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Unsupervised Low-Light Image Enhancement
with Self-Paced Learning

Yu Luo, Member, IEEE, Xuanrong Chen, Jie Ling, Chao Huang,
Wei Zhou, Senior Member, IEEE, and Guanghui Yue, Member, IEEE

Abstract—Low-light image enhancement (LIE) aims to restore
images taken under poor lighting conditions, thereby extracting
more information and details to robustly support subsequent
visual tasks. While past deep learning (DL)-based techniques have
achieved certain restoration effects, these existing methods treat
all samples equally, ignoring the fact that difficult samples may be
detrimental to the network’s convergence at the initial training
stages of network training. In this paper, we introduce a self-
paced learning (SPL)-based LIE method named SPNet, which
consists of three key components: the feature extraction module
(FEM), the low-light image decomposition module (LIDM), and
a pre-trained denoise module. Specifically, for a given low-light
image, we first input the image, its pseudo-reference image, and
its histogram-equalized version into the FEM to obtain prelim-
inary features. Second, to avoid ambiguities during the early
stages of training, these features are then adaptively fused via an
SPL strategy and processed for retinex decomposition via LIDM.
Third, we enhance the network performance by constraining the
gradient prior relationship between the illumination components
of the images. Finally, a pre-trained denoise module reduces
noise inherent in LIE. Extensive experiments on nine public
datasets reveal that the proposed SPNet outperforms eight state-
of-the-art DL-based methods in both qualitative and quantitative
evaluations and outperforms three conventional methods in
quantitative assessments.

Index Terms—Low-light image enhancement, self-paced learn-
ing, histogram equalization, Retinex decomposition.

I. INTRODUCTION

IMAGES captured under low-light conditions often suffer
from a variety of quality issues, such as a significant

increase in noise levels, a notable decrease in contrast, and the
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Fig. 1. Samples of naturally low-light images, improved with state-of-the-art
unsupervised learning techniques and our SPNet, are presented. Our method
can recover more content and details in images, such as the framework of
skylights and the patterns on marble surfaces, as highlighted by the color
rectangles.

loss of detailed information. These defects directly impact the
usability of images and pose serious challenges to subsequent
computer vision tasks, such as object recognition [1]–[3] and
image classification [4]. In light of this, the development of
effective LIE techniques has become particularly important.
These techniques not only improve image aesthetics but also
significantly increase the effectiveness of subsequent image
analysis tasks.

Histogram equalization is a classic technique for enhancing
low-light images by modifying the image’s overall brightness
contrast. However, as a global processing strategy, it fails to
consider the local features of the image, which may lead to
an imbalance in local contrast and neglect of important spatial
features. Recently, the rise of DL has brought new possibil-
ities to LIE [5]–[9]. However, existing DL-based supervised
methods often rely on a certain assumption, i.e., each low-
light image has a corresponding version captured under normal
lighting, which is often unrealistic in practical applications.

In recent research, various self-supervised and unsuper-
vised strategies for LIE methods have been reported [10],
[11]. Nguyen et al. [12] construct pseudo-ground-truth images
synthesized from multiple source images that simulate all
potential exposure scenarios to train the enhancement network.
Wang et al. [13] proposed an adaptive enhancement framework
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for a single low-light image that is based on the strategy of
virtual exposure. These methods primarily depend on carefully
constructed prior knowledge to guide the training of neural
networks, improving image quality without explicit pairwise
supervision. Although these works have made some progress,
they still face challenges when dealing with individual low-
light images, as the limited information contained in images is
insufficient to guide the network to learn all necessary features.

More recently, the integration of histogram equalization
methods with convolutional neural network (CNN)-based tech-
niques, particularly as a guiding approach, has demonstrated
significant effectiveness in the realm of self-supervised and
unsupervised image enhancement [4], [14], [15]. Generally
speaking, these methods typically function by maintaining
consistency between the features of the enhanced images and
those extracted via histogram equalization.

While methods based on histogram equalization and CNN
have had some effect, two problems remain. First, these meth-
ods treat all samples equally, neglecting the negative impact
of difficult samples in the early stages of network training,
which can lead the network toward suboptimal or erroneous
optimizations. Second, in self-supervised or unsupervised s-
cenarios, the lack of normal-light images to constrain Retinex
decomposition may result in unsatisfactory outcomes from the
enhancement network. Fig. 1 shows examples of restoration
results on real low-light images that compare our proposed
method with other state-of-the-art unsupervised methods. Our
method effectively recovers the skylight textures within the red
rectangle and the marble textures within the blue rectangle in
the image.

In this paper, we propose a novel unsupervised LIE method
named SPNet with an SPL strategy. The main differences
between SPNet and the previous LIE method are shown in Fig.
2. Specifically, our network includes three main components:
the FEM, the LIDM, and the pre-trained denoise module. FEM
extracts simple features from the original low-light image, its
pseudo-reference image, and its histogram-equalized versions.
We subsequently fuse the features extracted via FEM via an
SPL strategy and input the resulting feature into the LIDM
for retinex decomposition. By using the SPL strategy, our
method can reduce the negative impact of difficult samples
to prevent the network from converging toward suboptimal
or erroneous solutions during the initial stages of network
training and guide the network’s training progression from
simple to complex tasks. We further enhance network training
by constraining the illumination gradient priors between the
original and pseudo-reference images. Finally, to eliminate
noise during the enhancement process, we integrate a pre-
trained denoise module, thus improving the quality of the final
images.

