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Deep Learning Framework for Low-Observable
Distribution System State Estimation with

Multi-timescale Measurements
Xihai Zhang, Student Member, IEEE, Shaoyun Ge, Yue Zhou, Member, IEEE, Hong Liu Member, IEEE

Abstract— The deployment of micro-phasor measure-
ment units, supervisory control and data acquisition sys-
tems, and smart meters has revolutionized distribution sys-
tems, moving toward more intelligence and facilitating state
estimation. However, the asynchronous nature and varying
sample rates of the measurements raise a significant chal-
lenge to state estimation in low-observable distribution sys-
tems. This paper proposes a novel data-driven framework
for state estimation in low-observable distribution systems.
The framework incorporates super-resolution imputation
techniques that are capable of handling multi-time scale
measurements. Specifically, the proposed framework uti-
lizes Wasserstein divergence conditional adversarial net-
works to implement multivariate super-resolution imputa-
tion. This involves employing a gated recurrent unit gener-
ator with additive attention to impute super-resolution mea-
surements, as well as a discriminator with self-attention
to approximate the Wasserstein divergence between the
imputed values and the ground truth. Furthermore, a tailor-
made physical-guided bilinear neural network is employed
to estimate the operational state of low-observable distribu-
tion systems by leveraging matrix factorization techniques
to capture the low-rank characteristics. Simulation results
illustrate the superiority of the proposed approach from
the standpoint of multi-timescale measurements imputa-
tion and state estimation in low-observable distribution
systems.

Index Terms— Low-observable distribution system,
Multi-timescale measurements, Conditional adversarial
networks, Bilinear neural networks, Matrix factorization.

I. INTRODUCTION

D ISTRIBUTION systems are experiencing substantial
transformations due to the increasing integration of dis-

tributed energy resources (DERs). The deployment of DERs
promotes local energy trading but brings bidirectional power
flow and poses risks of breaking distribution system security
constraints [1]. Moreover, the DERs largely integrated within
the distribution systems are operated ‘behind-the-meter’ and
cannot be directly monitored by most utilities, which renders
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the systems unobservable/low-observable [2]. With the emer-
gence of smart meters and information and communication
technologies, situational awareness and orientation for distri-
bution systems are improved which makes distribution system
state estimation (DSSE) on the horizon.

In general, the challenges of state estimation in low-
observable distribution systems have converged in how to
reconcile multi-timescale measurements into the consistent
temporal resolution and further facilitate DSSE via the limited
availability of real-time measurements. In terms of imputation
of multi-timescale measurement, it can be approached using
numerical approaches or machine learning techniques. The
numerical approaches attempt to generate unknown values
based on extrapolation or interpolation. In [3], a comprehen-
sive comparison of stepwise, linear extrapolation, and linear
interpolation for measurement generation is evaluated. The
machine learning-based approaches mainly focus on statistical
learning theory to impute unmeasured points. Specifically, the
extended Kalman filter (EKF) [4], multi-task Gaussian process
[5], [6], and recursive Gaussian process [7] are proposed to
align multi-timescale measurements. Nevertheless, the extrap-
olation/interpolation approaches are incompetent to recover the
nature of the measurements since each meter is considered
separately but the relationship of other measurements in distri-
bution systems is ignored. The EKF has drawbacks in tackling
highly non-linear systems due to the limited ability of the
Jacobian matrix. Furthermore, the adoption of Gaussian noise
is not realistic in real-life application scenarios. The Gaussian
process and its variants suffer from cubic complexity to data
size, which has its limitations in the era of big data.

It is worth noting that the above-mentioned approaches
assume all measurements in a global synchronous condi-
tion but the realistic measurements have multiple timescales
and rarely synchronize. Refs. [8], [9] introduce normally
distributed out-of-date signals to model asynchronous smart
meters for monitoring load variations. However, no study has
been conducted to assess the statistical distribution of short-
term load variation [8]. Ref. [10] presents a low-rank method
to mitigate asynchronous errors in grid monitoring, but it relies
on low-rank assumptions and is sensitive to outliers. Therefore,
it is a challenging question to impute non-synchronized multi-
timescale measurements.

Traditional DSSE is heavily explored via weighted least
squares (WLS) and its variants [11]. However, the low-
observability conditions render the vector of measurements
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less than the quantities to estimate, resulting in the gain
matrix not existing or not unique, which makes WLS under-
determined and inapplicable to low-observable distribution
systems. Although pseudo-measurement is the most intuitive
means to address insufficient measurements [12], dramatically
‘behind-the-meter’ information makes the typical load profile
vary from scenario to scenario and difficult to forecast. The
existing low-observable DSSE is focused on using deep learn-
ing [13], [14], physical-guided deep learning [15]–[17], matrix
completion (MC) techniques [18], [19] and signal processing
approaches [20], [21]. The existing deep learning approaches
require the construction of a comprehensive dataset pertaining
to measurements and state variables, which poses a big chal-
lenge in low-observable distribution systems. Distinguished
from the purely data-driven approaches, there is a growing in-
terest in integrating physics-based prior knowledge with deep
learning approaches. However, the DSSE approaches proposed
in [15] and [16] require around 10%∼15% of nodes to install
phasor measuring units, raising questions about the feasibility
of these costs. Ref. [17] addresses low-observable DSSE
caused by cyber-attacks or physical failures unexpectedly
leveraging historical fully observable data. However, the appli-
cability of this approach in distribution systems with persistent
low-observable conditions remains uncertain. It is worth noting
that substantial physical-guided deep learning approaches are
customarily designed for estimating rotor angle and frequency
of generator [22] or observable DSSE [23]–[25]. However,
these topics are beyond the scope of our current work. The
MC involves singular value decomposition which requires a
high computational complexity at each iteration. Additionally,
the network losses and connection ways (Wye and Delta) in
distribution systems are not considered in the existing works.
It is worth noting that high R/X ratios in distribution systems
make network losses become nonnegligible and the linearized
three-phase power flow model leaves more approximate errors.
The signal processing approach has specific requirements for
measurement place and number in distribution systems since
it only involves one type of measurement, which causes an
additional investigation on optimal measurement placement.
Moreover, the inappropriate measurement placement will limit
the performance of DSSE. Therefore, it is an ongoing topic
to facilitate state estimation in low-observable distribution
systems considering network losses, computation complexity,
and arbitrary measurement placement.

