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Figure 1: We introduce a framework for synthesizing plausible scenes over interactively edited floor plans. Given an initial
scene, a user can select an edge (wall) of it (a). The user can then expand (or shrink) the room shape, and our framework
automatically adds (or removes) objects and continuously arranges objects (b). Users can add breakpoints (Red Box) to edit
diverse floor plans (c). If a room is sufficiently large, our framework splits the room, adds new objects and arranges the existing
objects (c, d, and e). Through a few operations, a floor plan that matches the user preference and contains plausible object
arrangements is synthesized (f). Please see the supplementary video for interactive demos.
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Abstract
Scene synthesis has gained significant attention recently, and in-
teractive scene synthesis focuses on yielding scenes according to
user preferences. Existing literature either generates floor plans or
scenes according to the floor plans. The system proposed in this
paper generates scenes over floor plans in real-time. Given an initial
scene, the only interaction a user needs is changing the room shapes.
Our framework splits/merges rooms and adds/rearranges/removes
objects for each transient moment during interactions. A systematic
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pipeline achieves our framework by compressing objects’ arrange-
ments over modified room shapes i n a  t ransient moment, thus 
enabling real-time performances. We also propose elastic boxes 
that indicate how objects should be arranged according to their 
continuously changed contexts, such as room shapes and other 
objects. Through a few interactions, a floor plan filled with object 
layouts is generated concerning user preferences on floor plans 
and object layouts according to floor plans. Experiments show that 
our framework is efficient at  user interactions and plausible for 
synthesizing 3D scenes1.

CCS Concepts
• Computing methodologies → Computer graphics.
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1 Introduction
Research has emphasized the importance of synthesizing 3D scenes
[18]. The plausibility of generating 3D scenes has significantly
improved in the past decades [19]. Scene synthesis usually selects a
set of objects and plausibly arranges them in a given floor plan [26].
The object arrangements should match the learned spatial relation
priors and the strict constraints of the floor plan [5, 27, 29], e.g., the
number of objects should fit the floor plan’s capacity.

To synthesize scenes with user preferences, another branch of
scene synthesis emphasizes interactively crafting scenes, i.e., con-
trolling the process of scene synthesis. Through cursors [28] (e.g.,
using a mouse), texts [23], panels [25], etc., users can specify selec-
tions/translations/rotations for a few objects, and the frameworks
arrange involved objects subsequently in each interactive session.
For example, Clutterpalette [24] requires a user to select a position
in the 3D scene for each interactive session. An object appears
concerning existing objects and supports in the selected position.

However, existing literature mainly interprets user preferences
as “selections and transformations” of objects, which is practical
for users already satisfied with the provided floor plan. On the
contrary, if users have not decided on a specific floor plan, they
may repeatedly choose/modify a floor plan, interactively synthesize
an object layout and decide to change the floor plan again, even if
they only want to make minor tweaks to the floor plan. On the other
hand, users may not know if the floor plan is ideal until they see how
the objects can be arranged accordingly. To interactively synthesize
a single floor plan with object layouts, a user has to conduct the
synthesis process time after time for different floor plans. Interior
designers typically face considerable floor plans. Therefore, the

1Please refer to a supplementary video for an overview of our framework.
The source code is publicly available at
https://github.com/Shao-Kui/3DScenePlatform#sceneexpander.

challenge is to concurrently control floor plans and objects during
the synthesis process, i.e., in the early stages of interior design, both
the floor plan and objects’ layouts can be provided simultaneously.

This paper introduces an interactive scene synthesis framework,
where the interactive units are no longer objects but “room shapes”
(floor plans). As shown in Figure 1, a user edits the floor plan
for each interactive session, resulting in an expanded/cropped
floor plan. Our framework judges the new floor plan and infers
(a) rearrangement of objects, (b) splitting/merging rooms and (c)
adding/removing objects. This entire inference process runs in real-
time. Objects and rooms are dynamically and gradually changed by
continuously adjusting the floor plan. Objects are continuously ar-
ranged along with changing floor plans at every transient moment,
as shown in Figure 2. Users can stop when they are satisfied with
the synthesized object layouts.

