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Spin-S Kitaev-Heisenberg model on the honeycomb lattice: A high-order treatment
via the many-body coupled cluster method
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We study the spin-S Kitaev-Heisenberg model on the honeycomb lattice for S = 1/2, 1, and 3/2, by using the
coupled cluster method (CCM) of microscopic quantum many-body theory. This system is one of the earliest
extensions of the Kitaev model and is believed to contain two extended spin liquid phases for any value of the
spin quantum number S. We show that the CCM delivers accurate estimates for the phase boundaries of these
spin liquid phases, as well as other transition points in the phase diagram. Moreover, we find evidence of two
unexpected narrow phases for S = 1/2, one sandwiched between the zigzag and ferromagnetic phases and the
other between the Néel and the stripy phases. The results establish the CCM as a versatile numerical technique
that can capture the strong quantum-mechanical fluctuations that are inherently present in generalized Kitaev
models with competing bond-dependent anisotropies.
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I. INTRODUCTION

Mott insulators with strong spin-orbit coupling (SOC) have
attracted a great deal of interest in recent years as a promising
playground for exploring unconventional states of quan-
tum magnetism, most notably quantum spin liquids (QSLs)
[1–15]. In these systems, the synergy of the strong SOC
with crystal field effects and strong electron-electron interac-
tions gives rise to effective, low-energy pseudospin degrees
of freedom that are characterised by entangled spin-orbital
wave functions. The inherent anisotropy of these degrees of
freedom is manifested in the form of highly anisotropic, bond-
dependent exchange interactions [2,3,16].

Theoretical and experimental activities have focused on
a family of two- (2D) and three-dimensional (3D) tri-
coordinated 4d and 5d materials that appear to be proximate
to the celebrated Kitaev model, one of the few exactly solvable
models with gapped and gapless QSL ground states [1,17–19].
The nearest-neighbor (NN) bonds on these tri-coordinated
lattices split into three types, generally labeled by x, y, and
z, see Fig. 1. In the Kitaev model, the pseudospin degrees
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of freedom residing on these bonds interact with each other
via bond-dependent, Ising-like couplings, of the form S

αi j

i S
αi j

j ,
where αi j = x, y, or z for bonds of type x, y, or z, respectively.
More explicitly, the Kitaev model takes the form [1]

HK = K
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Sx
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j +
∑
〈i j〉y

Sy
i Sy

j +
∑
〈i j〉z

Sz
i Sz

j

}
, (1)

where K denotes the strength of the Kitaev coupling, and 〈i j〉α
indicates a NN bond of type α, with α = x, y, z. A realistic
description of known Kitaev materials necessitates adding fur-
ther types of bond-dependent interactions, such as the � and
�′ couplings (related to the symmetric part of the exchange
anisotropy), as well as the isotropic Heisenberg exchange J
[2–15].

The physics of these bond-dependent models has been
explored with various state-of-the-art numerical techniques,
including exact diagonalization (ED) and cluster mean field
theory (CMFT) calculations [3,20–25], density-matrix renor-
malization group (DMRG) [26–33], tensor-network methods
[34–36], functional renormalization group (fRG) [21,37–39],
slave-particle mean-field theories [40–42], Schwinger boson
mean field theory [43], variational Monte Carlo (VMC) [44],
and machine learning [45,46]. Quite generally, these investi-
gations are challenging for various reasons, most notably: (i)
the inherent complexity and low symmetry of the materials
(which mirror the complex interplay of electron correlations,
crystal field, SOC, and structural characteristics), (ii) the
strong frustration associated with the bond-dependent inter-
actions, (iii) the rich phase diagrams and general fragility of
QSL phases, and (iv) the necessity to treat both quantum and
thermal fluctuations on an equal footing [5–7,9,13–15]. Im-
portantly, these challenges extend beyond the more interesting
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FIG. 1. The 2D honeycomb lattice, with x, y, and z labeling the
three types of NN bonds, and A and B denoting the two sublattices.

spin liquid regions (where the bond-dependent terms com-
pete the most), even in regions where long-range magnetic
order settles in at low-energy scales. In these regions, stan-
dard semiclassical approaches may be inadequate to correctly
capture the effect of quantum fluctuations, due to strong
magnon-magnon interactions and decay processes [47–49],
which become further amplified in the vicinity of the QSL
regions.

In this paper, we establish that such strong quantum fluctu-
ations, which are present inherently in generalized Kitaev-like
models, can be captured accurately and in a systematic way by
using the coupled cluster method (CCM) [50–62], which is a
versatile method of quantum many-body theory. Here we con-
sider the Kitaev-Heisenberg (KH) model on the honeycomb
lattice, which is one of the earliest extensions of the Kitaev
model [2]. This model has been crucial in establishing that
Kitaev QSLs can survive in an extended parameter region. We
also extend our investigation to higher spin quantum numbers,
namely, S = 1 and 3/2, in order not only to show the versatil-
ity of the method, but also because such higher-spin (S > 1/2)
Kitaev models have attracted much attention in recent years
[24,39,63–78]. This recent interest has also been prompted by
possible material realizations [79–84].

We use the well-established SUBm–m truncation scheme,
where the index m is the order of truncation (and with m
up to 10 for S = 1/2 and up to eight for S = 1 and 3/2),
to obtain numerical predictions for the ground-state energy
and local order parameters for the four magnetically ordered
phases of the model for S = 1/2, 1, and 3/2. We also establish
the existence of extended QSL phases from the appearance of
CCM termination points to SUBm–m equations, which occur
before the crossing of the CCM energies of the surrounding
magnetic phases. These termination points yield an accurate
determination of the phase boundaries of the two Kitaev QSL
phases, and their evolution with S, see Fig. 2. Quite surpris-
ingly, we find CCM termination points in two more regions
for S = 1/2, one of which is sandwiched between the zigzag
and the ferromagnetic phases, and the other between the Néel
and the stripy phases. These results provide evidence for two

FIG. 2. Classical (S = ∞, [20]) and quantum phase diagrams of
the KH model (with J = cos φ and K = sin φ) for spin S = 3/2,
1, and 1/2, as obtained here from the CCM. Star symbols indi-
cate the two hidden SU(2) points. The (blue) shaded QSL1 and
QSL2 regions denote the two quantum spin liquid phases, while the
question marks against the unshaded regions denote the enigmatic
intermediate phases discussed in Sec. IV E. The classical states are
shown in the insets, where the open and filled black symbols denote
spins pointing along the global +zs and −zs spin-space directions,
respectively.

narrow intermediate phases that are completely unexpected
from the classical limit or from previous calculations. Finally,
we use the four-sublattice duality transformation of the model
to benchmark the positions of dual phase boundaries with
independent CCM calculations around the respective dual
phases.

The remainder of the article is organized as follows. In
Sec. II we introduce the spin Hamiltonian of the KH model,
discuss the duality transformation T4 of the model and provide
a brief summary of some of the main known facts about this
model. In Sec. III, we discuss general aspects of the CCM
formalism (in Sec. III A), the basic steps in applying it to the
four magnetically ordered states of the model (in Sec. III B),
the approximations schemes that we use (in Sec, III C), and
the extrapolation schemes used for the energies and the order
parameters (in Sec. III D). In Sec. IV, we present and analyze
our CCM results for the ground-state energies and order pa-
rameters of the four ordered states of the model, the numerical
evidence for the existence of the extended spin liquid phases
from an analysis of the CCM termination points, and the final
phase diagram for S = 1/2, 1, and 3/2. Finally, we provide
our conclusions and a broader overview of our study in Sec. V.

