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1. Introduction

At least as early as 1970, conformal symmetry had been considered in statistical

mechanics in the context of critical phenomena, seen as a generalisation of scale

invariance to rescaling by a position-dependent parameter [1]. By 1984, a family

of two-dimensional quantum field theories enjoying conformal symmetry known as

the minimal models had been described, one of the advantages being correlation

functions were entirely determined by conformal symmetry [2]. In the context of

string theory, the surface which a string sweeps out in space-time – the world-sheet

– is the setting for a two-dimensional conformal field theory. Scattering amplitudes

of increasing order order in perturbation theory correspond to considering conformal

field theory on increasing genus Riemann surfaces. An important theme of conformal

field theory is well definedness on these, that is, not only on the Riemann sphere, but

on all Riemann surfaces in the sense that n-point correlation functions should be well

defined [3, 4].

The modern notion of vertex algebras arose in the context of Monstrous Moon-

shine in [5] from a study of representations of Kac-Moody algebras, instances of

infinite-dimensional Lie algebras. Vertex operator algebras were described in [6]

by considering an action by the Virasoro algebra, in the context of moonshine, a

phenomenon that unexpectedly suggested a link between the modular j-function and

the Monster finite group. (From the high energy physics point of view, the modes

of the stress-energy tensor of any two-dimensional conformal field theory generate

the Virasoro algebra.) In fact, this link is elucidated by the study of vacuum torus

1-point functions at the vacuum vector which give characters (graded dimensions),

as the j-function arises as such a character for a vertex operator algebra dubbed the

moonshine module [7, 8]. However, vacuum 1-point functions have played a role in

other research avenues, including the classification of rational (bulk) conformal field

theories from a given vertex operator algebra [9, 10], number theoric and combina-

torial problems [11–13] and the classification of certain families of vertex operator

algebras [14–16].
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On the other hand, general torus 1-point functions have received considerably less

attention. To the best of our knowledge, in the context of vertex operator algebras, the

only case considered in the literature is the family of minimal models [17]. One of

the goals of the thesis is to detail another family of examples: the important class of

simple affine vertex operator algebras L(k,0) constructed from the Lie algebra sl2 at

non-negative integral levels k. In the physics literature this is referred to as the SU(2)

Wess-Zumino-Witten model whose starting point is an action of an SU(2)-valued

field on a world-sheet R× S 1; a pedagogic introduction to how the theory is set up

may be found in [18, Chapter 6]. We note that some relevant, but different work

is performed in [19, 20] where generalisations of Jack symmetric polynomials are

constructed in the context of affine Lie algebras.

To provide more context for readers unfamiliar with n-point correlation functions

in conformal field theory, on higher genus Riemann surfaces these are constructed

from those on the sphere by gluing together points to add handles. For each pair of

points glued in this way, the number of points in the correlation function decreases by

two and the genus of the surface increases by one. The configuration of these points

determines the complex structure of the resulting surface with many different configu-

rations giving equivalent complex structures. All configurations giving an equivalent

complex structure are famously related by the actions of mapping class groups. Due

to conformal invariance being closely related to the existence of complex structure,

one may be tempted to conclude that a well defined conformal field theory should not

be able to distinguish Riemann surfaces with equivalent complex structures. How-

ever, this is only true for bulk or full conformal field theory. For chiral conformal field

theory, which is the focus here (specifically its algebraic axiomatisation in the form

of vertex operator algebras), one merely has that the mapping class groups act on the

spaces of chiral correlation functions, as opposed to this action being trivial. All con-

siderations from here on will be purely chiral and so henceforth correlation function

or n-point function will refer to the chiral version. In the special case of the torus

with either 0 or 1 points, the mapping class groups are, respectively, PSL2(Z) and B3

(the Braid group on three strands). Recall that B3 is the universal central extension

of PSL2(Z). It turns out that the action of B3 on torus 1-point functions can always
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be rescaled using multiplier systems to yield an action by its quotient Γ = SL2(Z).

Hence the properties of torus correlation functions are commonly presented in terms

of Γ. The groups PSL2(Z) and Γ are somewhat confusingly both commonly referred

to as “the modular group” Γ in the literature and so one speaks of modular invariance

of torus 1-point functions.

While [4] gives a compelling motivation for the role of modular invariance, this

has only been rigorously established for conformal field theories constructed from

rational C2-cofinite vertex operator algebras. In this setting, torus n-point functions

where the n points only take insertions from the vertex operator algebra can be

constructed as traces of a product of n copies of the vertex operator algebra action

on some module M. We call these n-point functions vacuum torus n-point functions

because the vertex operator algebra is sometimes also called the vacuum module (note

that the insertions need not be the vacuum vector of the vertex operator algebra). The

special case of n = 1 with the insertion being the vacuum vector (this can also be

thought of as a 0-point function) is called the character of M. In [21], Zhu proved

the modular invariance of such vacuum torus n-point functions and in particular

showed that vacuum torus 1-point functions are closed under the action of Γ. The

properties of the Γ representations arising from vacuum torus 1-point functions have

been heavily studied. Much of this work, for example the congruence property [22]

rests on using the theory of tensor categories [23] and Verlinde’s formula [24, 25].

An alternative route to studying congruence now exists in the case of characters

due to developments in number theory and a proof of the unbounded denominator

conjecture [26]. It states that for a modular form f (τ) ∈ Q[[q1/N]] on the upper half

plane, for a positive integer N, if it is not modular for a congruence subgroup then it

has unbounded denominators in its coefficients. However, again, this does not apply

to general torus 1-point functions such as those studied in the thesis. While non-

congruence subgroups outnumber congruence subgroups of Γ, the modular forms of

the former are more poorly understood, partially attributed to the difficulty of defining

suitable Hecke operators [27, Section 2.1, Section 2.3].

The transition from vacuum torus n-point functions to general torus n-point func-

tions requires the replacement of vertex operator algebra actions by intertwining
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operators. This case, as mentioned above, has so far received far less attention within

the literature and is the focus here. For rational C2-cofinite vertex operator algebras

the modular invariance of general torus 1-point functions was shown in [28]. This

was generalised to orbifolds in [29] and to torus n-point functions in [30]. How-

ever, as aforementioned, neither insights from Verlinde’s formula nor the unbounded

denominator property apply here.

Part of the thesis will review packaging these 1-point functions into vectors will

yield vector-valued modular forms transforming under a representation of the modular

group, and we provide results on the congruence properties of these representations

(or non-congruence) for dimensions up to three, including a more general statement

on the occurrence of non-congruence for sl2 and results on spaces of vector-valued

modular forms given a representation, for dimension up to four. That general torus

1-point functions of vertex operator algebras may be a source of congruence and non-

congruence representations has also been observed for the Virasoro minimal models

in [17].

A dual goal of the thesis has been to improve the toolkit available for studying

torus 1-point functions and this has entailed employing a categorical approach as

well, specifically modular tensor categories that enjoy a rich structure in addition

to those of an ordinary tensor category. More specifically, it will be shown that

not only do non-congruence representations arise, but that our case is a source of

infinite families and in the aforementioned dimensions provide explicit formulae for

their q-series. This analytic number theoretic data will then be contrasted with the

output of the categorical approach from the modular tensor categories formed by

L(k,0)-modules.

A natural avenue of study beyond the thesis would be considering the same analysis

for affine vertex operator algebras from higher rank Lie algebras, such as simply the

rank two case, sl3. There are also two ways to further refine the torus 1-point

functions studied here. Rather than only tracking the L0 eigenvalues, one can also

include an additional variable tracking the h0 eigenvalue from the Cartan subalgebra,

which leads to considering Jacobi forms and one can continue this for higher rank.

The other means of refinement is considering twisted modules, where the notion of
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twist depends on a choice of (not necessarily proper) subgroup of the automorphism

group of the vertex operator algebra. This also rapidly enlarges the dimensions of

representations, since even for a finite cyclic subgroup ⟨g⟩ of order n, one must include

in the vector-valued modular form the torus 1-point functions for modules twisted by

all powers of the generator up to gn−1, as modular transformations take us between

1-point functions with different twists.

The thesis is organised as follows. Section 3 to Section 7 provide a pedagogic

exposition of the less specialised background material for the thesis, based on the

references cited therein. Specifically, Section 3 reviews the basic calculus of formal

distributions and Section 4 and Section 5 put it to use in formulating the vertex

algebra theory needed. Section 6 covers the basics about modularity and modular

forms. Finally, Section 7 introduces the categorical notions required for defining

modular tensor categories.

In Section 8 we review vector-valued modular forms and the analytic number theory

to study them. Torus 1-point functions are defined using intertwining operators and

it is shown how vector-valued modular forms emerge by constructing vectors whose

entries are torus 1-point functions.

Section 9 reviews and develops general tools to characterise the space of all torus

1-point functions (as modules over the algebra of holomorphic modular forms and

the algebra R of modular differential operators) obtained by varying the insertion

vector over an entire simple vertex operator algebra module. The main results are

Proposition 9.1, which gives sufficient conditions for the span of torus 1-point func-

tions obtained from Virasoro descendants of certain vectors to be a cyclic R-module,

and Theorem 9.3 which gives sufficient conditions for the span of all torus 1-point

functions to be a cyclic R-module.

Section 10 introduces the simple affine vertex operator algebra associate to sl2 at

non-negative integral levels, which was reviewed in Section 5.2. The main result of

the section is the multi-part Theorem 10.2, which collects the most important general

results surrounding the analysis of torus 1-point functions for the aforementioned

case. These include finding vectors to insert giving non-zero torus 1-point functions,

establishing linear independence among a certain set of these functions, obtaining
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that vectors generated from these functions are weakly holomorphic vector-valued

modular forms, and providing necessary and sufficient conditions for when these are

holomorphic.

Section 11 studies the representations of the modular group arising in Section 10

and the associated spaces of vector-valued modular forms. We show that such rep-

resentations in the case of dimension one and two are always congruence, and upon

reaching dimension three, that there exists an infinite family of non-congruence repre-

sentations. For all the aforementioned dimensions we provide explicit distinguished

vector-valued modular forms from which all others are generated and the exact levels

for which the space of all holomorphic vector-valued modular forms is obtained from

torus 1-point functions, that is, when they provide such generators. For dimension

four we describe the space of all torus 1-point functions in those cases that a relevant

space of holomorphic vector-valued modular forms is a cyclic module over the algebra

of modular differential operators. For general dimensions we identify levels of affine

sl2 for which the representation is non-congruence, if it is irreducible.

Section 12 uses the fact categories of modules over rational C2-cofinite vertex op-

erator algebras are modular tensor categories. The parallel to torus 1-point functions

from the categorical perspective are 3-point coupling spaces and we study the action

of the braid group on three strands on these. In the case of vacuum 1-point functions

this leads to the familiar S and T matrices of the modular group described in Section 6.

These are invariants of modular tensor categories that are, however, known not to be

complete invariants [31]. Repeating this procedure for general torus 1-point functions

has the potential to yield finer invariants. We derive explicit formulae for this action

in terms categorical data (specifically twists and fusing matrices) in Theorem 12.2

and conclude by showing the irreducibility of a representation in the dimension four

case, complementing the results of Section 11.

We refer to Section 2 for a list of recurring important notation, to facilitate non-

sequential readings of the thesis, or those skipping part of the review of material.
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Appendix A includes an explanation of the code used for the example in Section 12.1

and Appendix B outlines the code used to compute the explicit q-series of the vector-

valued modular forms in Table 1 and Table 2, being the dimension two and dimension

three cases respectively.

We remark that the original theorems of this thesis appear in author’s own paper

[32], but with substantial additional exposition to provide greater accessibility and

more context.
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2. Symbols

For the convenience of the reader, a list of the most commonly used symbols

appearing in the thesis has been compiled.

N— set of positive integers, 1,2,3, . . .

N0 — set of non-negative integers, 0,1,2,3, . . .

R— set of real numbers

C— set of complex numbers

H— complex upper-half plane

q — nome e(τ) = e2πiτ

G2k — Eisenstein series of weight 2k

Bℓ — ℓth Bernoulli number

M — C-algebra of integral weight holomorphic modular forms

η(τ) — Dedekind eta function

j(τ) — modular j-function

∂k — modular derivative in weight k

mFn — generalised hypergeometric function, Gaussian for m = 2,n = 1

wt(·) — conformal weight

wt[·] — square bracket conformal weight

ω — conformal vector

L(λ) — highest weight λ module of finite sl2

L(k,λ) — affine sl2 module of highest weight λ and level k

c — central charge

R — skew polynomial ring of modular differential operators

Γ— modular group

M — C-algebra of integral weight holomorphic modular forms

Mk — subspace of M of weight k

νr — multiplier system of weight r

M!(k,ρ,ν) — vector space of weakly holomorphic vector-valued modular forms of

weight k, representation ρ and multiplier system ν
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H(k,ρ,ν) — vector space of holomorphic vector-valued modular forms of weight

k, representation ρ and multiplier system ν

M(ρ,ν) — vector space of all weakly holomorphic vector-valued modular forms

for representation ρ and multiplier system ν

H(ρ,ν) — vector space of all holomorphic vector-valued modular forms for repre-

sentation ρ and multiplier system ν

ψY(u, τ) — trace function of u at τ for the intertwiner Y

Y(·,z) — field map or module map in variable z

Y[·,z] — transformed expansion Y(·,ez−1)ezwt(·)

Y — intertwining operator

ψY(u, τ) — 1-point function for intertwining operator Y, insertion vector u, as a

function of τ

Ψ(·, τ) — column vector of all 1-point functions given intertwining operators and

the fusion rules

C1(·) — space of 1-point functions with insertion from a given simple module ·

Cu
1(·) — space of 1-point functions with insertion from a given simple module ·

evaluated at u ∈ ·

V(ρλ) — space of all evaluations of Ψ(·, τ) at any insertion vector

Vu(ρλ) — subspace of V(ρλ) of all evaluations on Virasoro descendants of the

insertion vector



10 J SHAFIQ

3. Formal distributions

Formal distributions and the necessary calculus to work with them are introduced,

based on both [33] and [34], as they are instrumental in the majority of calculations to

follow in the bulk of the thesis. We elect to work over an arbitrary C-algebra R before

specialising to R = EndV , linear operators on a vector space V , the case relevant to

vertex algebras.

The vector space R[[z±1
1 , . . . ,z±1

n ]] of formal distributions consists of elements of

the form,

A(z1, . . . ,zn) = ∑
i1∈Z
· · ·∑

in∈Z
Ai1···inzi1

1 · · ·z
in
n , (3.1)

where n ∈ N and the coefficients Ai1···in ∈ R. Note that if we consider multiplication

by another element B(z1, · · · ,zn) ∈ R[[z±1
1 , . . . ,z±1

n ]], the resultant sum,

∑
k1∈Z

· · · ∑
kn∈Z

(
∑
i1∈Z
· · ·∑

in∈Z
Ai1···in Bk1−i1,··· ,kn−in

)
zk1

1 · · ·z
kn
n (3.2)

need not exist as it may have coefficients which do not lie in R since the inner sum is

not guaranteed to converge. However (3.2) is an element of R[[z±1
1 , . . . ,z±1

n ]] if either

A(z1, . . . ,zn) or B(z1, · · · ,zn) consist of finitely many terms, i.e. is a Laurent polyno-

mial. This motivates the enumeration of several subspaces in the single variable case,

relevant to vertex algebras:

• Formal Laurent polynomials R[z±1]:

R[z±1] =

{
∑
n∈Z

rnzn | rn ∈ R, finitely many rn , 0

}
(3.3)

• Formal power series R[[z]]:

R[[z]] =

{
∑
n∈Z

rnzn | rn ∈ R

}
(3.4)

• Truncated formal Laurent series R((z)):

R((z)) =

{
∑
n∈Z

rnzn | rn ∈ R, rn = 0 for sufficiently negative n

}
(3.5)
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In this thesis, we adopt the convention as in [34] that the binomial expansion for

formal variables z,w for n ∈ Z is,

(z+w)n =
∞

∑
k=0

(
n
k

)
zn−kwk, (3.6)

i.e. always expanding in non-negative powers of the second variable. When z,w ∈ C

this is equivalent to expanding for |z| > |w|. Note that we handle negative n with the

prescription,

(
n
k

)
=


(−1)k

(
−n+k−1

k

)
k ≥ 0

(−1)n−k
(
−k−1
n−k

)
k ≤ n

0 otherwise

(3.7)

It will also be useful to introduce the formal distribution,

δ(z) =∑
n∈Z

zn ∈ C[[z±1], (3.8)

often called the delta distribution, which obeys the following proposition.

