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Small-signal Stability Constrained Optimal Power 
Flow Considering Eigenvalue Distribution

Zheng Huang, Kewen Wang, Yi Wang, Jing Han, and Jun Liang

Abstract——In the existing small-signal stability constrained op‐
timal power flow (SSSC-OPF) algorithms, only the rightmost ei‐
genvalue or eigenvalues that do not satisfy a given threshold, 
e. g., damping ratio threshold and real-part threshold of eigen‐
value, are considered in the small-signal stability constraints. 
The effect of steady-state, i.e., operating point, changes on eigen‐
values is not fully taken into account. In this paper, the small-
signal stability constraint that can fully reflect the eigenvalue 
change and system dynamic performance requirement is 
formed by analyzing the eigenvalue distribution on the complex 
plane. The small-signal stability constraint is embedded into the 
standard optimal power flow model for generation reschedul‐
ing. The simultaneous solution formula of the SSSC-OPF is es‐
tablished and solved by the quasi-Newton approach, while pen‐
alty factors corresponding to the eigenvalue constraints are de‐
termined by the stabilization degree of constrained eigenvalues. 
To improve the computation speed, a hybrid algorithm for ei‐
genvalue computation in the optimization process is proposed, 
which includes variable selection for eigenvalue estimation and 
strategy selection for eigenvalue computation. The effectiveness 
of the proposed algorithm is tested and validated on the New 
England 10-machine 39-bus system and a modified practical 68-
machine 2395-bus system.

Index Terms——Damping ratio, eigenvalue, optimal power flow, 
quasi-Newton approach, sensitivity, small-signal stability.

NOMENCLATURE

A. Indices and Sets
Ω(l)

C

ΩDk

Ω(l)
D

Set of eigenvalues to be considered in the l th uncon‐
strained optimization

Set of dominant variable serial numbers for electro‐
mechanical oscillation mode k

Set of dominant variable serial numbers in the l th 
unconstrained optimization

ΩS

j1, j2

l

B. Parameters

α β 

ε 

κ 

ϖ 

σC 

ζT ζC 

Dt 
ai bi
ci 

A, I

Imax 

m r 

NM 
NG NS

RG 

S

ui vj 

C. Variables

σk ωk

σr 

λk ζk 

λm 

ζm 

Dζm 

Dσr 

Set of serial numbers of all state variables

Iteration numbers of one-dimensional search in the 
l th unconstrained optimization, and j1 < j2

Iteration number of quasi-Newton approach

Penalty factors for real-part constraints of eigenval‐
ue and damping ratio constraints

Convergence tolerance

Scaling factor

Threshold for determining NR in Algorithm 1

Real-part threshold of eigenvalue, and σC < 0

Damping ratio thresholds, and ζC > ζT

Time interval

Cost coefficients of the ith generator

State matrix and identity matrix

The maximum iteration number in Algorithm 1

Numbers of power flow equations and technical 
limits

Number of considered contingency scenarios

Numbers of generators and state variables

Vector of ramping limits

Threshold for selecting eigenvalue computation 
strategy

Penalty factors for the ith technical limit and the j th 
small-signal stability constraint

Real and imaginary parts of the kth eigenvalue

The largest real part of eigenvalues

The kth eigenvalue and the corresponding damping 
ratio

Eigenvalue corresponding to the minimum damp‐
ing ratio

The minimum damping ratio of all modes

Variation of the minimum damping ratio between 
optimal power flow (OPF) and small-signal stabili‐
ty constrained optimal power flow (SSSC-OPF) so‐
lutions

Variation of the largest real part of eigenvalues be‐
tween OPF and SSSC-OPF solutions

Manuscript received: March 3, 2023; revised: June 30, 2023; accepted: De‐
cember 30, 2023. Date of CrossCheck: December 30, 2023. Date of online pub‐
lication: January 29, 2024. 

This work was supported by the National Natural Science Foundation of Chi‐
na (No. 62203395), the Postdoctoral Research Project of Henan Province (No. 
202101011), and the Key R&D and Promotion Project of Henan Province (No. 
222102220041).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
   Z. Huang, K. Wang (corresponding author), Y. Wang, and J. Han are with the 
School of Electrical and Information Engineering, Zhengzhou University, Zheng‐
zhou 450001, China (e-mail: huangzheng1535@163.com; kwwang@zzu.edu.cn; 
yiwang@zzu.edu.cn; hanj0326@gs.zzu.edu.cn).
   J. Liang is with Cardiff University, Cardiff CF24 3AA, U. K. (e-mail: Li‐
angJ1@cardiff.ac.uk).

DOI: 10.35833/MPCE.2023.000135

1052



HUANG et al.: SMALL-SIGNAL STABILITY CONSTRAINED OPTIMAL POWER FLOW CONSIDERING EIGENVALUE DISTRIBUTION

DL 

η(l) 

d (l), s(l)

H 

H (l) 

kr, kt

kQR, 
kIRA

kES 

K

L(K(l))

Nλ

NR

PGi

R, Q

Uk, Wk

VGi

w(×)
i

x, y

Variation of augmented Lagrangian function value 
between OPF and SSSC-OPF solutions

Optimal step length for the l th unconstrained optimi‐
zation

Deviations of parameter and gradient vectors asso‐
ciated with the ith unconstrained optimization

Approximation to inverse of Hessian matrix of aug‐
mented Lagrangian function

H at operating point K(l)

Total numbers of H restarts and optimal step 
length search

Total number of calls to QR algorithm and implicit‐
ly restarted Arnoldi approach

Total number of calls to the first-order eigenvalue 
sensitivity computation subroutine without sensitivi‐
ty computation for updating H

Column vector consisting of state variables and La‐
grangian multipliers

Augmented Lagrangian function value at K(l)

Number of modes considered in Ω(l)
C

Number of selected dominant state variables

Active power output of the ith generator

Intermediate variables in Algorithm 1

Right and left eigenvectors corresponding to the kth 
eigenvalue

Voltage magnitude of the ith generator

Sensitivity of ζk with respect to state variable xi in 
the l th unconstrained optimization

Column vectors of state variables and Lagrangian 
multipliers

I. INTRODUCTION

POWER flow distribution affects both the steady-state 
and stability performance of power systems. For compu‐

tational reason, the standard optimal power flow (OPF) mod‐
el usually does not consider stability constraints or simply 
takes the form of a branch phase angle difference [1], [2]. 
With the significant improvement in computing power, it is 
feasible to consider stability constraints in the OPF model 
[3] - [5]. Small-signal stability constrained optimal power 
flow (SSSC-OPF) has gained considerable popularity in pow‐
er system operating as economic efficiency and small-signal 
stability are both considered. However, solving the SSSC-
OPF problem is very time-consuming compared with the 
OPF. There is always a problem of how to reduce the im‐
pact of the small-signal stability constraint (SSSC) on the 
computation speed [6].

