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Abstract 

In this paper, an analytical parametric model is presented for the swift prediction of small features producible in the X-Y plane through the Metal 

AM Laser Powder Bed Fusion (LPBF) process. This model can be employed to design and create surface textures on Additive Manufactured 

parts without the need for costly post-processing steps. The Rosenthal equation is the basis for the model, which considers both the build 

parameters of the LPBF process and the thermo-physical properties of the materials. The initial model was constructed and assessed using one 

LPBF machine followed by the implementation of a tuning method utilizing the Limited Memory Algorithm for Bound Constrained Optimization 

to enhance the model's accuracy. Overall, the findings suggest that with a simple optimization step based on a single printed tuning sample, 

precise analytical models can be established for specific LPBF machines and materials combinations. 
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1. Introduction

Laser Powder Bed Fusion (LBPF) can create custom-made

parts that traditional methods may find challenging or 

impossible. Direct texturing, which involves printing a 

designed surface texture, is advantageous for aircraft interior 

applications because it would eliminats expensive post-

processing and could mask the irregularities of LPBF surfaces, 

improving its visual appeal. CAD and CAM software 

advancements have simplified 3D model creation and direct 

texturing using LPBF, but assessing the feasibility of textured 

designs for specific machine and material combinations is 

difficult due to uncertainties in achievable geometries and 

machine limitations. To evaluate feasibility of manufacturing 

direct texturing designs, it is necessary to understand how 

minimum texture size can be evaluated pre-manufacture to 

enable the design of textures sensitive to the machine and 

material combination. 

     Previous research has concentrated on experimentally or 

numerically determining the melt-pool width, with the goal of 

predicting and improving the dimensional accuracy of LPBF 

parts [1]–[4]. Although some analytical models have been 

developed for the prediction of dimensional accuracy, they rely 

on experimentally- derived melt-pool widths which can be 

time-consuming and expensive. As a result, there is a lack of 

methods for quick estimation of achievable small feature sizes 

at the design stage, particularly in relation to direct texturing 

and specific machine and material combinations. This research 

proposes a new method for quickly predicting the width of 

small features manufactured by LPBF for direct texturing 

applications. 

http://www.sciencedirect.com/science/journal/22128271
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=04%7C01%7CPROCIR%40elsevier.com%7C59ec6c0afa9b48cb42bb08d9e0736933%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637787608560962534%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=axLII0m4p1Kw3WnhoDD0sgWRTabQyLWuBckzwK0s0oE%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=04%7C01%7CPROCIR%40elsevier.com%7C59ec6c0afa9b48cb42bb08d9e0736933%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637787608560962534%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=axLII0m4p1Kw3WnhoDD0sgWRTabQyLWuBckzwK0s0oE%3D&reserved=0
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2. Review of Melt-Pool Width Estimation 

In the LPBF process, a laser beam is used to selectively melt 

metallic powder in the scanning direction (y), creating a melt-

pool. This can be achieved using a Continuous Wave (CW) 

laser or Pulsed Width Modulation (PWM) laser [5], with the 

characteristics of the melt-pool influenced by both the thermo-

physical properties of the material and the machine's build 

parameters [3]. 

     Several studies aimed at evaluating the melt-pool width 

produced by the LPBF process, and for that purpose the 

Rosenthal equation, originally developed for predicting the 

thermal history of melt pools in fusion welding, is commonly 

used by researchers. Due to the similarities between fusion 

welding and LPBF, authors [1], [2], [3] have applied the 

Rosenthal equation to LPBF as it provides a simple, accurate, 

and fast way to estimate melt-pool characteristics like width 

and shape, in comparison to FEA and experimentation. The 

simplified Rosenthal equation is shown in equation 1 [1]. 

               𝑊𝑚𝑝 ≈ √
8

𝜋𝑒
.

𝜆.𝑃

𝜌.𝐶𝑝 .𝑣(𝑇𝑚−𝑇𝑜)
                      (1) 

𝑊ℎ𝑒𝑟𝑒 𝑊𝑚𝑝  is the melt-pool width(m), 𝜆 is the absorptivity, 

P is the laser power (W ), 𝑒 is the natural exponent, 𝜌 is the 

density of the material( 𝑘𝑔. 𝑚−3) , 𝐶𝑝   is the pecific heat 

(𝐽. 𝑘𝑔−1. 𝐾−1), 𝑣  is the laser velocity (𝑚. 𝑠−1),  𝑇𝑚  is the 

melting temperature (K), 𝑇𝑜 is the initial temperature before 

melting (K). 