Proposition 3.1. The delta function has the following properties:

(1) For A(z) ∈ R[z±1],

A(z)δ(z) = A(1)δ(z). (3.9)

(2) For A(z,w) ∈ (EndV)[[z±1,w±1]],

A(z,w)δ
( z

w

)
= A(z,z)δ

( z
w

)
= A(w,w)δ

( z
w

)
(3.10)

as an expression acting on an element of V , providing limz→w A(z,w) exists.

Our convention is consistent in the thesis with [34] however it should be noted

that other authors define their delta distribution such that δ(z− 1) is required in

Equation (3.9), so as to be consistent with the usual delta function. The definition of

the delta distribution can be motivated by considering the following two embeddings,

ι+ : C(z) ↪→ C((z)), ι− : C(z) ↪→ C((z−1)) (3.11)
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where ι+ is a Laurent expansion in z and ι− is a Laurent expansion in z−1 respectively.

We find that,

ι+

(
1

1− z

)
− ι−

(
1

1− z

)
=∑

n≥0
zn−

(
−∑

n<0
zn

)
= δ(z). (3.12)

Observe that ι−
(
(1− z)−1

)
= (−1+ z)−1 following the binomial expansion convention.

When z,w ∈ C, the delta function is then a difference of expansions in the domains

|z| > |w| and |z| < |w| of the same rational function. This is dubbed the one variable

expansion of zero.

We define differentiation for A(z) = ∑n∈ZAnzn ∈ R[[z±1]] as,

A′(z) =
d
dz

A(z) =∑
n∈Z

nAnzn−1 (3.13)

and partial differentiation analogously for multiple formal variables. We also intro-

duce a formal residue operation Resz : R[[z±1]]→ R as,

ReszA(z) = coefficient of z−1. (3.14)

This allows us to elucidate in what sense δ(z) or another element of C[[z±1]] can

be called a distribution. Namely for f (z) ∈ C[z±1] we define a linear functional

C[z±1]→ C by,

f (z) 7→ Resz f (z)δ(z) = f (1)Reszδ(z) = f (1). (3.15)
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4. Vertex algebras

We define both vertex algebras and vertex operator algebras in this section, as well

as their modules and a notion of maps between these modules known as intertwining

operators which will be instrumental to construct 1-point functions later as the traces

of such operators. We draw again from both [33] and [34].

We begin with a suitable definition of vertex algebras for our purposes:

Definition 4.1. A vertex algebra (V,Y,1) consists of a vector space V , vacuum vector

1 and a field map Y(·,z) : V → (EndV)[[z±1]] given by,

Y(v,z) =∑
n∈Z

vnz−n−1, vn ∈ EndV, v ∈ V. (4.1)

These are subject to the following conditions where u,v ∈ V:

(1) unv = 0 for a sufficiently large n, which is to say Y(u,z)v has finitely many terms

with a negative power of z i.e. Y(u,z)v ∈ V((z)).

(2) Y(1,z) = idV , i.e. the field associated to the vacuum vector is the identity operator

on V .

(3) Y(v,z)1 ∈ V[[z]] so that we are able to take the limit limz→0 Y(v,z)1 = v.

(4) The following Jacobi identity is satisfied:

z−1
1 δ

(
z2− z3

z1

)
Y(u,z2)Y(v,z3)− z−1

1 δ

(
z3− z2

−z1

)
Y(v,z3)Y(u,z2)

= z−1
3 δ

(
z2− z1

z3

)
Y(Y(u,z1)v,z3).

(4.2)

Observe that from the quantum field theory perspective, the limit in Defini-

tion 4.1(3) is physically taking the initial state at −∞. Furthermore, the vacuum

condition implies the map V → End(V) given by v 7→ v−1 is injective, thus so is Y .

In combination with Definition 4.1(3), this gives a state-operator correspondence be-

tween elements of V and fields. It should be noted to correctly evaluate three-variable

expressions of the form in Definition 4.1(4) our binomial expansion convention must

be followed so that for example,

z−1
1 δ

(
z2− z3

z1

)
=∑

n∈Z
z−n−1

1 (z2− z3)n =∑
n∈Z

∞

∑
ℓ=0

(
n
ℓ

)
z−n−1

1 zn−ℓ
2 (−z3)ℓ. (4.3)
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Furthermore, some authors such as [33] choose to already impose a grading condition

on V and define a translation operator T : V → V satisfying T1 = 0 and [T,Y(v,z)] =

∂zY(v,z) for v ∈ V . This latter point is redundant as we can define T acting as

Tv = v−21. The Jacobi identity may also be substituted for a locality axiom, namely

that there exists an N ∈ N for which the commutation relation

(z1− z2)N[Y(u,z1),Y(v,z2)] = 0 (4.4)

holds as a formal power series in (EndV)[[z±1 ,z
±
2 ]] for all u,v ∈ V . This is a looser

condition than requiring the commutativity of all fields. The term originates from

the fact that imposing the condition physically forbids action at a distance.

Example. If the locality condition is replaced by the stronger condition of com-

mutativity, the definition of a vertex algebra reduces to that of an associative com-

mutative algebra. Given such an algebra R, we can always choose the unit as the

vacuum vector 1 and define a map Y : R→ R by Y(A)1 = A with only the z0 term

non-vanishing. The product is given by A · B = Y(A)B for A,B ∈ R along with com-

mutativity Y(A)Y(B) = Y(B)Y(A) which will satisfy the axioms of a vertex algebra.

Definition 4.2. A vertex operator algebra is a Z-graded vector space,

V =
⊕
n∈Z

V(n) (4.5)

such that dimV(n) <∞ and V(n) = 0 for a sufficiently negative n, with the structure

of a vertex algebra (V,Y,1) and a conformal vector ω ∈ V(2) satisfying the following

conditions:

• The Virasoro algebra,

[Lm,Ln] = (m−n)Lm+n+
c

12
(m3−m)δm+n,0 (4.6)

for central charge c ∈ C is satisfied by the modes {Ln}n∈Z of ω defined by Y(ω,z) =

∑n∈Z Lnz−n−2 = ∑n∈Zωnz−n−1 so that Ln = ωn+1.

• For v ∈ V(n), we have that L0v = nv so that the grading on V corresponds to the L0

eigenvalue decomposition, denoting n = wt(v) the conformal weight of v.
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• The derivative property Y(L−1v,z) = ∂zY(v,z) holds.

Note that wt(vn) = wt(v)−n−1 for homogeneous v ∈ V so that the endomorphism

vn takes us from Vm to Vm+wt(v)−n−1 for m,n ∈ Z. Since the grading corresponds to the

conformal weights, ω by definition has conformal weight 2 and the vacuum 1 ∈ V(0).

The choice of expandingω in terms of z−n−wt(ω) for the modes Ln is the typical physics

convention for expanding the field associated to any state, but in the vertex operator

algebra literature is often reserved only for the conformal vector.

The Virasoro algebra Vir arises by considering the central extension of the Lie

algebra of continuous derivations of C((t)), namely DerC((t)) = C((t))∂t. That is, it

fits into the short exact sequence,

0→ Cc→ Vir→ DerC((t))→ 0, (4.7)

where Vir is generated topologically by c and Ln = −tn+1∂t for n ∈ Z. (Note that the

Virasoro algebra can also be stated in a coordinate-independent manner.)

Example. A natural choice is that of the Virasoro vertex operator algebra. Putting

aside the technical construction, its underlying vector space is spanned by elements

of the form,

Lr1 · · ·Lrm1, r1 ≤ · · · ≤ rm ≤ −2 (4.8)

for m≥ 0 where we have chosen a Poincaré–Birkhoff–Witt ordering and 1 is a suitably

chosen vacuum vector. Here we have the relation Ln1 = 0 for n ≥ −1, c acts as c and

we can reorder using the Virasoro commutation relations. Ln has conformal weight

−n and the vacuum 1 has conformal weight 0. The conformal vector is ω = L−21

which has conformal weight 2 as expected.

In what will follow in the main body of the thesis on vector-valued modular forms –

in order to state results in greater generality where possible – we require the definition

of a C2-cofinite vertex operator algebra.

Definition 4.3. A vertex operator algebra V is said to be Cn-cofinite if V/Cn(V) is

finite-dimensional where Cn(V) = {v−nw|v,w ∈ V}.
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Then the C2-cofinite property is the n = 2 case. It has been shown [35] that

C2-cofiniteness implies that V/Cn(V) is finite-dimensional for n > 2.

4.1. Modules. We now turn to defining modules of vertex (operator) algebras, and

henceforth for this subsection V will denote a vertex algebra (V,Y,1) with the usual

structure.

Definition 4.4. A vector space W is a V-module if it is equipped with the module

field map YW(·,z) : V → (EndW)[[z±]] explicitly given by,

v 7→ YW(v,z) =∑
n∈Z

vnz−n−1 (4.9)

where v ∈ V , subject to the following conditions for w ∈W:

• vnw = 0 for n sufficiently large.

• YW(1,z) = idW .

• It satisfies the analogous Jacobi identity,

z−1
0 δ

(
z1− z2

z0

)
YW(u,z1)YW(v,z2)− z−1

0 δ

(
z2− z1

−z0

)
YW(v,z2)YW(u,z1)

= z−1
2 δ

(
z1− z0

z2

)
YW(Y(u,z0)v,z2)

(4.10)

where also u ∈ V .

Clearly V is a V-module since YW reduced to the field map of V satisfies the axioms.

In contrast to the definition of a vertex algebra however, YW need not be injective and

the analogous state-operator correspondence is not a given.

Definition 4.5. Let V have the additional structure of a vertex operator algebra. W is

a V-module if it fulfils Definition 4.4 with the following additional conditions:

• W possesses a grading,

W =
⊕
ℓ∈C

W(ℓ) (4.11)

where W(ℓ) = {w ∈W |L0w = ℓw} for L0 in the expansion of YW(ω,z) (as opposed to

the field map of V) and dimW(ℓ) <∞.

• W(ℓ) = 0 for Re(ℓ) sufficiently negative.
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It should be noted that L0 arising from YW(ω,z) satisfies the Jacobi identity pro-

viding W is a V-module for V as a vertex algebra and furthermore [L−1,YW(v,z)] =

∂zYW(v,z) for v ∈ V , so these are not additional requirements.

An important property which we will make use of is a vertex operator algebra being

rational, which we define as follows.

Definition 4.6. A vertex operator algebra V is rational if every V-module is completely

reducible.

Analogous to Lie algebra representation theory, rationality for a vertex operator

algebra implies that there are finitely many non-isomorphic simple V-modules, i.e.

modules for which no non-zero proper submodule exists. In the preamble on the

necessary category theory background, rationality is also shown to have a categorical

definition.

4.2. Intertwining operators. One of the requirements to construct 1-point functions

later is to first introduce the notion of intertwining operators. A more comprehensive

account of intertwining operators and the tensor structures they give rise to can be

found in [36].

Definition 4.7. Let (V,Y,1,ω) be a vertex operator algebra and let (Ui,YUi) for i= 1,2,3

be V-modules. Consider the linear map,

Y :U1⊗U2→ U3{z}[log(z)]

u1⊗u2 7→ Y(u1,z)u2 =∑
s∈C
t≥0

(u1)s,tu2z−s−1 log(z)t (4.12)

for integral t where {z} denotes the unbounded power series with arbitrary complex

exponents and log(z) is a formal variable distinct from z which is defined by the

property d
dz log(z) = z−1, with u1 ∈ U1 and u2 ∈ U2 respectively. Note that the modes

(u1)s,t are maps U2→ U3 to comply with the definition. We denote such a map Y an

intertwining operator of type
( U3

U1,U2

)
if it satisfies the following conditions:

• For fixed u1 ∈ U1, u2 ∈ U2 and s ∈ C, t ≥ 0,

(u1)s+ℓ,tu2 = 0 (4.13)
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for sufficiently large ℓ ∈ Z.

• For any u1 ∈ U1 and u2 ∈ U2,

d
dz
Y(u1,z)u2 = Y(L−1u1,z)u2. (4.14)

• For any v ∈ V,u1 ∈ U1,u2 ∈ U2,

z−1
0 δ

(
z1− z2

z0

)
YU3(v,z1)Y(u1,z2)u2 = z−1

0 δ

(
−z2+ z1

z0

)
Y(u1,z2)YU2(v,z1)u2

+ z−1
2 δ

(
z1− z0

z2

)
Y(YU1(v,z0)u1,z2)u2,

(4.15)

where the delta function is as introduced in Section 3. It should be observed that

Equation (4.13) is an analogous truncation condition to the field map for vertex

algebras and likewise Equation (4.15) is a Jacobi identity. In terms of notation, we

use
( U3

U1,U2

)
to denote both the type of an intertwining operator and the space of

intertwining operators of such type. In the case of C2-cofinite rational vertex operator

algebras, the log(z) term disappears from the intertwining operators (see [37] for more

details). We are interested in the case when U2 = U3 so that given two V-modules U

and W we will be utilising intertwining operators from
( W

U,W

)
which will allow us to

define a trace operation.

Definition 4.8. For an L0 eigenvector u ∈ Uwt(u), we define the Y zero mode oY(u) of

u to be the coefficient of z−wt(u) in the expansion of Y(u,z) where Y is an intertwining

operator of type
( W

U,W

)
, where W is the appropriate module depending on context.

This zero mode is aptly named since wt(uwt(u)−1) = 0 to ensure it preserves L0

eigenvalues in the sense that oY(u)(Wm) ⊂Wm for all L0 eigenvalues m ∈ C.

Example. In order to show explicit intertwining operators, we turn to the affine

Heisenberg vertex operator algebra at level 1; we draw from the exposition in [38]

but refer the reader to [39] for a treatment in more modern notation.

