaly-based 
system [18]. Some studies have focused on signature-based methods 
to detect and classify seen attacks [3,19,20], while others have em-

ployed anomaly detection methods to identify unseen or zero-day at-
3

tacks [21,22]. To further improve the robustness and detection capabil-
ity of the in-vehicle IDS, a few papers have developed an in-vehicle IDS 
that can identify both seen and unseen attacks [23,14,24,25], demon-

strating significant advancements in this critical area of cybersecurity. 
These studies and their limitations are discussed below and summarized 
in Table 1.

Zhang et al. [23] have proposed a DNN-based IDS that aims to au-

tomatically extract features for the IDS from the vehicle’s data packets. 
The authors applied gradient descent with momentum (GDM) and gradi-

ent descent with momentum and adaptive gain (GDM/AG) techniques. 
The study’s results demonstrate the model’s capability to detect replay 
attacks effectively. The authors accessed the sensor readings, using them 
as separate features. However, this method demands either having ac-

cess to the CAN database (DBC) file or having knowledge about the CAN 
payload.

Hoang et al. [14] and Seo et al. [24] have showcased their IDSs’ abil-

ity to detect both seen and unseen attacks. However, their IDSs mainly 
rely on the CAN ID as a singular feature; selecting only the CAN ID fea-

ture will limit the detection ability to detect attacks that involve payload 
manipulation [15].

Hoang et al. [14] propose a lightweight, semi-supervised, learning-

based IDS to detect in-vehicle network attacks. The proposed IDS in their 
study integrates two DL models: autoencoders and generative adversar-

ial networks (GAN). Their IDS was trained on unlabeled data to learn 
the patterns of normal and malicious data. Only a few labeled samples 
were used during the subsequent supervised training phase.

Seo et al. [24] have developed a GAN-based IDS (GIDS) for in-vehicle 
network security. The proposed IDS was trained by solely utilizing the 
patterns of CAN IDs from CAN data and then converting the extracted 
CAN IDs into a simple image. GIDS has two discriminative models to 
detect both seen and unseen attack data. The first discriminator is specif-

ically trained to handle attacks. In contrast, the second discriminator 
and the generator are co-trained through an adversarial process. While 
the generator generates modified images, the second discriminator re-

ceives both modified and real CAN images, and its role is to differentiate 
between the modified and real images. Nevertheless, using the CAN ID 
as the only feature limits the detection capability of payload manipula-

tion attacks.

The aforementioned studies employ either supervised learning-based 
methods or unsupervised learning-based methods. Supervised learning-

based methods are frequently used to develop models distinguishing 
between normal and attack traffic. This technique focuses on optimizing 
the decision boundary to minimize classification errors on the training 
set and demonstrate good generalization capabilities on the testing set. 
Despite the high accuracy and low false alarm rate (FAR) of these mod-

els, they rely heavily on well-labeled and balanced datasets to reach 
their full potential, which is often difficult to achieve in practical sit-
uations. Additionally, because attackers continuously attempt to evade 
detection and use new, previously unseen attacks, supervised learning-

based models may struggle to recognize unfamiliar attack patterns not 
present in the training data [27]. This limitation can lead to significant 
security consequences. Unsupervised learning-based methods, mean-
while, build models exclusively using normal data, relying on profiling 
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Table 1

Related Works of ML-based IDSs for in-vehicle Network

Ref Year Category Algorithm Dataset Seen 
Attacks

Unseen 
Attacks

M-C ID-based 
Detection

Payload-based 
Detection

DL FL

[23] 2019 Supervised DNN Simulation ✓ ✓ ✓ ✓ ✓
[14] 2022 Semi-supervised AE, GAN Car-Hacking [24] ✓ ✓ ✓ ✓
[24] 2018 Unsupervised GAN Car-Hacking [24] ✓ ✓ ✓ ✓
[25] 2022 Hybrid DT, RF, ET, XGBoost, 

CL-k-means

Car-Hacking [24], 
CICIDS2017 [26]

✓ ✓ ✓ ✓ ✓

Our work 2023 Hybrid ANN, LSTM-AE Car-Hacking [24] ✓ ✓ ✓ ✓ ✓ ✓ ✓

DL: Deap Learning, FL: Federated Learning, M-C: Multi-classification.

Table 2

Constant and Changing Data in CAN Message

CAN ID D0 D1 D2 D3 D4 D5 D6 D7

399 254 59 00 00 00 60 00 00

399 254 60 00 00 00 61 00 00
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00

00

00

00

00

00

00

00
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.

.

00

00

00

00

00

00

399 254 94 00 00 00 74 00 00

399 254 95 00 00 00 75 00 00
normal traffic behaviors to detect anomalous traffic that could indicate 
a potential attack. As a result, unsupervised learning-based models are 
well suited to detecting previously unseen attacks [28].

To leverage the strengths of both approaches, Yang et al. [25] have 
developed a multi-tiered hybrid IDS, MTH -IDS, to protect intra-vehicle 
and external networks from cyberattacks. MTH-IDS combines super-

vised and unsupervised models. Despite achieving good results, the pro-

posed IDS has certain limitations that we aim to address.

One significant limitation to note is that the authors used only four 
features—CAN ID, D5, D3, and D1—to train the model after feature ex-

traction. While this strategy may result in a more efficient model, it 
does create the potential for an attacker to manipulate other features 
that were not considered during the model’s training process [29]. This 
is a crucial limitation in CAN bus data for three reasons. First, selecting 
a subset of features from the CAN bus payload as important features and 
discarding non-important features could pose a risk, as attackers might 
exploit the neglected features, effectively bypassing the model [30,31]. 
Second, the evolving landscape of attack scenarios means that features 
chosen to detect one category of attacks may become outdated or in-

sufficient for addressing new, unseen attacks [29]. Third, upon closer 
examination of the CAN bus data, we noticed that each CAN ID exhibits 
distinct patterns of data field values. For example, CAN ID 399 con-

sistently has zero values in data fields D2, D3, D4, D6, and D7, which 
remain unchanged. By contrast, in CAN ID 320, the data fields that are 
always 0 are D1, D2, and D3. Table 2 displays the constant zero val-

ues in blue, indicating data that never changes throughout the dataset. 
Data highlighted in yellow represents changing values, while data high-

lighted in green denotes constant non-zero values. Consequently, fea-

tures that are significant (possessing varying values) for one CAN ID 
may not hold relevance for another, making the selection of a consis-

tent subset of important features for all CAN IDs impractical due to the 
inherent nature of CAN bus data. This observation can help researchers 
understand the CAN bus data and make their IDS models more focused 
on the most significant features, potentially improving their generaliza-

tion capability.

