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1. Main text

Powder Bed Fusion (PBF) is a highly promising metal
powder based additive manufacturing (AM) technology, 
capable of fabricating metallic functional components with 
complex geometries whilst potentially using less raw material 
than subtractive methods. Metal BPF produced parts have the 
potential to be used in and to transform high-value 
manufacturing sectors including medical devices, aerospace, 
defense, energy and automotive industries. 

Recent studies of metal AM have shown that defects need 
to be carefully controlled having identified that more research 
and theoretical modelling are necessary to overcome the 
challenges for metal AM such as the balling effect, micro-
cracking/fractures, porosity, delamination, deformation, loss 

of alloying elements, oxide inclusions, intermetallic phases, 
and un-melted particles [1, 2].

Digital Twins (DT) as virtual replicas of physical devices 
have been extensively studied within manufacturing as they 
have shown great potential in enabling advanced process 
control, process optimization, and monitoring, incorporating 
(real-time) manufacturing data management. Furthermore the 
concept of DT is considered an appropriate approach to 
overcome current challenges associated with additive printing 
of metals such as: a lack of process robustness, stability and 
repeatability caused by the unsolved complex relationships 
between material properties, product design, process 
parameters, process signatures, post AM processes and 
product quality that have significantly impeded the broad 
acceptance in industry [3].
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MeshCNN is a general-purpose deep neural network for 3D 
triangular meshes, which can be used for tasks such as 3D 
shape classification or segmentation. This paper proposes a 
new data-driven approach based on deep learning that can 
speed up the prediction of parts’ geometrical deformations by 
creating a digital twin of a finite element analysis (FEA) 
simulation. A new model founded on MeshCNN and designed 
for the processing of AM 3D models is described (Additive 
Manufacturing MeshCNN – AMMeshCNN) and methods of
assessing its learning capabilities using training data generated 
by the FEA based software Simufact Additive are described.

2. Background

2.1. Powder Bed Fusion

Powder Bed Fusion (PBF) is an additive manufacturing 
technique that can create objects by melting and fusing layers 
of powder material on top of each other’s, producing 
geometrical features with resolutions typically ranging from 
80 to 250 μm [4]. The powder used can be made of metal, 
alloys, polymers or ceramics and different energy sources can 
also be used. This results in a range of different types of 
processing technologies, such as Selective laser melting 
(SLM) [5], Selective laser sintering (SLS) or Selective 
Electron beam melting (SEMB) [6].

An energy source sends an energy ray (for example a laser
beam) to a group of mirrors and lenses that are used to 
redirect and focus its energy on the area of powder that is to 
be melted, is it termed the melt pool area [7]. By guiding the 
energy beam the melt pool is moved around the powder bed to 
create the layer shape, melting the powder layer and previous 
melted layers to ensure a strong link between the layers. After 
each layer, the printing bed is moved downward and new 
powder is taken from the powder reservoir and spread on the 
printing area by a recoater.

For each layer, the targeted 2D shapes are produced by 
slicing 3D models in multiple layers that are then converted 
into 2D machining paths for the focused energy. The quality 
of the produced parts is influenced by many parameters that 
will vary depending on the powder material, including 
focused energy path (e.g. hatch distance, scanning speed, 
power, recoating speed, recoating thickness). 
Nomenclature

AM Additive Manufacturing
CNN   Convolutional Neural Network
DT      Digital Twin
FEA Finite Elements Analysis
FEM   Finite Elements Methods
GNN  Graph Neural Network
MeshCNN Mesh Convolutional Neural Network
MLP   Multi-layer Perceptron
PBF    Powder Bed Fusion
SLM   Selective Laser Melting
SLS    Selective Laser Sintering
SEMB Selective Electron Beam Melting

Fig. 1. AM Process

Furthermore, after printing, parts generally need to be post-
processed, for example, to cut out supports, to remove un-
melted powder or improve surface and metallurgic 
characteristics (Figure 1). These processes will also influence 
the quality of the produced parts.

Thus, the difficulties related to the proper tuning of 
parameters involved in these manufacturing steps become a 
major drawback in many PBF processes. In particular when 
processing metals, with a high chance of defect formation [1].

2.2. Modelling of deformations in additive manufacturing

Additive Manufacturing processes have enabled the 
fabrication of complex shapes that are not achievable with 
traditional manufacturing processes. However, this new 
technology is subject to numerous drawbacks, particularly in 
terms of difficulties in controlling defects that can affect the 
part’s integrity, such as porosity [1], cracks, delamination or 
deformation. The cracks or delamination can be caused by the 
presence of residual stresses created by temperature variations 
during the process, which can alter the geometries or damage 
the part [8].