The difference between our proposed method and existing
methods [16]–[19] is: First, previous methods treat all samples
equally during training, which may lead to overly difficult
samples pushing the network to a suboptimal solution or even
optimizing the network to a suboptimal solution in the early
stages of network training. Our method introduces SPL into the
LIE task to avoid the negative impact of difficult samples in the
early stages of network training, thereby improving the quality

of images restored by the network. Second, in the absence of
reference images, we further improve the performance of our
method by constraining the illumination gradient relationship
between the pseudo-reference image and the original image. In
summary, the main contributions of this study are as follows:

To prevent the network from optimizing toward suboptimal
solutions or erroneous directions in the early training stages,
we use an SPL strategy that adaptively adjusts guidance feature
weights on the basis of sample difficulty determined through
the results of histogram equalization.

To improve the performance of the LIE recovery without
reference images, we introduce a novel constraint on the rela-
tionship between the gradients of the illumination components
derived from the original input image and its pseudo-reference
image.

The experimental results on nine datasets show that the
proposed SPNet outperforms six state-of-the-art unsupervised
LIE methods, three conventional LIE methods, and two super-
vised LIE methods in terms of performance. The source code
of our SPNet will be available at https://github.com/X-Chen-
DL/SPNet.

II. RELATED WORK

A. Conventional LIE Methods

In the literature of LIE, histogram equalization and its
families are popular. Traditional histogram equalization often
results in over-enhancement and detail loss [20]. Guo et al.
[20] proposed an innovative method to effectively reduce noise
amplification. Huang et al. [21] proposed a method to mit-
igate the problem of excessive enhancement and smoothing.
Brightness preserving dynamic histogram equalization [22] ex-
tends dynamic histogram equalization techniques, generating
output images with average brightness closely matching the
input, thus preserving the image’s overall luminance. Opti-
mizing histogram equalization parameters enhances contrast
and maintains image naturalness [23]. Additionally, detail-
weighted histogram equalization has been developed to resolve
over-enhancement in peak histograms [24].

Another legends of LIE are Retinex-based methods. The
foundational theory of Retinex, proposed by Land and Mc-
Cann, emphasizes the significance of simulating human visual
perception in enhancing images [25]. Building upon this,
various researchers have explored different adaptations of
Retinex theory to enhance the visibility of images. Wang
et al. [26] introduced a LIE technique by improving the
realism and detail in photos affected by uneven lighting.
Furthermore, Wang et al. [27] developed a technique for
adjusting the colors of images through the application of the
Retinex model and multi-scale analysis, employing a transfor-
mation that is nonlinear in nature as dictated by the Weber-
Fechner law. Fu et al. [28] proposed a new probabilistic image
enhancement method based on simultaneous estimation of
illumination and reflectance in the linear domain. Apart from
the aforementioned methods, one notable method is the Single-
Scale Retinex method, which improves image brightness and
preserves natural color balance simultaneously [29]. However,
SSR often leads to over-enhanced results, a limitation that
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Fig. 2. A comparison between previous LIE methods (a) and our proposed
SPNet (b). The key idea of our method is to utilize an SPL strategy, employing
histogram equalization results as guidance to reduce the negative impact of
difficult samples in the early stages and to diminish learning ambiguities
during the initial phase of network training.

Multi-Scale Retinex seeks to address by integrating different
scales of Retinex processing [30].

In recent years, the integration of Retinex theory with other
computational techniques like optimization algorithms and
machine learning has also been explored [31]–[35], indicating
a trend towards more sophisticated and adaptive enhancement
methods. Nonetheless, in the processing of complex images
from real-world scenarios, these techniques usually result in
local color distortions [36].

B. Learning-based Methods

In the past decade, a wide range of DL-based LIE algo-
rithms have been proposed, which can be broadly categorized
into supervised and unsupervised methods.

Commonly, the supervised methods require paired images,
i.e., both low-light image and its content-consistent normal-
light image. For example, Wei et al. [16] used deep learning
for Retinex decomposition to enhance low-light images by
improving brightness and contrast while preserving natural
colors and details. Later, Zhang et al. [17] divided the image
into reflection and illumination parts and restored them sep-
arately while removing noise and chromatic aberration. This
method improved the image quality and adapted to different
lighting conditions through a sensitivity adjustment network.
Wu et al. [18] not only decomposed images into reflection and
illumination but also meticulously developed three learning-
based modules for data-related initialization, efficient opti-
mization unfolding, and user-specified illumination enhance-
ment. Xu et al. [19] enhance low-light images dynamically
through spatially variant operations by integrating signal-to-
noise-ratio-aware transformers and Convolution models. Guo
et al. [37] enhanced the preliminary illumination representation
by incorporating a predetermined framework, resulting in a
sophisticated illumination profile facilitating related improve-
ments. Wang et al. [38] proposed an invertible network that
learns to map the distribution of normally exposed images

into a Gaussian distribution. Wan et al. [39] proposed to
enhance the visibility and suppress artifacts by purifying low-
light images under the guidance of the NIR enlightened image
captured by using the near-infrared light as compensation. Guo
et al. [40] proposed a Cross-Image Disentanglement Network
with weakly supervised learning, which can simultaneously
correct brightness and suppress image artifacts in the feature
domain, improving the robustness of pixel shifts between
training pairs. Li et al. [41] proposed a knowledge distillation
method for LIE task. The proposed method uses a teacher and
student framework and knowledge transfer between the teacher
and student network is accomplished by distillation loss based
on attention maps.