Another limitation pertains to the deployment approach. Yang et al. 
suggest conducting the training process on a server machine and the 
testing process on the CAN bus. However, this deployment approach 
requires training the data on a remote server, which involves sending 
sensitive data to a server for training, raising privacy concerns.

In the unsupervised model, the F1-score of the proposed MTH-IDS 
was only 0.82. To improve this result, the authors add another tier of two 
4

biased classifiers. Training these biased classifiers on specific errors—
false positives (FPs) and false negatives (FNs)—may lead to poorer per-

formance when we test the model on new, unseen data. Additionally, 
adding this tier transforms the model from being purely unsupervised. 
Resulting in a dependency on labeled datasets, which are often difficult 
to implement in practical situations.

A key distinction between MTH-IDS and our approach is our use 
of DL algorithms over conventional ML models. Multiple authors have 
found that DL-based IDSs outperform traditional ML IDSs in automo-

tive applications [32]. This superiority is due to several factors: DL 
methods are more adaptive, continually being refined with incoming 
data, which is particularly suitable for the nature of CAN bus data [23]. 
Additionally, traditional ML often requires manual feature engineer-

ing, such as applying correlation-based feature selection, which can be 
time-consuming [33]. In contrast, DL automatically deduces features, 
allowing algorithms to directly discern optimal features from raw data 
[34]. Furthermore, DL IDSs are especially capable of detecting novel 
attacks and can scale more effectively to highly complex in-vehicle net-

work data while maintaining efficacy [34]. Therefore, there is a need 
to develop a robust, lightweight in-vehicle IDS that addresses previous 
limitations.

3.2. Federated-based in-vehicle IDSs

FL is a privacy-preserving decentralized learning technique that 
trains models locally without transferring row data to a centralized 
server. Instead, it transfers model parameters to a centralized server, 
which aggregates the clients’ models to build a shared global model 
[35]. The integration of FL into IDSs addresses the growing need for 
enhanced security and privacy in our interconnected society. Although 
some previous works [36–41] have deployed their in-vehicle IDSs in 
an FL environment, all the proposed FL works used a standard (non-

hierarchical) architecture, relying solely on one central server (aggrega-

tor). However, this can introduce performance challenges, particularly 
due to delays in sharing the model between the central aggregator and 
numerous devices. Furthermore, this central server poses a risk as a sin-

gle point of failure [42] and is restricted to limited driving behaviors 
under its coverage [43].

3.3. Impact on urban transportation systems

The impact of securing in-vehicle networks in CAVs extends to the 
broader field of urban transportation planning, where vehicles are in-

tegral to the overall system. Urban transportation research aims to mit-
igate traffic congestion [44], improve safety, increase the adoption of 
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renewable energy [45], and advance sustainable mobility [46]. A recent 
survey [47] examining the impacts of CAVs on urban transportation and 
the environment found that CAVs would decrease energy consumption 
and protect the environment by reducing emissions. Furthermore, these 
vehicles could significantly reduce traffic crashes involving human error 
while increasing the convenience and productivity of passengers. How-

ever, there are widespread concerns about personal safety, security, and 
privacy due to the potential for cyberattacks. Therefore, enhancing the 
security of CAVs would significantly contribute to the improvement of 
urban transportation systems.

3.4. Research novelty

While previous studies have achieved notable results in specific ar-

eas, they also have several limitations. Compared to existing studies 
related to in-vehicle IDS, our proposed IDS offers the following advan-

tages: 1) It uses DL rather than traditional ML, which has proven to be 
more efficient in automotive applications and is capable of detecting 
novel attacks more effectively [32,34]. 2) It employs a hybrid model 
(signature-based and anomaly detection) instead of relying on a single 
model, which has been shown to improve detection results [48]. 3) It 
successfully detects both seen and new, unseen attacks. 4) Despite us-

ing DL algorithms, it is a lightweight IDS. 5) It utilizes both CAN ID 
and payload as features, which enables detection of CAN ID changes 
and payload manipulation attacks [15]. 6) It continuously learns by la-

beling and updating the signature-based classifier when a new, unseen 
attack is detected. 7) It leverages diverse driving behaviors by being de-

ployed in an H-FL environment.

The novelty of this paper lies in three key aspects: the design of the 
IDS, the algorithms used, and the deployment approach. First, our pro-

posed in-vehicle IDS employs a cascaded multi-stage approach to detect 
both seen and unseen attacks. Unlike other multi-stage IDS designs in the 
literature, our IDS uses the first stage to classify traffic into seen attacks 
and normal data. The second stage then re-examines the data classified 
as normal in the first stage to detect unseen attacks that bypassed the 
initial model, providing an additional layer of protection. Furthermore, 
the IDS continuously learns by labeling and updating the classifier in 
the first stage when a new, unseen attack is detected. Secondly, we use 
a hybrid approach (ANN and LSTM-autoencoder) that leverages DL al-

gorithms. By doing so, our proposed IDS ensures a multi-layered defense 
mechanism against potential threats and improves detection perfor-

mance compared to single-point IDSs [49]. Thirdly, to further enhance 
the robustness of the in-vehicle IDS, our approach addresses the signifi-

cant drawbacks of previous methods by proposing its deployment in an 
H-FL environment. This approach aims to build a more robust global 
model that takes advantage of diverse driving scenarios and behaviors 
in different locations while ensuring user privacy protection.

In summary, the review of existing literature reveals several research 
gaps and shortcomings, highlighting the broader impact of in-vehicle 
network security on urban transportation systems and emphasizing the 
need to improve the security of these networks. These gaps provide a 
critical foundation for the design and novelty of our proposed IDS.

4. Methodology

In this section, we present the methodologies used to develop our 
proposed in-vehicle IDS. First, we explain the proposed in-vehicle IDS, 
including data preprocessing; the first stage, a supervised model (ANNs); 
and the second stage, an unsupervised model (LSTM-autoencoder). 
Next, we provide details on training and testing the model, including 
ANN hyperparameter tuning and LSTM-autoencoder hyperparameter 
tuning. Finally, we present the proposed H-FL framework.

4.1. Proposed in-vehicle IDS

In Section 3, we highlighted the limitations of existing in-vehicle 
5

IDSs. To address these limitations, we introduce a multi-stage IDS de-
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signed to protect in-vehicle networks from seen and unseen attacks by 
using a hybrid approach (supervised and unsupervised algorithms). We 
adopt a hybrid approach to mitigate the risks inherent in relying on a 
single model. Integrating multiple ML models can significantly enhance 
performance, improve data security, and reduce the FN rate compared 
to using a single model [37,48]. These benefits are particularly valu-

able for in-vehicle networks, where errors can be costly. Additionally, 
our proposed hybrid approach increases protection against attackers, 
who must now evade two models instead of just one.