This work endeavors to address the aforementioned research
gaps by developing a data-driven paradigm coupled with
promising machine learning techniques to learn AC power
flow, while accommodating multi-timescales distribution sys-
tems measurements. The proposed data-driven paradigm en-
compasses two primary components: super-resolution impu-
tation of distribution system measurements via conditional
adversarial networks (CANs), and the implementation of
DSSE using physical-guided bilinear neural networks (BNNs).
Specifically, a novel CAN is proposed to produce more con-
vincing and robust results that align with distribution system
measurements manifold by employing a customized generator
and discriminator. It is worth noting that the proposed CAN
is distinguished with condition generative adversarial network

[26], as our generator focuses on learning deterministic outputs
based on conditional information solely and without any
noise inputs. This approach facilitates a better capture of
the mapping relationships among measurements and has been
successfully applied in image tasks [27], [28]. In addition, the
low-observable DSSE is tackled using physical-guided BNNs
in conjunction with matrix factorization techniques. Unlike ex-
isting deep learning approaches, the proposed physical-guided
BNNs do not necessitate an extensive dataset of measurements
and state variables across all distribution systems. Its salient
features and advantages are as follows.

1) A super-resolution imputation approach is proposed for
distribution system multi-timescale measurements via
CANs with temporal attention. It utilizes content loss
and adversarial loss to favor imputation that resides
on the manifold. Moreover, the asynchronous measure-
ments are alleviated by proposing a gate recurrent unit
(GRU) and attention mechanism to extract temporal fea-
tures of aggregated adjacent timestamp measurements.

2) A physical-guided BNN is proposed for low-observable
DSSE. It employs matrix factorization to characterize
the low-rank natural distribution system state variables,
which are further approximated via BNNs. Furthermore,
the physical laws governing the distribution systems are
exploited to regularize the proposed learning model.

The rest of this article is organized as follows. Section II
briefly introduces existing distribution systems measurements
and general methodology framework. Section III proposes
Wasserstein divergence CANs with temporal attention and
its key designs. Section IV illustrates the proposed physical-
guided BNNs. The proposed data-driven low-observable DSSE
with super-resolution imputation is validated in Section V, and
Section VI concludes this paper.

II. DISTRIBUTION SYSTEM MEASUREMENTS AND
GENERAL METHODOLOGY FRAMEWORK

In distribution systems, three primary types of measure-
ments are typically employed: micro-phasor measurement
units (µPMUs), supervisory control and data acquisition
(SCADA), and advanced metering infrastructure (AMI). The
µPMUs are specialized devices that provide high-resolution
voltage and ampere phasor measurements with timestamps.
Nevertheless, µPMUs are typically installed only at selected
strategic locations because it is a relatively costly technology.
SCADA systems serve as the main source of measurements
within distribution networks. They provide information such
as node voltage amplitudes, branch currents, branch power
flows, and node injection powers. It is worth noting that the
SCADA measurements lack explicit time-stamp information,
which makes it challenging to ensure global synchronization
across the system. The AMI is a critical infrastructure of smart
distribution systems, which consists of smart meters, commu-
nication networks, and intra-user networks. AMI can provide
a wide range of electricity metering data with timestamps [29].
Additionally, certain AMI meters with high accuracy class
offer superior measurement accuracy compared to SCADA
meters. However, AMI suffers from limitations in real-time
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TABLE I
THE COMPARISONS OF MEASUREMENTS IN DISTRIBUTION SYSTEMS.

µPMU [30] SCADA [31] AMI [32]

Data voltage phasors voltage/line current magnitude voltage magnitude
line current phasors branch/injection power injection power

Accuracy class Changes in time of interest, Changes in types of meters, Changes in types of meters,
0.06 - 0.5 0.15, 0.3, 0.6, 1.2 0.1, 0.2, 0.5

Timestamp X X
Sample Rate sub-second few seconds to minute 15min, 30min, 60min

performance since it primarily records electricity consumption
information from end-users. Therefore, integrating and recon-
ciling these measurements effectively is crucial for the analysis
and control of distribution systems. The comparisons of these
multi-timescale measurements are summarized in Table I.