Whilst any real finite-dimensional vector space h suffices, we immediately spe-

cialise to h = R equipped with a non-degenerate symmetric bilinear form ⟨·, ·⟩. With

h viewed as a real abelian Lie algebra, set ĥ = C[t±1]⊕C1 where 1 commutes with all
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elements. For α ∈ hC = C and αn = α⊗ tn, we have the relations,

[αn,βm] = n⟨α,β⟩δn+m,01 (4.16)

for n,m ∈ Z and αn,βm ∈ ĥ. We now decompose ĥ= ĥ+⊕ ĥ0⊕ ĥ− where ĥ0 = hC⊗1⊕C1

and ĥ± = {αn : α ∈ hC,±n > 0}. In order to construct the space of states for the vertex

operator algebra, we will require so-called Fock spaces created as induced modules,

Fλ = Indĥ
ĥ+⊕ĥ0
C|λ⟩ (4.17)

for λ ∈ hC. Here ĥ+ annihilates the highest weight vector |λ⟩ so that ĥ+|λ⟩ = 0 and

α0|λ⟩ = ⟨α,λ⟩|λ⟩. Furthermore, 1|λ⟩ = |λ⟩ and ĥ− acts freely so that the Fock spaces

are comprised of words in ĥ− subject to the relations. F0 is chosen as the vertex

operator algebra with field map given by,

Y(α−1|0⟩,z) = α(z) =
∞

∑
n=0

αnz−n−1. (4.18)

The Fock spaces Fλ for λ ∈ hC are modules for F0 as a vertex operator algebra, with

analogous module maps as the field map in Equation (4.18). For µ,ν,ρ ∈ hC, the

fusion rules imply that,

dim
(

Fρ

FµFν

)
=

1 ρ = µ+ ν

0 ρ , µ+ ν
(4.19)

so that there is a single non-zero intertwining operator (up to rescaling) only when

ρ = µ+ ν. Consider the group algebra C[hC] as an abelian group under addition with

basis elements eα for allα ∈ hC. To each eα we associate a map sα :Fλ→Fλ+α given by

w|λ⟩ 7→ w|λ+α⟩ for w ∈ U(ĥ−) where U(·) denotes the universal enveloping algebra.

An intertwining operator of type
(Fµ+ν
FµFν

)
written as a linear map Iµ,ν : Fµ ⊗Fν →

Fµ+ν[[z±1]]z⟨µ,ν⟩ for µ,ν ∈ hC is given by,

Iµ,ν(p|µ⟩,z)q|ν⟩ = z⟨µ,ν⟩sµE−(µ,z)Y(p|0⟩,z)E+(µ,z)q|ν⟩ (4.20)
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for p,q ∈ U(ĥ−), where,

E±(α,z) = exp

(
∓

∞

∑
n=1

α±n

n
z∓n

)
(4.21)

understood as the expanded series. Observe that E±(α,z) has strictly positive or

negative modes respectively and we have not had to introduce the caveat of normal

ordering, as in Equation (4.20) we have manually chosen annihilating operators to

be rightmost. This example is a rare instance where the intertwining operators can

be given simply and explicitly, contrary to the case of sl2 in the bulk of the thesis to

follow.
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5. Vertex operator algebras associated to affine Lie algebras

The application of the theory of modularity of vector-valued modular forms to the

affine sl2 vertex operator algebra necessitates introducing the formalism by which one

constructs a vertex operator algebra given an affine Lie algebra. We will also include

how the corresponding vertex operator algebra modules arise from the modules of

the affine Lie algebra, before specialising to sl2 and present its fusion rules which will

be relevant to constructing vector-valued modular forms from 1-point functions later.

Let g be a Lie algebra adorned with a symmetric, bilinear invariant form which we

take without loss of generality to be the Killing form, κ(·, ·). The associated affine Lie

algebra ĝ has underlying vector space,

ĝ = g⊗C[t±1]⊕Ck, (5.1)

where k is a non-zero central element and the commutation relations are,

[a⊗ tm,b⊗ tn] = [a,b]⊗ tm+n+mκ(a,b)δm+n,0k (5.2)

where a,b ∈ g and m,n ∈ Z. Note that the underlying vector space of ĝ possesses a

Z-grading,

ĝ =
⊕
n∈Z

ĝ(n) (5.3)

where ĝ(0) = g⊕Ck and for n , 0, ĝ(n) = g⊗ t−n. It will be useful to enumerate the

following subalgebras:

• All non-zero powers of t, i.e.

ĝ(±) =
⊕
n>0

ĝ(±n). (5.4)

• All positive powers of t and the finite part, i.e.

ĝ(≤0) =
⊕
n≤0

ĝ(n) = ĝ(−)⊕ g⊕Ck. (5.5)

Note that ĝ(≤0) denotes elements of positive or zero degree in t but when the grading

is matched with L(0) eigenvalues later, these elements will have negative or zero

L(0) weight. Define Ck as a ĝ(≤0)-module wherein ĝ(−)⊕ g acts trivially and k acts as
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multiplication by k ∈ C for now. Consider the induced module,

Vĝ(k,0) = U(ĝ)⊗U(ĝ(≤0))Ck. (5.6)

Take 1 = 1 ∈ C ⊂ Vĝ(k,0) as what will be the vacuum element, and define,

a(z) =∑
n∈Z

(a⊗ tn)z−n−1 ∈ ĝ[[z±]] (5.7)

where a ∈ g and a(n) = a⊗ tn for n ∈ Z. Then,

Vĝ(k,0) =
⊕
n≥0

Vĝ(k,0)(n) (5.8)

where Vĝ(k,0)(n) is spanned by elements of the form,

a(1)(−m1) · · ·a(r)(−mr)1, (5.9)

where r ≥ 0, a(i) ∈ g and mi ≥ 1 for i = 1, . . . ,r and n = m1+ · · ·+mr. Here a(r)(−mr)

refers to the −mr mode as opposed to the field. Note that we have the relation

a(n)1 = 0 for a ∈ g providing n ≥ 0 and such expressions may be manipulated using

the aforementioned commutation relations. We now have the ingredients to state the

following theorem:

Theorem 5.1. Let k ∈C. There exists a unique vertex algebra structure (Vĝ(k,0),Y,1)

on Vĝ(k,0) where 1 = 1 ∈ C ⊂ Vĝ(k,0) is the vacuum vector and the field map is given

by,

Y(a(1)(n1) · · ·a(r)(nr)1,z) = a(1)(z)n1 · · ·a
(r)(z)nr idVĝ(k,0) (5.10)

where r ≥ 0 and a(i) ∈ g,ni ∈ Z for i = 1, . . . ,r.

We say that (Vĝ(k,0),Y,1) has level k and it remains to be shown when it also

possesses the additional structure of a vertex operator algebra. Henceforth we assume

g is finite-dimensional and that the Killing form is non-degenerate, which is the case

for all semi-simple Lie algebras. Let d = dimg and choose any basis
{

e(1), . . . ,e(d)
}

of

g with a dual
{

e(1), . . . ,e(d)
}

with respect to the Killing form such that κ(e(i),e( j)) = δi
j
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for i, j = 1, . . . ,d. Define the Casimir element,

Ω =
d

∑
i=1

e(i)e(i) ∈ U(g) (5.11)

that acts on g as multiplication by 2h where h ∈ C. When we normalise such that

κ(α,α) = 2 where α ∈ h∗ is any long root of g in the dual of the Cartan subalgebra h,

then h is the dual Coxeter number. Set,

ω =
1

2(k+h)

d

∑
i=1

e(i)(−1)e(i)(−1)1 ∈ Vĝ(k,0)(2) (5.12)

which will be our conformal vector, from which we construct,

L(z) =∑
n∈Z

ωnz−n−1 =∑
n∈Z

Lnz−n−2. (5.13)

We are now in a position to specify the vertex operator algebra structure on Vĝ(k,0).

Theorem 5.2. Let g be as assumed and k , −h. Then Vĝ(k,0) is a vertex operator al-

gebra with c = dk/(k+h) with Equation (5.12) as conformal vector and the Z-grading

on Vĝ(k,0) corresponding to a grading by conformal weight, i.e. L0 eigenvalues.

We will not concern ourselves with k = −h since in the affine sl2 case to follow,

we will only consider integral positive level. However, see for example [40] for the

critical level case k = −h. We also have the following useful commutation relation for

how the Virasoro generators act on elements of Vĝ(k,0), derived from Equation (5.12)

and Equation (5.2),

[Lm,an] = −nam+n (5.14)

for a ∈ g and m,n ∈ Z.

5.1. Modules of affine vertex operator algebras. We now come to determining the

modules of the vertex operator algebra associated to ĝ which we refer to as the affine

ĝ vertex operator algebra. Define for a finite-dimensional irreducible g-module U the

ĝ-module Lĝ(k,U) by,

Lĝ(k,U) = Indĝg(U)/N. (5.15)
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Here N is the sum of all proper ĝ-submodules of Indĝg(U), where Indĝg(U) is the

induced module,

Indĝg(U) = U(ĝ)⊗ĝ(≤0) U (5.16)

analogous to constructing Vĝ(k,0). As a vector space, Indĝg(U) = U(ĝ(+))⊗CU where

ĝ(−) acts trivially on U and k as k.

Proposition 5.3. For any finite-dimensional irreducible module U, the irreducible

ĝ-module Lĝ(k,U) is an irreducible module for Vĝ(k,0) as a vertex operator algebra

and up to equivalence, all Vĝ(k,0)-modules are of such form.

Note that Vĝ(k,0) is not necessarily a simple vertex operator algebra, and we

now concern ourselves exclusively with the simple vertex operator algebra Lĝ(k,0),

corresponding to Vĝ(k,0) quotiented by N. This is the U = C case. Now let L(λ)

be the highest weight irreducible g-module whose highest weight is λ ∈ h∗. We now

enumerate all the irreducible modules for Lĝ(k,0) as a vertex operator algebra.

Theorem 5.4. Let the level k be non-negative and integral. Every irreducible module

for Lĝ(k,0) as a vertex operator algebra is equivalent to Lĝ(k,L(λ)) for some dominant

integral weight λ ∈ h∗ and λ(θ) ≤ k where θ is the highest root of g.

Recall that a weight λ ∈ h∗ is said to be dominant if κ(λ,ξ) ≥ 0 for every positive

root ξ ∈ h∗ (or for any choice of symmetric bilinear invariant form).

To elaborate on the effect of quotienting by N, consider the root space decomposi-

tion,

g = h
⊕
α∈∆

gα (5.17)

where ∆ is the root system of g and gα = {a ∈ g|[h,a] = α(h)a,h ∈ h}. Choose eθ ∈ gθ

and fθ ∈ g−θ such that κ(eθ, fθ) = 1. Then the relation in Lĝ(k,L(λ)) imposed by

quotienting by N is,

eθ(−1)k+1v = 0 (5.18)

where v is the highest weight vector of L(λ).

5.2. Affine sl2. Having introduced the formalism of affine vertex operator algebras,

we turn to setting up the specific case of g = sl2 which will be the focus of the thesis.
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Consistent with Theorem 5.4, the level k ≥ 0 and we denote the vertex operator algebra

as L(k,0). The central charge is,

c =
3k

k+2
. (5.19)

A Chevalley basis is given by {e,h, f } which satisfies the standard commutation

relations,

[e, f ] = h, [h,e] = 2e, [h, f ] = −2 f , (5.20)

where h spans a choice of Cartan subalgebra h � Ch. We identify the the root lattice

with the even integers, Q � 2Z and the weight lattice with integers, P � Z. Recall

that we have chosen the normalisation κ(h,h) = 2 with the only other non-vanishing

pairing being κ(e, f )= 1. The representation theory of L(k,0) is semi-simple following

Theorem 5.4 and we denote a complete set of representatives of simple modules by

L(k,µ) for 0 ≤ µ ≤ k with µ being the finite sl2 weight. The conformal weight (or L0

eigenvalue) of the highest weight vector is,

hµ =
µ(µ+2)
4(k+2)

. (5.21)
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6. Modularity

In this section we provide the background in modular forms required, utilising [41],

in order for the introduction of vector-valued modular forms later in the thesis to be

comprehensible. Here and throughout, τ will always lie in the upper-half plane

denoted by H = {z ∈ C|im(τ) > 0}.

6.1. Modular group. The modular group Γ = SL2(Z), that is, 2× 2 matrices over

the integers with unit determinant,

SL2(Z) =


a b

c d

∣∣∣∣∣∣a,b,c,d ∈ Z,ad−bc = 1

. (6.1)

It has generators on the upper-half plane S : τ 7→ −1
τ and T : τ 7→ τ+1 in terms of the

action on τ but may also be represented as matrices by,

S =

0 −1

1 0

, T =

1 1

0 1

 (6.2)

where the action on H is given by,

γτ =
aτ+b
cτ+d

, (6.3)

where γ =

a b

c d

 ∈ Γ. The modular group admits the presentation,

Γ =
〈
S,T|S4 = 1, (ST)3 = S2〉. (6.4)

To later discuss congruence and non-congruence representations of the modular

group, we introduce the principal congruence subgroups:

Definition 6.1. For integral N ≥ 1, the principal congruence subgroup of level N in

the modular group Γ denoted Γ(N) is,

Γ(N) =


a b

c d

 ∈ Γ
∣∣∣∣∣∣
a b

c d

 ≡
1 0

0 1

 mod N

. (6.5)
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6.2. Modular forms. Rather than beginning with the definition of a modular form,

we consider a weaker notion first. Further generalisations will be introduced when

we come to the modular properties of traces of intertwining operators.

Definition 6.2. A weakly modular form of weight k ∈ Z is a meromorphic function

f : H→ C satisfying the transformation property,

f (γτ) = (cτ+d)k f (τ) (6.6)

for γ =

a b

c d

 ∈ Γ.
Note it is sufficient to check this transformation property for S and T only since

these generate the modular group. The case k = 0 corresponds to invariance under Γ.

The following example is such a case and will be used in later calculations.

Example. The j-invariant or j-function j(τ) is a weight k = 0 modular function

characterised uniquely by having a simple pole at infinity and the values,

j(i) = 1728, j
(
e2πi/3) = 0. (6.7)

An implication of the transformation property under T is that f (τ+1) = f (τ) so it

is periodic and has a Fourier expansion. To f we can construct a function g : D→ C

where D is the punctured unit disk and g is such that f (τ) = g(e2πiτ). Then rather than

thinking of a Fourier expansion, one can think of g as having the Laurent expansion,

g(q) =∑
n∈Z

anqn (6.8)

for q ∈D where q = e2πiτ and coefficients an ∈ C. q is often referred to as the nome

in the modular forms literature and will be defined as such henceforth.

Example. The j-function has the following q-expansion,

j(τ) = q−1+744+196884q+21493760q2+ · · · (6.9)

Note that the expansion does not contain terms of lower order than q−1 due to the

simple pole at infinity.
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Definition 6.3. A modular form of weight k ∈ Z is a weakly modular form f of weight

k such that f is holomorphic on H and f is holomorphic at∞.

The point of considering the Laurent expansion is that one defines holomorphicity

at∞ as being that this series extends to q= 0 at the origin of the punctured disk, which

corresponds to im(τ)→∞. This is equivalent to f being bounded as im(τ)→∞. To

describe spaces of modular forms, we introduce the following series:

Definition 6.4. For k ∈ N, the Eisenstein series of weight 2k is given by,

G2k(τ) = −
B2k

(2k)!
+

2
(2k−1)!

∞

∑
n=1

n2k−1qn

1−qn (6.10)

where Bℓ denotes the ℓth Bernoulli number given by the generating series,

∞

∑
ℓ=0

Bℓ
xℓ

ℓ!
=

x
ex−1

. (6.11)

For k ≥ 2, G2k(τ) is a holomorphic modular form of weight 2k. For later conve-

nience, let M denote the C-algebra of integral weight holomorphic modular forms

and Mk the subspace of M of weight k holomorphic modular forms. We have that

M =C[G4,G6]. Furthermore, the j-function can be defined in terms of the Eisenstein

series. In our conventions,

j(τ) =
34560G4(τ)3

20G4(τ)3−49G6(τ)2 . (6.12)

Finally, we introduce the Dedekind eta function,

η(τ) = q1/24
∞

∏
n=1

(1−qn). (6.13)

This has the following S and T transformation properties,

η

(
−

1
τ

)
=
√
−iτη(τ), η(τ+1) = eπi/12η(τ). (6.14)

It is therefore not a modular form, strictly speaking based on the definitions introduced.