Our framework is executed iteratively for every transient mo-
ment. An algorithm pipeline is proposed to catch the changes in
floor plans and decide if we should divide rooms, how we should
divide rooms, how we should rearrange objects, and what objects
should be added/removed (Section 3). The pipeline includes gen-
erating division plans, which help divide existing rooms so the
floor plan is gradually enriched with more rooms. Our framework
proposes multiple division plans for each transient moment, so it
subsequently evaluates them and chooses the best or none of them
(Section 4). If a room is enlarged, shrunk or divided, the pipeline
may addmore objects, remove objects that no longer fit the room, or
arrange existing objects. We propose “Elastic Boxes” representing
groups of objects for layout adjustment, as shown in Figure 2, to
address the above operations (Section 5).

To our knowledge, we are the first to investigate interactively
synthesizing scenes over editing floor plans. Our work makes the
following contributions:

• We present an interactive scene synthesis framework that
adds/rearranges/removes objects and splits/merges rooms
over continuous changes of floor plans.

• Wepropose a system pipeline that detects room shape changes,
executes room divisions, dispatches object groups and ar-
ranges objects in a transient moment of editing floor plans.

• We propose elastic boxes, which help spatially fit object
groups to the continuous floor plan changes, thus plausibly
arranging objects at any moment.

Note that our framework still arranges objects similar to typi-
cal synthesis frameworks, e.g., [24, 28]. Our framework does not
generate floor plans [3, 6, 8, 13, 21] (Section 2.3). Instead, the floor
plans are input from users and are interactively controllable.

2 Related Work
2.1 Interactive Scene Synthesis
Scene synthesis has been developed significantly in recent decades
[26]. Researchers first investigate automatic scene synthesis, i.e.,
automatic selection and arrangement of objects in a room [5, 16,
20, 22, 27]. However, it is hard for this technique to generate scenes
according to user preferences, e.g., a bedroom containing a double
bed adjacent to the window. Therefore, interactive scene synthesis
aims to control the scene synthesis process [28].

https://doi.org/10.1145/3664647.3680798
https://doi.org/10.1145/3664647.3680798
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Figure 2: This paper introduces elastic boxes, which allow
continuous arrangement of objects according to the floor
plan changes at any transient moment.

Yu et al. [24] introduce a framework for placing small objects
into scenes concerning supports, co-occurrence, etc. Zhang et al.
[25] also place small objects but are concerned with the up/ down/
left/ right/ front/ back between objects. Merrell et al. [12] introduce
a framework where users can specify constraints. The framework
will generate several suggestions to be chosen. Zhang et al. [28]
introduce a real-time framework for inserting objects into scenes.
An object pops up appropriately for each transient moment while
moving the cursor (e.g., with a mouse). Zhang et al. [30] allow
editing a group of objects simultaneously, following the cursor.
Additional attributes control objects in the same group.

Besides, literature introduces editing scenes passively, i.e., mak-
ing users unaware of arranging objects. Liang et al. [10] rearrange
objects in a workspace so the new layout can consume less com-
muting time. Zhang et al. [31] expand this to multi-users. They
also calculate the optimal workspace layout and work allocation
plan based on the individual work ability of employees, which can
generate a more comprehensive scheduling plan. Facing virtual
reality, Dong et al. [4] rearrange objects when users wear a Head
Mounted Display to ensure they do not collide with obstacles. Liu
et al. [11] propose a framework for arranging desktop items by
studying user behaviors on the desktop, considering constraints
such as object stacking and compactness.

The literature above allows editing objects with fixed floor plans.
If a user is unsatisfied with the floor plan, e.g., needing spaces for
more objects or new rooms, the user has to rearrange objects in
the next floor plan from scratch. In our framework, an interactive
unit is no longer an object or a group of objects. Users edit floor
plans to indirectly manipulate objects, where the object layouts are
synthesized according to the user-specified floor plans.

2.2 Fabrication
Existing methods also consider editing patterns inside 3D objects,
e.g., rungs in the monkey bars. Funkhouser et al. [7] enable the
creation of new 3D objects using existing objects. Schulz et al. [17]
assemble components into a new object. Their method calculates
the connections and alignments. Bokeloh et al. [1, 2] deform shapes
while preserving object structures. They first search for discrete
variations, such as component repetitions in an object. Then, the
discrete variations are added or deleted when editing the objects. In
contrast, Ovsjanikov et al. [14] explore 3D objects by continuously
editing their components. A template model is extracted, deforming
its components. Different objects are retrieved accordingly.

The above literature inspires us. We create new scenes using
existing objects, where the components are groups of objects. How-
ever, indoor scenes usually do not need repeated patterns. Objects
are inserted according to their functions.