Our proposed IDS integrates both supervised and unsupervised mod-

els. As illustrated in Fig. 2, the CAN bus data first enters the data prepro-

cessing stage, followed by the supervised classifier in the initial stage. 
Subsequently, the normal data is processed by the second model to iden-

tify any previously unseen attacks. The supervised model is primarily 
responsible for detecting and categorizing previously seen attacks based 
on historical data. By placing the supervised classifier model first, the 
IDS can quickly filter out any attacks based on its training and acceler-

ate the detection process. The subsequent unsupervised model serves as 
a secondary layer of protection against unseen attacks that bypass the 
first model. When the supervised model makes a mistake and classifies 
the malicious traffic as normal, the unsupervised model can detect this 
and flag it as an anomaly. The unsupervised model, which works as an 
anomaly detection model, is trained solely on normal data, and any sam-

ples that deviate significantly from the learned patterns are identified as 
an anomaly or an unseen attack. Once the unsupervised model detects 
malicious traffic, it is flagged for further investigation. Any anomalies 
detected by the unsupervised model that are later confirmed as threats 
will have a new attack label generated. This new label will be used to 
further train and refine the supervised model, enabling it to recognize 
such attacks in the future and ensuring the system improves over time. 
As the vehicular environment evolves, new attack vectors may emerge. 
The unsupervised model ensures that the system remains adaptive and 
resilient in the face of changing attacks, even if the supervised model has 
not been trained on them. This comprehensive multi-stage IDS ensures 
coverage for both seen and unseen attacks. For broader applicability, 
the proposed IDS can learn the legitimate CAN IDs and normal behavior 
for each vehicle at design time and monitor the network to detect any 
attacks during operational runtime.

Our proposed IDS provides a comprehensive and robust solution to 
secure in-vehicle networks. Furthermore, our IDS addresses significant 
challenges associated with previous approaches by deploying it in a FL 
environment. Utilizing FL allows the IDS to benefit from various driv-

ing scenarios, enhances its resilience against new and unseen attacks, 
and enables continuous learning without compromising the privacy and 
security of the training data. With the rapid development of in-vehicle 
technologies and communication protocols, having a resilient IDS en-

sures that we are prepared for both current and future threats.

4.1.1. Data preprocessing

In data preprocessing, data was converted into a format suitable for 
use by deep neural networks. This was achieved by applying different 
operations. Fig. 3 shows the data processing applied to each feature in 
the dataset. The dataset contained four files, each corresponding to a 
specific attack (DoS, frame fuzzification, gear, and RPM), with both at-

tack and normal instances. Table 3 shows the number of attacks and 
normal instances in each file. We processed each file individually and 
then concatenated them into a single dataset. We shifted the flag field 
to the last column and filled non-available data bytes with NAN val-

ues. Given the extensive data points we had, we removed any row with 
these missing values in the data fields. The CAN ID and data fields were 
in hexadecimal values. We converted the CAN ID and data values from 
hexadecimal to decimal values as per the ML requirement. Most ML al-

gorithms require the conversion of categorical data into numerical data. 
Therefore, after concatenating the datasets into one dataset, a label en-
coder was employed to convert categorical features in the flag feature 
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Fig. 2. Workflow Model Depiction of Proposed Multi-stage IDS for In-vehicle Network

Fig. 3. Data Preprocessing
(Normal, DoS, frame fuzzification, gear, and RPM) into numerical rep-

resentations to facilitate their use as inputs in ML algorithms.

As shown in Table 3, the dataset comprised millions of data points 
and was highly imbalanced, with the number of attacks accounting for 
14.06% and normal data making up 85.94%. This could result in high 
processing times and produce biased models. To mitigate issues related 
to the dataset’s size and model complexity, data sampling is a common 
approach used to generate a representative sample from the original 
data [50]. After reviewing and experimenting with various data sam-

pling methods, we adopted the same sampling approach used in [25]. 
In their work, they employed the K-means clustering algorithm for data 
sampling and then addressed class imbalance issues using the synthetic 
minority oversampling technique (SMOTE). Fig. 4 depicts the difference 
between the number of samples in the original data and the number af-

ter applying sampling and SMOTE to balance the data. Although we 
trained the models on sampled data, we tested them on the remaining 
dataset to ensure that the models were well generalized and capable of 
6

recognizing the entire dataset. We used this method only for unsuper-
Table 3

Dataset Overview

Attack type Attack Instances Normal Instances

DoS 587,521 3,078,250

Frame Fuzzification 491,847 3,347,013

Gear 597,252 3,845,890

RPM 654,897 3,966,805

Total 2,331,517 (14.06%) 14,237,958 (85.94%)

vised anomaly detection because the supervised classifier handled the 
entire dataset efficiently and quickly.

We considered nine columns (CAN ID and eight data values) as the 
features in our experiment. This choice was made to effectively detect 
any manipulation of either the CAN ID or the payload. We opted to in-

clude the CAN ID feature because the utilized dataset [24] was created 
by injecting attacks into arbitrary CAN IDs, which made incorporating 
this feature crucial for capturing the distinct characteristics of cyberat-
tacks. To avoid biased models and potentially inaccurate results due to 
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Fig. 4. Comparison between the number of data classes before and after sam-

pling and balancing data

Table 4

Data Features and Types Before and After Data Pre-

processing

Feature Before After

CAN ID hexadecimal decimal integer

D0 hexadecimal decimal integer

D1 hexadecimal decimal integer

D2 hexadecimal decimal integer

D3 hexadecimal decimal integer

D4 hexadecimal decimal integer

D5 hexadecimal decimal integer

D6 hexadecimal decimal integer

D7 hexadecimal decimal integer

Flag string (T, R) decimal integer (0,1,2,3,4)

the clear correlation between timestamps and cyberattack simulation in-

tervals, the timestamp feature was intentionally excluded. In addition, 
we excluded the data length code (DLC) feature since it could be cor-

related with the data fields, given that DLC represents the payload’s 
length. To decrease the feature dimensions, we decided not to consider 
DLC. We then applied the StandardScaler algorithm to scale the data. In 
comparison to other algorithms, StandardScaler was able to find a better 
balance between handling outliers and preserving the range of values. 
It standardizes data by subtracting the mean value, resulting in a zero 
mean, and then dividing by the variance, thus giving the distribution 
unit variance, as shown in Equation (1):

𝑋scaled = (𝑋 −𝑋𝑚𝑒𝑎𝑛)∕𝑋𝑠𝑡𝑑 (1)

Where, 𝑋scaled represents the scaled value, 𝑋 is the original value, and 
𝑋mean and 𝑋std denote the mean and standard deviation, respectively.