The SSSC in the SSSC-OPF model needs not only to ade‐
quately describe the stability of the system, but also to con‐
sider the computation burden. Therefore, for small-scale 
power systems, the SSSC includes all or some of the eigen‐
values; for large-scale power systems, only several critical ei‐
genvalues can be considered due to the computation burden. 
In [7] and [8], the SSSCs are formulated in terms of the sen‐
sitivity of the minimum damping ratio and the sensitivity of 

the maximum real part of the eigenvalue, respectively. In [9]-
[11], the SSSC is that the largest real part of the eigenvalues 
is less than a threshold. An important issue, as reported in 
[7]-[11], is that the minimum damping ratio or the largest re‐
al part of the eigenvalues can be chosen as the small-signal 
stability index. However, as the system operating point 
changes, the eigenvalue corresponding to the stability index 
may change from one to another, which may lead to oscilla‐
tions among several critical modes in the solution process 
[7], [10]. In [12] - [14], the constrained eigenvalues in the 
SSSC include the real part of all eigenvalues. To improve 
the overall dynamic performance of the system, the SSSC, 
which is described by all eigenvalues with damping ratio no 
less than the given requirement, is incorporated into the OPF 
model [15]. However, since the effect of steady-state chang‐
es on eigenvalues is not fully considered in the SSSC, eigen‐
value oscillations may still occur during the solution pro‐
cess. To alleviate the oscillation of eigenvalues, an active set 
strategy is utilized to update the constrained eigenvalues 
[16]. However, it should be pointed out that in this ap‐
proach, the minimum damping ratio threshold is changed 
successively, so that the optimal operating point is ap‐
proached step by step. Therefore, in this paper, the SSSC is 
constructed considering the effect of steady-state changes on 
eigenvalues, and the eigenvalue oscillation in the simultane‐
ous solution of the SSSC-OPF problem is also addressed.

At present, the SSSC-OPF problem is mainly solved by 
gradient-based optimization algorithms [7] - [13], [15] - [19] 
and artificial intelligence algorithms such as differential evo‐
lution algorithm [14], self-adaptive evolutionary program‐
ming [20], and back propagation neural network algorithm 
[21]. Most of these algorithms are based on eigenvalue anal‐
ysis, but it is time-consuming to compute eigenpairs repeat‐
edly in the solution process. To reduce the computation re‐
quirement, partial eigenvalue approaches are utilized to com‐
pute the eigenvalues in the SSSC-OPF problem, e. g., Ray‐
leigh’s iteration [13] and implicitly restarted Arnoldi (IRA) 
approach [7], [12], [15]. Alternatively, critical eigenvalues 
can be estimated by using the eigenvalue sensitivity ap‐
proach, which avoids the formation of the state matrix and 
the computation of eigenpairs. However, it may result in the 
small-signal stability index being smaller or larger than the 
given threshold. To deal with this problem, a scaling factor 
is introduced to correct for eigenvalue sensitivity in eigenval‐
ue estimation [7], [13]. This problem can also be solved by 
a hybrid algorithm using approximate (eigenvalue sensitivity 
approach) and accurate computations, e. g., QR algorithm 
[22] or partial eigenvalue approaches.

In this paper, a practical algorithm for the simultaneous so‐
lution of the SSSC-OPF problem is proposed. The SSSC is 
formed here by analyzing the eigenvalue distribution on the 
complex plane, which is composed of the real part of eigen‐
value and the damping ratio of some critical modes. These 
critical modes include all unstable and underdamped modes 
as well as those that may become unstable and underdamped 
as the system operating point changes. The SSSC is integrat‐
ed with the standard OPF model, and the penalty factors for 
these constrained eigenvalues are determined by their corre‐
sponding stabilization degree. The quasi-Newton approach is 
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employed to simultaneously solve the proposed SSSC-OPF 
model, and a hybrid algorithm using approximate and accu‐
rate computation is proposed to compute eigenvalues in the 
optimization process.

The remainder of this paper is organized as follows. Sec‐
tion II presents the SSSC. The model and algorithm of the 
SSSC-OPF are given in Section III. In Section IV, the effec‐
tiveness of the proposed algorithm is tested and validated on 
the New England 10-machine 39-bus system and a modified 
practical 68-machine 2395-bus system. Finally, Section V 
outlines the conclusions.

II. SSSC

For small-signal stability, the state matrix A is formed by 
the linearized model of power systems at an equilibrium 
point [22]. The stability of a system is determined by the ei‐
genvalues of A. Let λk be a complex eigenvalue, we can ob‐
tain:

λk = σk ± jωk (1)

Each pair of the complex eigenvalues corresponds to an 
oscillatory mode. The damping ratio ζk of an oscillatory 
mode is given by:

ζk =-
σk

σ 2
k +ω

2
k

(2)

For a power system with NG generators, there are usually 
NG - 1 electromechanical oscillation modes. To ensure the 
system dynamic performance, the eigenvalues of all electro‐
mechanical oscillation modes must have negative real parts, 
and the damping ratio should not be less than a given thresh‐
old ζT, e.g., 5% [16]. Thus, the traditional SSSC1 can be ex‐
pressed as:

{σk < 0
ζk ³ ζT

    k = 12NG - 1 (3)

For SSSC-OPF problems, if the SSSC1 of (3) is not satis‐
fied, the system operating point will be adjusted to improve 
these modes. However, as the system operating point chang‐
es, some stable modes may become unstable and vice versa, 
i. e., eigenvalue oscillations may occur during the solution 
process. This oscillation may lead to poor convergence of 
the algorithm, or even make the algorithm difficult to con‐
verge.

To alleviate the oscillation of constrained eigenvalues dur‐
ing the solution process, the complex plane is divided into 
three parts in this paper, as shown in Fig. 1.