II. THE SPIN-S KITAEV-HEISENBERG MODEL

A. The KH model and the duality transformation T4

Spin Hamiltonian. The Kitaev-Heisenberg (KH) model on
the two-dimensional (2D) honeycomb lattice is described by
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the spin Hamiltonian

H =
∑
〈i j〉

(
JSi · S j + KS

αi j

i S
αi j

j

)
, (2)

where the sum on 〈i j〉 is over all bonds of NN sites i and
j of the honeycomb lattice, counting each bond once and
once only; Si ≡ (Sx

i , Sy
i , Sz

i ) and S j ≡ (Sx
j , Sy

j , Sz
j ) denote the

corresponding spin-S operators residing on these sites, which
obey the standard SU(2) commutation relations,[

Sz
i , S±

j

] = ±S±
i δi j ; [S+

i , S−
j ] = 2Sz

i δi j , (3)

with S±
k ≡ Sx

k ± iSy
k ; αi j = x, y or z if the bond (i j) is of type

x, y, or z, respectively, as mentioned above; and the constants
J and K are the Heisenberg and Kitaev coupling parameters,
respectively. Henceforth, we use the standard parametrization
(see, e.g., Ref. [22]), given by

J ≡ cos φ, K ≡ sin φ , (4)

with φ ∈ [0, 2π ), where we have used an energy scale in
which

√
J2 + K2 ≡ 1.

Duality mapping. The KH model features a four-sublattice
duality transformation (denoted by T4 in Refs. [3,20,85]),
in which the spins Si are replaced by corresponding spins
S̃i in each of which the signs of two appropriate Cartesian
components (depending on the sublattice index) are changed.
This unitary transformation leaves the SU(2) commutation
relations unchanged, but it results in a new Hamiltonian in
terms of the S̃i spins of the same form as that in Eq. (2)
in terms of the original Si spins. In particular, this duality
transformation maps the general parameter point (J, K ) to
(J̃, K̃ ) ≡ (−J, K + 2J ). Equivalently, in terms of the angu-
lar variables, the angle φ is mapped to φ̃, where tan φ̃ =
− tan φ − 2. This mapping allows one to deduce the phase
diagram in half of the parameter space from that in the other
half. Moreover, the mapping reveals that the two points where
K̃ = 0 (or, equivalently, K = −2J), namely, φ = −63.43◦ ≡
296.57◦, and φ = 116.57◦, are hidden SU(2) points, i.e., the
Hamiltonian in the rotated frame takes the Heisenberg form.
Altogether then, the KH model features four SU(2) points,
φ = (0, 116.57◦, 180◦, 296.57◦), which govern much of the
phase diagram, as we discuss below.

B. Brief summary of known results

Before we present the results from our CCM study, let us
summarize some of the main results that have been reported
about the model.

Classical phase diagram. At the classical level, the iso-
lated Kitaev points φ = ±π

2 , which are self-dual under the
duality transformation T4, have an infinite number of classical
ground states [63–65]. Henceforth, we denote these points as
the (antiferromagnetic) AF (φ = π

2 ) and (ferromagnetic) FM
(φ = −π

2 ) Kitaev points, respectively.
Away from these points, the KH model features four ex-

tended collinear magnetic phases (see Fig. 2, inner disk),
each surrounding or bounding one of the four SU(2) points
[20]. These are the Néel antiferromagnetic (AFM) phase [φ ∈
(−π

4 , π
2 )], the so-called zigzag phase [φ ∈ ( π

2 , 3π
4 )], the ferro-

magnetic (FM) phase [φ ∈ ( 3π
4 , 3π

2 )], and the so-called stripy

phase [φ ∈ ( 3π
2 , 7π

4 )]. The zigzag and stripy phases are the
dual phases (under T4) of the Néel and FM phases, respec-
tively. Thus, for example, a knowledge of the right-hand side
(J > 0) of the phase diagram of Fig. 2 implies a knowledge of
the left-hand side (J < 0), and vice versa.

Quantum regime. The most notable impact of quantum
fluctuations is that they introduce two QSL phases (denoted by
QSL1 and QSL2 in the following, see also Fig. 2), which re-
main stable in extended regions around the two Kitaev points
φ = ±π/2. In particular, according to finite-size ED (respec-
tively, CMFT) calculations [22], the QSL1 phase is stable over
the regime 88.92◦ < φ < 91.08◦ (respectively, 89.28◦ < φ <

90.9◦), whereas the QSL2 phase is stable for 260.64◦ < φ <

277.02◦ (respectively, 266.04◦ < φ < 273.42◦).
The nature of the two Kitaev QSL phases is known exactly

only for S = 1/2 [1,17–19]. Their persistence for S > 1/2
is anticipated on general grounds [65] from the presence of
local symmetries [63] and Elitzur’s theorem [86]. The precise
nature of these QSL phases for S > 1/2 has been the focus of
recent studies [32,65,72,87,88], but much less is known about
their stability under perturbations, such as the Heisenberg
coupling J (see, e.g., Ref. [32] for S = 1 and [39] for S = 1
and 3/2).

The impact of quantum fluctuations on the four ordered
phases is multifold:

(i) While the direction of the moments in these phases
is not fixed at the classical level (which is an example of
accidental ground-state degeneracy), a number of studies
[3,20,22,89–94]) has shown that fluctuations select one of
the Cartesian axes (±x̂, ±ŷ or ±ẑ), restoring the discrete
threefold rotational symmetry of the model around the [111]
axis (which is perpendicular to the plane of the spins).

(ii) Quantum fluctuations also affect the spin gap. At the
quadratic level, the linear spin-wave spectrum has a quasi-
Goldstone mode at the ordering wave vectors, even away
from the four SU(2) points, despite the absence of continuous
symmetry, due to the accidental degeneracy mentioned above.
Eventually a nonzero spin gap is recovered at the anharmonic
level [3,20].

(iii) The boundaries between the four extended mag-
netic phases are also affected by quantum fluctuations. For
S = 1/2, for example, the boundary between the FM and
the zigzag phases shifts from φ = 135◦ to 146.52◦ (respec-
tively, 148.5◦), and the boundary between the stripy and the
Néel phase shifts from φ = 315◦ to 306.72◦ (respectively,
305.82◦), according to finite-size ED (respectively, CMFT)
calculations [22].

III. THE COUPLED CLUSTER METHOD (CCM)

A. Formal aspects of the CCM

The CCM [50–62] is one of the most versatile and most
accurate of all modern ab initio techniques of quantum
many-body theory at attainable levels of computational im-
plementation. It has been applied to a wider array of both
finite and extended strongly interacting systems when com-
pared to other competing approximate methods. Indeed, the
CCM has been applied either on a spatial continuum or on a
regular discrete lattice, and in fields ranging from the electron
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gas [51,54] and quantum chemistry [95] to nuclear physics
[96], subnuclear physics [97,98] and quantum field theory
[99–103]. Of particular relevance here, it has also been applied
very successfully in recent years to a wide variety of highly
frustrated spin-lattice models in quantum magnetism (see,
e.g., Refs. [104–123] and references cited therein).