Due to the difficulty in obtaining paired low/normal light
images in real-world scenarios, researchers have begun explor-
ing unsupervised methods for LIE. Jiang et al. [42] proposed
a paradigm that eschews the use of paired datasets, instead
leveraging information extracted directly from the input to
constrain network training. Guo et al. [43] proposed a method
to enhance image brightness by using DL networks to estimate
curves specific to each image. This method uses a set of
well-designed loss functions to eliminate the need for data
sets in the training process and greatly simplifies the net-
work training process. Nguyen et al. [12] generated synthetic
baseline images by amalgamating various original images,
thereby replicating every conceivable lighting condition, for
the purpose of educating the improvement network. Zhao et al.
[10] and Liang et al. [11] utilized the priors of untrained neural
networks for unsupervised LIE, requiring no training samples
other than the input images themselves. Luo et al. [44] intro-
duced a mutual learning strategy that learns the corresponding
normal-light images of low-light images through knowledge
distillation via mutual learning across two branches. Fu et al.
[45] utilized a straightforward self-supervised method to filter
out unsuitable characteristics from the initial images, in order
to acquire the hidden attributes common among paired low-
light photographs.

C. Self-paced Learning

In recent research, SPL has gained significant traction in
the field of computer vision, emphasizing the role of adaptive
learning processes in enhancing model performance and data
comprehension [46], [47]. SPL’s core idea is to allow learning
models or algorithms to gradually incorporate complexity,
thereby aligning with human learning patterns. Jiang et al.
[48] explored SPL in image classification tasks, introducing
diversity regularization to improve generalization in neural
networks. This approach highlights the effectiveness of SPL
in managing varied and complex visual data. Kumar et al.
[49] provided a foundational perspective on SPL in latent
variable models, offering insights beneficial for optimizing
computer vision algorithms. Guo et al. [50] used an SPL
strategy to improve the performance of the network by using
the Ground Truth (GT) of the attention map as a guidance
during difficult samples. Zhang et al. [51], [52] pointed out
that in few-shot learning, tasks are often randomly selected
for contextual training without considering their difficulty and
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Fig. 3. The overall architecture of our proposed method. S1, SHE , and S2 respectively represent the original image, the histogram equalization result of
the original image, and the pseudo-reference image. All FEMs and LIDMs share parameters. The FEMs extract the basic features of the input image and
support subsequent SPL strategy and image enhancement. The LIDMs use the features extracted from the FEMs to enhance the clarity of low-light images.
R1, I1, and R2, I2 represent the reflectance and illumination components derived from the decomposition of S1 and S2, respectively. After obtaining the
preliminary enhancement result R1, it is input into a pre-trained denoise module to obtain the final outcome.

quality, which may hinder the meta-learner from gradually
improving its generalization ability. To address this problem,
they adopted the SPL strategy to train the meta-learner with
tasks of gradually increasing difficulty, thereby improving
its generalization ability and performance. Dai et al. [53]
proposed a training strategy termed DMH-CL for complex
pose estimation, brought from SPL which mainly addresses
easy examples in the early training stage and hard ones in
the later stage. This approach also significantly enhances the
performance of the existing model. These studies collectively
showcase the breadth of SPL applications in computer vision,
from basic image classification to complex pattern recognition,
highlighting its potential to enhance model adaptability and
efficiency. Although SPL has shown promising results in the
above tasks, for LIE, how to select difficult samples is a critical
challenge. In our research, we determine the sample difficulty
through the result of histogram equalization of the input image
and adaptively adjust the feature guidance weights through the
SPL strategy.

III. PROPOSED METHOD

A. Motivation

Following Retinex theory [54], a low-light image S can be
represented as the product of a reflectance image R and an
illumination component I:

S = R ∗ I, (1)

where ∗ signifies multiplication on an individual element basis.
The illumination component I characterizes the brightness
level across object surfaces, which are expected to be sec-
tionally smooth and devoid of texture, whereas the reflectance
R represents the physical properties of the objects, including
the textures and detail information observed in the image.

Although existing methods have achieved certain effects
in enhancing low-light images, they usually treat all samples

Fig. 4. The upper image is a schematic representation of the denoise module.
The initial half illustrates the pre-training process of the denoise module.
The subsequent half indicates that the parameters are frozen during both
the training and testing phases of LIE. The lower image depicts the specific
structure of the denoise module.

equally [16]–[19]. Owing to the specificity of the LIE task,
extremely low light conditions cause the images to contain
very little useful information. These are difficult samples in the
early stages of network training, which can lead to suboptimal
or even erroneous solutions. So we need to train the network
from simple samples to difficult samples. Therefore, SPL is
highly suitable for the LIE task. To be specific, we use the
features of the histogram-equalized version of the input image
to select difficult samples and adaptively adjust the weights of
the guidance features according to the SPL strategy.