Region 1 indicates the modes that do not satisfy SSSC1. 
All eigenvalues in region 1 are included in ΩC. Region 2 rep‐
resents the modes with insufficient stability or security mar‐
gin, i. e., the eigenvalues are close to the imaginary axis or 
ζT. Since the eigenvalues move during the optimization pro‐
cess, the eigenvalues in region 2 may cross the boundary to 
region 1. Hence, the eigenvalues in region 2 should be con‐
sidered in ΩC. The modes in region 3 are relatively stable 
and can be ignored. However, if the eigenvalues in region 3 
move to region 2, they should also be considered in ΩC. 
From the above analysis, it can be observed that ΩC not on‐
ly contains multiple critical modes, but also changes dynami‐
cally. Mathematically, ΩC can be described by:

ΩC ={λk:σk ³ σC }{λk:ζk < ζC }    k = 12NG - 1 (4)

And the proposed SSSC2 can be expressed as:

{σk < σC

ζk ³ ζC

    k = 12NG - 1 (5)

If σC = 0 and ζC = ζT, the SSSC2 of (5) becomes the 
SSSC1. The SSSC2 not only reflects the dynamic perfor‐
mance requirement of the system, but also fully considers 
the effect of the operating point changes on eigenvalues. It 
should be noted that the purpose of SSSC is not to require 
all modes to satisfy the SSSC2, but to prevent the eigenval‐
ues in region 2 from moving to region 1 when the modes in 
region 1 are improved during the optimization process. To 
achieve this purpose, different penalty factors are set for ei‐
genvalues in different regions.

III. MODEL AND ALGORITHM OF SSSC-OPF

A. Model of SSSC-OPF

SSSC-OPF problems are proposed by adding the SSSC to 
the standard OPF model [12], [16]. The SSSC-OPF formula‐
tion can be written as:

min  f (x) (6)

s.t.

h(x)= 0 (7)

g(x)£ 0 (8)

q(x)£ 0 (9)

where f (x) indicates the objective function; h(x)=[h1 (x), 
h2 (x), , hm (x)]T is the vector corresponding to the equality 
constraints, e.g., power flow equations; g(x)=[g1 (x), g2 (x), , 
gr (x)]T is the vector corresponding to the inequality con‐
straints, including technical limits for active power, reactive 
power, voltage magnitudes, and branch flow; and q(x)=
[q1 (x) q2 (x)  q2NG - 2 (x)]T is the vector corresponding to 

the compact form of the SSSC, which is the implicit func‐
tion of x.

Real
axis

Imaginary axis

Region 1

Region 2

Region 3

Region 1; Region 2; Region 3

ζC ζT

σC

Fig. 1.　Distribution range of eigenvalues.
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B. Problem Reformulation

In general, the SSSC-OPF problem is a nonlinear program‐
ming problem in mathematics. There are many approaches 
to deal with this problem [23], such as gradient-based opti‐
mization algorithms and artificial intelligence algorithms. In 
this paper, the Lagrangian multiplier approach [24] is uti‐
lized to deal with the equality constraint. Because of its sim‐
plicity and ease of implementation, the exterior penalty func‐
tion approach [1] is employed to deal with the inequality 
constraints. Then, an augmented Lagrangian function can be 
formed as:

L(xy)= f (x)+ yTh(x)+∑
i = 1

r

(ui ×max(0gi (x)))2 +

∑
j = 1

2NG - 2

(vj ×max(0qj (x)))2 (10)

q2k - 1 (x)= σk - σC (11)

q2k (x)= ζC - ζk (12)

Penalty factors for SSSCs are given as:

v2k - 1 =
ì
í
î

ïï

ïïïï

α σk ³ 0
κα σC £ σk < 0
0 σk < σC

(13)

v2k =
ì

í

î

ïïïï

ïïïï

β      ζk < ζT

κβ    ζT £ ζk < ζC

0      ζk ³ ζC

(14)

If a mode is located in region 1 (σk ³ 0 or ζk < ζT), the sys‐
tem is underdamped or unstable under small disturbances. 
To improve this mode, α and β need to be set relatively 
large. However, the penalty factors for the modes in region 
2 (σC £ σk < 0 or ζT £ ζk < ζC) should be relatively small. In 
other words, κ is less than 1. This is because the penalty fac‐
tors for the modes in region 2 are not to improve the modes, 
but to prevent the eigenvalues in region 2 from moving to re‐
gion 1. It is effective to select the penalty factors by starting 
with a low value and then increasing it during the optimiza‐
tion process [1].

C. Optimization Technique

The Karush-Kuhn-Tucker (KKT) conditions for the SSSC-
OPF problem of (10) can be given as follows. Ñx L and Ñy L 
are gradient vectors of the Lagrangian with respect to state 
variables and Lagrangian multipliers, respectively.

Ñx L(xy)= 0 (15)

Ñy L(xy)= 0 (16)

Since the second-order eigenvalue sensitivity is very time-
consuming [25], the quasi-Newton approach is utilized to 
solve the KKT conditions (15) and (16). Let K =[x    y]T, an 
iterative formula is given by:

K (l+ 1)=K (l)- η(l) H (l)ÑL(K (l) ) (17)

where ÑL(K (l) )=[Ñx L(K (l) )T    Ñy L(K (l) )T ]T; and η(l) can be ob‐
tained by using the one-dimensional search [26]. In this pa‐
per, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) ap‐
proach [26] is used for updating matrix H.

H (l+ 1)= ( )I -
s(l) (d (l) )T

(d (l) )Ts(l)
H (l)( )I -

d (l) (s(l) )T

(d (l) )Ts(l)
+

s(l) (s(l) )T

(d (l) )Ts(l)

(18)

ì
í
î

s(l)=-η(l) H (l)ÑL(K (l) )

d (l)=ÑL(K (l+ 1) )-ÑL(K (l) )
(19)

After each iteration, the inequality constraints (8) and (9) 
are checked and L(K (l) ) is changed. Near the optimal solu‐
tion of L(K (l) ), the variation of K (l) is relatively small. How‐
ever, due to the highly nonlinear relationship between eigen‐
values and operating parameters [25], any change in operat‐
ing parameters may result in significant changes of eigenval‐
ues. Although the range of eigenvalues considered is extend‐
ed by the SSSC2, the modes considered in L(K (l) ) may also 
be changed. If the modes considered in L(K (l + 1) ) are differ‐
ent from those in L(K (l) ), d (l) used to update the matrix H (l + 1) 
may be ineffective and may even provide a wrong direction. 
Therefore, in this case, H (l + 1) has to be restarted from the 
identity matrix.