In order to implement the CCM in its “single-reference”
version, one first needs to choose a suitable normalized ref-
erence (or model) state |�0〉 in the full Hilbert space H ,
the main condition on which is that it has a nonzero overlap,
〈�0|�0〉 �= 0, with the target state |�0〉 ∈ H of the quantum
N-body problem (typically with N → ∞) under study. We
also require that the model state |�0〉 should be a cyclic vector
(or, equivalently, a generalized vacuum state), with respect
to which all of the states in H can be expressed in terms
of suitably defined, mutually commuting, many-body (multi-
configurational) creation operators C+

I acting on |�0〉. Thus,
the algebra of all operators in H and its adjoint space H ∗
is spanned by the two Abelian subalgebras of multiconfigu-
rational creation operators {C+

I } and their Hermitian-adjoint
counterparts, namely the multiconfigurational destruction op-
erators {C−

I ≡ (C+
I )†}. Both sets of operators are defined with

respect to the given model state |�0〉. The index I in this
compact notation is a set-index, comprising a set of single-
particle labels (in some suitable single-particle basis), which
completely characterizes a given many-body configuration in
this basis. Usually one characterizes the single-particle labels
contained in the set-index I by choosing only those that are
needed to describe single-particle states that differ from those
occupied in the model state |�0〉. Accordingly, it is convenient
to introduce the notation,

C+
0 ≡ 1 = C−

0 , (5)

where 1 is the unit operator in H .
To summarize, the set {|�0〉;C+

I } is thus required to satisfy
the conditions,

[C+
I ,C+

J ] = 0 = [C−
I ,C−

J ] , (6)

〈�|C+
I = 0 = C−

I |�〉 , ∀ I �= 0 . (7)

The two subalgebras and the state |�0〉 are also required to be
cyclic in the following sense:

|�〉 =
∑

I

ψIC
+
I |�0〉 ; ∀ |�〉 ∈ H , (8a)

〈�̃| =
∑

I

ψ̃I〈�0|C−
I ; ∀ 〈�̃| ∈ H ∗ , (8b)

in terms, respectively, of some sets of c-number expansion
coefficients {ψI} and {ψ̃I}. The configuration-label space I ≡
{I} must thus be complete (for a given model state |�0〉) with
respect to the possible many-body configurations. It is also
convenient, but not necessary, to choose the states {C+

I |�0〉}
that now span H to be an orthonormalized set,

〈�0|C−
I C+

J |�0〉 = δI,J , (9)

where δI,J is a suitably generalized Kronecker symbol that im-
plies equality between the sets of single-particle labels I and
J (i.e., equality under at least one permutation). If we assume
that Eq. (9) holds, we hence have the following completeness

relation in H :∑
I

C+
I |�0〉〈�0|C−

I = 1 = |�0〉〈�0| +
∑
I �=0

C+
I |�0〉〈�0|C−

I .

(10)

We now consider the exact many-body ground-state ket
and bra states, |�0〉 and 〈�̃0| (≡ 〈�0|/〈�0|�0〉), which sat-
isfy the respective ground-state Schrödinger equations,

H|�0〉 = E0|�0〉 , 〈�̃0|H = E0〈�̃0| , (11)

where we require that |�0〉 satisfies the intermediate nor-
malization condition, 〈�0|�0〉 = 1 = 〈�0|�0〉, and we also
have that 〈�̃0|�0〉 = 1, by construction. These ground-state
wave functions are now parametrized independently (i.e., not
requiring manifest Hermiticity between the ground-state bra
and ket states) within the CCM with respect to the model state
|�0〉 as follows:

|�0〉 = eS|�0〉 ; S =
∑
I �=0

SIC
+
I , (12a)

〈�̃0| = 〈�0 |̃Se−S ; S̃ = 1 +
∑
I �=0

S̃IC
−
I , (12b)

in which the distinctive exponentiated forms of the creation
correlation operator S are one of the hallmarks of the method.

If no further approximations are made, the destruction cor-
relation operator S̃ will be related to its creation counterpart S
by Hermiticity,

〈�0 |̃S = 〈�0|eS†
eS

〈�0|eS† eS|�0〉
. (13)

However, in practical implementations of the CCM when
truncations are made in the sums over the set-index I in
Eqs. (12a) and (12b), as described more fully below, Eq. (13)
will likely be violated. Nevertheless, any loss of explicit Her-
miticity is far outweighed in practice by the fact that the
very important Hellmann-Feynman theorem [124,125] is now
manifestly obeyed at all such levels of truncation [62]. In-
deed, it can be proven [62] that if the CCM parametrization of
Eq. (12a) is chosen for the ground ket state, then the ground
bra state parametrization of Eq. (12b) is actually derivable
from the Hellmann-Feynman theorem, when the ground-state
energy is calculated from the simple relation,

E0 = E0(SI ) = 〈�0|e−SHeS|�0〉 , (14)

which follows trivially from Eqs. (11) and (12a).
Clearly, the set of real c-number CCM correlation co-

efficients {SI , S̃I} completely determines any property of
the many-body ground state under consideration. They are
themselves calculated by inserting the parametrizations of
Eqs. (12a) and (12b) into the respective Schrödinger Eq. (11),
and then projecting in turn onto the complete sets of states
{〈�0|C−

I } and {C+
I |�0〉}. A completely equivalent procedure

to derive the CCM ground-state correlation coefficients is
to extremize the ground-state energy expectation value func-
tional, H = H(SI , S̃I ), defined as follows:

H ≡ 〈�̃0|H|�0〉 = 〈�0 |̃Se−SHeS|�0〉 , (15)
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with respect to every member of the parameter set {S̃I ,SI} in
turn. Both methods readily yield the sets of equations,

〈�0|C−
I e−SHeS|�0〉 = 0 , ∀ I �= 0 ; (16a)

〈�0 |̃Se−S[H,C+
I ]eS|�0〉 = 0 , ∀ I �= 0 . (16b)

By making use of Eqs. (12b) and (16b), we readily ob-
serve that when H = H(SI , S̃I ) from Eq. (15) is evaluated at
the stationary point, the resulting expression for the ground-
state energy is just that given by Eq. (14). Similarly, by mak-
ing use of the fact that, by construction, the operators C+

I
commute with the CCM correlation operator S, one can easily
show that Eq. (16b) takes the equivalent form,

〈�0 |̃S(e−SHeS − E0)C+
I |�0〉 = 0 , ∀ I �= 0 . (17)

Equation (16a) is a coupled set of highly nonlinear, multi-
nomial equations for the ground ket-state CCM correlation
coefficients {SI}, which contains as many equations as there
are coefficients to be solved for. By contrast, Eq. (16b), or
equivalently Eq. (17), is just a linear set of generalized eigen-
value equations for the ground bra-state CCM correlation
coefficients {S̃I} once the known coefficients {SI} are used as
input, again with as many equations as there are coefficients
to be solved for. Whereas the ground-state energy E0 may
be expressed from Eq. (14) in terms only of the set of CCM
creation coefficients {SI}, the ground-state expectation value,
A ≡ 〈�̃0|A|�0〉, of any operator A other than the Hamilto-
nian H requires a knowledge of both the CCM creation and
destruction coefficients for its evaluation,