Dimensional and geometric accuracies can be affected by 
shrinkage or warping [8] effects. If these deformations are 
predicted correctly, some of them can be compensated for in 
the design stages to still meet the geometrical tolerances 
required by a product. However, in extreme cases, the 
increase in elevation caused by these deformations, if not 
contained during the printing stage, can cause the recoating 
system to collide with the part [8], potentially leading to 
damage to the machine or the part. Consequently, accurately 
predicting deformations is a critical aspect of the design stage 
involving PBF.

The deformations can be relatively accurately predicted 
using simulation methods such as finite element methods 
(FEM) with a physics-based model. However, the accuracy of 
these predictions is dependent on the settings chosen by the 
user (e.g. type of physics based models, time steps used, 
physical resolution), and this has a significant impact on the 
computational costs and accuracy. Generally, increasing the 
accuracy of a physics-based simulation will increase its 
computational cost, resulting in a trade-off between high 
accuracy and an acceptable computational time that reduces 
accuracy.
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Surrogate modelling can be an effective solution to this 
computation time drawback, as data driven models learn the 
statistical behavior of the problem from data and not using 
physical equations. For general simulation, some examples of 
applications already exist, such as by Sanchez-Gonzalez et al. 
[9] who used deep learning with a graph neural network 
(GNN) to simulate water, goop, and sand physics. Where 
material particles at a time t are modelled using points clouds, 
with material features encoded in each simulation point, and 
using a GNN to predict the future acceleration of the particles.

This method provided good results for particle-based 
simulation. AM simulation-related research activities have 
been focusing on more traditional time-consuming simulation 
approaches. Thus, the use of deep learning could be a new 
promising approach to significantly speed up AM simulations.

As the production of an object using AM methods requires 
several steps combining different expertise such as product 
design, process planning and manufacturing. They would 
benefit significantly from faster deformation predictions 
enabling quicker iterations during part design, such as 
evaluating or validating a part’s expected shape or its internal 
stresses, to assess whether the amount of deformation 
generated during printing is compatible with the industrial 
needs or to avoid collision with the printer recoating system. 
But furthermore, a fast simulation could be used with in-
process monitoring systems, to follow the real state of parts 
being printed and update simulation predictions in real-time 
based on monitored information. Thus, allowing more 
informed decision-making in case of defects or deviations 
during printing. This paper proposes a new data-driven 
approach based on deep learning that can speed up the 
prediction of parts’ geometrical deformations by creating a 
digital twin of an FEA simulation. This approach can be used 
to assess the expected shape of a part, or to avoid collision 
with the printer’s recoating system.

3. MeshCNN

MeshCNN (Mesh Convolutional Neural Network), the 
network adopted as the basis for the system being proposed in 
this paper, was introduced by Hanocka et al [10] and 
specifically developed to leverage the inherent features of 
mesh representation through the implementation of self-
created convolution features and pooling layers. This 
approach has been demonstrated to provide favorable
outcomes in mesh classification and segmentation tasks. The 
operators implemented by MeshCNN operate on the manifold 
mesh structure, exploiting its topology to gain insight into the 
object being represented. The input features for MeshCNN are 
stored on the edges of the mesh and its pooling operation is 
designed to reduce the number of mesh edges.

Figure 2 below illustrates the architecture of MeshCNN for 
the purpose of segmentation. The segmentation architecture is 
divided into two components, an encoding component that 
extracts information and features from the mesh, and a 
decoding component that uses the extracted features to 
classify the edges. The encoding component, referred to as the 
"up part", employs a MeshPool layer to collapse edges and 
simplify the mesh. 

Fig. 2. MeshCNN architecture for segmentation

The MeshConv, a convolution operator, performs a 
convolution using the updated mesh to identify neighbors’
edges. The decoding component referred to as the "down 
part", features a MeshUnpool operation that reverses the 
collapse executed by the previous MeshPool, restoring the 
mesh to its original shape. The output of the MeshCNN 
segmentation model is the reconstructed mesh with 
classification scores assigned to all its edges.

An advantage of MeshCNN is that its pooling layers 
respect the geometry of the part by merging linked vertices 
where a classical pooling layer will not know of the link 
between the vertices and will simply merge edge features that 
are close in the matrix features.

The features used as inputs of the convolution layers are 
computed for each edge, and 5 features are extracted per edge:

• The dihedral angle (Figure 3 α2)
• The 2 inner angles (Figure 3 α0 and α1)
• 2 edge-length (Figure 3 r0 and r1) ratios for each edge.