D. A Hybrid Algorithm for Eigenvalue Calculation

During the simultaneous solution of the SSSC-OPF using 
the quasi-Newton approach, η(l) is obtained by the one-dimen‐
sional search in the l th unconstrained optimization. In the pro‐
cess of searching for η(l), it is necessary to repeatedly com‐
pare the value of the augmented Lagrangian function L(K). 
This requires repeatedly forming the state matrix and calcu‐
lating eigenvalues, which is time-consuming. For small-scale 
power systems, an accurate eigenvalue computation, i.e., QR 
algorithm, IRA approach, can be performed for each itera‐
tion. For large-scale power systems, the computation burden 
of eigenvalues is much greater than that of solving the equi‐
librium point. To reduce the computation cost, the eigenval‐
ues considered in L(K (l) ) can also be computed by a hybrid 
algorithm using accurate eigenvalue computation and eigen‐
value estimation.
1) Variable Selection for Eigenvalue Estimation

Since the number of state variables in large-scale power 
systems may be large, it is also time-consuming to compute 
the sensitivities of multiple eigenvalues with respect to all 
state variables in x. To reduce the sensitivity computation 
time, it is necessary to reduce the number of variables in x 
for eigenvalue estimation. This means that only dominant 
variables are used for eigenvalue estimation.

The small-signal stability index ζ is utilized to explain 
how to select the dominant variables. For an electromechani‐
cal oscillation mode k, the first-order Taylor series expansion 
of ζ ( j2)

k  at an operating point x( j1) is given in (20), which can 
be rewritten as (21).

ζ ( j2)
k = ζ ( j1)

k +∑
i = 1

NS ¶ζ ( j1)
k

¶x( j1)
i

(x( j2)
i - x( j1)

i ) (20)

Dζk = ζ
( j2)

k - ζ ( j1)
k =∑

i = 1

NS

w( j1)
i Dxi (21)

In [17], for an electromechanical oscillation mode, state 
variables with relatively large damping ratio sensitivity are 
selected for eigenvalue estimation. However, it can be ob‐
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served from (21) that Δζk is related to both w( j1)
i  and Δxi. 

Since Δxi is determined by (17), there is no guarantee that if 
Δζk is relatively large, Δxi will also be relatively large. If 
w( j1)

i  is relatively small but Δxi is relatively large, w( j1)
i Δxi 

may also be relatively large. Compared with w( j1)
i , w( j1)

i Δxi re‐
flects the impact on Δζk more accurately. Therefore, in this 
subsection, variable selection according to wiΔxi is proposed 
for eigenvalue estimation of multiple electromechanical oscil‐
lation modes.

To reduce the computation time, if w( j1)
i Δxi in (21) has a 

relatively small effect on Δζk, it can be ignored. However, 
all w( j1)

i  are unknown beforehand, because the purpose of 
variable selection is to select w( j1)

i  that needs to be computed. 
Fortunately, all w(l)

i  have been computed in each uncon‐
strained optimization, and w(l)

i Δxi can be used for variable se‐
lection. For a mode k, the absolute values of all w(l)

i Δxi are 
sorted in decreasing order, i.e.,

| w(l)
1 Dx1 | > | w(l)

2 Dx2 | > > || w(l)
NR
DxNR

> > || w(l)
NS
DxNS

(22)

where || ×  represents the absolute value.
Assuming that the first NR ||w(l)

i Dxi  in (22) have a relative‐

ly large effect on Δζk, and the first NR ||w(l)
i Dxi  correspond‐

ing to the state variables are considered as the dominant vari‐
ables and will be selected. The value of NR is determined by 
Algorithm 1.

For the mode k, ΩD,k is given by:

ΩDk ={12NR }    kÎΩ(l)
C (23)

Multiple modes are included in Ω(l)
C , and dominant vari‐

ables for different modes are usually inconsistent. Therefore, 
for multiple modes, the dominant variables are selected as:

Ω(l)
D =ΩD1ΩD2ΩDk    kÎΩ

(l)
C (24)

Note that the computation complexity of the proposed 
variable selection approach is very low. To reduce the im‐
pact of variable selection on the optimization process, domi‐
nant variables can be reselected when w( j1)

i  needs to be com‐
puted in each iteration.
2) Strategy Selection for Eigenvalue Computation

The hybrid algorithm can be used for eigenvalue computa‐
tion in the one-dimensional search process, but it is still a 
problem to choose an appropriate eigenvalue computation 
strategy (accurate eigenvalue computation or eigenvalue esti‐
mation) in each iteration. An accurate eigenvalue computa‐
tion can be done after several iterations, and the eigenvalue 
estimation will be used for the rest of the iterations. Howev‐
er, this may lead to poor convergence or even non-conver‐
gence of the algorithm because the variation of state vari‐

ables may be large. Therefore, the following condition, as 
given in (25), is utilized to choose an appropriate eigenvalue 
computation strategy.

∑
i = 1

NS

|| x( j1)
i - x( j2)

i £ S (25)

Assume that an accurate eigenvalue computation is per‐
formed at x( j1) and the value of S is given. If (25) is not satis‐
fied at operating point x(j2), the eigenvalues corresponding to 
x( j2) must be computed accurately. If (25) is satisfied at x( j2), 
the eigenvalue sensitivity approach will be utilized to com‐
pute the eigenvalues until (25) is not satisfied at x( j2).
3) Eigenvalue Estimation with Sensitivity Approach

If (25) is satisfied at x( j2), it is assumed that the modes 
considered in L(K ( j2) ) are the same as those considered in 
L(K ( j1) ). Based on the eigenvalue sensitivity approach, the ei‐
genvalues at x(j2) can be estimated by:

λk (x( j2) )= λk (x( j1) )+∑
i

(x( j2)
i - x( j1)

i )
¶λk (x( j1) )

¶x( j1)
i

(26)

¶λk

¶xi

=W T
k

¶A
¶xi

Uk    kÎΩ
( j1)
C (27)

{iÎΩS     x
( j1)= x(l)

iÎΩ(l)
D    x( j1)¹ x(l) (28)

The derivative of A with respect to state variable xi can be 
obtained using plug-in modeling technology [25].

E. Flowchart of Proposed Algorithm

For the sake of simplicity, a computation flowchart of the 
proposed algorithm for the SSSC-OPF problem is given in 
Fig. 2.