A = A(SI , S̃I ) = 〈�0 |̃Se−SAeS|�0〉 . (18)

A noteworthy feature of the CCM is that its characteristic
exponentiated operators e±S only ever enter the formalism in
the form of a similarity transform, e−SAeS , for some operator
A, as in Eq. (18). More importantly, this is also true for the
special case when A → H, in Eqs. (16a) and (16b) [or (17)],
which are just the equations that need to be solved for the
complete CCM description of the ground state. In all such cal-
culations we make use of the nested commutator expansion,

e−SAeS =
∞∑

n=0

1

n!
[A, S]n , (19)

in terms of the n-fold nested commutators [A, S]n, which are
themselves defined recursively as

[A, S]n ≡ [[A, S]n−1, S] ; [A, S]0 = A . (20)

At first sight one might expect that approximations would
need to be made to truncate the infinite sum in Eq. (19)
in order to make computations in practice. However, it is
an important feature of the specific choices of the CCM
parametrizations in Eqs. (12a) and (12b) that the otherwise
infinite sum in Eq. (19) actually terminates exactly at some
finite order in practice for all operators A that contain only
finite-order multinomials in the single-particle operators, as
in the present case. The reason for this is twofold. Firstly,
all components in the expansion of Eq. (12a) for the CCM
operator S commute among themselves. Secondly, in general,
the algebra of the single-particle operators is closed under

commutation. In particular, for the present case of spin Hamil-
tonians, we shall see that for the choices of the set {C+

I ; |�〉}
that we make here, namely, where the operators C+

I are formed
as products of spin-raising operators S+

j on various sites j,
the sum in Eq. (19) simply terminates at the term with n = 2,
since all higher-order nested commutators with n > 2 vanish
identically, due to the SU(2) commutation relations of Eq. (3).

For the same reason as already mentioned above, namely,
that all components for the CCM operator S in the expansion
of Eq. (12a) commute among themselves, it is clear that all
terms in the linked commutator expansion for H in Eq. (15)
are linked. Thus, no unlinked terms (i.e., any terms that are
not themselves linked to the Hamiltonian) can ever appear in
the CCM formalism. For that reason, the CCM automatically
obeys the Goldstone theorem [126] at all levels of trunca-
tion in the expansions of Eqs. (12a) and (12b) for the CCM
correlation operators S and S̃. In turn, this guarantees the size
extensivity of the CCM in all practical calculations.

In light of the above discussion, it is clear that the CCM has
the distinct advantage that one can work from the outset in the
thermodynamic limit (N → ∞), thereby obviating the need
for any finite-size scaling of the results performed on various
lattices with a different number N of sites, and the consequent
errors associated with extrapolating to the infinite lattice. Fur-
thermore, as we have shown, the only approximation that is
ever needed for practical implementations of the CCM, once
a model state |�0〉 has been selected, is to choose which set of
configurations {I} to retain in the expansions of Eqs. (12a) and
(12b), and then how to extrapolate the subsequently obtained
values for physical ground-state parameters to the exact limit
where all configurations are retained.

We now first discuss the selection of suitable CCM
model states for the Kitaev-Heisenberg model under study in
Sec. III B. Subsequently, in Secs. III C and III D, we discuss,
respectively, both the approximation schemes that we adopt
and the associated extrapolation schemes for the ground-state
energy and order parameter.

B. Setting up the CCM for the four magnetically ordered
reference states

The most elementary class of model states for spin-
lattice problems comprises independent spin-product states,
for which the spin projection of the spin on each site (along
some quantization axis, which can be separately defined
for each site) is specified independently. Clearly, the four
collinear states (FM, Néel, zigzag, and stripy) shown in insets
of Fig. 2, where open (respectively, filled black) symbols
denote spins pointing along global +zs (respectively, −zs)
spin-coordinate axes, belong to this class. Completely gen-
erally, so do all such (quasiclassical) states with perfect
magnetic long-range order.

For computational purposes, we carry out a passive rotation
of each spin (i.e., by choosing local spin quantization axes in-
dependently on every lattice site) such that all spins now point
along the negative zs direction. All sites become equivalent
to one another for any such chosen form of the quasiclassical
model state |�0〉. They all take the universal fully polarized
form, |�0〉 = | ↓↓↓ · · · ↓〉, in their own local spin-coordinate
frames. We carry out this rotation for each of the model states
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separately, which means that the resulting Hamiltonians are
different for each model state with respect to these local spin
axes. However, such unitary transformations also preserve the
underlying SU(2) commutation relations of Eq. (3).

With any such choice of model state |�0〉, it is now
straightforward to make it a fiducial vector with respect to
a suitable set of mutually commuting multiconfigurational
(many-body) creation operators, {C+

I }, as required. Thus, they
are now constructed as simple products of single spin-raising
operators, C+

I → S+
k1

S+
k2

· · · S+
kn

; n = 1, 2, · · · , 2SN , where N
(→ ∞) is the number of lattice sites. The set index I thus
becomes a set of lattice-site indices, I → {k1, k2, · · · kn; n =
1, 2, · · · , 2SN}, in which any individual site may appear no
more than 2S times.

The magnetic order parameter M (i.e., the sublattice mag-
netization) with respect to the local set of rotated spin axes
takes the same form for all of the model states considered
here, namely,

M = − 1

N

N∑
k=1

〈�0 |̃Se−SSz
keS|�0〉 . (21)

As before, the term e−SSz
keS is evaluated exactly, using a

nested commutator expansion of the form of Eq. (19), which
now terminates after the term with n = 1.

We base our CCM calculations on all four collinear mag-
netic states of the model. In principle, this is not needed as
the duality transformation T4 allows us to restrict ourselves
to, e.g., the Néel and FM phases only. We have nevertheless
carried out independent CCM calculations around the zigzag
and stripy phases as well, for benchmark purposes.

For the reference classical states we pick the ones where
spins point along the ±zs global spin-space directions, which
are among the six states that are selected by quantum fluctua-
tions and which are related to each other via threefold rotation
symmetry in the combined spin-orbit space. The reference
states are shown in the insets of Fig. 2, where the open and
filled black symbols denote spins pointing along the global
+zs and −zs spin-space directions, respectively. Thus, we
choose that all spins point along the global −zs direction for
the FM state. For the Néel state, we take “up” spins to lie on
the A sublattice and “down” spins to be on the B sublattice.
We set the z bonds to feature antiparallel spins for the zigzag
state, whereas x and y bonds have parallel spins. Finally, z
bonds feature parallel spins for the stripy state, whereas x and
y bonds have antiparallel spins.

For the Néel, zigzag and stripy phases, we now perform
the sublattice rotations so that we map the corresponding
classical reference states to the fully polarized state along the
−zs direction in the respective locally chosen spin-coordinate
axes, as indicated above. This means that for any spin on
site k pointing along the global spin space +zs direction in the
quasiclassical reference state we perform a passive rotation
about the ys axis, under which the components of the spin Sk

on the site transforms as follows:(
Sx

k , Sy
k, Sz

k

) �→ ( − Sx
k , Sy

k,−Sz
k

)
. (22)

This rotation changes the form of the Hamiltonian, such that
H �→ H̃.