B. Overall Architecture

Fig. 3 shows the overall structure of SPNet, which com-
prises three primary components: the FEM, the LIDM, and
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the denoise module. The FEMs aim to extract basic features
effectively from the input images, laying the foundation for
the subsequent feature fusion of the SPL strategy and image
enhancement processing. The LIDMs use the features extract-
ed from the FEMs to enhance the clarity of low-light images.
The denoise module processes the preliminary enhancement
results to improve the final image quality. We apply histogram
equalization and quadratic curve transformation to the original
input S1, generating SHE and S2. They, along with S1, are
input into the FEM, resulting in F1, FHE , and F2. F1 and F2

are fused with FHE for feature integration, using the guidance
weight λ, which is dynamically adjusted on the basis of the
network’s restoration quality. Following this, the combined
results are fed into the LIDM for retinex decomposition,
resulting in R1, I1, R2, and I2. Following [36], [37], [55],
we take the output reflectance part R1 as the targeted normal-
light image. Finally, to reduce the potential noise in the dark
area, which is amplified during the LIE process, we input R1

into the pre-trained denoise module [56] to obtain the final
output.

1) Feature Extraction Module (FEM): The FEM primarily
comprises two convolutional layers: conv1 and conv2. The
conv1 layer employs a 9×9 convolutional kernel, whereas the
conv2 layer uses a 3×3 convolutional kernel. The FEMs are
designed to share parameters.

2) Low-light Image Decomposition Module (LIDM): As
shown in Fig. 3, the LIDM consists of five convolutional layers
and a deconvolution layer, gradually increasing the depth of
the network to capture more complex features. It ultimately
produces the reflectance map (R) and the illumination map (I).
These outputs are processed by a sigmoid function to ensure
that the results fall within an appropriate numerical range.

C. Loss Function

Without the normal light image as a reference, the Retinex
decomposition will be unstable. Therefore, we incorporate
several fundamental constraints intrinsic to Retinex decom-
position

LR = ω0‖S1 −R1 · I1‖1 + ω1Lhep + ω2‖∇R1‖1
+ ω3‖∇S1 −∇I1‖1, (2)

The symbol ∇ signifies horizontal and vertical gradients, and
ω0, ω1, ω2, and ω3 denote the weights. ‖S1 − R1 ∗ I1‖1
is the reconstruction loss, which constrains the network to
perform a reasonable Retinex decomposition. Lhep refers to
the histogram equalization loss. ‖∇R1‖1 is used to constrain
the smoothness of the generated image. Its primary function
is to maintain the naturalness and continuity of images in
enhancement tasks, avoiding excessive noise generation within
the image. By minimizing ‖∇S1 − ∇I1‖1, the network is
encouraged to generate an illumination component that is
gradient-wise similar to the original low-light image, which
contributes to preserving the structure and details and improv-
ing the brightness and contrast of the image.

In the absence of GT data, imposing effective constraints on
the training of unsupervised networks becomes crucial. Our
study employs a quadratic curve transformation to generate a

sequence of images depicting the same scene under varying
brightness conditions. Following [44], we refer to these im-
ages as pseudo-reference images. The formula for generating
pseudo-reference images S2 from the input low-light images
S1 is as follows:

S2 = S1 + α ∗ S1 ∗ (1− S1), (3)

where α ∈ [0, 1] represents the parameter controlling bright-
ness. According to the derivation from [44], we can obtain the
representation of the illumination component I2 of the pseudo
reference image from Equation (3) as:

I2 ≈ (1 + α) ∗ I1, (4)

where I1 is the illumination component of the original image.
Thus, the gradient relationship of the illumination between the
original input image and the pseudo-reference image can be
derived:

∇I2 ≈ (1 + α) ∗ ∇I1, (5)

We observe that both Equation (4) and Equation (5) can
impose constraints on the training of the network. As shown
in Table IV, the training results of the network are obviously
better when Equation (5) is used than when Equation (4) or
neither is used. This is because, in image processing, gradients
are usually closely related to the edges and texture information
of images. By constraining the gradients, the network can
pay more attention to the structural changes in images rather
than just the direct changes in pixel values. Moreover, because
the human visual system (HVS) is highly sensitive to edges
and textures, and gradients can capture this information. So
using gradient constraints can align the learned features more
closely with the HVS and improve our task’s performance.
The specific form of the gradient similarity of the illumination
constraint is as follows:

LGSI = ‖(1 + α) ∗ ∇I1 −∇I2‖1, (6)

Our network’s overall loss is a linear combination of LGSI
and LR.

Lall = ω4 ∗ LR + LGSI (7)

where ω4 is the weighting parameter to balance each loss.