Algorithm 1: determine value of NR

1: Initialization: set i = 1, Imax = NS, NR = 0, R = 0, and Q = 0; choose a 
threshold ϖ

2: while i < Imax do
3:   set R¬R +w(l)

i Dxi, Q¬ | w(l)
i + 1Dxi + 1 R |, NR¬ i

4:   if Q <ϖ
5:    Output NR and stop
6:   end if
7:   set i¬ i + 1
8: end while

Start

Y

N

Y

End

Y

N

N

Input algorithm parameters, set l=1, given K (l)

Calculate L(K (l))

Calculate the gradient ÑL(K (l)) and update set ΩC
(l)

Is l equal to 1?

Are modes

 considered in L(K (l)) different

 from those in L(K (l�1))?

Update H(l) by using (18) and (19)

Search for η(l) by using one-dimensional search

 and calculate eigenvalues using hybrid algorithm

Update K (l+1) using (17) and calculate L(K (l+1))

|L(K (l+1))�L(K (l))|≤ε?

l=l+1

H
(l)=I

Fig. 2.　Flowchart of proposed algorithm.
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F. Extension of Proposed Algorithm

The extension of the proposed algorithm considering both 
the normal and contingency operating conditions will be dis‐
cussed below. The OPF model considering SSSCs under the 
normal and contingency operating conditions of the power 
system can be formulated as follows. The subscripts 0 and ℓ 
represent the normal operating condition and contingency 
scenario, respectively.

min f (x0 ) (29)

s.t.

h0 (x0 )= 0 (30)

G0 (x0 )£ 0 (31)

hℓ (xℓ )= 0    ℓ = 12NM (32)

Gℓ (xℓ )£ 0    ℓ = 12NM (33)

| x0 - xℓ | £RGDt    ℓ = 12NM (34)

G0 (x0 )£ 0 is the compact form of constraints (8) and (9). 
Formula (34) represents linking constraints relating state vari‐
ables of the normal operating condition and state variables 
of any of the contingency scenarios.

The problem in (29) - (34) can be solved by several algo‐
rithms, e. g., Benders decomposition utilized in this paper. 
Using the Benders decomposition, the problem can be de‐
composed into a normal operating master problem and a set 
of contingency sub-problems. The whole problem is iterative‐
ly solved between the master problem and sub-problems. 
The proposed algorithm in this paper can be utilized to solve 
both the master problem and sub-problems. A detailed de‐
scription of the Benders decomposition used in optimization 
problems can be found in [27] and [28].

IV. CASE STUDIES

In this section, the proposed algorithm is applied to the 
New England 10-machine 39-bus system and a modified 
practical 68-machine 2395-bus system to illustrate the effec‐
tiveness. For all systems, the loads are modeled as constant 
impedance. Except for the slack generator, PGi and VGi of all 
generators are included in the state variables. The objective 
function is to minimize the cost of power generation, which 
can be expressed as:

min f (x)=∑
i = 1

NG

(ai P
2
Gi + bi PGi + ci ) (35)

Double precision computation is typically used in small-
signal stability analysis, because solving eigenpairs is compu‐
tationally intensive and introduces relatively large round-off 
errors. The scaling factor κ is set to be 10-2. The initial val‐
ues of the penalty factors α and β are set to be 100 and the 
maximum value is set to be 10000. After each unconstrained 
optimization, the penalty factors corresponding to be the vio‐
lated constraints will be increased proportionally [1], [29]. 
The convergence tolerance ε is set to be 10-6.

A. New England 10-machine 39-bus System

The New England 10-machine 39-bus system is often 
used for stability analysis. Details of network parameters, 

nodal power, and dynamic parameters can be found in [30]. 
The generator cost coefficients can be found in [2]. The volt‐
age magnitude limits are from [10]. The generator limits are 
from [13]. The generators are described by the fourth-order 
model. All the generators are equipped with an IEEE type-1 
exciter, except for the generator 1 which represents an equiv‐
alent of the New York network. The number of eigenvalues 
is 65. The parameters of the SSSC are chosen as σC =-0.05, 
ζT = 3%, and ζC = 3.5%.
1) Effectiveness of Proposed Algorithm

To analyze the effectiveness of the proposed algorithm, 
the following four cases are taken into account. All cases are 
solved by the proposed algorithm, where all eigenvalues are 
computed by the QR algorithm.

1) Case 1: OPF without SSSC.
2) Case 2: OPF with SSSC1 (OPF-SSSC1), without con‐

sidering H restart.
3) Case 3: OPF-SSSC1, considering H restart.
4) Case 4: OPF with SSSC2 (OPF-SSSC2), considering H 

restart.
Simulation results and electromechanical oscillation 

modes in four cases for New England 10-machine 39-bus 
are shown in Table I and Fig. 3, respectively.

From Table I and Fig. 3, it can be observed that the mini‐
mum damping ratio ζm of Case 1 and Case 2 are lower than 
the desired damping ratio ζT. The minimum damping ratio of 
Case 3 is acceptable, and all electromechanical oscillation 
modes obtained by Case 4 reach ζT. Comparing the results 
of Case 2 and Case 3, it can be observed that although the it‐
eration number of Case 2 is less than that of Case 3, the aug‐
mented Lagrangian function value of Case 2 is higher than 
that of Case 3. This is because the eigenvalues considered in 
the optimization process have changed and H has not been 
restarted from the identity matrix, resulting in optimization 

TABLE I
SIMULATION RESULTS IN FOUR CASES FOR NEW ENGLAND 

10-MACHINE 39-BUS SYSTEM

Case

Case 1

Case 2

Case 3

Case 4

L

40308.18

43310.49

43210.34

42836.08

ζm (%)

1.07

2.96

2.99

3.01

l

9

9

14

9

kt

106

120

187

117

kr

4

1

-0.5 -0.4 -0.3 -0.2 -0.1 0
0

2

4

6

8

10

12 Case 1

Case 3
Case 4

Case 2

Real axis

Im
ag

in
ar

y
 a

x
is

ζT=3.5%
ζT=3.0%

Fig. 3.　Electromechanical oscillation modes in four cases for New Eng‐
land 10-machine 39-bus system.
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results far from the optimal point. The simulation results of 
Case 2 and Case 3 show that H restart is necessary for solv‐
ing the SSSC-OPF problem by the quasi-Newton approach. 
Comparing the results of Case 3 and Case 4, it can be ob‐
served that l and kt of Case 3 are more than those of Case 4. 
This is because the number of H restarts kr in Case 3 is four 
times that in Case 4. H restart means that the algorithm de‐
generates from the quasi-Newton approach to the steepest de‐
scent approach, which affects the convergence of the algo‐
rithm.