A novel data-driven low-observable DSSE with super-
resolution data imputation is proposed in this paper. Sam-
pling the time alignment measurements between high and
low temporal resolutions serves as a training set to impute
and harmonize the low temporal resolution measurements to
the same temporal resolution and further facilitate the low
observable DSSE. The framework of the general methodology
is illustrated in Fig. 1.

 OpenDSS (Simulator)

Load, Measurements, 
Topology Distribution Systems 

Measurements

Multi-timescale 
Measurement Dataset

Conditional Adversarial 
Networks

Parameters 
Optimization

Super Resolution Imputation Low-observable DSSE

Distribution Systems 
State Variable

Decoder 

Encoder 1 Encoder 2Encoder 1 Encoder 2
Matrix factorization

Fig. 1. General framework of the proposed super-resolution imputation
enabled DSSE.

For the super-resolution imputation, a novel CAN is adopted
to reconcile distribution systems measurements into a con-
sistent temporal resolution. In cases where historical mea-
surement recordings are insufficient, the OpenDSS software
can be utilized to generate a comprehensive dataset based
on the three-phase unbalanced distribution systems power
flow model. To alleviate inevitable asynchronous measurement
phenomena, snapshot measurements are incorporated with
adjacent 2τ time slots (τ time slots before and after snapshot
measurements) and modeled as sequential data with the shape
of (2τ + 1) × n, where n is the number of measurements.
During model training, the proposed CANs prioritize structural
risk, which represents the risk associated with selecting a
complex model that overfits the training data, resulting in
poor generalization to new, unseen data. This approach aims
to strike a balance between model complexity and the model’s

ability to generalize well beyond the training data [33], rather
than solely focusing on empirical risk measured by a mean
squared error on the training dataset, which quantifies the
discrepancy between the prediction and the ground truth.
In this condition, the adversarial loss and content loss are
incorporated comprehensively as structural risks to resolve the
super-resolution imputation of multi-timescale measurements
effectively. Consequently, it has the potential to enhance the
accuracy and robustness of aligning multi-timescale measure-
ments into a consistent temporal resolution. By employing the
CAN framework and incorporating structural risk, the pro-
posed methodology has the potential to offer an improved so-
lution for super-resolution imputation in distribution systems,
enabling a more accurate representation of the underlying
relationship among measurements.

In the context of low-observable DSSE, a physical-guided
BNN is introduced to validate the state estimation. Generally
speaking, there exist two types of correlations in distribution
systems: spatial correlations among locations, and quantitative
correlations between measurements. The spatial correlations
reflect the relationship between loads at neighboring buses in
distribution systems, which is a system-dependent property.
However, the quantitative correlations are considered more
general due to the approximate linear representation of dis-
tribution systems [34]. This approximate linear representation
correlates certain measurements, implying that the measure-
ments within system are not entirely independent but can be
expressed in terms of a smaller set of underlying patterns.
This results in a low-rank characterization within distribu-
tion systems. The proposed physical-guided BNNs consist
of two encoders and a decoder. The encoders are inspired
by matrix factorization techniques, which are designed to
capture the low-rank property observed in distribution systems.
Subsequently, the outputs are reshaped into matrix form and
subjected to matrix multiplication before being fed into the
decoder. To improve the performance of DSSE, the proposed
methodology integrates the physical laws, which act as a
regularization mechanism for constraining the learning process
to generate more realistic and physically meaningful results.
Therefore, the proposed methodology is capable of providing a
more comprehensive and accurate estimation of state variables,
leading to a better understanding of the power flow within the
low-observable distribution system.
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III. WASSERSTEIN DIVERGENCE CANS WITH
TEMPORAL ATTENTION FOR SUPER RESOLUTION

IMPUTATION

In this section, Wasserstein divergence CANs with tem-
poral attention are proposed to resolve super-resolution data
imputation, which comprises a GRU generator with additive
attention and a discriminator with self-attention. It aims to
align low-resolution measurements (z) with high-resolution
measurements (x) in the temporal domain. It is worth noting
that the gate design, attention mechanism, and adversarial
training paradigm are widespread in language processing tasks
exhibiting similarities with super-resolution imputation tasks.
Specifically, both tasks rely on leveraging contextual informa-
tion to capture relevant features and facilitate corresponding
tasks. Therefore, these mechanisms inspire the proposed ap-
proach and can be well-suited for super-resolution imputation
tasks. The overall architecture is shown in Fig. 2.

Generator Discriminator Total Loss
High Resolution 

Measured Data (x)

Back 
Propagation

Gradient 
Feedback

Gradient 
Feedback

Forward propagation

Backpropagation

Fig. 2. Architecture of Wasserstein divergence CANs with temporal
attention.

A. GRU Generator with Additive Attention
The generator leverages high temporal resolution measure-

ments as a guide to impute points between intervals of low
temporal resolution measurements. Specifically, the genera-
tor learns the mapping function from the sequential high
temporal resolution measurements to low temporal resolution
measurements and generates the imputation of unsampled low
temporal resolution measurements. Due to the temporal nature
of the sequence data, extracting features by flattening the raw
data becomes challenging. Therefore, we propose a GRU-
based generator with additive attention mechanisms to encode
and focus on task-related information, as illustrated in Fig. 3.