For the Néel state, for example, carrying out the above
rotation on the A-sublattice sites changes the Hamiltonian to
the following form:

H̃Néel = J
∑
〈i j〉

{ − Sx
i Sx

j + Sy
i Sy

j − Sz
i Sz

j

}
+ K

{
−

∑
〈i j〉x

Sx
i Sx

j +
∑
〈i j〉y

Sy
i Sy

j −
∑
〈i j〉z

Sz
i Sz

j

}
. (23)

The rotation of local spin axes affects only those terms on the
z bonds in the Hamiltonian for the zigzag state, such that the
Hamiltonian is now given by

H̃zigzag =
∑
〈i j〉x

{
(K + J )Sx

i Sx
j + JSy

i Sy
j + JSz

i Sz
j

}
+

∑
〈i j〉y

{
JSx

i Sx
j + (K + J )Sy

i Sy
j + JSz

i Sz
j

}
+

∑
〈i j〉z

{−JSx
i Sx

j + JSy
i Sy

j − (K + J )Sz
i Sz

j

}
. (24)

Similarly, the rotation only affects the terms on the x and y
bonds for the stripy phase, such that the Hamiltonian takes the
form

H̃stripy =
∑
〈i j〉x

{−(K + J )Sx
i Sx

j + JSy
i Sy

j − JSz
i Sz

j

}
+

∑
〈i j〉y

{−JSx
i Sx

j + (K + J )Sy
i Sy

j − JSz
i Sz

j

}
+

∑
〈i j〉z

{
JSx

i Sx
j + JSy

i Sy
j + (K + J )Sz

i Sz
j

}
. (25)

Finally, all spins point along the −zs spin-space direction
already for the FM model state and so there is no need for
any rotations of local spin axes.

Importantly, H̃Néel, H̃zigzag, and H̃stripy retain the full trans-
lational symmetry of H, as well as the real-space inversion
through the midpoint of a NN bond. The presence of these
symmetries significantly reduces the number of independent
CCM amplitudes SI (and, correspondingly, S̃I ) contained in
the CCM correlation operators S (and S̃), as we explain more
fully in Sec. III C. Furthermore, we note that, as H contains
only products of two spin operators, the same is true for H̃.
As seen in similar cases before (such as the XXZ model on
the square lattice [104]), this allows us to restrict clusters in
S and S̃ to contain only even numbers of spin operators. This
considerably reduces the computational cost of carrying out
high-order CCM calculations.

C. The LSUBm and SUBn–m approximation schemes

A widely used CCM approximation scheme for spin-lattice
models is the so-called SUBn–m scheme. It has been applied
with equal success to both unfrustrated and highly frustrated
quantum magnets. It retains, for specified values of the pair
of (positive-definite) integral truncation indices n and m, only
those multispin configurations I , discussed above in Sec. III B,
which involve n or fewer spin flips that span a range of no
more than m contiguous lattice sites. For these purposes, a
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single spin flip is defined to require the operation of a spin-
raising operator S+

k acting once, and a set of lattice sites is
said to be contiguous if every site in the set is NN (in the
specified lattice geometry) to at least one other site in the
set. It is obvious that the SUBn–m approximation so defined
becomes exact as both truncation indices n and m approach
infinity. One can define different subschemes according to any
specified relations between the two truncation indices, or as to
how each index separately approaches infinity.

For example, if we put n = 2Sm, we arrive at the localized
(or lattice-animal-based) subsystem subscheme, abbreviated
as the LSUBm approximation scheme [104,108], which has
been very widely used, especially for spin-1/2 systems.
Clearly, for S = 1/2 (only), SUBm–m ≡ LSUBm, whereas
for S > 1/2 we have SUBm–m ⊂ LSUBm. Clearly, the
LSUBm approximation is equivalently defined to retain all
clusters of spins described by multispin-flip configurations {I}
in the sums in Eqs. (12a) and (12b) for the CCM correlation
operators, S and S̃, respectively, that span no more than m
contiguous lattice sites.

In general, the space- and point-group symmetries of the
lattice and the pertinent CCM model state |�0〉 being em-
ployed, are used (together with any applicable conservation
laws) to reduce the number of independent configurations re-
tained at any given order of approximation. We define Nf (m)
to be the minimal number of distinct nonzero such multispin-
flip configurations that are thereby retained at a given mth
level of LSUBm or SUBm–m approximation. Since Nf (m)
increases much more rapidly with the truncation index m for
the LSUBm approximation than for its SUBm–m counterpart,
the former scheme has typically only been employed for spin-
half systems, whereas the latter has mostly been employed for
spin-S systems with S � 1.

Here we perform high-level CCM calculations for the
infinite spin-S Kitaev-Heisenberg model on the honeycomb
lattice, based on each of the four quasiclassical model
states discussed above, and the SUBm–m scheme with m =
2, 4, 6, 8, 10 for S = 1/2, and m = 2, 4, 6, 8 for S = 1, 3/2.
In order to achieve the highest levels of approximation, we
use a purpose-built computer-algebra package [127] to derive
and solve the CCM Eqs. (16a) and (16b), using direct iteration
or the Newton-Raphson method.

D. CCM extrapolation schemes

The SUBm–m scheme becomes exact only in the m → ∞
limit, so one needs to perform suitable extrapolations. For the
ground-state energy E0 we use the well-established extrapola-
tion scheme [106,107,110,114,116,118–121,123],

e1: E0(m)/N = E0(m = ∞)/N + a1/m2 + a2/m4 , (26)

where E0(m) is the value obtained at the mth level of approx-
imation, N is the total number of sites and a1,2 are constants.
For the magnetic order parameter M, choosing an appro-
priate extrapolation for the mth-order approximants, M(m),
is more subtle. Thus, for unfrustrated or only very mildly
frustrated systems, where the magnetic order is stable even in
the presence of (hence, relatively weak) quantum fluctuations,
an extrapolation scheme for M(m) with leading power 1/m

(rather than 1/m2, as for the ground-state energy),

e2 : M(m) = Me2(m = ∞) + b1

m
+ b2

m2
, (27)

(where b1,2 are constants) leads to excellent results
[107,109,114,119,120]. On the other hand, for magnetic states
with strong quantum fluctuations, where the magnetic order is
only weakly established, a scheme with leading power 1/m1/2,

e3 : M(m) = Me3(m = ∞) + c1

m1/2
+ c2

m3/2
, (28)

(where c1,2 are constants) is always more favorable
[110–112,115–121,123]. In particular, the latter scheme e3 is
always appropriate for systems with an order-disorder transi-
tion, or for those which are either close to a quantum critical
point or for which M is close to zero.

It is important to be aware from the outset of any “stagger-
ing” effects that might be present in the LSUBm or SUBm–m
sequences of approximants. In this context, it is well known
in mth-order perturbation theory calculations, for example,
that there often exists such an even/odd [or 2n/(2n − 1),
where n ∈ Z+ is a positive integer] staggering effect in the
corresponding sequences of approximants for various phys-
ical properties. In such cases, where exact extrapolation
schemes are often known, both the (even) m = 2n and (odd)
m = (2n − 1) subsequences obey a scheme of the same form
(i.e., with the same exponents in the series) but with possibly
differing values of the respective coefficients in all terms other
than that corresponding to the limiting (n → ∞) value itself.
Clearly, in such cases, which now include CCM calculations
using either the LSUBm or SUBm–m approximation scheme
on a wide variety of spin-lattice models, one should not mix
even-order and odd-order approximants in a single extrap-
olation scheme, without incorporating the staggering effect
explicitly. The latter is usually difficult to perform robustly,
and it is usually better to extrapolate the even and odd subse-
quences separately. As already noted, since our Hamiltonian
is bilinear in the single-site spin operators, it is natural, as
has been done here, to confine ourselves to even-order CCM
LSUBm or SUBm–m approximations with m = 2n.