For the estimation of a melt-pool width in LPBF, the same 

assumptions were used in this research as used by 

Promoppatum et al [1]. 

     The following section provides a detailed description of a 

theoretical parametric model that was developed to rapidly 

predict the producible small feature widths in the forming 

direction (x) for different combinations of machines and 

materials. 

3. New Metal AM Feature Width Prediction Model 

     Metal additive manufacturing typically involves the use of 

infill and contour laser scan tracks, which are automatically 

controlled by CAM software to produce the bulk of the 

component and obtain optimum surface quality, respectively. 

The parametric model developed in this study considers these 

dual scanning strategies, but assumes that for small features 

designed to create surface textures, the infill and contour tracks 

generated by the CAM software will always be parallel as more 

complex scanning strategies will be generated only for larger 

feature sizes. Hence, the generic formula for estimating the 

theoretical peak width for a combination of contour and infill 

laser scans can be calculated using equation 2. 

𝑤𝑡ℎ𝑒𝑜_𝑝 = √
8

𝜋𝑒
.

𝜆. 𝑃

𝜌. 𝐶𝑝. 𝑣(𝑇𝑚 − 𝑇𝑜)
+ 2(𝑛𝑐 − 1)ℎ𝑐

+ 2ℎ𝑐.𝑖 + (𝑛𝑖 − 1)ℎ𝑖 

(2) 

 
 

Where 𝑛𝑐 is the number of contour tracks, 𝑛𝑖 is the number 

of infill tracks, ℎ𝑐   is the hatch distance between adjacent 

contour tracks,  ℎ𝑖  is the hatch distance between adjacent 

infill tracks, ℎ𝑐.𝑖  is the hatch distance between adjacent 

contour and infill tracks and  𝑤𝑚𝑝   is the melt-pool width that 

can be calculated based on the material properties and build 

parameters. 

     The prediction model focuses on three distinct cases 

investigated to validate the proposed model, including single 

and double laser scan tracks, and contouring with one infill 

scan track. These tests were adequate for an initial evaluation 

of the analytical model while maintaining the parallel scanning 

strategy, with the CAM slicing software managed by an 

external supplier. 

3.1. Case 1: Single Laser Track 

     In Case 1 (Figure 1), a single laser melt track represents the 

feature, and the minimum feature width is equal to the melt-

pool width calculated based on the thermo-physical properties 

of the material and build parameters of the machine. Assuming 

that the laser parameters is the same as the infill parameters, the 

𝒘𝒎𝒑 = 𝒘𝒊, where 𝒘𝒊 is the infill melt-pool width. 

   The number of contours 𝑛𝑐 = 0 and the number of infills, 

𝑛𝑖=1, hence by referring to the generic formula, the formula for 

determining the theoretical peak width for Case 1, single scan 

track is the same as shown in equation 1. 

3.2. Case 2: Double Laser Track 

       For the double laser scan track scenario (Case 2), the 

feature is represented, in the CAM, by two laser scan tracks in 

the scanning direction (Y). This is illustrated in Figure 2. 

 
 

Figure 1. Schematic of Case 1 feature width (X-Z plane) 

Figure 2.Schematic of Case 2 feature width (X-Z plane) 
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In Case 2, the feature is represented by two laser scan tracks in 

the scanning direction and the distance between the scan tracks 

is determined by the hatch spacing. The melt-pool width 

𝒘𝒎𝒑 = 𝒘𝒊. In addition,  𝒏𝒄= 0 and  𝒏𝒊=2. Hence, by referring 

to the generic formula (equation 3.3), the formula for 

determining the theoretical peak width for Case 2 is shown in 

equation 3. 

𝑤𝑡ℎ𝑒𝑜_𝑝 = (√
8

𝜋𝑒
.

𝜆. 𝑃

𝜌. 𝐶𝑝. 𝑣(𝑇𝑚 − 𝑇𝑜)
 ) + ℎ𝑖            (3) 

3.3. Case 3: Contouring and Infill Laser Track 

       For Case 3 (contouring and infill laser track), the feature is 

represented by a contour scan and an infill laser scan in the 

scanning direction (Y).  To develop the theoretical peak width 

equation for Case 3 condition, 𝒘𝒎𝒑 = 𝒘𝒄𝒎𝒑 , where 𝒘𝒄𝒎𝒑  is 

the contour melt-pool width. In addition, the number of 

contours 𝒏𝒄= 2 (based on the cross section in the X-Z plane) 

and the number of infills, 𝒏𝒊 =1. Referring to the generic 

formula, the formula for determining the theoretical peak width 

for  Case 3,contouring and infill laser track is shown in equation 

4. 