2.3 Floor Plan Generation
Scene synthesis often assumes a floor plan is given, where objects
are arranged. In contrast, other literature generates floor plans
for scene synthesis [6]. Wu et al. [21] formulate neural networks
to locate rooms, allocate areas for rooms, and assign room types.
Nauata et al. [13] generate floor plans with a room graph, where
each vertex indicates a room type. Hu et al. [8] generate floor plans
with user constraints. They first generate graphs representing the
relations of rooms. Then, the graph is decoded and aligned to yield
floor plans. Deitke et al. [3] combine scene synthesis and floor plan
generation into an automatic end-to-end framework.

The above methods can generate plausible floor plans, but they
are end-to-end approaches, where a complete floor plan is generated
given an input such as a graph. In contrast, our framework does
not generate complete floor plans but explores continuous room
divisions, i.e., a division is calculated for each transient moment.
Hence, our framework seeks for controllable room division over
editing floor plans. In other words, a floor plan is not “generated”
but “adjusted” to adhere to user input.

3 Framework Pipeline
Figure 3 shows how our framework is executed for every transient
moment, a minimal period detected by the computer. For example,
hundreds of transient movements occur when a user moves a room
shape’s edge. The only input is a modified room shape. Our frame-
work generates several division plans according to the changed
room shape. A division plan indicates how to divide the room, and
a room shape has multiple plans. Two evaluations subsequently de-
cide whether the framework should divide the room by evaluating
the current whole floor plan and the existing elastic boxes. Section
4 discusses generating and evaluating division plans. Whether a
room should be divided has two branches. Each transient move-
ment executes one of the branches and waits for the next transient
moment, i.e., the next user interaction.

If the framework does not divide the room, the room shape is
changed according to the interaction. Our framework then detects
the elastic boxes that should be adjusted due to the modified room
shape. For example, if an elastic box leans against a modified wall,
the elastic box will be adjusted, i.e., translated according to the wall.
Its adjacent elastic boxes are also involved in adjustments. This
detection is recurred until no adjacent elastic boxes exist. “Shrink-
ing” the room shape may remove one or more elastic boxes. After
adjusting the elastic boxes, their objects are translated or rotated
following their layout strategies, which suggest (1) object-object
transformations, e.g., transforming a sofa concerning a coffee table,
and (2) object-edge transformations, e.g., shrinking a living room
may cause a sofa and a TV cabinet getting close to their coffee table.
The object-object and object-edge transformations are maintained
in a database. When all existing objects have been adjusted for this
transient movement, our framework further attempts to add new
elastic boxes by trying to find a free space. A new elastic box is
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Figure 3: At every transient moment, a room shape is modified, and we generate several division plans. A division plan indicates
how a room should be divided according to the modified room shape. Two evaluations assess the division plans and decide if
we should divide: (No): The modified room only changes its shape and the objects involved. We detect the elastic boxes that
must be adjusted according to the new room shape. The objects inside elastic boxes are arranged according to their layout
strategies (Section 5), which are stored in a database. (Yes): The modified room is split. The elastic boxes involved have been
reassigned to the two new rooms. Then, the elastic boxes and their objects are adjusted and arranged.

added and rotated according to a dependent wall if a free space
exists.

If the framework should divide the room, a division plan is picked,
and a new room is derived from the original room. Our framework
examines each elastic box and reassigns it to one room, referring
to room types and the ease of spatially moving the elastic box to
another room. Every room has a type, e.g., bedroom, bathroom, etc.
The two evaluations above also score the division plans, and the
framework adopts the one with the highest score. A division plan
contains the type for the new room indicating the initial elastic box,
such as a “coffee table set” for living rooms. Since the room shapes
are modified, the elastic boxes are adjusted, and their objects are
arranged. Section 5 discusses the elastic boxes’ mechanism and how
we arrange elastic boxes’ objects in detail.

Our framework supports merging two rooms into one if a room
is shrunk. The merging logic aligns with the “Divide” branch in
Figure 3. If, during the evaluation process, the framework decides
that the room should be merged with another one, our framework
will check each elastic box in the rooms to be merged, using the
same evaluations above. The objects’ arrangements follow how
we utilize the elastic boxes above. We illustrate our framework to
make our technical details self-contained, focusing on enlarging
and dividing. Note that we allow users to choose their favoured
room types, which can easily be added by giving tags to each room.