D. Denoise Module

Although the aforementioned LIE module effectively in-
creases the brightness of dark areas, this process also amplifies
the potential noise in dark regions. In light of this, our study
further uses a denoise module to effectively eliminate the noise
hidden in low-light areas. Our denoise module is inspired by
[56], and is pre-trained on ten arbitrary low-light images from
the training set of the LOL dataset, and its parameters are
frozen during the training and testing phases of the FEM and
LIDM.

As shown in Fig. 4, during the pre-training phase of the
denoise module, we add Gaussian noise N (0, σ2) to arbitrary
images X:

Y = X +N (0, σ2), (8)
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Subsequently, we add the same intensity of Gaussian noise
N (0, σ2) to Y:

Z = Y +N (0, σ2), (9)

During training denoise module, we use Y as the GT to con-
strain the output Fθ(Z) obtained from the denoising network.
The loss function is as follows:

LDNM = ‖Fθ(Z)− Y‖22, (10)

Fθ() represents the mapping of the denoise module. As shown
in Fig. 4, our denoise module consists of multiple residual
blocks and a self-attention block. Each residual block consists
of two convolutional layers and a subsequent batch normal-
ization layer and uses the LeakyReLU activation function.
After multiple residual blocks, the network employs a local
self-attention module [57]. This module calculates attention
weights and then applies these weights to the input feature
maps, enabling the network to better focus on important areas
of the image. The self-attention module is another convolution-
al layer and batch normalization layer, which further processes
the feature maps.

E. Self-Paced Learning

In the absence of normal-light reference images, we utilize
an SPL strategy here to allow the network training process
to progress from easy to difficult. During training, we apply
histogram equalization to the input image S1 to obtain the
SHE . SHE enhances image contrast and improves the qual-
ity and clarity of the details in low-light images, providing
good guidance for unsupervised network training. According
to Zhang’s study [15], the feature mapping of histogram-
equalized enhanced images on the VGG network is similar
to that of the GT. So, we employ the difference between
the restored image and histogram-equalized enhanced images
in feature space to assess the state of the image restoration
and use it as a basis for determining the difficulty level
of the samples. The specific representation of the histogram
equalization prior loss is as follows:

Lhep = ‖φ(R1)− φ(SHE)‖22, (11)

where φ() represents the feature mappings extracted by the
VGG-19 model pre-trained on ImageNet. S1, SHE , and the
pseudo-reference image S2 are separately fed into the FEM,
generating the features F1, FHE , and F2, respectively. Fol-
lowing an SPL strategy, F1 and F2 are fused with FHE and
then input into the LIDM. The expression for the fusion of F1

with FHE is as follows:

F = λ · FHE + (1− λ) · F1 (12)

λ is the guidance weight of SPL. The fusion of F2 with FHE
is similar to the fusion of F1 with FHE . λ dynamically adjusts
according to Lhep, specifically as follows:

λ =


1, if Lhep ≥ 1,
Lhep−0.3
1−0.3 , if 1 > Lhep > 0.3

0, if Lhep ≤ 0.3

(13)

Equation (13) is employed for adjusting the weights of F1 and
FHE . At the initial stage of network training, a higher value of
Lhep indicates poorer restoration performance, classifying the
samples as difficult. In the initial stages of network training,
difficult samples may lead the training toward suboptimal
solutions or even incorrect optimization directions. To filter
out difficult samples in the early stages and guide the network
in the correct optimization direction, we set the value of
λ to 1. This makes F equivalent to FHE , allowing the
network to initially focus on learning from simpler samples.
As the training progresses and restoration quality improves,
λ decreased to increase the weight of F1. λ is set to 0 when
Lhep is less than 0.3, and FHE’s influence is stopped to avoid
over-enhancement and color distortion from the histogram
equalization.

Algorithm 1 SPNet for LIE
Input: Low-light image set S1, pseudo-reference image set
S2, and S1’s histogram-equalized version SHE
Output: Normal-light image
Initialize: Initialize FEM GFEM and LIDM GLIDM ; λ = 1
repeat

1: F1 = GFEM (S1), FHE = GFEM (SHE), F2 =
GFEM (S2);

2: According to the SPL strategy, by merging features
F1 and FHE as well as F2 and FHE through Equation (12),
Ffusion1 and Ffusion2 are obtained;

3: R1, I1 = GLIDM (Ffusion1), R2, I2 =
GLIDM (Ffusion2);

4: Minimize the objective function Equation (7) and
update GFEM , GLIDM , λ simultaneously;

5: Input R1 into the pre-trained denoise module to
obtain the final output.
until convergence

IV. EXPERIMENTS

A. Implementation Details

Training and testing procedures were executed via PyTorch
1.10.0 on a PC equipped with an Intel(R) Core(TM) i7-
12700K and an NVIDIA GeForce RTX 3090 Ti GPU. We
iteratively optimized the FEM and LIDM utilizing the Adam
optimizer. The pre-training phase of the denoise module was
also optimized by the Adam optimizer. The batch size and the
patch size are set to 16 and 128. The model’s learning rate
was initiated at 0.0001. The weights ω0, ω1, ω2, ω3, and ω4

are set to 1, 0.2, 0.02, 0.2, and 1, respectively. The number of
epochs for the model was 150.