The GRU is a recurrent neural network (RNN) variant
composed of interconnected single-cell neurons, designed to
address the vanishing gradient problem while maintaining
computational efficiency. The gate mechanisms within the
GRU regulate the flow of information throughout the network,
enabling it to capture dependencies over longer sequences
more effectively [35]. It processes information through gate
mechanisms and the output hidden state (ht) of a single cell
neuron is shown in (1).

rt = σ(Wrxt +Urht−1 + br]) (1a)
ut = σ(Wuxt +Uuht−1 + bu]) (1b)

h̃t = tanh(Whxt +Uh(rt � ht) + bh) (1c)

ht = (1− ut)� ht + ut � h̃t (1d)

where σ and tanh are logistic sigmoid and hyperbolic tan-
gent function, respectively. rt ∈ (0, 1)(2τ+1)×e and ut ∈
(0, 1)(2τ+1)×e are the outputs of reset and update gates.
Wr,u,h ∈ Rn×e, Ur,u,h ∈ Re×e, and br,u,h ∈ Re are

configurable parameters. xt ∈ R(2τ+1)×n represents the input
high temporal resolution data at time t. ht−1 ∈ R(2τ+1)×e

and h̃t ∈ R(2τ+1)×e are the hidden state at time t − 1 and
temporary hidden state at time t. e denotes the number of
hidden features. � represents Hadamard product.
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Fig. 3. The schematic of GRU generator with additive attention.

On the basis of GRU output, we further introduce additive
attention mechanisms to improve cognitive ability by selecting
some key information while ignoring unimportant information.
The additive attention mechanism is for sequence-to-sequence
tasks that involve attention scores based on a learned com-
patibility score derived from the input sequence to focus on
relevant parts via a combination of linear transformations and
a non-linear activation function [36]. Specifically, the scores
are computed using a learned linear transformation followed
by a non-linear activation function, and the token ct represents
summarized hidden states as shown in (2).

ct =

2τ+1∑
j=1

ht,j×softmax(Wvtanh(Wqht,j+Wkht,j)) (2)

where Wv ∈ Rd×1, Wq ∈ Re×d and Wq ∈ Re×d are learn-
able parameters and d represents the latent feature dimension
in additive attention.

Ultimately, a multi-layer perceptron (MLP) is employed as a
post-processing step following the token (ct ∈ Rd) to generate
the imputation of unmeasured low temporal resolution points.

B. Discriminator with Self Attention

The discriminator is proposed to approximate Wasserstein
divergence between ground-truth measurements and generated
measurements along with the given condition information.
Since the condition information is in the form of sequential
data, a self-attention mechanism is employed to select the
relevant important condition information.

The intractable nature of Wasserstein divergence poses a
challenge to measuring the quality of generated value. How-
ever, it can be tracked by the Kantorovich-Rubinstein dual
[37], as shown in (3).

inf
D

E[D(zt|xt)]− E[D(z̃t|xt)] + kE[||∇G(ẑt|xt)||p] (3)

where k and p are the coefficient and power of Wasserstein
divergence, respectively. z̃t ∈ Rm and zt ∈ Rm are generated
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and ground-truth measurements. ẑt ∈ Rm is a linear combi-
nation of generated and ground-truth measurements shown as
(4).

ẑt = µz̃t + (1− µ)zt (4)

where µ is a vector sampled for uniform distribution U [0, 1].
Therefore, the discriminator needs to receive conditional

information and object (ground-truth or generated) data and
compute Wasserstein divergence. To estimate Wasserstein di-
vergence more effectively, we employ self-attention mecha-
nisms in the discriminator. More specifically, it computes a
weighted sum of the value vectors (V ∈ R(2τ+1)×dv ) based
on the similarity between query vectors (Q ∈ R1×dk ) and key
vectors (K ∈ R(2τ+1)×dk ). The formula is shown as (5).

et = softmax(
QKT

√
dk

)V (5)

where dk is the dimension of queries and keys, dv is the
dimension of values. Q is the affine transformation of zt with
learnable parameters W q ∈ Re×dk . K and V are the affine
transformation of xt with learnable parameters W k ∈ Rn×dk
and W v ∈ Rn×dv , respectively. et ∈ Rdv is the embeddings
of the self-attention mechanism.

By contacting the embeddings and query vectors into an
MLP, the Wasserstein divergence is estimated straightfor-
wardly to use the proposed discriminator.

C. Loss function and training

The total loss function of proposed CANs includes content
loss, adversarial loss, and Wasserstein divergence penalty
regularization. Discriminator aims to maximize Wasserstein
divergence for encouraging perceptually superior solutions
residing in the manifold of ground-truth measurements, it can
be smoothly derived as shown in (6).

JD = D(z̃|x)−D(z|x)− k||∇D(ẑ|x)||p (6)

The generator loss includes content loss and Wasserstein
divergence adversarial loss. The content loss evaluates the
error between the imputation results and the ground truth,
which is instrumental in guiding the generator to impute more
realistic values, as shown in (7).

Lcontent =
1

N

N∑
i=1

||z̃i − zi||ll (7)

where N , z̃i, and zi denote the number of estimated low tem-
poral resolution measure sensors, the generated measurements,
and the ground-truth measurements. l means the order of loss,
l = 1 means the mean absolute error (MAE) while l = 2
means the mean square error (MSE). It is worth noting that
both MAE and MSE are intuitive metrics in power systems to
impute multi-timescale measurements [5]–[7].