4 Room Divisions
Our framework splits the room by evaluating several division plans
and choosing the best one. A division plan consists of two room
shapes, r1 and r2, with room types 𝑡1 and 𝑡2. r1 and r2 are divided

from the original room. In each transient moment, only one room
directly adjacent to the moving edge can be divided.

We generate division plans using a sampling method, as shown
in Figure 4a, where an “inner edge” divides a room into two, and
our method proposes a series of inner edges. Each inner edge differs
from the previous division plan with a constant distance. The room
adjacent to the moving edge is a new room that will be assigned a
new room type, and the other room will keep the original type.

To evaluate a division plan, we define an evaluation function
𝜙 (r, 𝑡) to measure how a room shape r and a room type 𝑡 are suit-
able, as shown in Equation 1, where 𝛽 (r) represents the number
of the room r’s edges. 𝛼 (r) is the ratio of r’s area to the area of
its rectangular bounding box. The sum of 𝛽 (·) and 𝛼 (·) evaluates
the regularity of room shape r. A high value of it indicates a reg-
ular room, such as a rectangle in Figure 4b. The exponential and
logarithmic are applied, so the values’ differences are significant.

𝜙 (r, 𝑡) = −𝐶1 exp(𝛽 (r)) +𝐶2 ln(𝛼 (r))

+𝐶3𝑃𝑟 (r, 𝑡) +𝐶4min(1, 𝛿 (r)
𝜖 (𝑡) )

(1)

𝑃𝑟 (r, 𝑡) is the room area distribution function extracted from the
RPLAN dataset[21]. For each room type 𝑡 , the distribution varies.
𝛿 (r) is the minimal edge length of the room’s bounding box, while
𝜖 (𝑡) is a constant representing the desired minimal length of a room
type 𝑡 . 𝑃𝑟 (·) and min(1, 𝛿 (r)

𝜖 (𝑡 ) ) ensure the room has proper space to
accommodate the functionality of its type.

We also define another evaluation function,𝜓 (c), to control the
number of each type of room, as shown in Equation 2. Each entry
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(a) (b)

Figure 4: (a): Generating Division Plan. Each of the sub-
figures is a division plan. The green line represents the outer
edge beingmoved, and the red lines represent the inner edges
dividing the original room into two. (b): Two different rooms
in the same area. The upper room has fewer edges and is
closer to the bounding box; thus, it will have a higher value
in the first two components of Equation 1.

Figure 5: LEFT: an elastic box and the involved objects’ lay-
out strategies. Our framework has two strategies. A yellow
transparent arrow indicates another strategy, where the ob-
ject is bound with another object, e.g., the teapoy is arranged
concerning the relative transformations to the sofa. A red
transparent arrow indicates a strategy where the object is
bound with an edge (wall), i.e., the object is arranged con-
cerning the relative transformations to the edge (wall). A
solid blue arrow records an object’s identifier, semantics and
the edge/object to which it is bound. RIGHT: four examples
of how the objects to the LEFT are arranged given different
boundaries.

of c is the number of a room type in the current editing floor plan,
and 𝑛 is the number of room types, i.e., c is an 𝑛-dimensional vector.

𝜓 (c) =
∑︁

(ĉ,𝑣) ∈S

(
𝑣 ×

𝑛∑︁
𝑘=1

{
P𝑘 × exp(ĉ𝑘 − c𝑘 ) c𝑘 ≤ ĉ𝑘
Q𝑘 × exp(c𝑘 − ĉ𝑘 ) c𝑘 > ĉ𝑘

)
(2)

S = {(ĉ, 𝑣)} is the distribution of room types extracted from
RPLAN [21]. ĉ is a vector of room types similar to c. 𝑣 is the fre-
quency of ĉ in the dataset. P andQ are two positive constant vectors
that measure if a new room should be added with a specific room
type. Room types such as “living rooms” that are necessary but
should not be many have large P𝑘 and Q𝑘 . Necessary room types,
such as “bedrooms”, can be many and have a large P𝑘 but a small
Q𝑘 . Room types such as “storage” are unnecessary and have small

P𝑘 and Q𝑘 . Then for each division plan {(r1, 𝑡1), (r2, 𝑡2)}, its overall
evaluation 𝜎 (r1, 𝑡1, r2, 𝑡2) is shown in Equation 3.