B. Datasets and Criteria

We utilized 324 low-light images gathered from SICE [61]
and LOL [16] to train the network. To verify the effectiveness
of our proposed method, we conducted tests on the test
sets of nine datasets: LOL [16](15 paired low/normal light
images for testing), LSRW [6](50 paired low/normal light
images for testing), LOL-syn [62](100 paired low/normal light
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TABLE I
ANALYSIS COMPARISON OF VARIOUS APPROACHES ACROSS NINE STANDARDIZED DATASETS. FOR DL-BASED UNSUPERVISED METHODS, THE TOP AND

SECOND-BEST OUTCOMES ARE DISTINGUISHED BY RED AND BLUE COLORS. THE OVERALL ’RANK’ IS CALCULATED BY AVERAGING THE RANKS
OBTAINED USING DIFFERENT METHODS FOR EACH DATASET, AND ’ROR’ REPRESENTS THE RANK OF THE OVERALL ’RANK’.

Dataset Metrics Conventional Methods Supervised Methods Unsupervised Methods
NPE [26] SRIE [58] LIME [37] RetinexNet [16] KinD [17] EnGAN [42] ZeroDCE [43] RUAS [59] SCI [60] DUNPLIE [11] MLNet [44] SPNet

LOL PSNR 16.94 11.87 16.76 16.77 17.65 17.37 14.83 16.39 16.06 15.49 20.07 20.12
SSIM 0.48 0.50 0.56 0.56 0.76 0.66 0.58 0.58 0.49 0.65 0.76 0.79

LSRW PSNR 16.12 15.96 16.97 15.90 16.47 16.31 15.83 14.44 15.02 15.04 16.50 16.63
SSIM 0.40 0.54 0.40 0.37 0.49 0.47 0.47 0.43 0.48 0.51 0.49 0.52

LOL-syn PSNR 16.72 15.56 16.58 17.14 18.32 16.57 12.23 13.40 15.43 16.80 18.46 17.00
SSIM 0.77 0.66 0.74 0.76 0.78 0.73 0.73 0.64 0.74 0.75 0.81 0.83

LOL-real PSNR 17.33 17.34 15.24 15.47 23.78 18.23 18.06 15.33 17.30 12.97 17.88 17.98
SSIM 0.46 0.69 0.47 0.41 0.87 0.61 0.58 0.52 0.54 0.39 0.76 0.79

LIME NIQE 3.93 4.53 4.15 4.61 4.73 3.77 4.60 4.15 4.10 5.40 4.40 4.27
LOE 431.31 305.02 793.9 539.64 255.80 618.77 298.72 802.25 84.97 403.25 246.42 198.30

MEF NIQE 3.52 3.47 3.70 4.41 3.88 3.04 4.53 3.77 3.72 3.73 3.78 3.59
LOE 422.32 270.26 939.11 708.25 275.47 589.32 334.18 784.17 94.97 527.80 268.22 222.48

NPE NIQE 4.18 4.20 4.27 4.57 4.19 3.49 4.18 5.41 3.58 3.85 4.11 3.54
LOE 163.04 164.37 1174.92 653.83 180.91 559.92 440.77 1065.7 288.36 457.63 463.6 438.82

DICM NIQE 3.83 4.56 3.84 4.43 4.13 3.32 3.41 4.82 3.65 3.95 4.05 2.97
LOE 303.99 547.39 531.51 621.72 250.41 699.61 336.73 621.72 284.12 422.47 600.86 524.72

VV NIQE 2.47 3.13 2.47 2.70 3.03 3.62 2.89 3.42 2.36 4.37 3.20 2.76
LOE 225.61 117.57 309.56 382.56 133.01 453.87 150.21 579.83 99.24 401.77 227.66 280.58

Rank 5.7 6.7 7.6 8.7 4.5 6.2 6.9 9.9 5.3 7.9 4.9 3.2
RoR 5 7 8 11 2 6 8 12 4 10 3 1

Fig. 5. Visual comparison of state-of-the-art LIE methods on dimly lit images from the LOL dataset.

images for testing), and LOL-real [62](100 paired low/normal
light images for testing), LIME [37](10 low-light images for
testing), MEF [63](17 low-light images for testing), NPE
[26](8 low/normal light images for testing), DICM [64](69
low-light images for testing), and VV(24 low-light images for
testing). Since LOL, LSRW, LOL-syn, and LOL-real include
reference images, we quantitatively assessed the enhancement

results via two classic full-reference image quality assessment
metrics: PSNR and SSIM [65]. For datasets without reference
to normal-light images, such as LIME, MEF, NPE, DICM, and
VV, we applied NIQE [66] and LOE [26] as the image quality
assessment metrics. Higher values of PSNR and SSIM, and
lower scores of NIQE and LOE indicate better image quality.
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Fig. 6. Visual comparison of real-world images from the MEF dataset using state-of-the-art LIE methods. It is evident that under extreme lighting conditions,
our method can recover more content and details in areas compared to other unsupervised approaches.

TABLE II
THE MODEL PARAMETERS AND RUNNING TIMES OF

CNN-BASED METHODS AND OUR METHOD.