The above 2n/(2n − 1) staggering in LSUBm or SUBm–m
sequences of CCM approximants for physical quantities is
common to essentially all spin-lattice models on all lattices.
However, one should note that an additional 4n/(4n − 2)
staggering has been observed on honeycomb-lattice models
(and see, e.g., Refs. [120,123] and references cited therein)
in even (m = 2n) CCM subsequences themselves. It has been
postulated that such additional staggering arises from the
non-Bravais nature of the honeycomb lattice, which is it-
self composed of two interlocking triangular Bravais lattices.
Thus, each triangular lattice separately exhibits the 2n/(2n −
1) staggering, and the effect is then magnified twofold into
a 4n/(4n − 2) staggering in the even (m = 2n) subsequences
and, presumably, a corresponding (4n − 1)/(4n − 3) stagger-
ing in the odd (m = 2n − 1) subsequences.

In the present case, we have not observed any marked
4n/(4n − 2) staggering of the above sort in any of our cal-
culations, and hence we feel confident in extrapolating our
LSUBm and SUBm–m results using all of the even (m =
2n) approximants. However, when using any of the above
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FIG. 3. CCM convergence. Results for (a) the ground-state en-
ergy per site E0/N and (b) the local order parameter M in the
four magnetic phases of the spin-half KH model, as obtained from
the LSUBm scheme (with m = 2, 4, 6, 8, and 10). We also show
the corresponding extrapolated CCM values (using data from the
LSUB4, LSUB6, LSUB8, and LSUB10 approximations), based on
(a) the extrapolation scheme e1 for the ground-state energy and
(b) the e2 and e3 schemes for the order parameter. For comparison,
we include exact ED results from the N = 24- and 32-site clusters.
Vertical-dashed lines designate the classical phase boundaries.

extrapolation schemes, we always exclude the lowest-order
approximants with m = 2, since they are too far removed
from the corresponding asymptotic (m → ∞) limits. Thus,
for the spin-1/2 case, all of our extrapolated results are based
on LSUBm data sets with m = {4, 6, 8, 10}, whereas for the
spin-1 and spin-3/2 cases they are based on SUBm–m data
sets with m = {4, 6, 8}.

IV. RESULTS

A. CCM convergence

We first examine the convergence of the CCM results, by
looking at the ground-state energy and the order parameter
in the four magnetic phases of the spin-half KH model, as
displayed in Fig. 3. Results for the ground-state energy are
shown in Fig. 3(a). LSUBm results are found to converge
very rapidly with increasing level of approximation m, and the
differences in energies between LSUB8 and LSUB10 levels

of approximation are broadly of order 10−4 for all values of K
and J for this system.

The extrapolated ground-state energy values, based on the
e1 scheme, compare well with ED results from two finite-size
clusters with 24 and 32 sites and periodic boundary condi-
tions. In some regions, the ED energies are noticeably lower
than those of the CCM, which can be attributed to finite-size
effects.

The CCM results for the order parameter in the four mag-
netic phases of the spin-half model are shown in Fig. 3(b).
LSUBm results are again found to converge very rapidly with
increasing level of approximation m, and differences in the
order parameter between LSUB8 and LSUB10 levels of ap-
proximation are broadly less than about 0.05 for all values of
the parameter φ. Extrapolated results are shown using both the
e2 and e3 extrapolation schemes.

B. Variation with S

In addition to the S = 1/2 calculations, we have also car-
ried out CCM calculations for S = 1 and 3/2. Figure 4 shows
the extrapolated CCM results for (a) the rescaled ground-
state energy E0/(NS2), and (b) the rescaled order parameters
M/S, for all values of S, including the S = 1/2 data of
Fig. 3. Although not shown explicitly here, convergence of
the SUBm–m data is rapid for all values of S and for all values
of φ, for both the ground-state energy and the order param-
eters. For comparison, we also show the S = 1/2 ED data
from the 24- and 32-site clusters shown previously, as well
as results from linear spin-wave (LSW) theory calculations
(which agree with previously published data [22,128]). The
correspondence with the CCM data is again good.

The rescaled order parameters M/S clearly increase with S
for all parameters φ, which is consistent with the expectation
that quantum fluctuations weaken with increasing S. Further-
more, we observe that, for S = 1 and 3/2, the extrapolated
CCM data based on the e2 scheme agree well with the LSW
data far away from the spin liquid regions. This is consistent
with the general expectations mentioned in Sec. III D that
the e2 scheme is the appropriate one in regions with weak
quantum fluctuations.

C. Termination points

As we show below, we find a number of termination points
in the vicinity of the classical transition points φ = ±π/2,
3π/4, and 7π/4 for S = 1/2, and in the vicinity of φ = ±π/2
for S = 1, 3/2. At these points, the CCM equations cease
to converge before results for the order parameters of the
two adjacent semiclassical phases can either go to zero or
intersect one another. The presence of such termination points
is common in spin models and their physical origin is well
understood (see e.g., Ref. [108]). They are manifestations of
quantum phase transitions, i.e., they signal the presence of in-
termediate phases, sandwiched between the two neighboring
model states around which we perform the CCM calculations.

More specifically, termination points have been seen in
many numerical implementations of the CCM for spin-lattice
problems, using either the LSUBm or SUBm–m approxima-
tion schemes. Interestingly, and as is seen here in particular,

033168-8



SPIN-S KITAEV-HEISENBERG MODEL ON … PHYSICAL REVIEW RESEARCH 6, 033168 (2024)

FIG. 4. Variation with S. Extrapolated CCM results for (a) the
rescaled ground-state energy E0/(NS2), and (b) the rescaled order
parameter M/S, for the KH model for spin S = 1/2, 1, and 3/2,
as obtained from extrapolated CCM results (using SUBm–m data
with m = 4, 6, 8, 10 for S = 1/2, and m = 4, 6, 8 for S = 1, 3/2),
based on (a) the e1 extrapolation scheme for the energy and (b) the
e2 and e3 schemes for the order parameter). For comparison, we
include S = 1/2 ED results from the 24- and 32-site clusters, and
results from linear spin-wave (LSW) theory for each value of S. The
vertical-dashed lines designate the classical phase boundaries.

the mth-order calculations (with a fixed finite value of m),
based on a specific quasiclassical ordered state, extend beyond
the exact (m → ∞) transition point for the phase in question,
out to some corresponding termination points, beyond which
no real solution exists for the respective coupled sets of non-
linear LSUBm or SUBm–m equations for the ket-state CCM
coefficients, as given by Eq. (16a).

We note that the positions of the termination points de-
pend on the index m. This is demonstrated in Fig. 5 for
the termination points occurring in the neighborhood of the
AF Kitaev point (φ = π/2). In particular, these mth-order
termination points can be seen to shift away systematically
from the classical boundary with increasing m. This reflects
the fact that higher level of truncations incorporate more and
more quantum fluctuations, which in turn tend to destabilize
the classical orders further.