The eigenvalue changes for Case 3 and Case 4 are provid‐
ed by Table II. For Case 3, it can be observed from Table II 
that eigenvalue oscillations between two modes occur in the 
first 9 iterations, after which the minimum damping ratio 
varies above and below the given damping ratio threshold, 
and the constrained mode remains until convergence after 11 
iterations. Although the modes considered in Case 4 also 
change, the damping ratios of all modes are above the given 
threshold after 6 iterations, and the constrained modes re‐
main until convergence after 3 iterations. The simulation re‐
sults show that the proposed algorithm can efficiently alle‐
viate the eigenvalue oscillation and improve the conver‐
gence.

2) Feasibility of Hybrid Algorithm Without Variable Selection
Since the New England 10-machine 39-bus system is rela‐

tively small, there is no need to reduce the number of state 
variables in x. Taking Case 4 as an example, the SSSC-OPF 
results under different threshold S are provided in Table III. 
From Table III, it can be observed that minimum damping 
ratios all reach ζT, and the variation of the augmented Lagri‐
angan function value is within an acceptable range. Also, 
when the threshold S is 0.01, 0.05, 0.15, or 0.25, l is more 
than that of Case 4, but the computation time required is 
less than that of Case 4. This is because kQR is dramatically 
reduced. When the variation of state variables is less than S, 
eigenvalues are computed by the eigenvalue sensitivity ap‐

proach. Note that the computation time may not decrease as 
the threshold S increases because eigenvalues are the nonlin‐
ear functions of state variables. Furthermore, the value of S 
must be within a reasonable range according to the simula‐
tions. If S takes a relatively small value, the improvement in 
computation speed will not be significant; if S takes a rela‐
tively large value, it may cause a significant increase in itera‐
tions or even non-convergence of the algorithm.

3) Comparison with Existing Approaches
In [10], the SSSC is described by the largest real part of 

the eigenvalues. Due to the eigenvalue oscillations, a sequen‐
tial quadratic programming approach with gradient sampling 
(SQP-GS) is introduced to solve the SSSC-OPF problem. In 
[16], the minimum damping ratio is selected as the small-sig‐
nal stability index, and a sequential approach (SA) is pro‐
posed to alleviate the eigenvalue oscillations. The minimum 
damping ratio threshold is changed successively, so that the 
optimal operating point is approached step by step. There‐
fore, the proposed algorithm is compared with SQP-GS and 
SA. The oscillation of constrained eigenvalues has been con‐
sidered in different ways by SQP-GS, SA, and the proposed 
algorithm. SA is an alternating solution algorithm, while 
SQP-GS and the proposed algorithm are simultaneous solu‐
tion ones, which have advantages in convergence and compu‐
tation speed. Furthermore, to improve the computation 
speed, a hybrid algorithm for eigenvalue computation in the 
optimization process is proposed in this paper, which in‐
cludes variable selection for eigenvalue estimation and strate‐
gy selection for eigenvalue computation. Therefore, the pro‐
posed algorithm has an advantage in terms of computation 
speed.

The results of different algorithms for New England 10-
machine 39-bus system are provided in Table IV. Computer 
configurations and runtime environments are listed in Table 
V. In Table IV, the results of this paper are obtained by us‐
ing the proposed algorithm without variable selection under 
S = 0.01, the results of the SQP-GS are from [10], and the re‐
sults of the SA are from [16]. Both SQP-GS and SA have 
been tested in the New England 10-machine 39-bus system, 
but the system parameters used, i.e., steady-state parameters 
and dynamic parameters, are from different references. Con‐
sidering the differences in system parameters and computing 
resources, the results presented in Table IV are for reference 
only. As shown in Table IV, all algorithms can improve the 

TABLE III
PERFORMANCE COMPARISON OF PROPOSED ALGORITHM UNDER DIFFERENT 

S FOR NEW ENGLAND 10-MACHINE 39-BUS SYSTEM

S

0.01

0.05

0.15

0.25

L

42836.08

42590.68

42720.13

42780.83

42826.50

ζm (%)

3.01

3.01

3.01

3.00

3.01

l

9

12

12

12

12

kt

117

170

143

153

165

kr

1

1

1

1

1

kQR

117

67

30

24

16

kES

0

4

4

4

3

Computation 
time (s)

44.73

31.14

22.12

21.13

18.96

TABLE II
EIGENVALUE CHANGES FOR CASE 3 AND CASE 4

Case 3

λm

-0.0667 ± j6.4528

-0.0667 ± j6.4528

-0.1475 ± j6.5588

-0.1475 ± j6.5588

-0.1475 ± j6.5588

-0.1807 ± j6.5451

-0.1933 ± j6.4959

-0.1884 ± j6.3118

-0.1905 ± j6.3954

-0.1928 ± j6.3957

-0.1911 ± j6.3942

-0.1911 ± j6.3942

-0.1911 ± j6.3942

-0.1911 ± j6.3942

ζm (%)

1.03

1.03

2.24

2.24

2.24

2.76

2.97

2.98

2.97

3.01

2.99

2.99

2.99

2.99

Nλ

1

1

1

1

1

2

2

2

1

0

1

1

1

1

Case 4

λm

-0.0667 ± j6.4528

-0.1681 ± j6.5620

-0.1591 ± j6.3751

-0.1960 ± j6.5526

-0.1960 ± j6.5526

-0.1902 ± j6.3388

-0.1902 ± j6.3388

-0.1984 ± j6.5806

-0.1984 ± j6.5806

ζm (%)

1.03

2.56

2.49

2.99

2.99

3.00

3.00

3.01

3.01

Nλ

2

2

3

3

3

3

3

3

3
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small-signal stability of the system while ensuring its econo‐
my. The difference in the economic loss ΔL required by dif‐
ferent algorithms may be due to the inconsistency of steady-
state parameters and dynamic parameters.

B. A Modified Practical 68-machine 2395-bus System

A modified practical 68-machine 2395-bus system shown 
in Fig. 4 is employed to test the scalability of the proposed 
algorithm.