𝜎 (r1, 𝑡1, r2, 𝑡2) =min(𝜙 (r1, 𝑡1), 𝜙 (r2, 𝑡2))
−𝐶𝑡 ×𝜓 (c̃) −𝐶𝑑 × 𝛿 (r1, r2)

(3)

where c̃ is the new room type count vector after new rooms are
introduced, i.e., an entry of c increases. 𝛿 (r1, r2) is the number of
elastic boxes removed, which will be explained in section 5. If a
division plan eliminates too many elastic boxes, 𝛿 (·) will be large.
𝐶𝑡 and 𝐶𝑑 are the trade-offs between the two evaluations.

We also evaluate the original room, i.e., 𝜙 (r, 𝑡) −𝐶𝑡 ×𝜓 (c), which
is compared with the evaluations yielded by various division plans.
Suppose any of the division plans have a higher evaluation. In that
case, the division plan with the highest evaluation is accepted, and
the original room is divided, i.e., the “Yes” branch in Figure 3 and
Section 3. Otherwise, the room is not divided, i.e., the ”No” branch.

If a room is shrunk, we will determine the connectivity of the
room r with the room from which it was divided. If they are con-
nected and the evaluation of the merged room is higher than the
evaluation of the two individual rooms, the two rooms are merged.

5 Elastic Boxes
An elastic box contains several objects, as shown in Figure 5. We
use each object’s “layout strategy” to calculate its transformation
at every transient moment. A “layout strategy” is (1) an object’s
relative transformations concerning another object in the same
elastic box (e.g., the yellow arrows in Figure 5) or (2) an object’s
relationship to a specific boundary of the elastic box (e.g., the red
arrows in Figure 5). Each elastic box contains four boundaries.
Each boundary may be adjacent to a room’s edge (wall). Whenever
the four boundaries are determined, the elastic box’s objects are
arranged according to our layout strategies, e.g., Figures 5(a-d).

An elastic box’s semantics consist of its objects’ semantics, indi-
cating its function in an indoor scene. We utilize the Spatial And-Or
Graph of Qi et al. [16] to infer elastic boxes given room types. Qi
et al. [16] build a hierarchy to infer objects (children) from room
types (parent). Our framework adds elastic boxes in between.

As shown in Figure 3, our framework contains three operations
on elastic boxes. The first operation, ”Evaluation Based on Elastic
Boxes,” evaluates division plans given existing elastic boxes. We
attempt to assign elastic boxes from the original room to one of
the new rooms. If the room’s semantics fit the elastic box, we will
pull the elastic box into the new room, where we first test the
intersection of elastic boxes and rooms. If an elastic box and a
room disjoint, the elastic box should not be moved into the room.
Otherwise, we will check the intersection between the room’s edges
and the box’s boundaries. The elastic box should be moved along
the normal direction of the boundaries outside the room. Figure 6
illustrates more details. If the distance to move the elastic box is
large, it should not be moved into the new room. The elastic box
is removed if an elastic box should not be moved into both new
rooms. Each elastic box from the original room is assigned to a new
room or removed through this process.

The second operation is “Adjusting Elastic Boxes,” which changes
existing elastic boxes’ boundaries and removes the elastic boxes that
are too small after room shape modified. If an edge (wall) is moved,
we enumerate each boundary adjacent to it, where the boundaries
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Figure 6: Evaluation Based on Elastic Boxes. LEFT: A division
plan yields two new rooms (Green and Red). An elastic box
(Black) intersects with the inner edge. RIGHT: The elastic
box’s four boundaries and two room edges are annotated
with their indices (𝑏𝑖 and 𝑒 𝑗 ) and normal directions (Bracket).
When we try to assign the elastic box to the new room (Red),
we should pull the box along the normal direction of the
boundaries (Blue Arrows). We check the intersections be-
tween the elastic box’s boundaries and room edges, and edges
𝑒1 and 𝑒2 intersect with the box’s boundaries. For example, we
achieve the boundary 𝑏1 facing the same direction as 𝑒1, and
calculate the distance between 𝑒1 and 𝑏1. The box is moved
along the normal direction of 𝑏1 for the distance.

are added to a pending set. For each boundary, we also check its
opposite boundary’s adjacencies, added to the set, as shown in
Figure 7. If an edge is adjacent to a boundary, the boundary will
not be moved, i.e., keeping leaning against the edge. If a boundary
is adjacent to nothing, it will follow the edge (wall) dragged by the
user. Then, all the boundaries in the set are adjusted according to
their lengths and the distance caused by the user (Δ𝑑 in Figure 7).