Those extracted features make MeshCNN not affected by 
all rotation, translation and scale variations as those features 
will not change if a part is moved and scaled. Extracted 
features are sent to the convolution layer for feature 
extraction. Classical convolution layers are expected to
receive fixed feature orders. For example, on an image, 
changing the order, the position of the pixels will drastically 
change the images. But for a mesh, what matter is the 
connection between the vertices, not their orders, as changing 
the order of the vertex or the edges will not modify the part. 
Making MeshCNN using a custom logic and working on the 
edges of the mesh. 
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The convolution will take the features of the edges (Figure 
3) and those of its four neighbors on the mesh. The
convolution is defined by equation 1.

𝑒𝑒 ⋅ 𝑘𝑘0 + ∑ 𝑘𝑘𝑗𝑗 ⋅ 𝑒𝑒𝑗𝑗4
𝑗𝑗=1 (1)

Where: e is the processed edge features, ej the adjacent 
edges features, k the kernel matrix.
To guarantee that the convolution is invariant to the 

ordering of the input data, the inputs ej are preprocessed with 
some basic operation, as described in equation 2 to ensure that 
the edge neighbors’ order does not influence the results. With 
the neighbor edges a, b, c and d, the adjacent edges features 
are computed with: 

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4) = (|𝑎𝑎 − 𝑐𝑐|, 𝑎𝑎 + 𝑐𝑐, |𝑏𝑏 − 𝑑𝑑|, 𝑏𝑏 + 𝑑𝑑) (2)

For edges with the lowest feature magnitudes, the 
MeshCNN pooling layer collapse them by merging voxels 
until a target number of remaining edges is achieved. When 
an edge is collapsed as in Figure 4, the collapse of one edge 
will create a new vertice with the average position of the two 
former vertices. This operation transforms 5 edges into 2.

4. Proposed AMMeshCNN

MeshCNN [10] was chosen as the foundation for a new 
CNN based on its ability to operate on 3D meshes and the 
feasibility of incorporating geometrical features into its
feature extractors. This neural network was adapted to 
facilitate the prediction of deformation resulting from physics-
based simulation. The training was conducted using parts 
processed under consistent printing conditions, thus, as 
demonstrated in Figure 5, only necessitating 3D models as 
inputs for the CNN to predict the deviations generated by the 
AM process. In AM manufacturing, post-printing effects such 
as shrinkage and thermal deformation modify the shape of 
parts (Paul et al [11]) due to the thermal stresses resulting 
from metal cooling and the geometry of previous layers, 
impacting the cooling rate and induced stress. Thus, the CNN 
model must consider the shape, scale, and orientation of the 
part, as these factors will impact the behavior of the process.

The original version of MeshCNN is inadequate for this
purpose, as the computed features do not encompass 
information regarding part orientation. As in the case of 
predicting deviations in additive manufacturing, the 
orientation of the part can affect the laser path and cooling 
dynamics, thereby modifying the deviations. Additionally, the
size of the part influences the thermal inertia, which can alter 
the deviations as well. In light of these considerations, this 
paper proposes the integration of specific features to address 
the impact of orientation and size on deviation prediction in 
additive manufacturing processes. To make the network 
suitable for AM, the following modification are proposed:
• Make the network sensitive to the part orientation by adding
angle invariance features.
• Make the network sensitive to the part scale by adding
relevant objects scale features
• Add layers of neurons to the network’s up and down parts,
to make it more flexible and capable of understanding more 
complex physical rules.
• Store MeshCNN results on to the meshes’ vertices to loss
computation and for display purposes.

In this study, the modified version of MeshCNN referred to 
as AMMeshCNN – Additive Manufacturing MeshCNN has 
been proposed. The network has been altered in order to 
predict continuous values for edge displacement rather than 
discrete values for classification and segmentation. With
changes to the loss function used for training and the final 
layers of the network in order to predict three values for each 
axis rather than a single class probability output.

5. AMMeshCNN

5.1. Angle invariance

The first type of invariance addressed was the rotation 
invariance in the X and Y axes, as it was known that the part 
orientation on those axes had an influence on their 
deformation results and will have a significant impact on the 
accuracy of MeshCNN in predicting edge displacement 
values. To achieve this, the angle between the edge and the Z 
axis was calculated and included as an additional feature in 
the edge feature vector.

Fig. 4. Edge collapse

Fig. 3. MeshCNN features Fig. 5. Deep learning approaches

Fig. 6. Edges features with αz feature
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It was hypothesized that rotation around the Z-axis would 
not significantly affect the accuracy of the predictions as our 
simulation software was not calibrated with different printing 
axis, making this type of invariance not considered in the 
study. The calculation of the angle between the edge and the Z 
was performed using the following equations 3 and 4.