This step is important because network traffic data can possess dif-

fering ranges, and normalized (scaled) datasets tend to enhance the 
performance of ML models [51]. Failure to normalize the dataset, espe-

cially when its features have different scales, may cause the ML model 
to concentrate primarily on the features with larger scales [25]. Table 4

shows the data features and types before and after data preprocessing.

4.1.2. First stage: supervised model

We reviewed various DL algorithms for attack detection and multi-

classification and concluded that artificial neural networks (ANNs) were 
the optimal choice for our data for the following reasons:

1. ANNs introduce non-linearity into the model, which makes them 
capable of modeling complex patterns and relationships that linear 
classifiers might miss.

2. Unlike traditional methods, ANNs can automatically learn the best 
7

features directly from the raw data without requiring explicit fea-
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ture engineering. This can lead to better performance, especially 
in CAN bus data, where each CAN ID has distinctively informative 
features.

3. ANNs are adaptive systems, making them suitable in situations 
where data is continuously evolving.

4. ANNs can produce highly competitive results.

However, while ANNs can be an excellent choice, they can be compu-

tationally intensive. To address this, we simplified the ANN architecture 
by reducing the number of layers and neurons while still achieving the 
highest DR.

4.1.3. Artificial neural networks

ANNs are ML algorithms inspired by the behavior of biological neu-

rons in the brain and the central nervous system [52,53]. ANNs’ inputs 
pass through one or more hidden layers, assign weights, and produce 
an output. Fig. 5 depicts the ANN architecture. ANNs can adjust their 
internal parameters, known as weights and biases, for both the hidden 
and output layers. This adaptive feature means that ANNs can under-

stand the deep and non-linear interrelations between dependent and 
independent variables without any prior knowledge [54]. In contrast 
to traditional classification algorithms that often demand knowledge of 
the system’s probability model, ANNs operate as a “black box” that can 
adapt to the underlying system model [55]. Their adaptability, particu-

larly in high-dimensional datasets, addresses challenges associated with 
conventional algorithms such as k-nearest neighbor and decision trees 
[56]. Across various application domains, ANNs have been employed for 
classification tasks and have also demonstrated their efficacy in several 
computer security areas, including detecting network attacks [57,58].

4.1.4. Second stage: unsupervised model

The second stage of the proposed multi-stage IDS is an unsupervised 
model that acts as an anomaly detector, identifying anomalies or unseen 
attacks that bypass the first stage. Unsupervised learning-based mod-

els are particularly well suited to detecting previously unseen attacks 
[28]. We selected the LSTM-autoencoder model as the anomaly detector 
model for in-vehicle IDS for several reasons. Firstly, as an unsupervised 
neural network, the autoencoder does not require labeled data, saving 
significant time and effort. Secondly, research shows that autoencoders 
are effective at detecting anomalies and unseen attacks, making them 
well suited for in-vehicle IDS [14,22,59]. Lastly, LSTM layers capture 
temporal dependencies within sequential data, a feature that conven-

tional autoencoders lack. These features make the LSTM-autoencoder 
model a robust and efficient solution for detecting anomalies and en-

hancing the security of in-vehicle networks.

4.1.5. LSTM-autoencoder

The Long Short-Term Memory (LSTM) autoencoder consists of both 
LSTM and autoencoder components. LSTM, a type of recurrent neural 
network (RNN), is designed to handle sequential data and can learn com-

plex dynamics within the temporal order of input sequences by using 
internal memory to store information over long sequences. This capa-

bility is particularly useful for CAN bus data, which is sequential [15]. 
In contrast, autoencoders are neural network architectures designed to 
learn efficient representations of input data by attempting to recon-

struct the original data as accurately as possible. By combining LSTM 
with an autoencoder, we aimed to capture the sequence order in each 
CAN bus message, which classic autoencoders might overlook. The cho-

sen LSTM-autoencoder consists of two interconnected LSTMs: the first 
encodes sequences of features into a fixed-size vector, and the second 
decodes this vector back into a sequence. In the context of detecting 
anomalies in the CAN bus, the LSTM-autoencoder was trained only on 
normal data. This allowed it to accurately learn to reconstruct the be-

nign patterns it was trained on. When test data was presented, input data 

was first encoded by the LSTM into a fixed-size vector. Another LSTM 
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Fig. 5. ANN Architecture
then decoded this vector to reconstruct the input data. Any deviations 
in reconstruction can be potential indicators of anomalies.

The motivation for using the LSTM-autoencoder in this context arose 
from the sequential nature of the CAN ID and its associated data fields. 
Incorporating both the CAN ID and its data fields (payload) is essential 
because normal data fields for one CAN ID might be considered un-

usual for another CAN ID. The LSTM-autoencoder was trained on normal 
sequences, with any deviation from these established sequences subse-

quently flagged as anomalous. However, it is worth noting that several 
studies have used sequence-based models to explore the sequential de-

pendencies between CAN IDs only or multiple CAN bus messages to de-

tect anomalies. However, to the best of our knowledge, there has been no 
research examining the order dependence within a single CAN message, 
including both the CAN ID and its payload. This is important because 
CAN IDs can follow periodic or event-driven patterns, and sequences of 
CAN IDs can change when event-triggered messages occur on the CAN 
bus [15]. For example, the sequence of CAN IDs or CAN messages can 
change when a sudden event happens, such as someone opening the 
door. We trained an LSTM-autoencoder model to reconstruct benign se-

quences with minimal errors, expecting the model’s inputs and outputs 
to look alike. However, when a malicious sequence was fed into the 
model, the model was expected to fail at reconstructing the sequence. 
Therefore, the input and output vectors were expected to differ signifi-

cantly. Fig. 6 depicts the architecture of the LSTM-autoencoder.