However, as we will see in Section 8, there is a notion of it transforming as a modular

form of real weight, rather than integral.
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7. Modular tensor categories

We assume a familiarity with the rudiments of category theory, however we refer

the reader otherwise to [42]. Our exposition draws from [43] and serves as a primer

for modular tensor categories. These will be used in our analysis of modular actions

from categorical data which will recast several results through the lens of categories

rather than employing analytic number theory on modular forms. However, we will

have to build up the definition of a modular tensor category starting with the notion

of a monoidal category.

Definition 7.1. A monoidal category (C ,⊗,a,1, ι) also called a tensor category con-

sists of a category C , a tensor product bifunctor ⊗ : C ×C → C , a natural isomor-

phism,

aU,V,W : (U ⊗V)⊗W
∼
−→ U ⊗ (V ⊗W) (7.1)

for U,V,W ∈ C called the associativity isomorphism, a unit object 1 ∈ C and ι :

1⊗1
∼
−→ 1 also an isomorphism. These must satisfy the following two conditions:

• The pentagon axiom,

((U ⊗V)⊗W)⊗Z

(U ⊗ (V ⊗W))⊗Z (U ⊗V)⊗ (W ⊗Z)

U ⊗ ((V ⊗W)⊗Z) U ⊗ (V ⊗ (W ⊗Z))

aU,V,W⊗idZ aU⊗V,W,Z

aU,V⊗W,Z aU,V,W⊗Z

idU⊗aV,W,Z

where U,V,W,Z ∈ C .

• Left U 7→ 1⊗U and right U 7→ U ⊗1 multiplication respectively by 1 as functors

are autoequivalences, known as the unit axiom, where U ∈ C .

Example. The category of R-modules over a commutative ring R is a monoidal

category. Here the tensor product ⊗R over R is the choice of bifunctor and R itself is

chosen as 1, viewed as an R-module. Choosing R = F as a field F amounts to studying

the category of F-vector spaces VecF over F or choosing R = Z gives the category of

abelian groups. In the case of VecF the bifunctor is then the usual tensor product over

a field and from the unit axiom, it is clear 1 is the field F in question.
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To this definition of a monoidal category we will append other properties to arrive at

a modular tensor category. We now follow with a definition that essentially describes

a category as being akin to that of say, abelian groups. Recall that homC (·, ·) denotes

the hom functor in the category C .

Definition 7.2. A category C is an F-linear abelian category for a field F if the

following conditions are satisfied:

• Additive:

(a) homC (U,V) has the structure of an abelian group for U,V ∈ C .

(b) There exists a zero object 0 ∈ C such that homC (0,0) = 0.

(c) C admits finite coproducts, which is to say, there exists a direct sum bifunctor

⊕ : C ×C → C .

• Abelian:

(a) Kernels and cokernels exist for all morphisms.

(b) For every morphism f : U → V in C , there exists an isomorphism,

f̃ : coker(ker( f ))→ ker(coker( f )). (7.2)

(c) Every monomorphism is a kernel and every epimorphism is a cokernel.

• F-linear:

(a) homC (U,V) has the structure of a vector space over F for U,V ∈ C .

Note here that the cokernel of a morphism f : U → V is an object W along with a

morphism g : V →W such that the diagram,

V

U W

gf

0UW

(7.3)

commutes, where 0UW is the zero morphism. We further require this be universal, in

the sense that for another pair (g′,W′), there exists a unique morphism u : W →W′

such that g′ = u◦g. For example, for the case of modules, the cokernel of a morphism

is the quotient of its target by the image of the morphism.
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Example. VecF is an abelian category. The zero object is simply the zero-dimensional

vector space over F and the direct sum of vector spaces serves as the coproduct. The

other properties are consequences of linear algebra and as the hom spaces are vector

spaces over F it is also F-linear.

Definition 7.3. A category C which is an F-linear abelian category is finite if it is

equivalent to the category of finite-dimensional R-modules for a finite-dimensional

F-algebra R.

Example. The category of finite-dimensional vector spaces over F is a finite category,

and is a subcategory of VecF.

With these definitions in place, we now turn to defining the notions of a braiding,

rigidity and ribbon structure, which are applied to monoidal categories.

Definition 7.4. A braided structure on a monoidal category C consists of a natural

isomorphism cU,V : U⊗V
∼
−→ V⊗U such that the following diagrams are commutative

for U,V,W ∈ C :

•

U ⊗ (V ⊗W) (V ⊗W)⊗U

(U ⊗V)⊗W V ⊗ (W ⊗U)

(V ⊗U)⊗W V ⊗ (U ⊗W)

cU,V⊗W

aU,V,W

cU,V⊗idW

aV,U,W

aV,W,U

idV⊗cU,W

•

(U ⊗V)⊗W W ⊗ (U ⊗V)

U ⊗ (V ⊗W) (W ⊗U)⊗V

U ⊗ (W ⊗V) (U ⊗W)⊗V

a−1
U,V,W

cU⊗V,W

a−1
W,u,V

cU,W⊗idV

a−1
U,W,V

idU⊗cV,W

Example. Continuing with VecF, an obvious choice of braiding is cU,V : u⊗F v 7→

v⊗F u, where u ∈U,v ∈ V and U,V ∈ VecF. In fact, this braiding satisfies cV,U ◦cU,V =
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idU⊗V which also makes it a symmetric monoidal category. Any symmetric monoidal

category is a braided monoidal category.

For U ∈ C we denote its left dual by U∗ if there exists an evaluation evU : U∗ ⊗

U → 1 and coevaluation coevU : 1→ U ⊗U∗ morphism respectively, for which the

compositions,

U
coevU⊗idU
−−−−−−−−→ (U ⊗U∗)⊗U

aU,U∗,U
−−−−−−→ U ⊗ (U∗⊗U)

idU⊗evU
−−−−−−−→ U,

U∗
idU⊗coevU
−−−−−−−−→ U∗⊗ (U ⊗U∗)

a−1
U∗,U,U∗
−−−−−−→ (U∗⊗U)⊗U∗

evU⊗idU∗
−−−−−−−→ U∗,

(7.4)

are identity morphisms. Similarly a right dual ∗U is defined with morphisms ev′U :

U ⊗ ∗U → 1 and coev′U : 1→ U ⊗ ∗U for which the compositions,

U
idU⊗coev′U
−−−−−−−−→ U ⊗ (∗U ⊗U)

a−1
U,∗U,U
−−−−−→ (U ⊗ ∗U)⊗U

ev′U⊗idU
−−−−−−−→ U,

∗U
coev′U⊗id∗U
−−−−−−−−−→ (∗U ⊗U)⊗ ∗U

a∗U,U,∗U
−−−−−−→ ∗U ⊗ (U ⊗ ∗U)

id∗U⊗ev′U
−−−−−−−→ ∗U,

(7.5)

are identity morphisms.

Definition 7.5. A monoidal category C is said to be rigid if all objects have left and

right duals.

Example. In the category of finite-dimensional vector spaces over F, we can define

the dual V∗ of a vector space V over F as being the linear functionals hom(V,F). The

evaluation is then evV : v∗⊗F v 7→ ⟨v∗,v⟩, the pairing of v∗ ∈ V∗ with v ∈ V . Choosing

a basis {ei} of V and dual basis { fi} of V∗ for i = 0, . . . ,dimV −1, we can then define

the coevaluation as

coevV : γ 7→ γ
dimV−1

∑
i=0

ei⊗F fi (7.6)

for the scalar γ ∈ F. As the category of finite-dimensional vector spaces over F is

rigid, we need only specify one evaluation and coevaluation respectively.

Definition 7.6. A braided rigid monoidal category C is ribbon if it possesses a ribbon

structure, i.e. a twist θ ∈ Aut(idC ) for which,

θU⊗V = (θU ⊗ θV)◦ cV,U ◦ cU,V (7.7)
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and (θU)∗ = θU∗ for all U,V ∈ C .

Example. For the category of finite-dimensional vector spaces overF and the braiding

as introduced before, the twist must satisfy θU⊗V = θU ⊗θV since cV,U ◦cU,V = idU⊗V .

The twist is trivially θV = idV .

For further intuition for a ribbon structure, we refer to [43, Remark 8.10.4] which

makes a comparison to quadratic forms. We now have all the necessary properties

to define a modular tensor category. Assume that F is algebraically closed and

characteristic 0.

Definition 7.7. A modular tensor category is a finite (including abelian, F-linear),

semi-simple, ribbon (including braided, rigid) monoidal category whose S -matrix is

non-degenerate, where the S -matrix is defined by,

S = (sU,V)U,V∈O(C ), sU,V = tr(cV,U ◦ cU,V) (7.8)

where O(C ) is the set of isomorphism classes of simple objects of C .
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8. Modular properties of traces of intertwining operators

In this section we introduce the notion of vector-valued modular forms and the

analytic number theory to study them. Torus 1-point functions are defined using

intertwining operators and vector-valued forms are shown to emerge when arranging

vectors whose entries are torus 1-point functions.

8.1. Vector-valued modular forms. For convenience, we use the notation that for a

variable x we denote e(x) = e2πix. In particular, recall that q = e(τ) recalling τ lies in

the complex upper-half plane so that q lies in the interior of the complex unit disk, as

in Section 6. For γ =
(

a b
c d

)
∈ Γ we set,

jk(γ;τ) = (cτ+d)k (8.1)

where k ∈R, not to be conflated with the j-function defined in Equation (6.7). In order

to accommodate a real-valued modular weight, we must also introduce multiplier

systems.

Definition 8.1. A function ν : SL2(Z)→ {r ∈ C | |r| = 1} is called a multiplier system

for Γ of weight k ∈ R if for any A,B ∈ SL2(Z) it satisfies

ν(AB) jk(AB;τ) = ν(A)ν(B) jk(A; Bτ) jk(B;τ). (8.2)

The cusp parameter of ν is the unique m ∈R such that 0 ≤m < 12 and ν(T ) = e(m/12).

Note that the relation (8.2) implies that multiplier systems are uniquely charac-

terised by their values on the generators S and T. The purpose of multiplier systems

is to redefine projective representations of SL2(Z) (specifically representations of the

braid group on three strands B3 = ⟨S,T | (ST)3 = S2⟩, where S4 acts as a phase) so

that they are no longer projective, as we shall see shortly. A more computational

viewpoint is that introducing real weights spoils the cocycle condition of jk which

must be restored with the multiplier system.

Observe that if ν is a multiplier system of weight k, then it is also one of weight

k+n for any n ∈ Z. The remainder of this subsection does not depend on the choice

of multiplier system one wishes to consider. Nevertheless, for use later we note that
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for each r ∈ R there exists a multiplier system νr of weight r satisfying

νr(T) = e
( r

12

)
, νr(S) = e

(
−r
4

)
, νr(ST) = e

(
−r
6

)
(8.3)

(see, for example, [44, Proposition 2.3.2]). Recall that the eta function η introduced

in Equation (6.13) was not an integral weight modular form, but the multiplier system

νr is precisely that which makes η2r transform as a modular form of weight r or

equivalently thinking of η as a modular form of weight 1
2 . Note that r is the cusp

parameter for νr if and only if 0 ≤ r < 12.

Multiplier systems allow us to define an action of Γ on tuples of functions (called

vectors) on H via the following:

Definition 8.2. Let ρ : Γ→ GL(d,C) be a d-dimensional representation of Γ and

consider holomorphic functions f1, . . . , fd : H→ C arranged into a vector

F = ( f1, . . . , fd)t, (8.4)

where xt denotes the transpose of a vector x.

(1) The vector F is a d-dimensional weakly holomorphic vector-valued modular

form of weight k ∈ R on Γ for the representation ρ and a multiplier system ν, if the

following hold.

(i) Each f j is meromorphic at the cusp i∞.

(ii) For each γ =
(

a b
c d

)
∈ Γ we have

F|νkγ = ρ(γ)F, (8.5)

where we define |νkγ on each f j by

(
f j|
ν
kγ
)
(τ) = ν(γ)−1 jk(γ;τ)−1 f j(γτ) (8.6)

and extend the definition of |νk component wise to F.

(2) The vector F is a holomorphic vector-valued modular form if it is a weakly

holomorphic vector-valued modular form for which each f j is holomorphic at the

cusp i∞.
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The notion of holomorphicity at the cusp at infinity is as explained in Section 6.

Here we see that if the multiplier system were omitted from the action (8.6), then

the S4 = 1 relation of Γ would not necessarily hold. This would therefore define a

projective action, or alternatively, an action of B3.

For a fixed representation ρ : Γ → GL(d,C) and multiplier system ν of weight

k ∈ R, the corresponding vector spaces of weakly holomorphic and holomorphic

vector-valued modular forms of weight k for representation ρ and multiplier system

ν are denoted M!(k,ρ,ν) and H(k,ρ,ν), respectively. As noted above, multiplier

systems only determine weights up to shifts by integers and these weights are always

in the same integer coset as the cusp parameter m of ν. We therefore denote by

M!(ρ,ν) =
⊕

n∈ZM
!(m+ n,ρ,ν) and H(ρ,ν) =

⊕
n∈ZH(m+ n,ρ,ν), respectively, the

spaces of all weakly holomorphic and holomorphic vector-valued modular forms for

the pair (ρ,ν). Further, H(ρ,ν) always admits a minimal weight p0 ∈ R such that

H(ρ,ν) =
⊕

n∈N0
H(p0+n,ρ,ν) and H(p0− ℓ,ρ,ν) = 0 for all ℓ ∈ N.

We will always assume that ρ(T) is diagonal with

ρ(T) = diag(e(r1), . . . ,e(rd)), (8.7)

for real numbers r1, . . . ,rd, in particular, ρ(T ) is a unitary matrix. This assumption

can always be made for vertex operator algebras with a semisimple representation

theory (which is the case we will specialise to shortly) as the intertwining operators

can then be chosen without loss of generality to take values in simple modules. A

further simplifying assumption that is common in the number theory literature is that

ρ(S2) is a scalar matrix. Since S2 generates the centre of Γ and has finite order (in

the standard realisation of Γ as integral 2×2 matrices with unit determinant, we have

S2 = −1), the vector space underlying the representation ρ always admits a direct

sum decomposition with ρ(S2) acting as a scalar on each summand. This assumption

therefore primarily simplifies the presentation of certain theorems and hence is not

necessary. In the context of vertex operator algebras, S2 carries the additional

interpretation of being the charge conjugation involution (the functor which assigns

a module to its dual), so ρ(S2) cannot be diagonal in a basis of intertwining operators
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which only take values in simple modules, if there are modules which are not self dual.

For an account of the role of these assumptions in number theory one can consult, for

example, [45] or [46]. In the latter, it is also assumed that 0 ≤ r1, . . . ,rd < 1, but this

will not be required here. With these assumptions, if F ∈M!(k,ρ,ν) we can replace

Definition 8.2.1.i with the condition that each f j has a Fourier expansion of the form

f j(τ) = qλ j
∞

∑
n=0

anqn, (8.8)

for some real numbers λ j (see, for example, [45] for more discussion). As described

in [46], a holomorphic vector-valued modular form F requires each f j to have an

expansion (8.8) where

0 ≤ λ j ≡ r j+
m
12

(mod Z), (8.9)

and m is the cusp parameter of the multiplier system ν.