Additionally, the mth-order termination points can be seen
to converge uniformly to their m → ∞ limit with increas-
ing values of m. Such behavior has been observed in many

FIG. 5. Convergence of termination points with m. Evolution of
the rescaled ground-state energy E0/(NS2) of the spin-1/2 KH model
with φ, in the vicinity of the AF Kitaev point φ = π/2 (vertical
dashed line), for different different levels of LSUBm approximation
(m = 2, 4, 6, 8, 10).

previous CCM calculations for spin-lattice models (see, e.g.,
Refs. [108,120,123]).

D. Existence of the two Kitaev QSL phases and their stability
region from CCM

Next, we focus on the behavior of the extrapolated CCM
data for (a) the ground-state energy and (b) the scaled order
parameter M/S, in the vicinity of the two Kitaev points in
Figs. 6 and 7. The most salient feature is the existence of
termination points, occurring before the ground-state energies
of the two neighboring ordered phases cross each other. This
occurs in both the region between the Néel and the zigzag
phase (Fig. 6) and the region between the ferromagnetic and
the stripy phases (Fig. 7). As mentioned above, such termi-
nation points are manifestations of quantum phase transitions.
In the present case they signal the existence of the two Kitaev
spin liquid phases, which are expected to survive in an ex-
tended region around the pure Kitaev points φ = ±π/2 [1,17–
19,32,63,65,72,87,88].

While we do not address the nature of the two Kitaev QSL
phases for S = 1 and 3/2, the CCM can give accurate predic-
tions for the stability range of these phases for all values of S,
including S = 1/2. The numerical values of the parameter φ

associated with the onsets of the two QSL phases, as extracted
from the e1 extrapolation scheme of the CCM energies at the
corresponding termination points, are provided in Table I. As
expected, the extent of each of the two Kitaev QSL phases
shrinks quickly with increasing S, which is consistent with
fRG calculations [39].

A surprising result for the S = 1/2 case is that the CCM
prediction for the extent of the QSL2 phase is appreciably
narrower than the one found by ED on the symmetric 24-site
cluster [22], or the one found by fRG [39] (see Table I). It
appears therefore that these methods overestimate the extent
of the QSL2 phase. The CCM results are, however, much
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FIG. 6. Boundaries of the AF Kitaev QSL1 phase from CCM
termination points. Extrapolated results for (a) the rescaled ground-
state energy E0/(NS2), and (b) the rescaled order parameter M/S,
of the spin-S KH model, with S = 1/2 (red), 1 (blue), and 3/2
(olive), obtained from CCM expansions around the Néel and zigzag
reference states, in the vicinity of the AF Kitaev point φ = π/2
(vertical-dashed line).

more consistent with CMFT calculations on the same (24-site)
cluster by the same group [22] (see Table I).

Let us now comment on the nature of phase transitions be-
tween the two Kitaev spin liquid phases and their neighboring
semiclassical orders. As discussed above, the extrapolation
rule e2 for the order parameters only applies to cases of
weak or mild frustration, whereas rule e3 applies to cases of
high frustration, and especially in regions where order breaks
down. As such, in order to determine with accuracy any phase
terminations, the extrapolation rule e3 for the local order
parameters should take complete precedence over rule e2 at
or near phase transitions. With this in mind, the data shown in
Figs. 6 and 7 deliver the following insights:

(i) The transitions between the Kitaev QSL1 state and the
surrounding Néel and zigzag states are all first order for S =
3/2, 1, and 1/2 (and perhaps weakly first order for S = 1/2).

(ii) The transitions between the Kitaev QSL2 state and the
surrounding FM and stripy states are first order for S = 3/2
and 1 but seem to be continuous for S = 1/2. This latter obser-
vation is consistent with numerical studies based on DMRG
[27] and ED [22] methods, which suggest that the transition
between the QSL2 state and the stripy state is continuous [20]
or weakly first order.

FIG. 7. Boundaries of the FM Kitaev QSL2 phase from CCM
termination points. Extrapolated results for (a) the rescaled ground-
state energy E0/(NS2), and (b) the rescaled order parameter M/S, of
the spin-S KH model, with S = 1/2 (red), 1 (blue), and 3/2 (olive),
obtained from CCM expansions around the FM and stripy reference
states, in the vicinity of the FM Kitaev point φ = 3π/2 (vertical-
dashed line).

E. Stripy-Néel and zigzag-FM transition regions: Evidence
for intermediate phases

In Figs. 8 and 9 we zoom in on the behavior of the extrap-
olated CCM data for the ground-state energy and the order
parameter in the transition region between the stripy and the
Néel phases and the transition region between the zigzag and
the FM phases, respectively. These two regions map to each
other under the duality transformation T4.

For S = 1 and 3/2, we find that the CCM energies
[Figs. 8(a) and 9(a)] of the respective ground states cross
each other, and a similar crossing is found in the CCM order
parameter data [Figs. 8(b) and 9(b)]. These crossings signal
first-order phase transitions, consistent with general expecta-
tions based on the classical limit of the model and the different
symmetries of the states.

The situation for S = 1/2 is qualitatively different. Here,
the CCM data for the ground-state energies do not cross (ex-
cept for the lowest LSUBm levels with m = 2, 4), but show
termination points instead. In particular, unlike the behavior
seen in Fig. 5, here one needs to go up to LSUBm levels
with m � 10 to find two clearly separated termination points,
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TABLE I. Transition points between the various phases of the KH model. Row 2 shows classical values. Rows 3, 6, and 10 show our CCM
predictions (based on the given model states in each column) for S = 3/2, 1, and 1/2, respectively, as found by CCM termination points or
ground-state energy crossings. Rows 4, 7, and 11 (in dark red) show results from the positions of the corresponding dual points, as found by
the independent CCM calculations in other columns. Rows 5, 8, 9, and 12–14 show values from fRG (Ref. [39] and private communication),
iDMRG [32], and ED and CMFT calculations on the symmetric 24-site cluster [22].

�����������Method
Boundary region

Néel-zigzag (QSL1) zigzag-FM FM-stripy (QSL2) stripy-Néel

S = ∞ 90◦ 135◦ 270◦ 315◦

S = 3/2, CCM
from duality

(89.46◦, 90.54◦)
(89.45◦, 90.53◦)

138.28◦

138.29◦
(269.46◦, 270.54◦)
(269.45◦, 270.53◦)

312.05◦

312.06◦

fRG [39] (88.65◦, 91.35◦) 137.92◦ (266.84◦, 273.16◦) 313.36◦

S = 1, CCM
from duality

(89.1◦, 90.9◦)
(89.07◦, 90.87◦)

140.04◦

140.035◦
(269.1◦, 270.9◦)

(269.07◦, 270.87◦)
310.716◦

310.713◦

fRG [39] (87.75◦, 92.25◦) 137.92◦ (263.62◦, 274.99◦) 313.36◦

iDMRG [32] (88.92◦, 91.08◦) 156.6◦ (267.3◦, 272.52◦) 329.4◦

S = 1/2, CCM
from duality

(87.48◦, 92.31◦)
(87.45◦, 92.32◦)

(138.96◦, 141.3◦)
(138.88◦, 141.38◦)

(267.7◦, 272.16◦)
(267.66◦, 272.1◦)

(309.78◦, 311.58◦)
(309.83◦, 311.52◦)

ED [22] (88.92◦, 91.08◦) 146.52◦ (260.64◦, 277.02◦) 306.72◦

CMFT [22] (89.28◦, 90.9◦) 148.5◦ (266.04◦, 273.42◦) 305.82◦

fRG [39] (86.84◦, 93.16◦) 142.92◦ (246.21◦, 283.76◦) 311.24◦

FIG. 8. Transition region between the stripy and the Néel
phases. Extrapolated results for (a) the rescaled ground-state energy
E0/(NS2), and (b) the rescaled order parameter M/S, of the spin-S
KH model, with S = 1/2 (red), 1 (blue), and 3/2 (olive), obtained
from CCM expansions around the stripy and Néel reference states,
in the vicinity of the classical transition point φ = 7π/4 (vertical-
dashed line).