𝑤𝑡ℎ𝑒𝑜_𝑝 = (√
8

𝜋𝑒
.

𝜆.𝑃

𝜌.𝐶𝑝.𝑣(𝑇𝑚−𝑇𝑜)
) + 2ℎ𝑐.𝑖    (4) 

4. Validating the new model using parts produced by -

LPBF (Continuous Laser) 

4.1. Experimental Setup 

      To assess the precision of the parametric model described 

earlier (section 3.1-3.3), six AlSi7Mg samples were 

manufactured using an SLM280 machine, a 700W continuous 

laser, and a print volume of 280 x 280 x 365 mm. The study 

focused on four key parameters: laser power, speed, hatch 

spacing, and build height. The chemical composition of 

AlSi7Mg is shown in Table 1. 

 
Table 1: Chemical composition in % of AlSi7Mg [6] 

Si Mg Cu Ti Fe Mn Zn Al 

6.5-
7.5 

0.5-
0.8 

<0.05 <0.3 <0.2 <0.1 <0.1 Bal. 

Table 2: Input parameters for the manufacture of samples 1-6 in AlSi7Mg  

Sample 

No. 

Strategy Hatch 

Power 

(W) 

Contour 

Power 

(W) 

Hatch 

Spacing 

(mm) 

1 X 

X 

650 

650 

350 

350 

0.17 

0.17 2 

3 Y 

Y 

500 

500 

270 

270 

0.13 

0.13 4 

5 Z 

Z 

580 

580 

310 

310 

0.15 

0.15 6 

4.2. Variations in Laser Power and Hatch Spacing. 

The energy input is expressed in the form of Volumetric Energy 

Density (VED) and this is used to determine whether the metal 

powder will sufficiently melt the powder to create a high 

density part  (Galimberti et al., 2016). The VED is calculated 

using Equation 5 (Tang et al., 2017). 

𝑉𝐸𝐷 =
𝑃

 𝑣.   ℎ𝑠. 𝑡
 (5) 

Where VED is Volumetric Energy Density, 𝐽𝑚𝑚−3 , P is 

laser power, 𝑊 , 𝑣  is laser speed, 𝑚𝑚𝑠−1  , ℎ𝑠  is hatch 

spacing in mm and t is the layer thickness is mm.  
        To ensure a stable AM process and stay within appropriate 

processing windows of the materials used while adopting the 

Rosenthal equation, the VED was kept constant while 

evaluating the effect of variations in build parameters on the 

model accuracy. This was achieved by maintaining a constant 

scanning speed of 2100𝑚𝑚𝑠−1 and  600𝑚𝑚𝑠−1  for the 

hatch and contour scans respectively, and finding suitable laser 

power and hatch spacing settings to keep the VED within a 

targeted range using Magics software. Three build strategies 

were used (X, Y, and Z) with similar VEDs but different 

combinations of laser power and hatch spacing. Sample 

manufacturing was done using these strategies with each 

strategy applied to fabricate two samples, resulting in a total of 

six samples. All six samples were manufactured by applying 

the strategies in Table 2, with each strategy applied to fabricate 

two samples. Hence the Default Strategy X, Strategy Y and 

Strategy Z were applied to Sample number 1, 2; Sample 3, 4; 

and Sample 5, 6 respectively. 

4.3. Variation in Feature Size and Build Position. 

     The feature design is composed of six rectangular extrusions 

with heights varying from 0.1mm to 0.3mm in increments of 

0.1mm. The process parameters from Table 3 4, as well as the 

powder thermophysical properties, were utilized to calculate 

the theoretical feature widths for Case 1, Case 2, and Case 3. 

Using CATIA V5 software, the samples were designed with 

dimensions of 30x15x4mm (LxWxH), with Figure 3 10 

illustrating the CAD design for Sample 1, including section 

views with feature widths of 0.3mm (Case 1), 0.47mm (Case 

2), and 0.66mm (Case 3). Figure 4 shows the CAD Design. 

Figure 3. Schematic of Case 3 feature width (X-Z plane) 
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Figure 4: Sample CAD Design 

The data characterization process involved scanning each 

feature using a Sensofar Smart 3D profiler with a 10x 

magnification lens and generating 3D surface profiles. Two-

dimensional profiles were extracted from each 3D profiles, and 

the measured points were averaged, and their standard 

deviations calculated.  