The Wasserstein divergence adversarial loss encourages the
generator to favor solutions that reside on the manifold of
ground-truth measurements by trying to fool the discriminator.
Therefore, the resulting final objective loss function for the

generator is to minimize the sum of the content loss and
generation loss, as shown in (8).

JG = Lcontent + λgenD(z̃|x) (8)

where λgen is a hyper-parameter that controls the proportion
between the content loss and the discriminative loss.

The overall procedure of the proposed CANs is demon-
strated in Algorithm 1.

Algorithm 1: Wasserstein Divergence CANs with
Temporal Attention

Input: Batch size b, coefficient k and λ, power p,
learning rate αG and αD, decay rate d.

1 Initial generator wG and discriminator wD parameters;
2 for epoch = 1 to M do
3 Sample sequential high-resolution data

x1, x2, ..., xb from Pr ;
4 Sample low-resolution data z1, z2, ..., zb from Pr ;
5 Update discriminator network (wD) by ascending:

wD ← wD + αD∇JD;
6 if time step mod d then
7 Update generator network (wG) by descending:

wG ← wG − αG∇JG;
8 end
9 end

IV. PHYSICAL-GUIDED BNNS FOR LOW-OBSERVABLE
DSSE

In this section, we present a low-observability DSSE algo-
rithm, which employs novel physical-guided BNNs to estimate
the system states from limited observations. BNNs is a novel
neural network architecture that incorporates bilinear opera-
tions to model interactions between pairs of input variables.
The bilinear operations involve computing the element-wise
product of features from different sources, facilitating the
network to capture complex relationships and more natural
regularization through rank restriction [38]. Given that the sys-
tem states in distribution systems exhibit a low-rank property,
the matrix X is structured such that each row represents a
phase and columns represent the quantity relevant to that bus.
Specifically, the row of matrix X ∈ Ru×v is formulated as:

[vb,re, vb,im, |vb|, Pb, Qb] (9)

where vb,re, vb,im, and |vb| represent the real, imaginary, and
amplitude parts of voltage phasors at each phase of non-slack
buses, respectively. Pb and Qb are the active and reactive
power injections.

To address the DSSE problem, it is formulated as a rank-
minimization problem, where the goal is to estimate the low-
rank structure of X . The minimization of rank directly is
a non-convexity and NP-hardness problem, thus the nuclear
norm is used as a surrogate for rank. However, its recast is
computationally inefficient for large matrices and extensive
parameter tuning. Inspired by low-rank matrix factorization, it
is assumed that X can be decomposed into two matrices:

X = UV T (10)
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where U ∈ Ru×r and V ∈ Rv×r, such that rank(X) ≤
min(rank(U), rank(V )) and r < min(u, v), which achieve
the low-rank property of matrix X . To estimate U and V ,
we develop two encoders with parameterized θ1 and θ2 to
generate matrices û and v̂, which is denoted as:

û = f1(x;θ1) v̂ = f2(x;θ2) (11)

where û ∈ R1×ur and v̂ ∈ R1×vr are the extension of matrix
U and V into the vector form, respectively.

By reshaping the vector û and v̂ into matrix Û ∈ Ru×r and
V̂ ∈ Rv×r, then implementing Ŷ = Û V̂ T and reshape into
a vector form ŷ ∈ R1×uv subsequently. Finally, we feed it to
a decoder with parameterized ψ to obtain the final output:

ẑ = g(ŷ;ψ) (12)

where ẑ ∈ R1×uv is reshaped into a matrix with the shape
of Z ∈ Ru×v . It is worth emphasizing that the decoder can
be viewed as Z =W [Ŷ ;1]T in mathematical. Therefore, the
maximum rank of Z is r + 1 due to the properties of matrix
products.

In contrast to the electrical model-agnostic data-driven ap-
proach, the multidimensional Ohm’s law is investigated and
given by (13) based on the Z-Bus method [39], which is pre-
ferred over Newton-Raphson methods due to the predominant
high R/X ratios in distribution networks.[

i
is

]
=

[
Y YNS
YSN YSS

] [
v
vs

]
(13)

where is is the complex current injection of the slack bus.
Matrices Y , YNS , YSN , and YSS are formed by concatenating
the admittance matrices and solved by Picard’s iteration for
the nonlinear power flow model. Besides that, if the prior
knowledge about line parameters is unavailable, the data-
driven surrogate model can be developed for mapping the
relationship between injection power and power flow, even
with learning power flow in unobservable distribution system
topology and parameter [40].

The total loss function of the proposed physical-guided
BNNs is composed of matrix completion error, power flow
reconstructed error, and the regularization to Z. The matrix
completion error measures the difference between the observed
entries of X and the corresponding entries in Z at the known
positions PΩ. The power flow reconstruction error quantifies
the discrepancy between the estimated system voltage v
obtained from the physical-guided BNNs and the result v̂
derived from the power flow model. The regularization term
on Z encourages a simpler representation and helps prevent
overfitting. It is worth noting that the matrix completion error
is a soft constraint, and the data imputation result can be
further corrected via the integration of power flow models.
The total loss function is shown as (14).