FIG. 9. Transition region between the FM and zigzag phases. Ex-
trapolated results for (a) the rescaled ground-state energy E0/(NS2),
and (b) the rescaled order parameter M/S, of the spin-S KH model,
with S = 1/2 (red), 1 (blue), and 3/2 (olive), obtained from CCM
expansions around the FM and zigzag phases, in the vicinity of the
classical transition point φ = 3π/4 (vertical-dashed line).
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FIG. 10. Transition region between the stripy and the Néel
phases, bare CCM data, S = 1/2. Evolution of the rescaled ground-
state energy E0/(NS2) of the spin-1/2 KH model with φ in the
vicinity of the classical stripy-Néel transition point (φ = 7π/4,
vertical-dashed line) for different levels of LSUBm approximation
(m = 2, 4, 6, 8, 10).

see Fig. 10. At lower truncation levels, m � 8, we find either
no termination points at all, at least in the range shown in
Fig. 10 (m = 2 and 4, where we see crossing points), or two
termination points that have passed each other, i.e., if we
denote by φ

phase
t the termination point of a specific phase, then

φ
stripy
t > φNéel

t (m = 6 and 8). It is only for the LSUBm data
shown with m = 10 that finally φ

stripy
t < φNéel

t , as expected
on physical grounds for an intermediate phase. Clearly, such
behavior is then expected in similar LSUBm data ∀ m � 10.

Turning to the extrapolated order parameter data [Figs. 8(b)
and 9(b)], we find a weak variation with φ on the Néel side
(respectively, the zigzag side) with our data simply terminat-
ing at the termination point φNéel

t of the LSUB10 curve, and
a rapid disappearance of the order parameter on the stripy
(respectively, the FM) side. So, at the level of the LSUBm
scheme, with m � 10, the results suggest the presence of
a narrow intermediate phase, sandwiched between the Néel
and the stripy phase (Fig. 8), and (precisely as demanded by
duality) a similar intermediate phase sandwiched between the
zigzag and the FM phase (Fig. 9). The results also show that
the transition to the stripy phase (and similarly the transition
to the FM phase) is continuous, whereas the transition to the
Néel phase (and similarly the transition to the zigzag phase)
is discontinuous.

The presence of these intermediate states is completely un-
expected, both at the classical level and, indeed, from previous
numerical studies for the S = 1/2 KH model. The fact that we
need to go up to the m = 10 truncation level to find two clearly
separated termination points suggests that the intermediate
phases may have a large unit cell, although this is by no
means certain. Moreover, the general tendency of the various
LSUBm data curves shown in Fig. 10 (and, indeed in all cor-
responding CCM calculations for other spin-lattice models)
indicates that it is extremely unlikely that these intermediate
phases will shrink and eventually disappear at some higher
truncation level, m > 10.

F. CCM phase diagrams and duality benchmark

Collecting the extrapolated CCM data, particularly the
positions of the various termination points and ground-state
energy crossings, gives rise to the phase diagrams shown
earlier in Fig. 2, for S = 1/2, 1, and 3/2. The narrow regions
with question marks in the S = 1/2 phase diagram designate
the enigmatic intermediate phases discussed in Sec. IV E.

The actual numerical values of the boundaries of the var-
ious phases are provided in rows 3–5 of Table I, with a
precision within 0.001 radians, which is the step size in our
fine-tuning of the parameter φ near the transition points.
For comparison, we also provide the corresponding transition
points for the classical limit (S = ∞), and the ones obtained
from fRG (Ref. [39] and private communication), iDMRG
[32], and ED and CMFT calculations on the symmetric 24-site
cluster [22].

Importantly, we have checked whether the obtained val-
ues of the various boundaries are consistent with the duality
transformation T4. To that end, we compare, in each entry of
rows 3–5 of Table I, the boundaries found by CCM calcula-
tions based on the corresponding model states to the values
resulting from those of the corresponding dual points, found
by independent CCM calculations based on their dual model
states. The agreement is, in most cases, well within our nu-
merical precision. This provides a crucial benchmark of the
method, as the CCM expansions around two states that are
dual to each other (e.g., the zigzag and the Néel states), that
come with very different magnetic unit cells, are completely
independent.

V. CONCLUSIONS

We have obtained the phase diagrams (Fig. 2) of the spin-
S Kitaev-Heisenberg model on the honeycomb lattice, for
S = 1/2, 1, and 3/2, using extensive high-order CCM cal-
culations based on the well-established SUBm–m truncation
scheme, with m � 10 for S = 1/2 and m � 8 for S = 1, 3/2.
Besides the four collinear magnetic orders expected in the
classical limit, the phase diagrams comprise the two spin
liquid phases expected around the two Kitaev points [1,3,17–
20,32,63,65,72,87,88], as well as two very narrow interme-
diate phases (one sandwiched between the zigzag and the FM
phase, and the other between the Néel and the stripy phase) for
S = 1/2, whose precise nature calls for further dedicated in-
vestigations. The existence of the two Kitaev QSL phases and
the two enigmatic phases for S = 1/2 is manifested through
the appearance of CCM termination points, which give direct
evidence for quantum phase transitions.

In addition to the accurate predictions for the various tran-
sition points (Table I), our CCM results provide clear insights
on the order of the corresponding phase transitions, by an
analysis of CCM termination/energy-crossing points, and the
behavior of the corresponding (extrapolated) order parameter
data in the vicinity of these transitions.

Besides the careful convergence analysis of the CCM re-
sults, and the comparison to published ED [22], CMFT [22],
iDMRG [32], and fRG [39] data, we have benchmarked our
results against the duality transformation T4 of the model and
found excellent correspondence of the values of the transition
points. This level of accuracy establishes the coupled cluster
method as a versatile technique that can capture strong quan-
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tum fluctuations that are inherently present in highly frustrated
models.

In this work we have applied the coupled cluster method
to a generalized Kitaev-like model with bond-dependent
anisotropic interactions. As such, the present study serves
as a testing ground for exploring the more realistic models
of available materials, and for providing new insights for
their complex phase diagrams and phenomenology, including
recent S > 1/2 models models with bilinear-biquadratic inter-
actions [129,130]. Another exciting prospect is the potential to
use dynamical extensions of the coupled cluster method to cal-
culate dynamical response functions S (q, ω), whose accurate
determination has been a great challenge for highly frustrated
models. We hope to be able to address this in a future paper.
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