4.2. Training and testing the model

To prevent overfitting in ML models, we applied the data partitioning 
method outlined in [60] by dedicating 70% to training and the subse-

quent 30% to testing the model’s performance. In the ANN model, we 
trained the model using labeled data to learn the relationships between 
8

the features and the targets. Then, we tested the model on test data to 
Fig. 6. LSTM-Autoencoder Architecture

assess the quality of the model. The ANN works as a multi-class classi-

fier, and the output will be normal or attack type, including DoS, frame 
fuzzification, RPM, and gear spoofing. Further details regarding these 
attacks are discussed in Section 5.2. The data classified as normal in 
the first stage of the IDS (ANN) served as input for the second stage 
(the LSTM-autoencoder). Our experiment involved adjusting multiple 
hyper-parameters, such as batch size, number of units, learning rates, 
optimizers, activation, and loss functions. Through systematic experi-

mentation, we identified the most suitable hyper-parameter values that 

could deliver the best possible performance and efficiency.
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Table 5

ANN Parameters for Multi-classification

Parameter Value

Epoch 10

Number of Hidden Layers Neurons 16

Number of Output Layer neurons 5

Number of Hidden Layers 2

Input Layer Activation Function ReLU

Hidden Layer Activation Function ReLU

Output Layer Activation Function softmax

Optimizer Adam

Batch Size 256

Shuffle True

Loss Function categorical_crossentropy

4.3. ANN hyperparameter tuning

The model was a feedforward ANN that comprised four layers: an 
input layer, two hidden layers, and an output layer. It was designed 
for multi-class classification, targeting five distinct classes (DoS, frame 
fuzzification, RPM, gear spoofing, or normal). We employed a grid 
search approach to systematically explore and identify the optimal hy-

perparameters for the ANN classifier. The first layer was the input layer, 
with an input shape of nine. The next two layers were hidden layers, 
which are dense layers, each utilizing 16 neurons and the ReLU activa-

tion function. The ReLU function was preferred in hidden layers because 
it introduced non-linearity to the model. The output layer comprised five 
neurons, corresponding to the number of output labels. For this layer, 
we employed a softmax activation function, which is suitable for multi-

class classification problems. Considering the one-hot encoded labels, 
we chose the categorical cross-entropy loss function for compiling our 
model. We optimized the model with the Adam optimizer, maintaining 
the default values for other parameters. To enhance training efficiency 
and mitigate overfitting, we integrated an EarlyStopping callback. Ta-

ble 5 summarizes the hyper-parameters and their respective values used 
in tuning the ANN model.

4.4. LSTM-autoencoder hyperparameter tuning

In the LSTM-autoencoder model provided, hyperparameters were 
carefully selected for optimal training. However, before feeding the data 
into the LSTM-autoencoder, we reshaped the data from a 2D format of 
(Samples, Features) to a 3D format of (Samples, Time Steps, Features) 
by using the reshape function. This was because the LSTM requires a 
3D input shape. The model operated on sequences of length time_steps, 
which was set at 1, meaning each data point was treated as a sequence of 
its own. Each of these sequences had nine features, which included the 
CAN ID and eight other data fields from the CAN message. This LSTM-

autoencoder structure consists of an input layer, two encoder layers, a 
RepeatVector layer, two decoder layers, and an output layer. The first 
LSTM layer, which serves as both the input and the first encoder layer, 
has 128 neurons and is designed to return sequences, enabling the stack-

ing of subsequent LSTM layers. The second LSTM encoder layer, with 64 
neurons, does not return sequences. Following the RepeatVector layer, 
which replicates its input features, the LSTM decoder consists of two 
LSTM layers with 64 and 128 neurons, respectively. The activation func-

tion employed in the input and hidden layers was ReLU, chosen for its 
rapid and efficient training on large datasets compared to the sigmoid 
function. Conversely, the last decoder layer employs sigmoid activation 
function. To combat overfitting, four dropout layers with a dropout rate 
of 20% were instituted after each LSTM layer, randomly deactivating 
one-fifth of the neurons during every training iteration. We used a batch 
size of 64 and 100 epochs. Adam optimizer was used along with mean 
squared error (MSE) loss function, which is known for its application 
in anomaly detection problems. To enhance training efficiency and to 
avoid overfitting, we integrated an early-stopping callback and dropout 
9

layers.
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Table 6

LSTM-Autoencoder Parameters for Binary 
Classification

Parameter Value

Epoch 100

Input Layer Activation Function ReLu

Hidden Layers Activation Function ReLu

Optimizer Adam

Batch Size 64

Dropout Rate 0.2

Shuffle True

Loss Function MSE

Table 6 shows the parameters and their respective values in hyper-

tuning the LSTM-autoencoder. We trained the LSTM-autoencoder using 
only the normal data labeled in the dataset as 0, but it was tested using 
both normal and attack data.

In our anomaly detection method using the LSTM-autoencoder, the 
model’s capability to reconstruct input data was crucial for detecting 
anomalies. The reconstruction errors were calculated using the MSE 
between the reconstructed output and the original data. To delineate 
a boundary for what qualifies as an anomaly, a threshold was estab-

lished. Determining the optimal threshold for anomaly detection can 
be intricate. Through various experiments, we found the most effective 
threshold is the sum of the average reconstruction error and one stan-

dard deviation of these errors from the training set. In simpler terms, 
the threshold creates a margin above the average error, and any data 
point with an error exceeding this margin will be considered anomalous. 
Then, the model can predict anomalies by comparing each test’s recon-

struction error to the pre-defined threshold. The threshold is shown in 
Equation (2):

Threshold = 𝜇(train_errors) + 𝜎(train_errors) (2)

In this context, 𝜇 represents the mean, while 𝜎 indicates the standard 
deviation.

4.5. Proposed hierarchical federated learning-based framework

In this section, we introduce the concept of H-FL, which served as the 
core technique for enabling our proposed IDS to leverage diverse driving 
scenarios and behaviors across different locations while ensuring user 
privacy protection.

Previous researchers have deployed in-vehicle DSs using a traditional 
centralized learning approach, which involves transmitting large vol-

umes of data to the cloud for training. However, this approach raises 
privacy concerns and involves high communication overhead and longer 
response times [36]. Therefore, recent research has shown a growing in-

terest in adopting the FL approach to address these issues.

FL is a unique implementation of a distributed ML approach that 
involves training a model on edge devices (clients) without transfer-

ring the raw data to a central location [61]. Thus, FL is an ideal fit for 
in-vehicle IDSs for several compelling reasons. First, the FL approach 
preserves data privacy since the learned parameters from local mod-

els are sent periodically to the cloud server instead of transmitting the 
whole row of data. Second, FL allows multiple participants to develop a 
robust and efficient global model without compromising user data pri-

vacy. This feature makes it a better option than non-FL approaches [62], 
offering real-time model updates and allowing access to data without 
contacting the centralized server. Third, FL reduces latency by avoiding 
transmitting the raw data to a central server. This is crucial, as sending 
data to a central server can be costly and may impair the effective-

ness of IDS deployments [63]. Fourth, FL’s distributed nature and low 
complexity make it highly suitable for resource-constrained hardware 
deployments [37]. Based on the guidelines provided by the International 
Telecommunication Union for IDS in vehicular networks in 2020 [64], 

it is essential that an in-vehicle IDS offers the capability to regularly up-
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date its rule sets. Thus, FL makes the IDS adaptive to new, unseen attacks 
by updating local models with new models trained on new, unseen at-

tacks identified in other clients. This adaptiveness allows the local model 
to stay up-to-date and more robust against new, unseen attacks. Addi-

tionally, since FL involves training models locally on devices and only 
sharing model updates, it ensures that sensitive data remains private 
and secure throughout the process.