J = ||PΩ � (Z −X)||2F + ||v − v̂||2F + λ||Z||2F (14)

where v represents the estimation of the physical-guided
BNNs, while v̂ corresponds to the result obtained from the
power flow model. PΩ denote the known elements index in
X . The Frobenius norm || · ||F is used to measure the matrix

completion error and the regularization term. The regulariza-
tion parameter λ controls the trade-off between fitting the data
and promoting a simpler solution.

V. SIMULATION RESULT

The proposed approach is verified on the three-phase un-
balanced IEEE 37 bus system, recommended by the Test
Feeder Working Group of the Distribution System Analysis
Subcommittee for evaluating the performance of state estima-
tion algorithms [41]. All networks are programmed in Pytorch
and implemented on a PC with an NVIDIA GeForce RTX
3080Ti GPU and Intel(R) Core(TM) i9-10900X CPU. The
aggregated 24-hour load profile at bus nodes is obtained from
[42], and the load distribution for other days is generated
by adding a sine wave of random amplitude and random
noise terms. Load reactive power is defined proportionately
to the load profile connected to the same bus with a lagging
power factor between [0.93, 0.95]. Moreover, the bus which
has its own PV and battery system assumes a three-phase load,
while others suppose a single-phase load. The aggregated AMI
meters are sampled over 15 minutes for active and reactive
power injections over a bus node. For Delta connection load,
the AMI meter is installed phase-wise. SCADA measures node
voltage magnitudes at 1-minute intervals and the µPMUs are
sampled at every 0.1s for obtaining node voltage phasors. The
baseline of numerical errors for µPMUs, SCADA, and AMI
is modeled as a zero-mean Gaussian distribution, which is
truncated to simulate maximum errors of 0.05%, 0.5%, and
0.1% [32], [43]. The formulation of numerical error is shown
in (15).

ẑi = zi(1 + e) (15)

where e ∼ N (0, ς) and ς is equal to one-third of corresponding
maximum errors specified for µPMUs, SCADA, and AMI. It is
worth noting that the error can be modeled in various forms,
and we leverage the Gaussian distribution to exemplify the
effectiveness of the proposed approach.

Moreover, the asynchronous error is modeled using a
Bernoulli Distribution, where there is a 1% possibility of
recording measurements within ±1 step, a 20% possibility
within ±10 steps, and a 10% possibility within ±5 steps
for µPMUs, SCADA, and AMI measurements [30], [44],
respectively. The measurements have both numerical error and
asynchronous error is noted as the hybrid error. The locations
of these meters are indicated in Fig. 4 and distribution systems
power flow analysis is implemented by running the OpenDSS
software.

To evaluate the proposed approach, peak signal-to-noise
ratio (PSNR) and mean absolute error (MAE) are adopted to
evaluate the performance of super-resolution imputation and
DSSE, which are defined as (16a) and (16b), respectively.

PSNR = 10 log10

N max{z2
i }Ni=1∑N

i=1(z̃i − zi)2
(16a)

MAE =
1

N

N∑
i=1

|z̃i − zi| (16b)
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Fig. 4. Measurements configuration for IEEE 37-bus feeder system.

where zi and z̃i are the ground truth and imputated values,
respectively.

The degree of observability in distribution systems is quan-
tified via fraction of available data (FAD) as shown in (17).

FAD =
Nm
Ntotal

(17)

where Nm is the number of measurements within the distri-
bution system. Ntotal represents the total physical quantities
at the non-slack buses, including the voltage phasors and
complex power phasors mentioned in (9). It is worth noting
that when the FAD is less than 50%, it will be considered as
a low-observability system [19].

A. Super resolution imputation

The comparative tests are implemented among Multi-
Task GP (MT-GP) [6], Conditional Variational Auto En-
coder (CVAE) [45], Wasserstein Generative Adversarial Net-
works (WGANs) [46], Super-Resolution CANs (SRCANs)
[47], Super-Resolution WCANs (SRWCANs), and SRCANs
with Temporal Attention (SRCANTA). It is worth noting
the comparison of SRCANs, SRWCANs, and SRCANTA
serve as ablation studies aimed at evaluating the performance
improvement attributed to different components. The mea-
surements are from distribution system power flow results
among 8640000 instances for 10 days. The super-resolution
imputation result of AMI and SCADA is shown in Table II.
The hyperparameter of the proposed algorithm is formulated
by trial and error and summarized as follows. The generator
is a single hidden layer GRU with 64 hidden features and
32 hidden features for additive attention. The self-attention
mechanism employs 64 hidden features and 32 hidden features
in the subsequent neural network within the discriminator. The
learning rate of the generator/discriminator is 1e-4/2e-4 and
the activation function is set as exponential linear units. The
batch size is set as 1024 and λgen is 1e-3. The coefficient and
power of Wasserstein divergence are 2 and 6, respectively. The
ablation studies aim to evaluate performance improvements
across various aspects:

• SRCANs: Investigating the effectiveness of Wasserstein
divergence and attention mechanisms;

• SRWCANs: Focusing specifically on the utilization of
attention mechanisms;

• SRCANTA: Exploring the effectiveness of Wasserstein
divergence.