The third operation is “Adding New Elastic Boxes,” which detects
free spaces that may hold a new elastic box, adds a new elastic box,
and rotates it concerning a wall. The elastic box database initially
proposes an elastic box whose semantics fit the current room. Our
framework places the newly added elastic box next to each room
corner and checks if it conflicts with other objects. If no conflict
occurs at a corner, the box is added. Figure 8 shows an example.

6 Experiments
6.1 Implementation
We developed a web-based platform to hold the proposed frame-
work, as shown in Figure 9. The platform supports editing or split-
ting room shapes. Users can freely move an edge or add breakpoints
to it. At every transient moment, our platform detects a modified
room shape, and our framework is executed so that objects are ar-
ranged. Our framework and platform are developed using Three.js.

The platform supports editing individual objects or objects of
elastic boxes, such as typical industrial solutions or other interactive
scene synthesis frameworks (see Section 6.2). Users can add, delete,
move, rotate or scale individual objects. Therefore, we can com-
bine our framework with other interactive frameworks, enabling
interactive convenience and customization flexibility.

We utilize 3D-Front to extract the elastic boxes. Since 3D-Front
mainly contains bedrooms and living rooms, we invite interior

Figure 7: Adjusting Elastic Boxes. The right wall (Green) is
dragged with distance Δ𝑑 , a tiny value for every transient
moment. This wall is adjacent to the right boundary of two
elastic boxes (Blue and Yellow). The bottom elastic box’s left
boundary (Blue) has no adjacency, so it will be moved for
Δ𝑑 following the right wall. The up-right elastic box’s left
boundary (Yellow) is adjacent to another elastic box (Orange),
whose left boundary is adjacent to the left wall. This left
boundary should not be moved, i.e. keep leaning against the
left wall. The boundaries between the two elastic boxes (Blue
and Yellow) should be moved according to their lengths, i.e.
𝐿1 and 𝐿2, so their moving distance is 𝐿2

𝐿1+𝐿2 Δ𝑑 .

Figure 8: An example of “Adding New Elastic Boxes”. For the
current room (Blue) with two elastic boxes (Orange and Yel-
low), an elastic box (Black) is proposed. Then, our framework
places it at each room corner until no conflict occurs, e.g.,
the box is placed at the lower right corner (Ticked).

designers to create objects and their arrangements for other room
types, such as bathrooms. The elastic boxes are structurally stored in
our database. We can tune the strategies, e.g., changing the relative
positions required between objects/walls.

6.2 Usability and Efficiency
This experiment verifies our framework’s usability and efficiency
by comparisons. To our knowledge of interactive scene synthesis,
there is no existing framework with exactly the same “interactive
sessions” [30]. Our interactive session involves adding breakpoints
and pulling edges (walls), indirectly arranging objects. Thus, we
compare our framework with four baselines that interactively syn-
thesize 3D scenes with their unique interactive sessions. We ensure
the five frameworks (four baselines and ours) have the same input
and output. The four baselines are:
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Table 1: Time Consumption. Each row refers to a framework. Each column refers to times consumed by a particular operation.
Each cell contains an average time recorded and its standard deviation in brackets.

Framework Navigate Add Remove Translate Rotate Scale Methods Others Total

Clutterpalette 35.4 (33.0) 16.7 (80.5) 1.8 (2.6) 29.2 (22.2) 17.7 (13.5) 1.1 (3.5) 157.5 (85.1) 105.2 (110.1) 366.4 (206.9)
MageAdd 27.7 (22.7) 0.3 (1.5) 1.6 (3.7) 7.0 (11.6) 4.4 (5.5) 0.0 (0.0) 167.6 (98.5) 43.1 (38.8) 251.6 (117.1)
SceneDirector 20.1 (14.6) 38.7 (98.0) 2.8 (2.3) 6.9 (8.0) 3.7 (5.6) 1.5 (3.5) 56.1 (33.2) 105.5 (123.8) 235.4 (94.1)
Industrial 65.6 (53.3) 56.6 (21.1) 1.6 (2.2) 18.9 (12.7) 16.6 (12.3) 1.6 (4.8) 0.0 (0.0) 250.3 (98.5) 411.2 (175.7)
SceneExpander 17.2 (12.3) 0.0 (0.0) 0.4 (1.2) 1.7 (3.1) 1.0 (2.7) 0.0 (0.0) 53.9 (78.7) 45.4 (58.6) 119.6 (61.9)

(a) Selecting an Edge. (b) Pulling an Edge.