4.4. Results Summary for Continuous Laser Samples 

     Figure 5 shows 54 bars with standard deviations plotted for 

Case 1-3 for all six samples. Case 1 (C1) had the highest mean 

percentage error (37.72%) the lowest was calculated for Case 

3 (3.72%). Cases 2 and 3 had errors ranging from 3.72% to 

17%, which is better than Case 1, but still has room for 

improvement. The theoretical model always underestimated 

the minimum feature size, with the highest MPE in Case 1 and 

the lowest varying between Cases 2 and 3. The potential 

underestimation of power, hatch spacing, and speed parameters 

needs further investigation as they affect the melt-pool size and 

feature width. The study aims to improve the analytical 

prediction by tuning the current model to predict the actual 

width more accurately. 

5. New Tunable Feature Width prediction Model 

5.1. Model modified using Optimised Coefficients 

     The Rosenthal equation and hatch spacing were used to 

predict the theoretical feature width for Case 1, 2 and 3. This is 

summarised in equations 1-3. The parameters that can be varied 

in this equation are power, speed and hatch spacing. Layer 

height may be varied as well as a function of the build height. 

There was relatively poor width prediction accuracy compared 

with the experimental results. Thus, it is proposed to improve 

the model to facilitate its tunning, using real experiment by 

enabling modification of the influence of machine parameters 

(power, speed, hatch spacing and layer height) on the predicted 

widths. This can be achieved by multiplying these parameters 

with coefficients that can be optimised based on the widths 

measured experimentally. 

The following modifications were made for the following: 

Case 1 and 2: 

 

𝒘𝒕𝒉𝒆𝒐_𝒑 = (√
𝟖

𝝅𝒆
.

𝝀.𝑪𝒇𝒑.𝑷

𝑪𝒇𝒔.𝝆.𝑪𝒑.𝒗(𝑻𝒎−𝑻𝒐)
 ) + 𝑪𝒇𝒉. 𝒉𝒊 + 𝑪𝒇𝑳𝒉. 𝑳𝒉        (6) 

      Case 3: 

𝒘𝒕𝒉𝒆𝒐_𝒑 = (√
𝟖

𝝅𝒆
.

𝝀.𝑪𝒇𝒑.𝑷

𝑪𝒇𝒔.𝝆.𝑪𝒑.𝒗(𝑻𝒎−𝑻𝒐)
 ) + 𝑪𝒇𝒉. 𝟐𝒉𝒄.𝒊 + 𝑪𝒇𝑳𝒉. 𝑳𝒉            (7) 

 

    Where 𝑪𝒇𝒑, 𝑪𝒇𝒔, 𝑪𝒇𝒉 𝒂𝒏𝒅 𝑪𝒇𝑳𝒉 refer to the coefficient of 

power, speed, hatch spacing and layer height respectively.  

The algorithm chosen for the optimisation process is the L-

BFGS-B algorithm. This was selected because it is well 

established and easy to apply with specific boundaries [8]. The 

optimisation algorithm was run to determine which coefficients 

𝑪𝒇𝒑, 𝑪𝒇𝒔, 𝑪𝒇𝒉 𝒂𝒏𝒅 𝑪𝒇𝑳𝒉 returned the best results. The 

boundaries selected for 𝑪𝒇𝒑, 𝑪𝒇𝒔, were 0.1,10 to avoids 

negative square root for 𝑤𝑡ℎ𝑒𝑜_𝑝  calculation. In addition, the 

boundaries for layer height were specified as -10:10 because 

there might be a negative error due to the melting and 

solidification of metallic powder for the final layer, unevenness 

of the build surface layer and thermal shrinkage.  

 

     Figure 6 shows the results from the first optimisation 

process using all LPBF continuous laser data for samples 1-6. 

The MPE for all cases varies between 2 and 15%, which is a 

significant improvement from the previous MPE range of 3-

37.2% from the original model. However, this may be due to 

overfitting the data, which may not guarantee the prediction 

accuracy outside of the experimental space provided by the 

tuning process. Therefore, the model was tuned to a single 

sample data in order to use the other 5 samples as validating 

sets for the obtained coefficients. 