The system consists of 66 synchronous machines and 2 
synchronous compensators, where 57 generators are resched‐
uled to improve the small-signal stability. There are 2395 
buses, 5488 transmission lines, 1496 transformers, and 458 
constant impedance loads. The generators are described by 
the sixth-order model. Except for the equivalent generator, 
all the generators are equipped with excitation system, tur‐
bine governor, and power system stabilizer [31]. The number 
of eigenvalues is 1220. The parameters of SSSC are chosen 
as σC =-0.03, ζT = 4%, and ζC = 6%.
1) Comparison of OPF-SSSC1 and OPF-SSSC2

Results of OPF-SSSC1 and OPF-SSSC2 are provided by 
Table VI, where the eigenvalues are computed by the QR al‐
gorithm. Although the augmented Lagrangian function value 
of the OPF-SSSC2 is 955.29 higher than that of the OPF-
SSSC1, the minimum damping ratio increases from 3.98% 
to 4.17%. In addition, the OPF-SSSC2 significantly reduces 
the number of iterations and the computation time compared 
with the OPF-SSSC1.

2) Variable Selection for Eigenvalue Estimation
Since the modified practical 68-machine 2395-bus system 

is relatively large, it is necessary to reduce the number of 
state variables in x. The thresholds are set to be ϖ= 10% 
and S = 0.25. Taking the second iteration of the OPF-SSSC2 
as an example, the logic of variable selection can be ex‐
plained. According to the results of the second iteration, 
there are four modes with damping ratios smaller than ζC. 
The eigenvalues and damping ratios of the four modes, λ1108, 
λ1004, λ1011, and λ976, are shown in Table VII. To alleviate the 
eigenvalue oscillations, these four modes must be considered 
in the optimization process. Therefore, the dominant vari‐
ables are selected by w(2)

i Dxi of damping ratios (ζ1108, ζ1004, 
ζ1011, and ζ976) to eigenvalue estimation.

G34G35G36 G62

G56

G46 G30
G31

G22

G68

G53

G24

G39G45

G41

G44 G26

G3
G4

G6

G2

G42

G32

G55

G16

G7G38

G43

G1 G47

G8
G61

G27

G40

G21

G5

G12 G11 G15 G54

G37

G33
G48 G23

G49G50 G20
G17G18

G63G64

G51G52

G58

G25

G29

G57 G13 G14

G59 G60

G9 G10G65G66G67

G28 G19

Fig. 4.　A modified practical 68-machine 2395-bus system.

TABLE IV
RESULTS OF DIFFERENT ALGORITHMS FOR NEW ENGLAND 10-MACHINE 

39-BUS SYSTEM

Algorithm

Proposed

SQP-GS [10]

SA [16]

σr

-0.19

-0.20

-0.32

ζm (%)

3.01

5.00

Δσr

0.12

0.16

0.24

Δζm (%)

1.94

4.22

ΔL (%)

5.66

3.17

4.46

Computation 
time (s)

31.14

40.60

86.39

TABLE VI
RESULTS OF OPF-SSSC1 AND OPF-SSSC2 FOR MODIFIED PRACTICAL 

68-MACHINE 2395-BUS SYSTEM

OPF-SSSC

OPF-SSSC1

OPF-SSSC2

L

115677.92

116633.21

ζm (%)

3.98

4.17

l

23

10

kt

233

106

kr

7

1

Computation 
time (s)

8821.81

4137.84

TABLE VII
DOMINANT VARIABLE SERIAL NUMBERS OF EACH MODE AND ALL 

CONSIDERED MODES AFTER THE SECOND ITERATION FOR MODIFIED 
PRACTICAL 68-MACHINE 2395-BUS SYSTEM

No.

1107, 1108

1003, 1004

1010, 1011

975, 976

λ

-0.1432 ±
j3.4817

-0.2772 ±
j5.4111

-0.2235 ±
j4.7853

-0.3954 ±
j7.5428

ζ (%)

4.11

5.11

4.66

5.23

Dominant variable serial number

Each mode

40, 84, 52, 38,
 28, 18

84, 38, 52, 60, 
40, 10, 28, 18

40, 84, 52, 88, 
62, 60, 28, 18, 

38, 2, 68, 10

40, 60, 84, 88, 
28, 52

All considered mode

40, 84, 52, 88, 62, 
60, 28, 18, 38, 2, 

68, 10

TABLE V
COMPUTING RESOURCES USED IN [10], [16], AND PROPOSED ALGORITHM

Algorithm

Proposed

SQP-GS [10]

SA [16]

Machine

Dell Precision T7920 with a
2.4 GHz CPU and 16 GB RAM

Dell Precision T5810 with a
3.5 GHz CPU and 64 GB RAM

1.7 GHz Intel Xeon CPU and
32 GB RAM

Runtime environment

Visual Fortran 11.0

CPLEX 12.60

MATLAB 9.2
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In the proposed algorithm, all state variables of the modi‐
fied practical 68-machine 2395-bus system are [PG1VG1 
PG2VG2PG57VG57 ] and the corresponding serial numbers 
are [1, 2, 3, 4, , 113, 114]. Figure 5 shows all w(2)

i Dxi of 
ζ1108, ζ1004, ζ1011, and ζ976. It can be observed that the wi

(2)Δxi 
of ζ1108 and ζ1011 are on the same order of magnitude, while 
the w(2)

i Dxi of ζ1004 and ζ976 are on a smaller order of magni‐

tude. For different modes, only a small number of w(2)
i Dxi 

has a significant impact. According to the Algorithm 1 in 
Section III-D, dominant variable serial numbers for each 
mode and all modes are shown in columns 4 and 5 of Table 
VII. It can be observed that different modes have some same 
dominant variables. For the four modes, 12 variables are se‐
lected for eigenvalue estimation.

3) Effectiveness of Hybrid Algorithm with Variable Selection
The performance comparison of the hybrid algorithm with 

variable selection is shown in Table VIII. As shown in row 
3 of Table VI and rows 2 and 6 of Table VIII, when 
S = 0.15, the hybrid algorithm with or without variable selec‐
tion can reduce the computation time. It can also be ob‐
served from rows 2 and 6 of Table VIII that the computation 
time of the hybrid algorithm with variable selection is re‐
duced by 476.87 s compared with the hybrid algorithm with‐
out variable selection. This is because eigenvalue estimation 

by the sensitivity approach only needs to compute the sensi‐
tivities with respect to the dominant variables. When S takes 
different values, it can be observed from rows 2 to 5 of Ta‐
ble VIII that although the hybrid algorithm with variable se‐
lection increases the number of iterations, it can effectively 
reduce the computation time. In addition, when S takes the 
value of 0.35 or 0.45, the number of iterations and the opti‐
mization results are the same, but the computation time dif‐
ference is 62.46 s. This may be due to the different numbers 
of dominant variables used for eigenvalue estimation.