Method PARAMETERS(M) TIME(S)
RetinexNet 0.4448 0.1140

KinD 8.0164 0.1935
EnGAN 8.6373 0.0593

ZeroDCE 0.0764 0.0012
RUAS 0.0034 0.0046

SCI 0.0003 0.0005
MLNet 0.4710 0.0745

SPNet w/o denoise module 0.4856 0.0209
SPNet 1.2226 0.0431

TABLE III
THE ABLATION STUDY OF SPL. THE TOP RESULTS ARE EMPHASIZED IN

BOLD.

Configurations PSNR SSIM
Setting (A) 19.95 0.76
Setting (B) 19.91 0.75
Setting (C) 19.98 0.77
Setting (D) 20.12 0.79

C. Comparison with State-of-the-Art Methods

We compare SPNet with three conventional methods, NPE
[26], LIME [37], and SRIE [58]; two supervised learning
methods, KinD [17] and RetinexNet [16]; and six unsupervised
learning methods, EnlightGAN [42], RUAS [59], SCI [60],
ZeroDCE [43], DUNPLIE [11], and MLNet [44]. The results
of these methods are reproduced by using their official source.

In Table I, we present the result of the proposed SPNet and
compare LIE methods on nine datasets. The ’Rank’ and ’RoR’
show that our SPNet achieves the highest ranking on nine
datasets compared with eight DL-based LIE methods and three
traditional LIE methods. This demonstrates the effectiveness of
our method and its robust ability in a variety of real-world low-
light environments. Specifically, it achieves the highest PSNR
values on the LOL and LSRW datasets, and the highest SSIM
values on the LOL, LSRW, LOL-syn, and LOL-real datasets.
Although our method’s performance metrics on non-reference
datasets are lower than those of SCI, the restored results of
our method still have excellent visual quality, as shown in Fig.
6 and Fig. 7.

TABLE IV
THE ABLATION STUDY OF THE ILLUMINATION GRADIENT SIMILARITY

LOSS. THE TOP RESULTS ARE EMPHASIZED IN BOLD.

Loss PSNR SSIM
LR 19.91 0.77

LR + LISL 19.99 0.77
LR + LRSL 19.81 0.74
LR + LGSI 20.12 0.79

D. Qualitative Evaluations

Fig. 5 shows the enhancement results of nine LIE methods
on the LOL dataset. Although RetinexNet enhances the bright-
ness of the picture, it produces some unnatural colors, causing
the edges of the objects to become less sharp. The other six
unsupervised methods still showed poor restoration effects on
the left side of the second image. ZeroDCE, RUAS, SCI, and
DUNPLIE lost the texture details on the leftmost side of the
image. MLNet restored the color of the toy in the middle of
the image to grayish green, indicating color deviation. SPNet
restores the brightness of the picture better while keeping the
color and contrast natural. In the second image, it restores the
extremely dark area on the left side of the image while keeping
the other areas from being overexposed.

In Fig. 7, we showcase the results of multiple LIE methods
on the LIME dataset. RetinexNet continues to exhibit overly
saturated colors, KinD shows ghosting effects, and EnGAN
and ZeroDCE demonstrate insufficient restoration. The RUAS
and SCI methods result in overexposure. Moreover, our SPNet
enhances low-light areas without overexposure. Fig. 6 displays
the outcomes of different LIE methods on the MEF dataset.
The chosen image is from an environment with an extreme
lack of illumination, where it is evident that, compared with
ZeroDCE, RUAS and SCI, our method can recover more
image information and details under extreme low-light con-
ditions. This phenomenon is particularly noticeable in the
depths of the caves in the image that the other LIE methods
fail to effectively restore, and our method still manages to
reconstruct the contours of the rocks. But there is a slight
overexposure at the cave entrance, which may be because
SPNet considers the image to be enhanced as a whole and
globally enhances it. To address this issue, in future work,
we may try to use the attention mechanism to adaptively
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Fig. 7. Visual comparison of real-world images from the LIME dataset using state-of-the-art LIE methods. It can be observed that, compared to other
methods, our approach enhances illumination adequately without issues such as overly vivid colors.

TABLE V
THE ABLATION STUDY OF DENOISE MODULE. THE TOP RESULTS ARE

EMPHASIZED IN BOLD.

PSNR SSIM
w/o denoise module 19.97 0.75
with denoise module 20.12 0.79

adjust the exposure to avoid local overexposure. Fig. 8 shows
the comparison result of our method and other LIE methods
on the LSRW dataset. Compared with other methods, our
approach can restore extremely dimly lit corridor areas without
introducing distortion. RetinexNet, KinD, and MLNet show
various levels of distortion. ZeroDCE, RUAS, and SCI are
unable to adequately restore image details. Fig. 9 provides the
visual comparison results of LIE methods on the LOL-syn
dataset. Compared with the competing methods, our method
can restore the color better, without distortions. At the same
time, our method can restore details such as the windows of
the house at the bottom of the picture.