It is observed that the proposed approach achieves a compet-
itive performance among other competitors. Comparisons with
Multi-Task GP demonstrate that adversarial loss effectively
enhances generalization ability. The performance of CVAE
and WGANs underscores the critical importance of incorporat-
ing conditional information for multi-timescale measurement
imputation. Furthermore, Wasserstein divergence has shown
improvements in reducing numerical error, while attention
mechanisms have proven effective in addressing asynchronous
error. Therefore, combining these techniques in the proposed
approach is expected to yield significant performance improve-
ments. Furthermore, it is worth noting that once the proposed
CAN model is trained and the parameters are saved, the
approach can perform measurement imputation in real time.
This capability ensures the efficient application of the model
in real-life data processing and analysis scenarios.

In scenarios where phasor measurements are unavailable,
the SCADA measurements are used directly to reconcile
AMI into a consistent temporal resolution with SCADA. It
is worth recognizing that the maximum imputation resolution
will be significantly lower compared to scenarios with phasor
measurements, primarily due to the restricted sampling rate
of SCADA. The simulation results are presented in Table III.
It is observed that the proposed algorithm outperforms MT-
GP, CVAE, and WGANs competitors. The ablation studies
involving SRCANs, SRWCANs, and SRCANTA demonstrate
improvements related to Wasserstein divergence for numerical
error and temporal attention mechanisms for asynchronous
error. Furthermore, it is worth noting that the imputation
accuracy in terms of MAE and PSNR is lower compared
to scenarios with phasor measurement. This highlights the
significance of integrating µPMU into low-observable distri-
bution systems to enhance accuracy and overall performance.
Besides that, the simulation result shown in Table II and
III illustrates that the super-resolution imputation of multi-
timescale measurement in distribution systems is not sensitive
to asynchronous error but sensitive to numerical error.

To further evaluate the super-resolution imputation perfor-
mance, the baseline noise levels were amplified stepwise up
to 10 times. The simulation results are shown in Fig. 5. It is
evident from the results that the imputation outcomes display
insensitivity to asynchronous errors, owing to the incorporation
of the attention mechanism. However, it is important to note
that numerical errors exert a greater impact on super-resolution
imputation, as they tend to disrupt the training process of
the proposed CANs. Moreover, the hybrid error, which en-
compasses both asynchronous and numerical errors, leads to
a more substantial error in the imputation process. Last but
not least, the SCADA imputation exhibits superior capabilities
compared to AMI imputation, primarily due to the higher
precision of µPMUs measurements. In addition, it is worth
noting that in scenarios with significant asynchronous errors
or serious data quality issues, it is advisable to pair meters
and develop sampling algorithms to address these challenges.
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TABLE II
THE SUPER-RESOLUTION IMPUTATION ERROR OF AMI/SCADA IN IEEE 37-BUS FEEDER SYSTEM.

None Error Numerical Error Async. Error Hybrid Error
PSNR(dB) MAE PSNR(dB) MAE PSNR(dB) MAE PSNR(dB) MAE

MT-GP 44.55/77.44 0.34/0.27 30.07/72.11 1.42/0.54 44.62/77.49 0.34/0.27 30.00/72.14 1.44/0.53
CVAE 43.35/76.56 0.40/0.31 29.20/71.68 1.65/0.56 43.36/76.54 0.39/0.32 29.21/71.74 1.63/0.56
WGANs 35.97/72.80 0.84/0.47 29.94/68.79 1.97/0.79 32.28/72.99 1.29/0.45 27.07/67.70 1.95/0.99
SRCANs 44.13/79.80 0.29/0.22 29.68/72.62 1.49/0.49 46.12/79.27 0.29/0.22 29.63/72.68 1.51/0.59
SRWCANs 44.85/78.13 0.33/0.22 30.35/72.72 1.39/0.49 44.79/77.90 0.33/0.26 30.04/72.68 1.38/0.49
SRCANTA 44.88/79.85 0.29/0.19 26.63/75.81 1.30/0.28 46.17/79.94 0.29/0.18 31.10/75.37 1.25/0.30
Proposed 46.08/80.26 0.28/0.16 31.36/76.55 1.03/0.26 46.27/79.78 0.27/0.19 32.32/76.45 1.04/0.26

TABLE III
THE SUPER-RESOLUTION IMPUTATION ERROR OF AMI WITH NO

PHASOR MEASUREMENTS IN TERMS OF PSNR/MAE.

None Error Numerical Error Async. Error Hybrid Error
MT-GP 40.23/0.52 22.12/2.82 39.92/0.54 23.61/2.73
CVAE 37.86/0.68 23.17/2.50 37.91/0.68 25.17/2.51
WGANs 31.87/1.40 22.59/3.34 31.59/1.39 22.53/3.30
SRCANs 41.70/0.43 21.85/3.63 41.57/0.45 21.91/3.63
SRWCANs 41.92/0.39 23.55/2.84 41.82/0.39 23.78/2.92
SRCANTA 42.51/0.37 23.53/2.98 42.52/0.37 22.94/2.94
Proposed 42.63/0.33 25.09/2.33 43.04/0.34 24.61/2.50

B. Low-observable DSSE

The matrix (9) in the proposed IEEE 37 distribution systems
shown in Fig. 4 has 540 elements at non-slack buses. However,
only 39 measurements are distributed across distribution sys-
tems, encompassing 6 voltage vectors, 9 voltage magnitudes,
and 24 power injection readings. Thus, the FAD is 39/540 =
7.59%, significantly below the 50% threshold for an observ-
able system and indicates a notably low observability level.
The hyperparameters employed in the proposed physical-
guided BNNs comprise two hidden layers within the encoders.
The encoder is composed of hidden numbers of 1024, 512, and
512, 256 via trial and error, respectively. On the other hand,
the decoder is a single hidden neural network with identical
inputs and outputs. The DSSE performance is evaluated based
on the absolute error of voltage phasors, considering both
magnitude and angle components among the testing set. Fig. 6
demonstrates the simulation results and reveals that the mean
absolute error of nominal voltage magnitude across all buses
remains below 1. Additionally, the voltage angle exhibits a
loss of approximately 1e-4 radians.