Definition 8.3. Let ρ : Γ→ GL(d,C) be a representation such that ρ(T ) is diagonal

and unitary as in (8.7) and ν a multiplier system. A set of non-negative real numbers

{λ1, . . . ,λd} satisfying (8.9) is called an admissible set for (ρ,ν). The minimal admis-

sible set for (ρ,ν) is the unique admissible set which additionally satisfies λ j < 1 for

1 ≤ j ≤ d.

As pointed out in [46], and which follows from (8.8) and (8.9) above, for a minimal

admissible set {λ1, . . . ,λd} we have that every non-zero F ∈H(ρ,ν) has the form
qλ1+n1 ∑∞n=0 a1(n)qn

...

qλd+nd ∑∞n=0 ad(n)qn

, (8.10)

where for each j = 1, . . . ,d we have a j(0) , 0 and n j are non-negative integers. Note

that a j(n) refers to the nth coefficient for the jth entry in the column vector.

To provide conditions for a lower bound on the minimal weight p0, among other

things, we require the modular derivative in weight k ∈ R, which is defined as

∂ = ∂k =
1

2πi
d
dτ
+ kG2(τ), (8.11)
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on weight k (vector-valued) modular forms and is then extended linearly. The mod-

ular derivative increments the weight of (vector-valued) modular forms by two. In

particular, the homogeneous subspaces of the ring of integral weight holomorphic

modular forms are related by ∂kMk ⊂Mk+2. For n ∈N and ϕ ∈Mk we let ∂nϕ denote

the composition of operators ∂k+2n ◦ ∂k+2(n−1) ◦ · · · ◦ ∂k+2 ◦ ∂kϕ. This allows us to

consider an order n ∈ N monic modular differential equation in weight k ∈ R, which

is an ordinary differential equation of the form(
∂n

k +
n−2

∑
j=0
ϕ2(n− j)∂

j
k

)
f = 0 (8.12)

in the disk |q| < 1, where ϕ j ∈M j for each j. For more details about monic modular

differential equations see, for example, [46, 47].

The modular derivative can be adjoined to the algebra of integral weight modular

forms M to form

R =
{
ϕ0+ϕ1∂+ · · ·+ϕn∂

n | ϕi ∈M,n ≥ 0
}
, (8.13)

the skew polynomial ring of modular differential operators, where addition is defined

component wise, and multiplication is characterised by ∂ ·ϕ = ϕ∂+∂kϕ for ϕ ∈Mk.

In fact, for any F ∈M!(k,ρ,ν), defining ∂F to be ∂ applied component wise, we find

∂F ∈M!(k+ 2,ρ,ν). Similarly, for ϕ ∈Mk we let ϕF denote the vector F with ϕ

multiplied component wise. Thus both M!(ρ,ν) and H(ρ,ν) are left R-modules with

H(ρ,ν) as an R-submodule.

We conclude this section with convenient criteria for determining when the com-

ponents of a holomorphic vector-valued modular form span the solution space of a

monic modular differential equation and for determining the minimal weight p0 of

the space H(ρ,ν) of holomorphic vector-valued modular forms.

Theorem 8.4 (Mason [47], Marks [46, Theorem 2.8]). Let ρ : Γ→ GL(d,C) be a

representation such that ρ(T ) is diagonal and unitary as in (8.7), ν a multiplier system,

and {λ1, . . . ,λd} ⊂ R the minimal admissible set for (ρ,ν). Consider a holomorphic

vector-valued modular form F ∈H(k,ρ,ν) which must therefore have an expansion

of the form (8.10) such that the leading exponent of the jth component is λ j + n j,
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n j ∈N0. If the components of F are linearly independent over C, then the weight p is

bounded below by the inequality

p ≥
12
(
∑ j
(
λ j+n j

))
d

+1−d, (8.14)

and equality holds if and only if the components of F span the solution space of

a monic modular differential equation. In particular, the minimal weight p0 of

H(ρ,ν) =
⊕

n∈N0
H(p0+n,ρ,ν) satisfies

p0 ≥
12
(
∑ j
(
λ j
))

d
+1−d. (8.15)

8.2. Modularity of torus 1-point functions. The purpose of this section is to intro-

duce torus 1-point functions which can be constructed in a number of ways. Here we

will define them using suitable traces of intertwining operators as aforementioned.

We mostly follow the conventions of [33], see [36] for an exhaustive account of in-

tertwining operators and the tensor structures that arise from them. As a reminder of

our notation for vertex operator algebras, let (V,Y,1,ω) be a vertex operator algebra,

where V denotes the underlying vector space, Y the field map, 1 the vacuum vector,

and ω the conformal vector. The central charge of the Virasoro algebra generated by

the field expansion of Y(ω,z) = ∑n∈Z Lnz−n−2 will be denoted c. Further, let (U,YU)

be a V-module, with U the underlying vector space and YU the field map (or action)

representing the vertex operator algebra V . We will always assume that modules are

graded by generalised L0 eigenvalues, that is,

U =
⊕
n∈C

Un, Un = {u ∈ U | ∃m ∈ N, (L0−n)mu = 0}. (8.16)

For a homogeneous element u ∈ Un, we denote the conformal weight n of u by

wt(u) = n as in Definition 4.2. We will soon specialise to rational C2-cofinite vertex

operator algebras. Among other helpful properties, such vertex operator algebras only

admit modules for which L0 acts semisimply with finite-dimensional eigenspaces, and

all eigenvalues are rational, bounded below, and discrete.
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Figure 1. Schematic illustration of the homeomorphism between the
cylinder and annulus, with increasing ξ1 corresponding to moving
radially outward in the annulus.

ξ1

ξ0

ze2πiξ

We now come to the definition of a torus 1-point function, utilising the intertwining

operators introduced in Section 4.2. To motivate this definition, the usual means of

reaching the torus in conformal field theory on the plane is to go through the cylinder

first. Reaching the cylinder from the plane is accomplished by compactifying one

coordinate, so that one is left with a cylinder of infinite length in the uncompactified

direction. If ξ = ξ0 + iξ1 is the complex coordinate on the cylinder, ξ0 runs around

in the compactified direction and ξ1 is its length. It is homeomorphic to the annulus

with complex coordinate z where we choose a mapping, say z = e2πiξ. Then slices of

constant ξ1 correspond to concentric circles, as illustrated in Figure 1. The torus is

then obtained by making the identification z ∼ qz where here q ∈ C is non-zero, which

we can visualise as wrapping the cylinder to form a torus. This geometric process

is equivalent to taking a q-trace [21, Section 4.2], which gives us the following

definition.

Definition 8.5. Let (V,Y,1,ω) be a vertex operator algebra, (U,YU), (W,YW) be V-

modules, and Y be an intertwining operator of type
( W

U, W

)
. The torus 1-point function

associated to Y is the trace

ψY(u, τ) = trW oY(u)qL(0)− c
24 , u ∈ U. (8.17)
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Recall oY(u) = uwt(u)−1 is the zero mode with respect to the intertwining operator Y.

If the intertwining operator Y is clear from context, we will omit Y as a label for zero

modes and torus 1-point functions.

Beyond the standard expansions of fields, we will also need to consider transformed

expansions

Y[a,z] = Y(a,ez−1)ezwt(a) =∑
n∈Z

a[n]z−n−1, a ∈ Vwt(a), (8.18)

and extended linearly, which implies the formula

a[n] = Resz
(
Y(a,z)(log(1+ z))n(1+ z)wt(a)−1). (8.19)

This is motivated by the mapping between the plane and cylinder mentioned earlier.

For example, for a ∈ Vwt(a) we have

a[0] = Resz
(
Y(a,z)(1+ z)wt(a)−1)

= Resz

(
∑
n∈Z

∞

∑
j=0

(
wt(a)−1

j

)
anz−n−1+ j

)

=
∞

∑
j=0

(
wt(a)−1

j

)
a j

(8.20)

so that if a ∈ V1 we obtain a[0] = a0 where we have used the binomial convention

Equation (3.6). In fact, the map (8.18) gives V another structure of a vertex operator

algebra of central charge c with the same vacuum vector and conformal element

ω̃ = ω− c
241 (see [21, Section 4] for details). Similar to above, defining L[n] via

Y[ω̃,z] = ∑n∈Z L[n]z−n−2 gives us a square bracket grading

U =
⊕
n∈C

U[n], U[n] = {u ∈ U | ∃m ∈ N, (L[0]−n)mu = 0}. (8.21)

If u ∈ U[n] we write wt[u] = n. In the case where the vertex operator algebra V

is rational and C2-cofinite, we again have that L[0] acts semisimply with finite-

dimensional eigenspaces, and that all eigenvalues are rational, bounded below, and

discrete. Additionally, if we assume that U is simple then the minimal L0 and L[0]

eigenvalues will be equal and denoted hU , which is a rational number [48], and
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recall is called the conformal weight of the module U. Further, for n ∈ N0 we have

U[hU+n] ⊂
⊕n

m=0 UhU+m and UhU+n ⊂
⊕n

m=0 U[hU+m].

For later use we prepare some helpful identities involving torus 1-point functions

and square bracket expansions.

Proposition 8.6 (Zhu [21], Miyamoto [28, Propsition 3.1 and 3.3]). Let V be a vertex

operator algebra, U,W be V-modules, and Y an intertwining operator of type
( W

U, W

)
.

Then for any a ∈ V and u ∈ U we have

ψY(a[0]u, τ) = 0 (8.22)

and

ψY(a[−1]u, τ) = tr |Wo(a)o(u)qL0−
c

24 +
∞

∑
ℓ=1

G2ℓ(τ)ψY(a[2ℓ−1]u, τ). (8.23)

The identity (8.22) can be specialised and refined as follows.

Proposition 8.7. Let V be a vertex operator algebra and U a V-module with a de-

composition into generalised L[0] eigenspaces as in (8.21). Suppose that for any

x,y ∈ V1 the binary operation [x,y] = Resz Y(x,z)y = x0y furnishes V1 with the struc-

ture of a finite-dimensional reductive Lie algebra and thus each homogeneous space

U[m] is a module over V1. Let U[m] = U triv
[m] ⊕Unon-triv

[m] be the unique decomposition

into the maximal trivial submodule U triv
[m] and its complement Unon-triv

[m] containing all

non-trivial simple summands. Then for any u ∈ Unon-triv
[m] , any V-module W, and any

intertwining operator Y of type
( W

U,W

)
, we have

ψY(u, τ) = 0. (8.24)

Proof. Recall that for a ∈ V1 the square bracket and non-square bracket zero modes

coincide, that is, a[0] = a0. Since by assumption V1 is a reductive Lie algebra, we can

decompose U[m] into a direct sum of irreducible V1-modules and group them into
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trivial and non-trivial ones. In particular

U triv
[m] = {u ∈ U[m] | ∀a ∈ V1,a0u = 0}, Unon-triv

[m] = {a0u | a ∈ V1,u ∈ U[m]}. (8.25)

Therefore, if u lies in a simple non-trivial submodule of U[m], then it also lies in the

image of some a ∈ V1 and thus by Proposition 8.6 the result follows.

This result will be utilised later in determining the appropriate insertion vectors

taken from modules of the sl2 vertex operator algebra to yield non-zero vector-valued

modular forms.

Note that a sufficient condition for V1 being a Lie algebra under the bracket given

above is dim(V0) = 1 and dim(Vn) = 0 for n < 0. If in addition to being rational V is

C2-cofinite and L1V1 = 0, then V1 is reductive [49], which is the case for the examples

we shall consider later.

For the remainder of this thesis we assume that V is a vertex operator algebra

for which the conformal weights are bounded below by 0, the conformal weight 0

space V0 is 1-dimensional, V is C2-cofinite, the contragredient or graded dual V∗

satisfies V∗ � V , and V is rational, i.e., the category of admissible modules, Rep(V),

is semisimple. The C2-cofiniteness of V implies that Rep(V) admits only a finite

number of inequivalent simple V-modules V =W1, . . . ,WdV for some dV ∈N [21] (see

also [50]). In this notation, for each µ ∈ {1, . . . ,dV }, we let hµ denote the conformal

weight of Wµ, where h1 = 0. Further, C2-cofiniteness also implies that the central

charge and conformal weights of all modules are rational [51, Corollaries 5.10 and

5.11] (see also [48, Theorem 1.1]). Note that the assumptions dim(V0) = 1, V � V∗,

and that the conformal weights are bounded below by 0 are not required for the space

of torus 1-point functions to be closed under the action of the modular group [21]

(see also [48]). They are necessary to prove that Rep(V) is rigid and, additionally, a

modular tensor category [25].

Given a simple V-module Wλ we introduce the vector space of intertwining oper-

ators

Iλ =
⊕
µ

(
Wµ

Wλ Wµ

)
, (8.26)
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recalling that
( Wµ

Wλ Wµ

)
simultaneously denotes the space of intertwining operators of

such type, so that Iλ consists of all intertwining operators for the modules that Wλ

may act on. Let Nµ
λ,µ = dim

( Wµ

Wλ Wµ

)
then,

dimJλ =∑
µ

Nµ
λ,µ. (8.27)

When Wλ is the vertex operator algebra V , the intertwining operators specialise to

the module field maps YWµ giving the action of V on Wµ and these are a distinguished

basis for
( Wµ

Wλ Wµ

)
in which case Nµ

λ,µ = 1 for all µ.

The space of 1-point functions, C1(Wλ), with insertion from a simple module

Wλ admits a number of characterisations in various level of generality, however, for

rational C2-cofinite vertex operator algebras this space can always be realised as the

span

C1
(
Wλ
)
= {ψY(−, τ) | Y ∈ Iλ}, (8.28)

see [29, Theorem 5.1] for details, which we use as the definition here, for simplicity.

Further, we define the space of torus 1-point functions evaluated at u ∈Wλ to be

Cu
1
(
Wλ
)
= {ψY(u, τ) | Y ∈ Iλ}. (8.29)

Bounds on dimensions are then given by

dim
(
Cu

1
(
Wλ
))
≤ dim

(
C1
(
Wλ
))
≤ dim(Iλ) =

dV

∑
µ=1

Nµ
λ,µ. (8.30)

Theorem 8.8 (Miyamoto [28, Theorem 5.1], Yamauchi [29, Theorem 5.1], Huang [30,

Theorem 7.3]). Let V be a rational C2-cofinite vertex operator algebra. Then for any

simple module Wλ and any homogeneous vector u ∈ Wλ
[wt[u]], every torus 1-point

function ψ(u, τ) ∈ Cu
1(Wλ) evaluated at u is a holomorphic function on H. For γ ∈ Γ

and u ∈Wλ
[wt[u]],

ψY(u, τ)|γ = νwt[u](γ)−1 jwt[u](γ;τ)−1ψY(u,γτ) ∈ Cu
1
(
Wλ
)

(8.31)

defines an action of Γ on Cu
1(Wλ) which lifts to an action on C1(Wλ).
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Recall that the weight of a multiplier system can be freely shifted by integers and

that for u as in the theorem above wt[u]− hλ ∈ Z. We can therefore define the right

action of Γ on Cu
1(Wλ) to be

(
ψY|λwt[u]γ

)
(u, τ) = νhλ(γ)−1 jwt[u](γ;τ)−1ψY(u,γτ), (8.32)

thus making the multiplier system independent of the choice of vector u ∈Wλ.