(c) Adding a Breakpoint. (d) Adding two Breakpoints.

Figure 9: The web-based platform for editing floor plans.
Users can edit room shapes by selecting a wall (a) and pulling
it (b). Users can add one (c) or two (d) breakpoints (Red Boxes)
to split a wall, thus modifying walls’ fragments.

Clutterpalette [24]: Clutterpalette synthesizes a 3D scene by
iteratively clicking positions, as shown in Figure 10a. A user clicks
a position in each interactive session, and a set of objects appears
on a UI based on the position’s context. Selecting an object refines
the recommended objects on the UI. When finding one, the user
adds an object and continues another interactive session.

MageAdd [28]: MageAdd synthesizes a 3D scene by exploring
potential objects that may appear in the scene, as shown in Fig-
ure 10b. In each interactive session, a user freely moves the cursor,
and various objects may appear at the position pointed by the cur-
sor. If the user finds a suitable object, the user can add the object,
and the scene’s contexts will change for more potential objects.

SceneDirector [30]: SceneDirector synthesizes a 3D scene by
simultaneously editing multiple objects, as shown in Figure 10c.
In each interactive session, a user selects an object, referred to as
a dominant object according to [30]. Subsequently, a set of subor-
dinate objects appears around the dominant one. When the user
moves the dominant object, other objects follow it.

Industrial Solution: This denotes no “intelligent methods” in-
volved, as shown in Figure 10d. Users follow typical industrial
software such as Kujiale [9] and Planner 5D [15]. A user searches
objects, adds objects, transforms existing objects or removes objects.
Other “intelligent methods” sometimes suggest implausible layouts,
so we enable industrial operations for all frameworks.

(a) Clutterpalette [24] (b) MageAdd [28]

(c) SceneDirector [30] (d) Industrial Software.

Figure 10: The four baselines in addition to our framework.
(a): Clutterpalette [24] adds objects (Red Boxes) according
to their surrounding contexts. (b): MageAdd [28] explores
potential objects that can be added, e.g., the translucent object
in the scene. (c): SceneDirector [30] edits multiple objects
concurrently (Green Box). (d): Typical industrial solutions
are integrated into our platform.

We invite 30 participants. Each participant uses the 5 frameworks
to generate 5 floor plans with object layouts. Since our framework
arranges objects over editing floor plans, to ensure the 5 floor plans
yielded from the same participant have the same room shapes, a
participant first uses our framework to edit an initial floor plan
(with objects arranged by our framework). Then, she/he uses each
baseline to synthesize a 3D scene using the same initial floor plan.
All frameworks are implemented on the same 3D scene platform,
as shown in Figure 9. The participants include professional interior
designers, university students, freelancers, office workers, etc. All
the participants were taught how to use our platform. A teach-
ing video and a guide manual are available. They can freely try
different frameworks until they are familiar with them. Each partic-
ipant requires up to 1 hour to get familiar with the frameworks and
approximately 1 hour to finish 5 floor plans. A technical staff mem-
ber is nearby to answer technical questions and provide in-person
instructions.

The participants include 16 males and 14 females, with an aver-
age age of 24.73 years old, with the youngest age 18 and the oldest
36. The participants have a variety of professional backgrounds. 16
of them are from architecture and interior design.
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Table 2: Interaction and Results. Each row refers to a frame-
work. Each column refers to a rate in Section 6.3. Each cell 
contains an average rate recorded and its standard deviation.

Framework Interaction First-Person Third-Party

Clutterpalette 2.84 (0.99) 2.68 (0.96) 2.89 (1.04)
MageAdd 3.16 (1.67) 2.68 (1.06) 2.89 (1.07)
SceneDirector 3.58 (1.21) 3.61 (1.31) 3.28 (1.19)
Industrial 2.74 (1.41) 3.42 (1.31) 2.85 (1.17)
SceneExpander 3.59 (1.10) 3.62 (0.89) 3.31 (1.33)

The participants were asked to interactively generate a floor
plan until satisfied. For each generation, a participant can use only
one of the above frameworks, while the “industrial Solution” has
no intelligent method involved. We recorded the times consumed
for the interactive synthetic processes. The time spent editing floor
planswas not counted for the baselines. Because our frameworkwas
first executed, participants were more familiar with the baselines
than ours, i.e., they will be more skilled in using the subsequent
ones. Therefore, the time consumption was more advantageous to
the baselines than ours. For different participants, the orders for
using the four baselines were random.