4) Comparison with Partial Eigenvalue Approach
In the proposed algorithm, the eigenvalues are computed 

using the hybrid algorithm with variable selection that com‐
bines accurate eigenvalue computation and eigenvalue esti‐
mation. In addition to the QR algorithm, partial eigenvalue 
approaches, e. g., Krylov-Schur approach [32] and IRA ap‐
proach [33], can be used for accurate eigenvalue computa‐
tion. Taking the IRA approach as an example, simulation re‐
sults are listed in Table IX.

From Tables VIII and IX, it can be observed that whether 
the QR algorithm or the IRA approach is used to compute ei‐
genvalues, the influence on the optimization results is small 
and can even be ignored. This is because the residual norms 

 Axi - λi xi 2
 of the QR algorithm and the IRA approach are 

about 10-6 and 10-10, respectively. It can also be observed 
from Tables VIII and IX that when S is taken as 0.15 and 
0.45, the computation time is reduced by 277.66 s and 
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Fig. 5.　All wi
(2)Δxi of ζ1108,  ζ1004, ζ1011, and ζ976. (a) ζ1108. (b) ζ1004. (c) ζ1011.(d) ζ976.

TABLE VIII
PERFORMANCE COMPARISON OF HYBRID ALGORITHM WITH VARIABLE SELECTION FOR MODIFIED PRACTICAL 68-MACHINE 2395-BUS SYSTEM

Variable

Dominant 
variables

All variables

S

0.15

0.25

0.35

0.45

0.15

L

116813.51

116847.25

116473.37

116473.37

116724.37

ζm (%)

4.25

4.33

4.24

4.24

4.24

l

11

10

13

13

11

kt

124

116

142

142

106

kr

1

1

1

1

1

kQR

34

27

26

26

36

kES

5

5

3

3

7

Computation time (s)

3115.23

2720.37

3101.72

3039.26

3592.10
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212.60 s, respectively. This is due to the fact that the QR al‐
gorithm takes 12.23 s to compute eigenvalues and left and 
right eigenvectors, while the IRA approach takes only 4.06 s. 
The simulation results show that both the QR algorithm and 
the IRA approach can be used for accurate eigenvalue com‐
putation in the case study of this paper. Compared with the 
QR algorithm, the required computation time of the pro‐
posed algorithm can be reduced by the IRA approach. For 
the systems with more generators, partial eigenvalue ap‐
proaches are more advantageous and necessary. Furthermore, 
in our experiments, the computation of sensitivities with re‐
spect to dominant variables is still the most computationally 
expensive routine after using the variable selection approach, 
which can be accelerated by using parallel calculation tech‐
niques.

C. Effectiveness of Security Constrained OPF with SSSC2

Taking the New England 10-machine 39-bus system as an 
example, the OPF-SSSC2 under the normal operating condi‐
tion is extended to the security constrained OPF with SSSC2 
(SCOPF-SSSC2). The following 14 scenarios are taken into 
account. 1) Scenario 1: base case. 2) Scenario 2: lines 3-18 
and 25-26 are out of service. 3) Scenario 3: lines 16-17 and 
4-14 are out of service. 4) Scenario 4: line 6-11 is out of ser‐
vice. 5) Scenario 5: 360 MW load increase. 6) Scenario 6: 
lines 16-17, 4-14, and 25-26 are out of service. 7) Scenario 
7: lines 16-17, 4-14, 25-26, and 1-39 are out of service. 8) 
Scenario 8: line 21-22 is out of service. 9) Scenario 9: lines 
9-39 is out of service. 10) Scenario 10: -30% loading. 11) 
Scenario 11: +15% loading. 12) Scenario 12: +20% loading. 
13) Scenario 13: -20% loading. 14) Scenario 14: +50% load‐
ing at buses 16 and 21 and lines 21-22 are out of service. 
Ramping limits Rup

Gi =Rdown
Gi = (P max

Gi -P min
Gi )/60 p. u./min [13]. 

Critical modes of OPF-SSSC2 and SCOPF-SSSC2 are pro‐
vided by Table X.

The critical mode for Scenario 1 in column 2 of Table X 
is obtained from the OPF-SSSC2 in Section III-A. Based on 
the results of Scenario 1, the small-signal stability analysis 
of other scenarios is performed sequentially to obtain the 
critical mode. Critical modes in column 3 of Table X are ob‐
tained from the SCOPF-SSSC2 in Section III-F. As shown in 
column 2 of Table X, five scenarios are unstable under small 
disturbances, and the most unstable scenario is Scenario 10. 
Compared with the OPF-SSSC2, the value of augmented La‐
grangian function of the SCOPF-SSSC2 increases from 
40308.18 to 40469.41, but all considered scenarios are stable 
under small disturbances. From columns 2 and 3 of Table X, 
it can also be observed that the critical mode of Scenario 10 
has changed from one mode to another, and the critical 

modes of Scenarios 8 and 13 have also changed. To alleviate 
the oscillation of constrained eigenvalues, it is useful to ex‐
tend the proposed algorithm considering both the normal and 
contingency operating conditions.

V. CONCLUSION

A practical algorithm for the SSSC-OPF problem is pro‐
posed in this paper. The effectiveness of the proposed algo‐
rithm is validated on the New England 10-machine 39-bus 
system and a modified practical system. The unique features 
of the proposed algorithm are provided as follows.

1) The SSSC adopted in this paper not only reflects the 
dynamic performance requirement of the system, but also 
fully considers the effect of steady-state changes on eigenval‐
ues. The simultaneous solution formula of the SSSC-OPF 
model is also established and solved by the quasi-Newton ap‐
proach.

2) Different penalty factors are set for SSSCs according to 
the stabilization degree of constrained eigenvalues, which ef‐
fectively alleviates the eigenvalue oscillations when simulta‐
neously solving the SSSC-OPF problem.

3) The solution time of the SSSC-OPF problem is signifi‐
cantly reduced by the proposed algorithm, which includes 
variable selection for eigenvalue estimation and strategy se‐
lection for eigenvalue computation.

The SSSC-OPF model and algorithm for power systems 
with high penetration of renewable energy will be developed 
in future work.
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