To transition from considering right Γ actions on Cu
1(Wλ) to vector-valued modular

forms, we need to choose elements in Cu
1(Wλ) to form the components of a vector,

which we shall now do. Let Bµ
λ be a basis for the space of intertwining operators of

type
( Wµ

Wλ Wµ

)
which is the empty set if λ,µ are such that Nµ

λ,µ = 0 as the corresponding

space of intertwining operators will vanish. Let

Ξλ =
⋃
µ

B
µ
λ (8.33)

be the union of all these bases for fixed λ, thus forming a basis of Iλ. The space

of intertwining operators Iλ and the spaces of torus 1-point functions C1(Wλ) and

Cu
1(Wλ) are related by the linear maps

trλ : Iλ→ C1
(
Wλ
)
, evu : C1

(
Wλ
)
→ Cu

1
(
Wλ
)
,

Y 7→ troY(−)qL(0)− c
24 f (−, τ) 7→ f (u, τ) (8.34)

that is, the first map is the taking of traces and the second is evaluation at the vector

u ∈Wλ. These maps are surjective by construction, hence their composition is too,

yet they need not be injective. In particular, certain choices of u ∈Wλ can lead to large

kernels. For example, if V is the simple affine vertex operator algebra constructed

from sl3 at level 3, with Wλ chosen to be V , and u = 1, then we have |Ξλ| = 10 while

dim(C1
1(V)) = 6. That is, there are 10 simple modules up to equivalence, yet the span

of characters is only 6-dimensional. Indeed, Proposition 8.7 shows that there can

exist non-zero u ∈Wλ for which evu is the zero map.

Setting δ(λ)= dimC1(Wλ), let∆λ ⊂ trλ(Ξλ)= {ψ1, . . .ψδ(λ)} be a linearly independent

subset of the image of the basis Ξλ and hence a basis of C1(Wλ), and define the vector

Ψλ = (ψ1, . . . ,ψδ(λ))t. Then Theorem 8.8 can be restated as follows.
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Theorem 8.9. For any u ∈ Wλ
[wt[u]] the space Cu

1(Wλ) carries a T-unitarisable rep-

resentation ρλ : Γ → GL(δ(λ),C) such that Ψλ(u, τ) is a δ(λ)-dimensional weakly

holomorphic vector-valued modular form of weight wt[u], representation ρλ, and

multiplier system νhλ . That is, Ψλ(u, τ) ∈M!(wt[u],ρλ, νhλ). For each component

ψ j of Ψλ let µ j be the corresponding module label, that is, ψ j is the trace of an

intertwining operator of type
( Wµ j

WλWµ j

)
. Then additionally

ρλ(T ) = diag
{

e(r1), . . . ,e
(
rδ(λ)

)}
, (8.35)

where

r j = hµ j −
c

24
−

hλ
12
, 1 ≤ j ≤ δ(λ). (8.36)

Moreover, if hµ j − c/24 ≥ 0 for all 1 ≤ j ≤ δ(λ), then Ψλ(u, τ) ∈H(wt[u],ρλ, νhλ).

Proof. By construction every basis element ψ j ∈ ∆λ is the image of an intertwining

operator that takes values in a simple module. The exponents of q in the series

expansion of ψ j will therefore only differ by integers and hence the matrix for T will

be diagonal and all diagonal entries will be complex numbers of modulus 1. That

Ψλ(u, τ) is a |Ξλ|-dimensional weakly holomorphic vector-valued modular form of

weight wt[u], representation ρλ, and multiplier system νhλ follows from Theorem 8.8

(for additional details, see [44, Proposition 2.5.2]). Taking γ = T in (8.5) gives

ρλ(T)Ψλ(u, τ) = νhλ(T)−1 jwt[u](T;τ)−1Ψλ(u, τ+1)

= e
(
−

hλ
12
−

c
24

)
diag

{
e
(
hµ1

)
, . . . ,e

(
hµδ(λ)

)}
Ψλ(u, τ),

(8.37)

and thus (8.35) and (8.36). Meanwhile, Ψλ(u, τ) is holomorphic at i∞ if and only

if each component function ψ j is holomorphic at i∞, and this is true if and only if

hµ j − c/24 ≥ 0 for all 1 ≤ j ≤ δ(λ).

We stress that choices were made to construct the vectorΨλ(u, τ) ∈M!(ρλ, νhλ) from

C1(Wλ). For example, for any U ∈ GLd(C) the components of the vector UΨλ(u, τ)

will also form a basis of C1(Wλ) and hence give rise to an equivalent representation

ρU related to the previously constructed representation via ρU(γ) = Uρλ(γ)U−1 for
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all γ ∈ Γ. Furthermore, UΨλ(u, τ) ∈M!(wt[u],ρU , νhλ). The association of C1(Wλ) to

vector-valued modular forms is therefore only determined up to a choice of basis.

A natural question to ask, is if there is a discrepancy between the dimension

of the space of intertwining operators Iλ and that of the unevaluated torus 1-point

functions C1(Wλ), or equivalently, if the trace map trλ in (8.34) has a non-trivial

kernel. In [21, Theorem 5.3.1] it was shown that the kernel is trivial in the special

case Wλ = V . However, it is currently not known, if this is true or false for general

Wλ. A sufficient condition for the kernel being trivial is the existence of a vector

u ∈Wλ such that the image of the basis Ξλ under the composition evu ◦ trλ is linearly

independent, as in this case the inequalities (8.30) are all equalities. Such vectors will

also be shown to exist below (not assuming Wλ = V) in the example of the simple

affine vertex operator algebra constructed from sl2 at any non-negative integer level.
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9. General results on spaces of 1-point functions

In this section we develop the tools needed to characterise the space of all torus

1-point functions (as modules over the algebra of holomorphic modular forms and the

algebra R of modular differential operators) obtained by varying the insertion vector

u ∈Wλ over an entire simple vertex operator algebra module. Specifically, let

V(ρλ)n = spanC
{
Ψλ(u, τ) | u ∈Wλ

[hλ+n]
}

(9.1)

for n ∈ N0 and

V(ρλ) =
∞⊕

n=0

V(ρλ)n. (9.2)

That is, V(ρλ) is the space of all evaluations of theΨ(−, τ) at any u ∈Wλ. Additionally,

for u ∈Wλ define

Vir(u) = spanC
{

L[−n1] · · ·L[−nℓ]u | n1, . . . ,nℓ ∈ N0, ℓ ∈ N0
}
⊂Wλ, (9.3)

which is the space of Virasoro descendants of u. Note that Vir(u) is a Virasoro module,

that is, closed under the action of the Virasoro algebra, if and only if u is a singular

vector (an L[0]-eigenvector that is annihilated by all positive Virasoro modes). For

u ∈Wλ, set

Vu(ρλ) = spanC{Ψλ(w, τ) | w ∈ Vir(u)} ⊂ V(ρλ), Vu(ρλ)n = V
u(ρλ)∩V(ρλ)n.

(9.4)

That is, Vu(ρλ) is the subspace of V(ρλ) consisting of all evaluations of Ψλ(−, τ) on

Virasoro descendants of u. Recall the ring of modular differential operators given in

(8.13).

The next result gives a condition on the insertion vector which implies evaluating

the 1-point function on all Virasoro descendants gives you a space lying within or

equal to RΨλ(u, τ), namely that u should attain the minimal conformal weight for a

non-zero 1-point function.

Proposition 9.1. Let u ∈Wλ
[wt[u]] be a homogeneous vector whose conformal weight

is such that the condition Ψλ(w, τ) = 0 is satisfied for all homogeneous vectors w ∈

Wλ
[wt[w]] with wt[w] < wt[u]. Then Vu(ρλ) ⊆ RΨλ(u, τ). Furthermore, if −wt[u] < N0
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then Vu(ρλ) =RΨλ(u, τ), that is, Vu(ρλ) is cyclic as an R-module and is generated by

Ψλ(u, τ).

Proof. This proof is a generalisation of [52, Proposition 2(b)].

We first proveVu(ρλ)⊆RΨλ(u, τ). ConsiderΨλ(w, τ) ∈Vu(ρλ) and note w ∈Wλ
[hλ+N]

for some N ∈N0. Set k =wt[u]−hλ. We will prove by induction on N that Ψλ(w, τ) ∈

RΨλ(u, τ). If N < k then Ψλ(w, τ) = 0 by assumption. Note that if N = k, then w is a

scalar multiple of u since w ∈ Vir(u) and so Ψλ(w, τ) ∈ RΨλ(u, τ) for N ≤ k.

Suppose the result holds for an arbitrary N ∈N0 and consider the case w ∈Wλ
[hλ+N+1].

Since w ∈ Vir(u) and w is not a scalar multiple of u, we may assume without loss

of generality that w = L[−n1]L[−n2] · · ·L[−nt]u, where n j equals 1 or 2 for all 1 ≤ j ≤ t

since L[−1] and L[−2] generate L[−n] for all n > 0. In the case n1 = 1, we have by (8.22)

(recall ω[n+1] = L[n]) that Ψλ(w, τ) = 0. If n1 = 2, then setting x = L[−n2] · · ·L[−nt]u and

using (8.23) we have

Ψλ(w, τ) = ∂Ψλ(x, τ)+
∞

∑
j=2

G2 j(τ)Ψλ(L[2 j−2]x, τ). (9.5)

Since wt[x] and wt[L[2 j−2]x] are both strictly less than wt[w] = hλ+N+1, our induc-

tion hypothesis implies Ψλ(w, τ) ∈ RΨλ(u, τ).

We turn to showing that RΨλ(u, τ) ⊆ Vu(ρλ) if −wt[u] < N0. Recall every element

in RΨλ(u, τ) is of the form

(
ϕ0+ϕ1∂+ · · ·+ϕt∂

t)Ψλ(u, τ), (9.6)

for ϕℓ ∈M with 0 ≤ ℓ ≤ t and t ∈ N0. We also have that ϕℓ is a linear combination

of terms G4(τ)iG6(τ) j for some i, j ∈ N0. Thus, by linearity, we need only show that

Vu(ρλ) is closed under taking modular derivatives ∂, and multiplication by G4(τ) and

G6(τ) if −wt[u] < N0. For z ∈ Vir(u) and r ∈ N0, set xr(z) = L[−2]L2r
[−1]z. Then for

r ≥ 1,

Ψλ(xr(z), τ) = αG2r+2(τ)Ψλ(z, τ)+
∞

∑
ℓ=r+2

G2ℓ(τ)Ψλ
(

xℓ,r,z, τ
)

(9.7)

(see the proof of [52, Proposition 2(b)]), where α is a complex number that is 0 if and

only if wt[z] = 0, and xℓ,r,z ∈ Vir(u) satisfies wt[xℓ,r,z] < wt[z] for ℓ ≥ r+2.



50 J SHAFIQ

We first claim that for any ℓ ≥ 2 and Ψλ(w, τ) ∈ Vu(ρλ) we have G2ℓ(τ)Ψλ(w, τ) ∈

Vu(ρλ). We prove this by induction on wt[w], and more specifically, by induction on

the non-negative integer n such that wt[w] = wt[u]+n. In the case n = 0, we have w

is a scalar multiple of u and (9.7) gives

Ψλ(xr(w), τ) = αG2r+2(τ)Ψλ(w, τ)+
∞

∑
ℓ=r+2

G2ℓ(τ)Ψλ
(

xℓ,r,w, τ
)
= αG2r+2(τ)Ψλ(w, τ)

(9.8)

since wt[xℓ,r,w] < wt[u] so that Ψλ(xℓ,r,z, τ) = 0 for ℓ ≥ r+2 by assumption. Here α is

non-zero by our assumption −wt[u] < N0. Thus G2r+2(τ)Ψλ(w, τ) ∈ Vu(ρλ) for r ≥ 1

and the base case is established. Assume G2ℓ(τ)Ψλ(w, τ) ∈ Vu(ρλ) for any ℓ ≥ 2 when

wt[w] = wt[u]+m and 0 ≤ m ≤ n. Consider the n+1 case, i.e., wt[w] = wt[u]+n+1.

Then (9.7) becomes

Ψλ(xr(w), τ) = αG2r+2(τ)Ψλ(w, τ)+
∞

∑
ℓ=r+2

G2ℓ(τ)Ψλ
(

xℓ,r,w, τ
)

(9.9)

where wt[xℓ,r,w] < wt[w] = wt[u]+ n+ 1 for ℓ ≥ r + 2. Again, α is non-zero since

wt[w] > wt[u] and −wt[u] < N0, so wt[w] , 0. As such, we have by our in-

duction hypothesis that G2ℓ(τ)Ψλ(xℓ,r,w, τ) ∈ Vu(ρλ) for ℓ ≥ r + 2. It follows that

G2r+2(τ)Ψλ(w, τ) ∈ Vu(ρλ) for r ≥ 1.

Next, we establish that ∂Ψλ(w, τ) ∈ Vu(ρλ) for any w ∈ Vir(u). Indeed, (8.23) gives

Ψλ(x0(w), τ) = ∂Ψλ(w, τ)+
∞

∑
ℓ=2

G2ℓ(τ)Ψλ
(

xℓ,0,w, τ
)

(9.10)

where wt[xℓ,0,w] < wt[w]. Since xℓ,0,w ∈ Vir(u) and G2ℓ(τ)Ψλ(xℓ,0,w, τ) ∈ Vu(ρλ) for

ℓ ≥ 2 we have ∂Ψλ(w, τ) ∈ Vu(ρλ). Thus Vu(ρλ) is closed under the action of R and

hence Vu(ρλ) = RΨλ(w, τ).

Since the above proposition gives the decomposition of Vu(ρλ) as an R-module

it is natural to ask how it decomposes as an M-module. To this end we require the

following proposition.

Proposition 9.2 (Marks-Mason [53, Theorem 1], Marks [46, Lemma 2.7]). Let

F ∈H(k,ρ,ν) be a d-dimensional holomorphic vector-valued modular form of weight
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k for a representation and multiplier system (ρ,ν), whose components form a fun-

damental set of solutions for a monic modular differential equation. Then the set

{F,∂F, . . .∂d−1F} is an M-basis for RF. Further, if c(d,n) ∈ N are the coefficients of

the series expansion

1− t2d(
1− t2

)(
1− t4

)(
1− t6

) =∑
n≥0

c(d,n)tn, (9.11)

then the weight k+n homogeneous subspace (RF)n = {(ϕ0+ϕ1∂+ϕ2∂
2+ · · · )F | ϕ j ∈

Mn−2 j, j ≥ 0} satisfies

dim((RF)n) = c(d,n). (9.12)

Proof. In [53, Theorem 1] it is shown that H(k,ρ,ν) is free and rank d over M.

Further, in [46, Lemma 2.7] it is shown that {F,∂F, . . . ,∂d−1F} is linearly independent

over M. By assumption, the components of F form a fundamental set of solutions for

a monic modular differential equation of degree d, hence ∂dF lies in the M-span of

{F,∂F, . . . ,∂d−1F}. Thus {F,∂F, . . . ,∂d−1F} is an M-basis for RF. The series (9.11) is

the Hilbert-Poincaré series for RF, see [46, Equation 2.9].

To provide further motivation for the following key theorem, we note it will be

instrumental in Section 11 in order to describe Vu(·) and V(·) for the appropriate

representation in question, namely by giving sufficient conditions for when they are

cyclic R-modules. In combination with other results this will allow for a closed-form

of the 1-point functions to be written in some dimensions.