However, the FL approach relies solely on one central aggregator, 
which can introduce performance challenges, particularly due to delays 
in sharing the model between the central aggregator and numerous de-

vices. Moreover, this aggregator poses a risk as a single point of failure. 
To address these issues, we decided to deploy the proposed IDS in H-FL, 
which incorporates a central aggregator with multiple local aggregators 
instead of having one central aggregator. This approach aimed to over-

come the limitations of relying solely on a central aggregator [42].

The architecture of H-FL consists of three layers: the central server, 
edge servers, and end devices. The end device layer comprises multiple 
end devices (vehicles), where each end device has a large amount of lo-

cal sensor data and a locally installed model. In the edge server layer, 
multiple local aggregators act as intermediaries for communication be-

tween end devices and the central server. Their primary roles include 
transferring model parameters and aggregating local model parameters. 
The central server layer, located in the cloud, is accountable for the dis-

tribution and continuous updates of the final global model. Fig. 7 depicts 
a high-level overview of the H-FL process.

At the beginning of each round, the central server initializes a global 
model. Then, the central server sends the global model to each local 
aggregator. Each local aggregator receives the global model, selects a 
subset of end devices using a selection approach to participate in the 
training process, and then dispatches the global model to the selected 
end devices. As CAN bus data can vary significantly between vehicle 
makes and models, we propose that the local aggregator selects a subset 
of available end devices (vehicles) based on the similarity in CAN bus 
data, such as make or model, in specific geographical areas. Grouping 
vehicles by similarity in CAN bus data ensures that the global model is 
trained on similar and relevant data, yielding more accurate and reliable 
results. Once the global model is deployed on each end device, it lever-

ages its local data for training in small batches. After local training, end 
devices send their trained local model parameters to the correspond-

ing local aggregator. Each aggregator aggregates all the local model 
parameters/weights using an aggregation algorithm to obtain the edge 
aggregation model. After all local aggregators have completed the edge 
model aggregation, they send all the aggregated model parameters to the 
central server to build a new global model. These aggregated model pa-

rameters contribute to refining and improving the global model, which 
is then sent back to the end devices for continuous training. The cen-

tral server adjusts the global model parameters based on the aggregated 
model parameters, preparing for the subsequent round of global train-

ing.

The training process in H-FL can be divided into three parts: local 
training, edge aggregation, and global aggregation. For example, when 
a local model identifies an anomaly or previously unseen malicious net-

work traffic, it isolates the data for further examination. If this anomaly 
is determined to be a new, previously unseen attack, a new label is 
created in the classifier for seen attacks (the first stage in the IDS). In re-

sponse, the server updates the global model and transmits the updated 
version to the edge aggregators and then to the selected end device and 
relevant end devices. After each communication round, the end device 
returns the model’s parameters to the corresponding edge aggregator 
and then to the central server, allowing our proposed IDS to adapt. To 
keep the seen attack detection model effective, seen attack data needs 
to be updated regularly. It continuously monitors for unseen attacks and 
updates the supervised classification model upon detection, ensuring its 
adaptability to new, unseen attacks. This process is repeated until the 
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desired level of performance is obtained.
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Table 7

Data Features, Descriptions, and Types

Feature Describtion Type

Timestamp Time float

CAN ID CAN message identifier hexadecimal

DLC The size of the data field, measured in bytes integer

Data Payload (64-bit) hexadecimal

Flag T or R, T: Attack, R: Normal string

5. Results and evaluations

5.1. Experiment setup

The implementation was performed in Google Colab Pro, a web-

based editor from Google Research that allows users to write and run ar-

bitrary Python code from the browser. The experimental setup consisted 
of a 64-bit Ubuntu 20.04.5 LTS operating system, 11th Gen Intel(R) 
Core(TM) i7-11700 @ 2.50GHz, 31.1GiB RAM, NVIDIA Corporation, 
and Python 3.9.16 version.

5.2. Dataset description

To assess the performance of our proposed model, we utilized a 
benchmark dataset published by Song et al. [24]. This dataset is exten-

sively used in automotive security research and comprises four types of 
attacks: DoS, frame fuzzification, engine RPM spoofing, and drive gear 
spoofing. We selected this dataset because it is based on real-world traf-

fic data rather than simulated data, and it allows us to compare our 
proposed IDS approach with similar work that uses the same dataset 
[25]. For every CAN message, the dataset provides valuable information, 
including timestamp, CAN ID, DLC, data field, and flag. The timestamp 
indicates the precise time when the message was recorded from the 
startup. The CAN ID plays a crucial role in determining the priority 
of multiple messages, with lower values being given precedence over 
higher ones. Moreover, the DLC specifies the data field’s length in bytes, 
up to 8 bytes. The flag indicates whether the message is normal or an 
attack. In Table 7, we present the dataset’s features, descriptions, and 
data types.

To select the most suitable algorithms, we examined the CAN bus 
data from Car Hacking Dataset [24], ensuring a comprehensive under-

standing of both normal and abnormal behaviors. Attacks include:

DoS Attack: Inject many ZERO values into every CAN bus ID and 
payload at 0.3 millisecond intervals. This dominates the BUS, causing 
legitimate messages to be delayed or blocked.

Frame Fuzzification Attack: Messages are randomly injected into 
the CAN bus. There are two types of frame fuzzification attacks present 
in this dataset:

1. Injecting random IDs (not seen before).

2. Injecting IDs that appear legitimate but have a different payload.

During a frame fuzzification attack, an adversary might expect some 
valid CAN messages to inadvertently cause a malfunction in the target 
vehicle. It is presumed that the adversary has no prior knowledge of 
the in-vehicle communication of the target vehicle. Thus, the adversary 
injects messages with random CAN IDs and payloads. This implies that 
both the CAN IDs observed in normal traffic and those not seen before 
can be included in a frame fuzzification attack.

RPM Spoofing Attack: This spoofing attack specifically targets RPM 
CAN ID: 790, aiming to inject fabricated messages to control various 
functions. The legitimate data payload is different from the fabricated 
messages.