𝛼𝛼𝑧𝑧 = 𝜋𝜋 − cos−1(𝑍𝑍𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (3)

𝛼𝛼𝑧𝑧 = 𝜋𝜋 − cos−1 ([
0
0
1
] . [

𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒1. 𝑥𝑥 − 𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒2. 𝑥𝑥
𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒1. 𝑦𝑦 − 𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒2. 𝑦𝑦
𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒1. 𝑧𝑧 − 𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒2. 𝑧𝑧

]) (4)

With this new feature, the feature extracted αz, was added 
to the features extraction procedure described in Figure 6.

5.2. Scale invariance

The scale invariance was the second to be removed in this 
research. Given that the size of a printed object affects the 
deviation behavior (such as shrinkage, thermal deformation, 
and stress), it was crucial for the network to be mindful of 
this. To accomplish this, the height position of each edge was 
added to the feature vector. This enabled the network to be 
aware of the object’s size and to perceive the width and depth 
of the object in relation to its height. The height of an edge 
was computed as the average height of the two vertices 
connected by that edge, as depicted in Figure 7. This new 
feature was then incorporated into the edge feature vectors, as 
demonstrated in the updated feature extraction illustration in 
Figure 8.

5.3. More neurons

The architecture of AMMeshCNN was further modified to 
incorporate a multi-layer perceptron (MLP) at the end of the 
decoder. The modification is depicted in Figure 9. To 
implement the MLP, the output dimension of the last 
ResConv of the down part was set to a constant value of 512 
to provide features to the MLP. The perceptron layers are 
represented as "Layer Xin − > Xout ", where Xi n refers to the 
input dimension and Xout refers to the output dimension. The 

Fig. 9. AMMeshCNN architecture for mesh deformation
activation function, represented as "Activation", is a Rectified
Linear Unit (ReLU) [12], defined as shown in equation 5:

𝑓𝑓(𝑥𝑥) = max(0, 𝑥𝑥) (5)

5.4. From vertex features to edge features

In this research, a challenge was encountered when 
comparing the results of AMMeshCNN, which predicts 
deformation on edges, with the simulation results stored on 
mesh vertices. To address this discrepancy, a method was 
developed to transfer the edge results of AMMeshCNN onto 
the vertices (as depicted in Figure 5.20), by calculating the 
average values of the edges connected to a vertex. Making it 
possible to compute the loss of the model through the 
comparison between the results and labels. This operation is 
described in equation 6 below.

𝑉𝑉𝑖𝑖 = 1
𝑛𝑛 ∑ 𝐸𝐸𝑗𝑗𝑗𝑗∈𝑁𝑁𝐸𝐸(𝑉𝑉𝑖𝑖) (6)

Where Vi is the deformation features of the vertices i, n the 
number of edges connected to these vertices, 𝑁𝑁𝐸𝐸(𝑉𝑉𝑖𝑖) the edges
neighbourings to the vertices i and Ej the deformation features 
of the edges j.

4. Methodologies for testing AMMeshCNN

In order to determine if the proposed technique is fit for 
this purpose, AMMeshCNN will have to prove its reliability 
on both simple and more complex datasets that will be 
produced using Simufact Additive. To assess the capacity of 
AMMeshCNN to learn simple deviations on simple basic 
mesh shapes, a simple shape dataset was created, existing 
primarily of simple cubes. This dataset is comprised of 
randomly generated cubes with deformations generated 
through an inherent strain method. AMMeshCNN was trained 
with the MSE loss with a learning rate of 0.001, for 50 epochs 
and then 40 epochs with a learning rate decay method. To 
assess the quality of the prediction,

Fig. 8. Deep learning approaches

Fig. 7. Edge height feature
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Figure 10 shows a cube and its label displayed and on top 
of it, the predicted vertex is displayed. The cubes and the 
predicted vertex (spheres) are colored using the magnitude of 
the deformation (predicted for the vertex, label for the cubes). 
The differences between the labels and prediction is hard to 
see demonstrating the network’s effective learning of the 
functions.

However, the performance of this method needs to be 
evaluated using more details and on more complex 3D shapes. 
This is currently being tested, using real-life examples from 
the Thingi10k dataset [13] and the results will be published in 
the near future to confirm the accuracy of the proposed 
method.

5. Conclusions

An enhanced version of a Mesh Convolutional Neural 
Network (called AMMeshCNN), modified to be suitable for 
Additive Manufacturing has been proposed in this paper. With 
the aim of proving a CNN based surrogate model is capable of 
performing quick predictions of printing deformations.

The proposed model enhances MeshCNN by adding:
• Sensitivity to part orientation through angle invariance.
• Sensitivity to the part scale 
• New layers of neurons, to make the CNN more able to
learn complex physical rules.
• The ability to store MeshCNN results on the meshes’ 
vertices for loss computation and display purposes.

Further work will focuse on the full training and testing of 
AMMeshCNN on more complex and real-world 3D models.
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