Theorem 9.3. Let u ∈ Wλ
[wt[u]] be a homogeneous vector whose conformal weight

satisfies the condition Ψλ(w, τ) = 0 for all homogeneous vectors w ∈ Wλ
[wt[w]] with

wt[w]<wt[u]. Let {µ1, . . . ,µδ(λ)} (recall δ(λ)= dim(C1(Wλ))) be the leading exponents

ofΨλ(u, τ) and let µmin ,µmax be the least and greatest leading exponent, respectively.

Suppose further that the following four conditions hold.

(1) The subspace N = {w ∈Wλ
[wt[u]] | Ψλ(w, τ) = 0} has codimension 1 in Wλ

[wt[u]].

(2) The exponents {µ1, . . . ,µδ(λ)} saturate the inequality (8.14), that is, it is an equality.
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(3) The exponents {µ1, . . . ,µδ(λ)} of Ψλ(u, τ) are minimal among all vector-valued

modular forms in V(ρλ), that is, for any F ∈ V(ρλ) the leading exponent of the jth

component will be at least µ j.

(4) The space H(ρλ, νhλ−12µmin) is cyclic over R.

Then

Vu(ρλ) ⊂ V(ρλ) ⊂ η24µminH
(
ρλ, νhλ−12µmin

)
(9.13)

and {µ1−µmin , . . . ,µδ(λ)−µmin } is an admissible set for (ρλ, νhλ−12µmin ). Moreover, let

{λ1, . . . ,λδ(λ)} be the minimal admissible set for (ρλ, νhλ−12µmin ) and define

M =
δ(λ)

∑
i=1

(µi−µmin −λi). (9.14)

Then

c(δ(λ),n) = dim
(
Vu(ρλ)n

)
≤ dim(V(ρλ)n) ≤ c

(
δ(λ),n+12

M
δ(λ)

)
, (9.15)

where c(δ(λ),n) are the graded dimensions of (9.12). If additionally

(5) µmax −µmin < 1,

then this is a necessary and sufficient condition for {µ1 − µmin , . . . ,µδ(λ) − µmin } to

be the minimal admissible set for (ρλ, νhλ−12µmin ). Finally, if in addition to the five

conditions above

(6) −wt[u] < N0,

then

Vu(ρλ) = V(ρλ) = η24µminH
(
ρλ, νhλ−12µmin

)
(9.16)

and

dim(V(ρλ)n) = c(δ(λ),n). (9.17)

Proof. By Proposition 9.1,Vu(ρλ)⊂RΨλ(u, τ) andVu(ρλ)=RΨλ(u, τ) if−wt[u] <N0.

Since the exponents of Ψλ(u, τ) saturate the inequality (8.14), so do the exponents of

η−24µminΨλ(u, τ) and the exponents of each component function are all non-negative,

hence η−24µminΨλ(u, τ) is holomorphic. Since η commutes with modular derivatives,
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we further have that Rη−24µminΨλ(u, τ) = η−24µminRΨλ(u, τ) = η−24µminVu(ρλ). Ad-

ditionally, the leading exponents of Ψλ(u, τ) are minimal among all vector-valued

modular forms in V(ρλ), we therefore have η−24µminV(ρλ) ⊂ H(ρλ, νhλ−12µmin ) and

(9.13) follows. The bounds on the graded dimension then follow from the fact that

Vu(ρλ) and H(ρλ, νhλ−12µmin ) are both cyclic R-modules and the weight of the cyclic

generator of H(ρλ, νhλ−12µmin ) differs from the weight of Ψλ(u, τ) by 12 M
δ(λ) .

If µmax −µmin < 1, then {µ1−µmin , . . . ,µδ(λ)−µmin } is a minimal admissible set for

(ρλ, νhλ−12µmin ). Thus η−24µminΨλ(u, τ) has the same weight as the cyclic generator of

H(ρλ, νhλ−12µmin ), which lies in a 1-dimensional weight space, that is, η−24µminΨλ(u, τ)

is a non-zero scalar multiple of the cyclic generator. Hence η−24µminVu(ρλ) =

H(ρλ, νhλ−12µmin ), which implies (9.16) and also the dimension formula (9.17).

Proposition 9.1 and Theorem 9.3 generalise Lemma 2.1, Theorem 3.5, and Corol-

lary 3.3 of [17]. Additionally, we note here that the necessary condition on the values

of wt[u] is absent in the statement of Lemma 2.1 in [17], and thus also Theorem 3.5

and Corollary 3.3 in loc. cit. Indeed, in the notation of that paper, these results and the

relevant discussion should all include the assumption that −hm,n <N0. Fortunately, in

the application of these results to the Virasoro minimal models in [17, Section 3], the

analysis of small dimensions automatically excludes −hm,n ∈ N0 with one exception.

This exception is in the 1-dimensional setting where the trivial case of (m,n) = (1,1)

is included in the second statement of Theorem 3.7 when it should not be. However,

this corresponds to the Virasoro minimal model at central charge c = 0 (i.e., the trivial

vertex operator algebra isomorphic toC) acting on itself. In this case (up to rescaling)

there is only one torus 1-point function and it is constant.
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10. 1-point functions of affine sl2

We will now be applying the theory and tools of the preceding sections to the case

of the affine vertex operator algebra L(k,0) associated to sl2 at non-negative integral

level k. The particulars of this construction were covered in Section 5.2. Recall that

L(k,µ) for 0 ≤ µ ≤ k is the set of representatives of simple modules where µ is the h0

eigenvalue of the highest weight vector.

In order to obtain non-vanishing trace functions ψY(u, τ), we need to find non-

vanishing spaces of intertwining operators of type
( L(k,µ)

L(k,λ) L(k,µ)

)
, and a suitable basis

Ξλ as defined in (8.33). Note that as intertwining operator spaces for triples of simple

L(k,0)-modules are always at most 1-dimensional, we will identify the basis vectors

in Ξλ with the index µ appearing in
( L(k,µ)

L(k,λ) L(k,µ)

)
. Further, let ψµ denote the trace of

the basis intertwining operator corresponding to the label µ over the module L(k,µ),

as in (8.17).

Proposition 10.1. Let 0 ≤ λ ≤ k, then

Ξλ =


{
µ

∣∣∣∣λ2 ≤ µ ≤ k− λ
2

}
λ even,

∅ λ odd.
(10.1)

In particular, if λ is even then |Ξλ| = k−λ+1.

Proof. This is an immediate consequence of the L(k,0) fusion rules given by L(k,λ)⊠

L(k,µ) =
⊕

ν Nν
λµL(k, ν), where

Nν
λµ =


1 if |λ−µ| ≤ ν ≤min{λ+µ,2k−λ−µ} and λ+µ+ ν ≡ 0 (mod 2),

0 otherwise.
(10.2)

The fusion rules (10.2) were originally presented in the physics literature in [54,55]

and predate vertex operator algebras. They were later proved in [56, Theorem 1]

and [57, Corollary 3.2.1].

We next record many properties of the traces ψµ, with the remainder of the section

dedicated to proving these properties. Throughout the section for any 0 ≤ λ ≤ k we
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denote the highest weight vector of L(k,λ) by |λ⟩. The following theorem combines

many results and requires some preparation, but we present it first to contextualise

the steps needed for its proof.

Theorem 10.2. Let 0 ≤ λ ≤ k with λ even.

(1) Let 0 ≤ n ≤ λ
2 − 1, then ψµ(v, τ) = 0 for all v ∈ L(k,λ)[hλ+n] and µ ∈ Ξλ, where

L(k,λ)[hλ+n] denotes a homogeneous space with respect to the square bracket

grading (8.21).

(2) For any µ ∈Ξλ, the subspace N = {v ∈ L(k,λ)[hλ+ λ2 ] | ψ
µ(v, τ)= 0} has codimension

1 in L(k,λ)[hλ+ λ2 ]. Hence there is a unique vector u ∈ L(k,λ)[hλ+ λ2 ], up to rescaling

or addition by elements in N, such that ψµ(u, τ) , 0. The vector u can be chosen

to be f
λ
2

[−1]|λ⟩ or, more generally, as any element

u ∈ f
λ
2
−1|λ⟩+

λ
2−1⊕
n=0

L(k,λ)hλ+n, (10.3)

where L(k,λ)hλ+n denotes a homogeneous space with respect to the standard

conformal grading (8.16).

(3) For any µ ∈ Ξλ and u ∈ L(k,λ) as in (10.3), the leading exponent of ψµ(u, τ) is

hµ−
c

24
=

2µ2+4µ− k
8(k+2)

. (10.4)

These leading exponents saturate the inequality (8.14), that is, it is an equality.

(4) For u ∈ L(k,λ) as in (10.3), the intertwining operator basis Ξλ can be normalised

such that all coefficients of the series expansion of ψµ(u, τ) are rational for each

µ ∈ Ξλ.

(5) Let u ∈ L(k,λ) be as in (10.3). The set {ψµ(u, τ) | µ ∈ Ξλ} is linearly indepen-

dent in Cu
1(L(k,λ)), the space of torus 1-point functions evaluated at u, and the

set {ψµ(−, τ) | µ ∈ Ξλ} is linearly independent in C1(L(k,λ)), the space of (un-

evaluated) torus 1-point functions. The dimension of both of these spaces is

k−λ+ 1, the cardinality of Ξλ. Thus the vector Ψλ(u, τ) = (ψµ(u, τ) | µ ∈ Ξλ)t =

(ψ
λ
2 (u, τ), . . . ,ψk− λ2 (u, τ))t is a |Ξλ| = k− λ+ 1-dimensional weakly holomorphic

vector-valued modular form of weight hλ + λ
2 , representation ρλ, and multiplier
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system νhλ . Moreover,

ρλ(T) = diag
{

e
(

r λ
2

)
, . . . ,e

(
rk− λ2

)}
, (10.5)

where

rµ = hµ−
c

24
−

hλ
12
, µ ∈ Ξλ. (10.6)

(6) For arbitrary w ∈ L(k,λ)[wt[w]] we have that Ψλ(w, τ) is a holomorphic vector-

valued modular form if λ ≥ −2+
√

2k+4. Additionally, for u ∈ L(k,λ) as in

(10.3), the following are equivalent.

(i) Ψλ(u, τ) ∈H(ρλ, νhλ).

(ii) λ ≥ −2+
√

2k+4.

(iii) k ≥ d−2+
√

2d−1 or k ≤ d−2−
√

2d−1, where d = |Ξλ| is the dimension

of Ψλ(u, τ).

First note that the conformal weight 1 space of L(k,0) is isomorphic to sl2 and hence

all conformal weight spaces of the simple modules L(k,λ) completely reduce into finite

direct sums of finite-dimensional simple sl2 modules. Thus, by Proposition 8.7, for

each µ ∈ Ξλ we have ψµ(−, τ) vanishes when restricted to a conformal weight space

of L(k,λ) that does not contain the trivial sl2 module. Therefore, we need to find the

conformal weight space in L(k,λ) at which the trivial module first appears.

Lemma 10.3. Let 0 ≤ λ ≤ k, λ even, and n ∈ Z.

(1) For λ ≥ 2 and n < λ
2 , the multiplicity of the trivial sl2 module in the conformal

weight spaces L(k,λ)hλ+n is 0.

(2) For λ ≥ 0, the multiplicity of the trivial sl2 module in the conformal weight spaces

L(k,λ)hλ+ λ2
is 1.

Proof. If n < 0, then L(k,λ)hλ+n = {0}. Meanwhile, for n ≥ 0 and α ∈ Z we define

L(k,λ)hλ+n : α =
{

w ∈ L(k,λ)hλ+n | h0w = αw
}
. (10.7)

We compute the multiplicity of the trivial sl2 module by considering character for-

mulae obtained from the Bernstein-Gelfand-Gelfand (BGG) resolution of L(k,λ) in
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terms of Verma modules V(k,σ) (where σ again denotes the sl2 weight, that is, the

h0 eigenvalue, of the generating highest weight vector)

· · · → V(k,λi)⊕V(k,λ−i)→ ·· · → V(k,λ2)⊕V(k,λ−2)→

→ V(k,λ1)⊕V(k,λ−1)→ V(k,λ)→ L(k,λ)→ 0,
(10.8)

where for j ∈ Z,

λ2 j = λ+2 j(k+2), and λ2 j−1 = −λ−2+2 j(k+2). (10.9)

The above resolution is given in [58, Section 4] using results from [59]. Recall that

the character of a Verma module is given by

ch[V(k,µ)] = trV(k,µ)zh0qL0−
c

24 =
zµqhµ− c

24

∏m≥1(1− z2qm)(1−qm)(1− z−2qm−1)
. (10.10)

The Verma character formulae, in turn, yield the character formula for simple modules

via the BGG resolution above. We have

q
c

24−hλch[L(k,λ)] = q
c

24−hλtrL(k,µ)zh0qL0−
c

24 (10.11)

= q
c

24−hλch[V(k,λ)]+q
c

24−hλ ∑
i≥1

(−1)i(ch[V(k,λi)]+ ch[V(k,λ−i)])

= q
c

24−hλ ∑
i≥0

(−1)i(ch[V(k,λi)]− ch[V(k,λ−i−1)])

=∑
i≥0

(−1)iqhλi−hλ ∑λi
n=0 zλi−2n

∏m≥1(1− z2qm)(1−qm)(1− z−2qm)
, (10.12)

where multiplication by the factor q
c

24−hλ shifts the exponents of the above power

series such that the coefficient of zmqn is the dimension of L(k,λ)hλ+n : m. The last

equality in the above character formula uses that λ−m = −2−λm−1, m ∈ Z, and hence

the conformal weights corresponding to these sl2 weights satisfy hλ−m = hλm−1 . The

expansion of (10.12) up to degree λ
2 in q will allow us to conclude the lemma.

Note that all even weight simple sl2 modules have a 1-dimensional weight 0

space. Further the weight 2 space vanishes for the trivial module, while it is 1-

dimensional for all other even weight simple sl2 modules. Therefore the difference

dim(L(k,λ)hλ+m:0)− dim(L(k,λ)hλ+m:2) is the multiplicity of the trivial module in

L(k,λ)hλ+m. This difference is also equal to the difference of the coefficients of z0qm
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and z2qm in the character formula (10.12) above. Further, note that hλm−hλ0 increases

monotonically in m > 0, and in particular,

hλ1 −hλ = k−λ+1, hλ2 −hλ = k+λ+3 >
λ

2
. (10.13)

Thus if we wish to expand q
c

24−hλch[L(k,λ)] up to degree q
λ
2 it is sufficient to only

consider the summands coming from i = 0,1 in the character formula (10.12). To

simplify formulae, we introduce the notation (q)i = ∏i
m=1(1− qm), i ≥ 0 and record

the q-series identity [60, Equation 9.16]

1
∏m≥1(1− z2qm)(1− z−2qm)

=∑
n∈Z

z2n ∑
i≥0

q2i+|n|

(q)i(q)i+|n|
. (10.14)

This identity is a consequence of the identity

1
∏m≥1(1− z2qm)

=∑
j≥0

q j

(q) j
z2 j, (10.15)

in [61, Equation 2.2.5]. Thus

q
c

24−hλch[L(k,λ)] =
∑λ

n=0 zλ−2n−qk+1−λ∑2(k+1)−λ
n=0 z2(k+1)−λ−2n

∏m≥1(1− z2qm)(1−qm)(1− z−2qm)
+O(qλ+k+3)

=

[
∑
n∈Z

z2n ∑
i≥0

q2i+|n|

(q)i(q)i+|n|(q)∞

][
λ

∑
m=0

zλ−2m−qk−λ+1
2(k+1)−λ

∑
m=0

z2(k+1)−λ−2m

]
+O(qλ+k+3).