In order to showcase the effectiveness of the proposed data-
driven DSSE algorithm, we compare it with other data-driven
approaches and model-based approaches, that is, physical-
guided deep learning (PGDL), BNNs without physical guid-
ance, and low-rank matrix completion (LRMC) [6] as the
baseline to evaluate the performance of low-observable DSSE.
These algorithms are evaluated to assess the performance of
DSSE in low-observable scenarios. The BNNs used in the
comparison have the same neural structure as the physical-
guided BNNs. The physical-guided deep learning approaches
also employ 1024 and 512 hidden features. On the other hand,
the LRMC method is solved using the Gurobi software. The
comparison of DSSE in terms of error level and computational
complexity is shown in Table IV.
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Fig. 5. The MAE/PSNR for super-resolution imputation with the different
error levels.

TABLE IV
THE COMPARISON OF DSSE IN TERMS OF ERROR LEVEL AND

COMPUTATIONAL COMPLEXITY FOR IEEE 37 BUS SYSTEM.

Algorithm MAE PSNR(dB) Computational time(s)
PGDL 0.44 65.04 8.44e-6
BNNs 2.17 53.50 8.92e-6
LRMC 2.69 52.63 2.40
Proposed 0.35 66.47 8.87e-6
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Fig. 6. Representative voltage phasor estimates of the IEEE 37-bus
feeder system.

To further evaluate the performance of low-observable
DSSE, we reduce the measurements stepwise to evaluate
the proposed approach on the lower FAD. Specifically, the
number of measurements varies between 23 and 38, and these
measurements are randomly placed within the distribution
system. The random placement of measurements is designed
to test the sensitivity of the proposed algorithm to measure-
ment placement under very low observability conditions. The
simulation result is shown in Fig. 7, which demonstrates the
proposed approach can still exhibit superior performance on
4.26% FAD.
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Fig. 7. MAE and PSNR metrics for DSSE at different FADs.

The performance of DSSE under arbitrary measurement
locations is shown in Fig. 8. Without loss of generality, some
sensors are located in the zero-load bus in order to mimic that
the distribution systems are unobservable to the operator. The
simulation result illustrates the proposed approach is robust
to measuring location changes since the PSNR metrics almost
keep constant.

To validate the scalability of the proposed approach for the
large distribution network, the proposed approach is imple-
mented on the IEEE 123 bus system, which comprises single-
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Fig. 8. MAE and PSNR metrics for DSSE at different sensor locations.

phase, two-phase, and three-phase overhead and underground
lines. The measurements were placed randomly to further
evaluate the robustness of the pro-posed method under dif-
ferent measurement configuration schemes, adhering to the
constraint that there are 85 available measurements out of
1220 elements, representing a very low-observable condition
with a FAD rate of 6.97%. The DSSE algorithms are executed
20 times and convergence metrics are illustrated in Table V.
The simulation result indicates that the proposed algorithm
is robust against variations in measurement placements and
consistently outperforms other competing approaches.

TABLE V
THE COMPARISON OF DSSE IN TERMS OF ERROR LEVEL AND

COMPUTATIONAL COMPLEXITY FOR IEEE 123 BUS SYSTEM.

Algorithm MAE PSNR(dB) Computational time(s)
PGDL 1.02±0.02 62.08±0.14 9.74e-6±0.01e-5
BNNs 3.59±0.05 51.45±0.21 1.95e-5±0.02e-5
LRMC 5.54±0.54 38.05±0.59 3.04±0.03
Proposed 0.37±0.01 70.14±0.21 2.02e-5±0.02e-5

VI. CONCLUSION

We present a novel data-driven framework that combines
super-resolution imputation with low-observability DSSE. The
proposed approach employs two innovative machine learning
techniques, that is, Wasserstein divergence CANs with tempo-
ral attention and physical-guided BNNs. These methods enable
accurate imputation of multi-scale measurements and subse-
quent estimation of voltage phasors, particularly in scenarios
with limited observability. The CANs demonstrate impressive
performance, achieving a PSNR of 80.26 dB and 46.08 dB
for SCADA and AMI imputation, respectively. Moreover, the
physical-guided BNNs exhibit the ability to adapt to various
measurement configurations and data sources in real-time,
yielding a PSNR of 66.47 dB for DSSE. It is worth noting
that the proposed DSSE approach still works even when the
FAD is 4.25%.

In the future, we will incorporate transfer learning tech-
niques or graph neural networks into the proposed frame-
work to accommodate the unknown topology changes or
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reconfigurations that occur in distribution systems. Besides
that, integrating physical prior knowledge into super-resolution
imputation for multi-timescale measurements in distribution
systems is also an interesting topic.
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