Gear Spoofing Attack: This spoofing technique targets the Gear 
CAN ID: 1087, attempting to inject fabricated messages to control func-

tions. While the fabricated messages resemble normal ones, they are not 

identical. For illustration purposes, Table 8 presents examples of both 
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Fig. 7. A High-level Overview of H-FL Process

Table 8

Normal and Attack data in Car Hacking Dataset

CAN ID D0 D1 D2 D3 D4 D5 D6 D7 Class

880 0 64 96 255 120 0 8 0 Normal

0 0 0 0 0 0 0 0 0 DoS

55 0 1 1 0 11 22 0 1 Frame fuzzification

880 0 0 0 255 0 0 10 0 Frame fuzzification

790 0 30 40 0 0 13 0 9 Normal

790 0 8 8 0 0 0 0 11 RPM

1087 1 2 1 0 0 1 240 7 Normal

1087 0 22 1 180 0 130 0 33 Gear
normal data and various kinds of attack data. Data represented in black 
indicates normal data, while data in red signifies attack data.

5.3. Evaluation metrics and performance evaluation

To assess the robustness of the proposed IDS, we considered various 
performance metrics such as accuracy (Acc), F1-score (F1), precision 
(Pre), recall (Rec)—or, as it is called, DR—and FAR. Metrics were de-

termined based on true positive (TP), true negative (TN), FP, and FN 
values. We used the following equations to calculate the metrics used:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3)

𝐹1 = 2 × 𝑃𝑟𝑒 ×𝑅𝑒𝑐

𝑃 𝑟𝑒+𝑅𝑒𝑐
(4)

𝑃𝑟𝑒 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5)

𝑅𝑒𝑐 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

𝐹𝐴𝑅 = 𝐹𝑃

𝑇𝑁 + 𝐹𝑃
(7)

5.4. Performance results and analysis of seen and unseen attacks detection

This subsection summarizes the results of our proposed IDS in detect-

ing seen and unseen attacks and provides an analysis of these findings.

Starting with the results for seen attack detection in the first model, 
the ANN was trained and tested on a labeled dataset that included nor-
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mal data and four types of attacks: DoS, frame fuzzification, RPM, and 
Table 9

Performance Evaluation of ANN on Seen Attacks Detection

Attack Acc (%) F1 Pre DR (%) FAR (%)

DoS 99.99 1.00 1.00 100 0.0

Frame Fuzzification 99.99 0.99 0.99 99.95 0.0005

Gear 99.99 1.00 0.100 100 0.0

RPM 99.99 0.99 0.99 100 0.0

Normal 99.99 0.99 0.99 99.99 0.012

gear spoofing. The performance of the ANN model is detailed in Table 9, 
which shows that the ANN model consistently achieved impressive accu-

racy and F1-scores exceeding 99% in accurately classifying various types 
of seen attacks. Additionally, the table highlights the model’s precision, 
its DR, and FAR for normal data and each attack category, demonstrating 
the model’s high reliability and effectiveness in distinguishing between 
normal and various types of attacks. Fig. 8 displays the multiclass con-

fusion matrix (CM) of the ANN model, which illustrates the model’s 
capability to classify test data into multiple attack categories. Moreover, 
as depicted in Fig. 9, the training and validation losses decreased and 
converged over time, which indicates that the model was learning ef-

fectively and generalizing well without overfitting.

To evaluate the model’s ability to detect new, unseen attacks, we 
trained the LSTM-autoencoder on a sample of normal data and then 
tested it on the remaining dataset. As shown in Table 10, the LSTM-

autoencoder performed well, with an overall accuracy of 98.59%, an 
F1-score of 0.95, a DR of 99.99%, and a precision of 0.91 across all types 
of unseen attacks. Despite generating approximately 0.016% FAR, these 

metrics underscore the model’s efficacy in detecting new, unseen at-
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Fig. 8. ANN Multiclass Confusion Matrix

Fig. 9. ANN Training and validation performance

Table 10

Detection Results for Unseen Attacks

Unseen Attack F1 Pre Acc (%) DR (%) FAR (%)

DoS 0.83 0.71 98.42 100 0.016

Frame Fuzzification 0.81 0.68 98.41 99.99 0.016

Gear 0.84 0.72 98.42 100 0.016

RPM 0.85 0.74 98.42 100 0.016

All 0.95 0.91 98.59 99.99 0.016

tacks. For each type of unseen attack, the model successfully detected all 
attacks with a DR between 99.99% and 100%, accuracy exceeding 98%, 
and low FAR of 0.016%. However, the F1-score varied from 0.81 to 0.85 
for specific types of unseen attacks. Fig. 10 shows the binary CM of the 
LSTM-autoencoder model, illustrating its performance in classifying the 
test data into normal (0) and anomaly (1) classes. Fig. 10a shows the CM 
on the test samples after applying SMOT sampling, as described in Sec-

tion 4.1.1, while Fig. 10b displays the CM for the remaining test set in the 
dataset. From the results, it is clear that the model successfully detected 
all unseen attacks, even when it had not been trained on them before.

Our results indicate that the ANN successfully detected and classi-

fied attacks by type. This capability is crucial, as identifying the specific 
attack type aids in selecting appropriate countermeasures and conduct-

ing post-attack analysis [65]. As shown in Table 10, the model showed 
different F1-scores for unseen attack detection when testing each at-

tack individually compared to testing all attacks together. The F1-score 
varied from approximately 0.81 to 0.95. This is because the number 
of TPs significantly increased when combined, while the number of FPs 
remained similar. Consequently, this increase in TPs improved both pre-

cision and recall, resulting in a higher F1-score. Moreover, from the high 
DR and the constant FAR across all results, we can observe that while 
the model was able to detect all unseen attacks, it mistakenly classified 
some normal data as attacks, accounting for 234,994 FPs. One reason 
for this could be that the model was trained on a small sample of normal 
data. Although having 234,994 FPs out of approximately 14,000,000 is 
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a good result, it should be further improved upon in such a critical appli-
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cation. Nevertheless, our findings reveal promising results in detecting 
unseen attacks.

5.5. Model complexity

This section discusses model complexity in terms of model size (in 
megabytes, MB) and the number of trainable parameters. When design-

ing in-vehicle IDS solutions, it is essential to consider the deployment 
requirements [66]. The development and deployment of IDSs are signif-

icantly impacted by the constraints of ECU in-vehicle networks, which 
include limited memory storage, computing power, and bandwidth 
[15]. In pursuit of optimal results, we have simplified the model archi-

tecture to minimize its size. The proposed IDS achieves this reduction 
by employing a straightforward architecture with a minimal number of 
layers and neurons in both models, as well as the dropout regularization 
technique in the LSTM-autoencoder. Through careful experimentation 
with hyperparameters, we optimized the model’s efficiency, resulting in 
a lightweight architecture. The sizes of the ANN and LSTM-autoencoder 
models were calculated to be 0.030 MB and 2.95 MB, respectively. 
Moreover, the number of parameters significantly influences the mod-

el’s training and testing time. In theory, a model with fewer parameters 
will train and test more quickly [14]. The ANN model has 517 train-

able parameters, while the LSTM-autoencoder has 253,065, making a 
combined total of 253,582 trainable parameters.