Table 1 shows the average time spent on different user interac-
tions, including (1) navigating the scene where users adjust views to
interact with scenes from different perspectives. (2) adding objects
where users drag searched results into scenes or duplicate objects.
(3) removing objects. (4) translating objects. (5) rotating objects. (6)
rescaling objects. (7) the frameworks’ interactive sessions, such as
simultaneously editing multiple objects [30]. (8) other time con-
sumption, including elaborations, considerations, misoperations,
etc, which are not trackable by our system. We add timers to every
unit operation to ensure each consumed time is correctly recorded,
so the systematic errors are negligible. Note that we still allow par-
ticipants to use operations from “industrial solutions” to give them
further preferences, and counting on this time, our framework still
shows significant interactive time savings.

Each cell in Table 1 contains an average time and a standard
deviation in brackets. Time is recorded in seconds. According to
Table 1, our framework significantly reduces the time required
to craft a 3D scene. A Kruskal-Wallis H-Test shows significant
statistical differences between our framework’s total time and the
baselines’ total time, with the p-value close to 0.

This experiment can also be treated as a usability study of re-
cent interactive scene synthesis frameworks. For example, though
SceneDirector [30] helps quickly arrange a set of objects concur-
rently, it does not arrange other objects irrelevant to the set. Thus,
users need to add other objects manually. In contrast, though
MageAdd [28] can be slow, it saves time in adding objects. Fur-
ther discussions of the above frameworks are beyond the scope of
this paper. See a supplementary video for a qualitative comparison.

6.3 Plausibility and Satisfication
This experiment verifies our framework’s plausibility and satis-
faction. We invited the same participants in Section 6.2 to rate

our framework and the baselines based on “interaction” and “first-
person score”. The interaction refers to how participants feel a
sense of smoothness, fluency and ease while interacting with the
frameworks, with 0 being “poor feeling” and 5 being “excellent
experience”. The first-person score refers to how participants feel a
sense of plausibility, aesthetics, and preferences in the scene they
crafted, with 0 being “terrible” and 5 being “fine art”.

Another 13 participants are invited to rate a third-party score
on the results generated from Section 6.2. The newly invited partic-
ipants do not intersect with those in Section 6.2. Each participant
is presented with 50 random questions. Each question contains a
3D scene generated by one of the five frameworks. The third-party
scores refer to how newly recruited participants feel a sense of
plausibility and aesthetics in the scene presented. The new partic-
ipants include professional interior designers and university stu-
dents knowledgeable about arts or interior design. The participants
do not know the frameworks. The participants include 6 male and
7 female participants. Their average age is 24.46 years old, ranging
from 20 to 35. 5 are from architecture and interior design.

Table 2 shows the results. The “interaction” indicates that our
framework maintains interactive smoothness, fluency and ease
but significantly improves the interactive efficiency (Section 6.2).
The “first-person score” indicates that our framework can generate
results meeting user preferences since interactive scene synthesis
aims to synthesize scenes incorporating user preferences [28]. The
“third-party score” indicates that our framework can generate a
plausible and aesthetic scene as a synthetic framework. Thus, the
objects’ arrangements from their elastic boxes are reasonable.

7 Conclusion
This paper introduces an interactive framework for scene synthe-
sis. Users can continuously edit room shapes in each interactive
session, so objects are arranged accordingly. Nevertheless, several
drawbacks remain for future improvements.

First, as a graphical system works, our framework suffers from
loading many objects concurrently. Our current optimization is
caching and multi-threading, which keeps the framework smoothly
operating when loading geometries and textures. However, our
framework can not “foresee” elastic boxes to appear. If the frame-
work keeps loading a few elastic boxes (e.g., loading complexmodels
or encountering bad network traffic), nothing shall appear, even
though our framework decides to add more objects. We should
calculate elastic boxes’ occupations and objects’ arrangements to
improve our framework upon adding new elastic boxes. In con-
trast, our framework must load all the 3D resources before the
occupations and arrangements.

Second, hard decorations still need to be addressed. Similar to
other interactive synthetic frameworks [24, 28, 30], our focus is
still on objects and floor plans are not interactively synthesized. A
complete “home decoration” still needs connections between rooms,
which may conversely affect how we arrange objects, e.g., objects
should not block a door between two rooms. Pipes and wiring are
also currently not addressed in typical interactive/automatic scene
synthesis frameworks.
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