Computational Efficiency We also investigate the com-
putational efficiency of our method and compare it with
competing methods in terms of the parameter and the inference
time. All experiments are conducted via PyTorch 1.10.0 on a
PC equipped with an Intel(R) Core(TM) i7-12700K and an N-
VIDIA GeForce RTX 3090 Ti GPU. The input image size was
600×400×3. As shown in Table II, our method does not have
obvious advantages in computational efficiency. In the current
study, the design of SPNet is more focused on improving the
image quality from the perspectives of brightness and contrast,
and SPNet outperforms other competing methods on average
across nine datasets. Additionally, we found that the denoise
module accounts for more than 60% of the parameters in our
method, which shows that the parameter amount of our LIE
module is competitive. Our next research goal is to achieve
denoising effects with less computational complexity.

E. Ablation Studies

This section conducts ablation studies on the LOL dataset
to investigate the effectiveness of some key components in our
proposed network.

1) To validate the effectiveness of the SPL approach, a range
of ablation tests were conducted, encompassing four distinct

configurations: (A) self-paced learning applied neither in S1

nor in S2 (B) self-paced learning applied only in S1 (C) self-
paced learning applied only in S2 (D) self-paced learning
applied in both S1 and S2 (as proposed in this study). As
shown in Table III, the configuration used in our proposed
method outperforms the other settings, which also validates
the effectiveness of SPL. In configuration (A), the lack of SPL
makes certain samples excessively challenging for the current
network, thereby impacting the overall learning effectiveness.
In configurations (B) and (C), since either S1 or S2 did not
employ SPL, the restored reflection layer and illumination
layer were less than ideal. This further affects the constraint
effectiveness of the illumination gradient similarity loss, and
might even have negative implications.

2) To ascertain the effectiveness of the gradient similarity
illumination loss, two common loss functions are compared:
(a) the training of the network is constrained by the linear
relationship between the illumination components I1 and I2,
as shown in Equation (14); (b) according to Luo et al. [44],
the reflection components R1 and R2 should be approximately
equal, as shown in Equation (15)

LISL = ‖(1 + α) ∗ I1 − I2‖1 (14)

LRSL = ‖R1 −R2‖1 (15)

As shown in Table IV, our proposed Illumination Gradient
Similarity Loss provides the most significant enhancement in
recovery effects for the LIE task.

3) To confirm the ability of the denoise module to eliminate
noise that is amplified during the enhancement of low-light
images input to the LIE network, we carry out ablation exper-
iment (3). The results, as presented in Table V, demonstrate
that the inclusion of the denoise module results in a 0.15dB
increase in the PSNR.

4) To verify the appropriateness of the selected lower thresh-
old values in the SPL strategy, we tested lower threshold values
ranging from 0.1 to 0.9 in increments of 0.1. Fig. 10 shows
the experimental results. Increasing the lower threshold values,
which indicates a growing influence of the SPL strategy,
improves the network’s PSNR and SSIM on the test set. This
suggests that enhancing SPL helps our network converge in a
more accurate direction. However, when the lower threshold



IEEE TRANSACTIONS ON MULTIMEDIA 10

Fig. 8. Visual comparison of real-world images from the LSRW dataset using state-of-the-art LIE methods.

Fig. 9. Visual comparison of real-world images from the LOL-syn dataset using state-of-the-art LIE methods.
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Fig. 10. Ablation study of the lower threshold for the SPL strategy.

values are set too low (below 0.3), the PSNR and SSIM of
the network on the test set will decrease. This occurs because
setting the lower threshold values too low prevents the network
from stopping SPL at the right time. The network does not
learn from more challenging samples, leading to poor training
results. By comparing the results in Fig. 10, we finally set the
threshold to 0.3 due to the superior performance achieved.

5) We conducted an ablation experiment on the key param-
eter ω4 in Equation (7). As shown in Fig. 11, the experimental
results show that SPNet achieves better results when setting
ω4 to 1.0.

6) In order to verify the rationality of the data setting during
the pre-training process of the denoise module, we conducted

Fig. 11. Ablation study of the balance parameter ω4 for Equation (7).

TABLE VI
THE ABLATION STUDY OF THE DATA SETTING DURING THE PRE-TRAINING
PROCESS OF THE DENOISE MODULE. THE TOP RESULTS ARE EMPHASIZED

IN BOLD.

Pre-training data PSNR SSIM
singly noise-added image (Y), noise-free image (X) 19.43 0.763

doubly noise-added image (Z), singly noise-added image (Y) 20.12 0.794

ablation experiment (6). As shown in Table VI, the noise-free
image and singly noise-added image represent the X and Y in
Equation (8), respectively, and the doubly noise-added image
represents the Z in Equation (9). The experimental results
show the effectiveness of our data setting.
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V. CONCLUSION

In this study, we introduce a LIE method featuring an
SPL strategy guiding the network’s training from simpler
to more complex tasks. Additionally, our method constrains
network training by leveraging the prior relationship between
the illumination components of both low-light images and
pseudo-reference images. The preliminary results are then
fed into a pre-trained denoise module to achieve the final
restoration outcome. Comprehensive experiments across nine
standard benchmarks reveal that our method outperforms
eight DL-based LIE methods in terms of quality and metrics
and achieves performance comparable to three conventional
methods. In future work, we will update the denoise module’s
structure to improve the network’s overall computational effi-
ciency. Additionally, we plan to extend our method to other
image processing tasks, such as image deraining and MRI
reconstruction [67], [68].
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