5.6. Comparison with existing studies

This model is compared with recent work in [25], since they used 
the same dataset and a similar approach and features. Regarding the 
seen attack detection results, both have a high DR with an F1-score of 
0.99. However, in detecting unseen attacks, even though it is difficult 
to obtain a fair comparison, we made an effort to make the best possible 
comparison. To do so, we used the same numbers of testing instances for 
attack and normal instances as were used in [25]. Results in Table 11

show that our model outperformed the results in [25], with a higher 
DR and lower FAR. For the F1-score, our average was 0.95, while their 
model achieved a slightly higher score of 0.96. However, the F1-score 
for unseen attacks in [25] was initially around 0.83, and they improved 
the result to 0.96 by implementing two biased classifiers after the unsu-

pervised model, achieving a DR of around 93%. Training these biased 
classifiers on FPs and FNs, however, transforms the model from being 
purely unsupervised. Although [14] and [24] used the same dataset as 
ours, we did not compare our detection results with theirs because they 
relied solely on the CAN ID feature to build their models.

Most previous papers do not state the model sizes, except [25] and 
[14], so we compared our model with theirs. As depicted in Table 12

the model size in [25] for the two models is 2.61 MB, and the total size 
of our models is 2.98 MB, showing that our model is nearly in the same 
range even though we used DL, which is considered more resource-

intensive than traditional ML. These sizes are notably below the typical 
memory capacity of vehicle-level machines, which can exceed 1 GB of 
RAM [25]. Moreover, Table 12 shows that our trainable parameters rep-

resent approximately an 88.2% reduction compared to the number of 
trainable parameters in [14], even though they only used one feature, 
which is the CAN ID.

Therefore, the experimental results confirm that our proposed DL-

based, in-vehicle IDS is highly efficient and can effectively detect various 
types of seen and unseen cyberattacks. Additionally, its lightweight de-

sign makes it feasible for real-world deployment.

6. Discussion

Our analysis revealed several key findings that contribute to the un-

derstanding and development of in-vehicle IDSs:

• Hybrid IDSs, such as our proposed IDS, can be a robust solution 

that not only addresses current threats but also prepares for future 
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Fig. 10. LSTM-autoencoder Binary Confusion Matrices

Table 11

Comparison with Existing Work

Unseen Attack Ours MTHIDS [25]

DR (%) FAR (%) F1 DR (%) FAR (%) F1

DoS 100 0.016 0.95 100 0.0 1.0

Frame Fuzzification 100 0.016 0.94 73 0.057 0.84

Gear 100 0.016 0.95 100 0.45 0.99

RPM 100 0.016 0.95 100 0.003 0.99
Average 100 0.016

Table 12

Model Size comparison

Model MB Trainable parameters

MTHIDS [25] 2.61 -

AE- GAN [14] - 2.15 million

Ours 2.98 253,582

ones. Moreover, the order of each approach is important. For exam-

ple, we adopted the seen attack detection before anomaly detection 
approach for two reasons: to quickly detect any seen attacks and to 
double-check the normal data in case an attack bypasses the first 
model.

• When designing an in-vehicle IDS, several critical decisions should 
be made during the design phase. One such decision is to include 
both CAN ID and payload data without feature selection, as attack-

ers might exploit any neglected features in the future [30,31].

• Our analysis of CAN bus data shows that each CAN ID has unique 
data patterns, so important features for one ID may not be relevant 
for another. This variability makes it impractical to select a consis-

tent set of important features for all CAN IDs, indicating the need 
to customize feature selection to improve model performance and 
generalization.

• The most important finding is that our results prove that DL algo-

rithms can improve the performance of an IDS while meeting the 
model size requirements in resource-constrained environments.

• Theoretically, and based on the literature review, an H-FL architec-

ture, which adds an edge layer between the central server and the 
vehicles, can overcome several challenges in the traditional FL ar-

chitecture that consists only of a server and vehicles. Fig. 11 depicts 
the theoretical framework of the proposed H-FL.

7. Conclusions and future directions

The aim of this paper was to propose a robust and lightweight multi-

stage IDS designed for in-vehicle network security that is capable of 
detecting both seen and novel attacks. Our IDS addresses the limita-

tions of existing solutions by utilizing a hybrid approach and advanced 
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DL algorithms. To further enhance our IDS and leverage diverse driving 
0.95 93.7 0.128 0.96

behaviors while preserving data privacy, we have proposed a theoretical 
framework for deploying our IDS in an H-FL environment. We evaluated 
the performance of our IDS using a real-world dataset containing various 
cyberattacks, including DoS, frame fuzzification, RPM, and gear spoof-

ing. Experimental results demonstrate that the ANN model effectively 
classifies seen attacks with an outstanding F1-score of 0.99. Simultane-

ously, the LSTM-autoencoder model excels at detecting novel attacks, 
achieving an F1-score of over 0.95 and a DR of 99.99% with minimal 
false alarms. Overall, our proposed IDS effectively detects both seen 
and novel attacks within in-vehicle networks and continually updates 
its knowledge by identifying new, previously unseen attacks, ensuring 
ongoing improvement over time. Additionally, our IDS is designed to 
be lightweight, making it suitable for real-world deployment. By de-

tecting both seen and novel attacks, our IDS not only addresses current 
threats but also prepares for future ones. For future work, we plan to 
deploy our proposed IDS in a realistic H-FL environment and evaluate 
its performance.

Although our proposed IDS shows promising results in detecting both 
seen and novel attacks while maintaining a compact model size, it has 
certain limitations. Our IDS has been trained and evaluated within lim-

ited driving scenarios, requiring extensive datasets to model normal be-

havior accurately. This limitation suggests potential areas for enhance-

ment, which can be addressed through the following future directions:

• Future research could explore streaming learning, allowing the 
model to dynamically adjust in real time within the vehicle to adapt 
to various driving conditions, thus enhancing detection accuracy.

• FL can effectively combine models derived from different driving 
scenarios and vehicle states, greatly improving in-vehicle IDS per-

formance while protecting data privacy and reducing latency [40]. 
Thus, exploring the field of FL and addressing its challenges, such 
as data heterogeneity [67] and secure communication [68], can be 
identified as future trends in in-vehicle IDS research.

• Another crucial future direction is protecting in-vehicle IDSs from 
adversarial attacks, as a recent study [69] has highlighted their vul-

nerability. Protecting in-vehicle IDSs from adversarial attacks and 
adapting solutions from other domains could provide valuable in-
sights and improvements to current in-vehicle IDSs.
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Fig. 11. Framework of the proposed Hierarchical Federated Learning Method
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