 

Table 3. Summary of coefficients from LBFG Optimisation algorithm 

Laser Type Tuning 

Data 

    

Power Speed Hatch 

Spacing 

Layer 

Height 

C.L (AlSi7Mg) Samples  

1-6 

1.360 0.683 0.266 0.10 

C.L (AlSi7Mg) Samples  

1 

1.383 0.598 0.182 0.01 
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Figure 7. Plot of MPE for Samples 1-6 tuned to single sample data. Where C1, C2, C3 represent Case 1, Case2, Case 3. 

Figure 6. Plot of Mean Percentage Error (MPE) and standard deviations for samples 1-6. Where C1, C2, C3 represent Case 1, Case2, Case 3 
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Figure 5. Plot of Mean Percentage Error (MPE) & standard deviations for samples 1-6 tuned to all data. Where C1, C2, C3 represent Case 1, Case2, Case 3 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

C1 C1 C1 C2 C2 C2 C3 C3 C3

M
e

an
 P

e
rc

e
n

ta
ge

  E
rr

o
r 

(%
)

Build Cases

1 2 3 4 5 6

Figure 8. Plot of MPE for Samples 1-6 tuned to sample 1 data. Where C1, C2, C3 represent Case 1, Case2, Case 3. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

C1 C1 C1 C2 C2 C2 C3 C3 C3

M
e

an
 P

e
rc

e
n

ta
ge

 E
rr

o
r 

 (
%

)

Build Cases

1 2 3 4 5 6



6 Prospera Sonuo Sibanda, Michael Ryan, Samuel Bigot / Procedia CIRP 00 (2023) 000–000 

5.2. Model tuning to single sample experimental set 

In this second optimisation, only the data from sample 1 was 

used to optimise the coefficients of the new model.  A 

comparison of the MPE for the optimisation based on all 

sample data to sample 1 data is shown in Figure 8. 

In general, the MPE after optimisation with one sample data 

ranges from approximately 2-20%, which is 7% larger than the 

MPE after optimisation with all sample data which ranges from 

about 2-13%, and it is still a significant improvement from the 

original model whose prediction error ranged from about 3.72-

37.72%. In the context of a millimetre scale feature designed at 

0.4mm. This 20% MPE value (from single sample 

optimisation) translates to a maximum error of ± 0.08mm, 

which can be considered acceptable at this scale. 

6. Discussion 

     In this paper, we assumed that the Rosenthal equation could 

predict melt-pool width and determine minimum feature width 

for different scenarios. Six AlSi7Mg samples were made and 

compared to theoretical calculations, which under-estimated 

the feature width. Further testing showed that process 

parameters were not being fully considered, leading to an 

attempt to optimize them using an L-BFG algorithm. 

      Following L-BFG optimization of Power, Speed, Hatch 

Spacing, and Layer height, the resulting coefficients were 

summarized in Table 3. The optimized power coefficient was 

consistently greater than one, suggesting that the effect of 

power was underestimated for AlSi7Mg. One possible 

explanation for this is the laser absorptivity parameter, which 

is a material thermo-physical property experimentally derived 

from published literature by Tang et al. [2]. The published 

literature reports an absorptivity range of 0.32 to 0.39 for 

AlSi10Mg, with an average of 0.33 used to calculate melt-pool 

width. As the laser power used in the AlSi7Mg experimentation 

was higher than the published literature (360W), the 

absorptivity likely increased, making the extra average of 30% 

power compensation logical.  

    The optimised coefficients of speed were consistently less 

than one for AlSi7Mg, indicating an overestimation of speed's 

impact on melt-pool width. This results in larger melt-pool 

widths than previously predicted since the analytical 

calculation of the melt-pool width is inversely proportional to 

the square root of the speed. For continuous laser, the low 

influence of hatch spacing may be due to the laser's continuous 

power and speed along each scan, hence only the hatch spacing 

between adjacent melt-pools needs to be compensated for. 

The coefficient of layer height is always less than 0.1 indicating 

that it has little effect on the melt-pool width. 

 

7. Conclusion 

     In this paper, an analytical model was developed and 

optimized to determine the minimum feature width of 

machine/material combination. The Rosenthal equation was 

used to estimate the melt-pool width and input data required by 

the model included power, speed, hatch spacing, layer height, 

and material properties. The original model prediction under-

estimated feature widths, so L-BFG optimization was used to 

tune the model for higher accuracy. The optimized model can 

predict minimum feature width for AlSi7Mg (SLM280) 

material (machine) combination with a single sample. 

The results are promising for the AlSi7Mg material and 

SLM280 machine, hence future work will involve validating 

the methodology with a different combination of material and 
machine to evaluate if the proposed model could indeed 

become a generic model.  
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