(10.16)

Collecting the z0 terms gives

λ

∑
m=0

∑
i≥0

q2i+| λ2−m|

(q)i(q)i+| λ2−m|(q)∞
−qk−λ+1

2(k+1)−λ

∑
m=0

∑
i≥0

q2i+|k+1− λ2−m|

(q)i(q)i+|k+1− λ2−m|(q)∞
+O(qλ+k+3),

(10.17)

while collecting the z2 terms gives

λ

∑
m=0

∑
i≥0

q2i+| λ2−m−1|

(q)i(q)i+| λ2−2m−2|(q)∞
−qk−λ+1

2(k+1)−λ

∑
m=0

∑
i≥0

q2i+|k− λ2−m|

(q)i(q)i+|k− λ2−m|(q)∞
+O(qλ+k+3).

(10.18)

The difference of the z0 and z2 terms is therefore

∑
m≥0

(
dim
(
L(k,λ)hλ+m:0

)
−dim

(
L(k,λ)hλ+m:2

))
qm
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=∑
i≥0

[
q2i+ λ2

(q)i(q)i+ λ2
(q)∞

−
q2i+ λ2+1

(q)i(q)i+ λ2+1(q)∞

]
(10.19)

−qk−λ+1 ∑
i≥0

[
q2i+k+1− λ2

(q)i(q)i+k+1− λ2
(q)∞

−
qi+k+2− λ2

(q)i(q)i+k+2− λ2
(q)∞

]
+O(qλ+k+3)

= q
λ
2 +O(q

λ
2+1), (10.20)

where we have used that only the first term of the first summand at i = 0 contributes

to q
λ
2 . Thus, both parts of the lemma follow.

Lemma 10.4. Let 0 ≤ λ ≤ k, λ even, and u ∈ L(k,λ) be as in (10.3).

(1) For all µ ∈ Ξλ, the trace ψµ(u, τ) is non-vanishing and the leading exponent is

hµ−
c

24
=

2µ2+4µ− k
8(k+2)

. (10.21)

These leading exponents saturate the inequality (8.14), that is, it is an equality.

(2) The intertwining operator underlying the trace ψµ(u, τ) can be normalised such

that all coefficients of the series expansion are rational.

Proof. Recall that we denote by o(u) the coefficient of z−wt(u) in the series expansion

of u inserted into the intertwining operator underlying the trace ψµ. Therefore,

ψµ(u, τ) = trL(k,µ)o(u)qL0−
c

24 = qhµ− c
24

∞

∑
n=0

qntrL(k,µ)hµ+no(u). (10.22)

We compute the coefficient of the leading term corresponding to n = 0 and show

that it is non-zero, which in turn will imply that formula (10.21) gives the leading

exponent. Note that L(k,µ)hµ is a module over the finite-dimensional Lie algebra

sl2 by restriction, and it is isomorphic to the simple highest weight module L(µ) of

highest weight µ. We choose the basis {vi = f i
0|µ⟩}

µ
i=0 of L(k,µ)hµ � L(µ) and the

corresponding dual basis {ϕi}
µ
i=0 ⊂ L(µ)∗ � L(µ). Let ⟨ , ⟩ denote the standard pairing

between L(µ) and its dual space so that the standard left action of sl2 on the dual

space is characterised by ⟨x0ψ,w⟩ = −⟨ψ, x0w⟩, x ∈ sl2, ψ ∈ L(µ)∗, w ∈ L(µ). With

these conventions we have

ϕi = (−1)i (µ− i)!
i!µ!

ei
0ϕ0. (10.23)
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Then

trL(k,µ)hµ
o
(

f
λ
2
−1|λ⟩

)
=

µ

∑
i=0

〈
ϕi,o

(
f
λ
2
−1|λ⟩

)
vi

〉
. (10.24)

To further evaluate this expression we recall the Jacobi identity (4.15). In that identity

we set v = f−11, U1 = L(k,λ), U2 = U3 = L(k,µ), multiply both sides by z−1
0 , and take

the residue in z0 and z1 to obtain the identity

Y( f−1u1,z2)u2 =∑
s≥0

zs
2 f−s−1Y(u1,z2)u2+ z−s−1

2 Y(u1,z2) fsu2. (10.25)

Specialising further to u2 = vi and noting that for s≥ 1 we have fsvi = 0 and ϕi( f−sw)=

0 for any w ∈ L(k,λ), we obtain

trL(k,µ)hµ
o
(

f
λ
2
−1|λ⟩

)
=

µ

∑
i=0

〈
ϕi,o(|λ⟩) f

λ
2

0 vi

〉

=

µ− λ2

∑
i=0

〈
ϕi,o(|λ⟩) f

λ
2

0 vi

〉

= (−1)i (µ− i)!
i!µ!

µ− λ2

∑
i=0

〈
ei

0ϕ0,o(|λ⟩) f
λ
2

0 vi

〉
.

(10.26)

Here, the second equality is due to f
λ
2

0 vi vanishing for i> µ− λ
2 , while the third equality

follows from the formula above for the basis and its dual. Evaluating the action on the

dual space and using the identity [e0,o(|λ⟩)] = o(e0|λ⟩) = 0 (which follows similarly

to (10.25) by taking appropriate residues of the Jacobi identity (4.15)) we obtain

trL(k,µ)hµ
o
(

f
λ
2
−1|λ⟩

)
=

µ− λ2

∑
i=0

(µ− i)!
i!µ!

〈
ϕ0,o(|λ⟩)ei

0 f
λ
2+i

0 v0

〉
. (10.27)

Observe that

ei
0 f

i+ λ2
0 |µ⟩ =

(λ2 + i)!

(λ2 )!

(µ− λ
2 )!

(µ− λ
2 − i)!

f
λ
2

0 |µ⟩, (10.28)

which combined with the Jacobi identity [ f0,o(w)] = o( f0w) to move f
λ
2

0 back into the

intertwining operator zero mode yields

trL(k,µ)hµ
o
(

f
λ
2
−1|λ⟩

)
=

〈
ϕ0,o

(
f
λ
2

0 |λ⟩

)
v0

〉
(−1)

λ
2

µ− λ2

∑
i=0

(µ− i)!
i!µ!

(
λ
2 + i

)
!
(
µ− λ

2

)
!(

λ
2

)
!
(
µ− λ

2 − i
)
!
.

(10.29)
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Sinceµ≥ λ
2 and i≤ µ− λ2 , the sum is strictly positive and rational. Thus, trL(k,µ)hµ

o( f
λ
2
−1|λ⟩)

is non-vanishing if and only if ⟨ϕ0,o( f
λ
2

0 |λ⟩)v0⟩ is, which in turn must be non-zero

because the intertwining operator is.

We turn to showing that the leading exponents provide an equality in (8.14). Set

µn =
λ
2 +n for n= 0,1, . . . ,k−λ. ThenΞλ = {µ0,µ1, . . . ,µk−λ}. Recalling |Ξλ|= k−λ+1,

we have
∑k−λ

n=0
(
hµn −

c
24

)
k−λ+1

=
4k(k+2)−2λ(k+1)+λ2

48(k+2)
, (10.30)

and thus
12
(

∑k−λ
n=0 hµn −

c
24

)
k−λ+1

+λ− k =
λ(λ+2k+6)

4(k+2)
. (10.31)

Finally, we note that the above is equal to

hλ+
λ

2
=
λ(λ+2k+6)

4(k+2)
(10.32)

and hence the equality in (8.14) is obtained.

Next we show that the intertwining operator can be normalised such that the trace

ψµ(u, τ) has rational coefficients. First note that since the level k is integral, the

commutation relations of the affine generators en,hn, fn all have integral structure

constants. Further, the two generating singular vectors of the maximal proper sub-

module of the Verma module V(k,µ) can be normalised to have integral expansions

in the standard Poincaré-Birkhoff-Witt (PBW) basis. Therefore, a basis of the simple

quotient L(k,µ) can be chosen such that its representatives in V(k,µ) expand in the

standard PBW basis with rational coefficients. See [62] for a description of such

bases.

Finally, note that when expressing dual basis vectors in simple finite sl2-modules

in terms of the dual of the highest vector (as in (10.23)) all normalisation factors

are again rational. Thus every computation of trL(k,µ)hµ+mo( f
λ
2
−1|λ⟩) will reduce to

⟨ϕ0,o( f
λ
2

0 |λ⟩)v0⟩multiplied by a sum of products of rational numbers, hence to ensure

that the coefficients of ψµ(u, τ) are rational it is necessary and sufficient to normalise

the intertwining operator such that ⟨ϕ0,o( f
λ
2

0 |λ⟩)v0⟩ is rational, which can always be

done.
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We now have all results needed to prove Theorem 10.2.

Proof of Theorem 10.2. Recall that for all non-negative integers m we have L(k,λ)[hλ+m] ⊂⊕m
n=0 L(k,λ)hλ+n, hence Part 1 follows from Lemma 10.3.1.

To conclude Part 2 note that Lemma 10.3.2 bounds the codimension of the subspace

N above by 1, while Lemma 10.4.1 bounds it below by 1, hence the codimension is 1.

Part 3 is given in Lemma 10.4.1, while Part 4 is Lemma 10.4.2.

Finally, for Part 5, we show linear independence of the traces ψµ evaluated at u.

Recall that the leading exponents are

hµ−
c

24
=

2µ2+4µ− k
8(k+2)

,
λ

2
≤ µ ≤ k−

λ

2
. (10.33)

Observe that the numerator is quadratic in µ with a minimum at µ = −1 which is

below the range of µ hence all exponents are distinct. Thus, the set {ψµ(u, τ) | µ ∈ Ξλ}

is linearly independent and thus so is {ψµ(−, τ) | µ ∈ Ξλ}.

Finally, we turn to Part 6. By Theorem 8.9 we know Ψλ(w, τ) is a weakly holomor-

phic vector-valued modular form. It remains to show that if λ ≥ −2+
√

2k+4, then

all exponents of each component of Ψλ(w, τ) are non-negative. By Proposition 10.1,

the smallest possible leading exponent in the q-expansions among all components is

hµ− c/24 for µ = λ/2. All other exponents are larger since hµ1 − c/24 ≥ hµ2 − c/24 if

µ1 ≥ µ2. Thus, we are assured all exponents will be non-negative if hλ/2− c/24 ≥ 0.

By (10.4) this is equivalent to

λ2+4λ−2k
16(k+2)

≥ 0, (10.34)

which in turn amounts to λ2 + 4λ− 2k ≥ 0. This establishes the holomorphicity of

Ψλ(w, τ), as desired.

As discussed above, the smallest exponent occurring in any q-expansion in the

components of Ψλ(u, τ) is hλ/2 − c/24. The same argument as above now gives

the equivalence between Parts 6.i and 6.ii. Meanwhile, we recall that 10.2.5 gives

d = k−λ+ 1, or λ = k− d+ 1. Plugging this into the inequality λ2 + 4λ− 2k ≥ 0 we

obtained above and solving for k gives the equivalence between Parts 6.i and 6.iii.
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11. Analysing representations and spaces of torus 1-point functions

In this section an analysis will be undertaken of the vector-valued modular forms

obtained from the 1-point functions of the simple affine vertex operator algebra

associated to sl2 at non-negative integral levels. In particular, one of the properties

investigated will be congruence or non-congruence of the representations of the

modular group. We review this property below:

Definition 11.1. A representation f : Γ → GLn(C) of the modular group for n ∈

N is said to be non-congruence if the kernel ker f does not contain any principal

congruence subgroups, and is said to be congruence otherwise.

Recall that the principal congruence subgroups are reviewed in Definition 6.1. We

determine congruence or non-congruence for large families of examples, and also

whether the representations associated to these forms have finite or infinite image.

Additionally, we give complete descriptions of the spaces of vector-valued modular

forms of dimension at most three.

Recall the ring of integral weight modular forms M = C[G4,G6] and the skew

polynomial ring of modular differential operators R. Throughout this section let

0 ≤ λ ≤ k, with λ even, and Ψλ(u, τ) denote the vector-valued modular form defined

in Theorem 10.2.5, with u ∈ L(k,λ) as in (10.3). Consider the cyclic R-submodule

RΨλ(u, τ) of M!(ρλ, νhλ) generated by Ψλ(u, τ). In this section we will consider how

the R-modules RΨλ(u, τ), Vu(ρλ), V(ρλ), H(ρλ, νhλ) and M!(ρλ, νhλ) are interrelated.

Proposition 11.2. Let 2 ≤ λ ≤ k, λ even, and u ∈ L(k,λ) be as in (10.3). Then

Vu(ρλ) = RΨλ(u, τ).

Proof. Suppose w ∈ L(k,λ)[hλ+ℓ] for some ℓ ∈ Z. If ℓ < λ/2 we have Ψλ(w, τ) = 0

by Theorem 10.2.1. The result now follows from Proposition 9.1 after noting that

wt[u] > 0.

Next, we prepare a sufficient condition for concluding the irreducibility of a repre-

sentation of Γ.
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Lemma 11.3. Let d ∈ N and let ρ : Γ→ GL(d,C) be a d-dimensional representation

of Γ such that ρ(T ) is diagonalisable with eigenvalues {λ1, . . . ,λd}. If every non-

empty proper subproduct of det(ρ(T )) =∏d
i=1λi is not a 12th root of unity, then ρ is

irreducible.

Proof. Recall that taking the determinant det(ρ) of ρ yields an element in the group of

characters Hom(Γ,C×) and that this group is cyclic of order 12 (one choice of cyclic

generator assigns T 7→ e
( 1

12

)
S 7→ e

(3
4

)
). In particular, every element in Hom(Γ,C×)

maps T to some 12th root of unity. Note further that any invariant subspace of the

representation ρ admits a basis of ρ(T) eigenvectors so taking the determinant of the

representation restricted to this subspace will map T to a product of ρ(T)-eigenvalues

with as many factors as the dimension of the subspace and this product would need

to be a 12th root of unity. So if no non-empty product of ρ(T)-eigenvalues is a 12th

root of unity, then ρ admits no non-trivial invariant subspace.

11.1. Dimension one. We begin by considering 1-dimensional vector-valued mod-

ular forms.

Theorem 11.4. Let 0 ≤ λ ≤ k, λ even, u ∈ L(k,λ) as in (10.3), and ρλ be the repre-

sentation associated to Ψλ(u, τ). The dimension of the vector-valued modular form

Ψλ(u, τ) is 1 if and only if λ = k and hence the level k is even. Moreover, in this case

the following hold.

(1) The representation ρk is irreducible and congruence.

(2) The representation ρk satisfies ρk(S) = e
( k

8

)
and ρk(T) = e

( k
24

)
. In particular, ρk

is trivial if and only if k is a multiple of 24.

(3) We have the inclusion V(ρk) ⊂H(ρk, νhk) for all even k ≥ 0. The inclusion is an

equality if 2 ≤ k ≤ 14 and it is proper if k = 0 or k ≥ 16.

(4) There exists a normalisation of the intertwining operator underlyingΨk(u, τ) such

that Ψk(u, τ) = η
3k
2 for all even k ≥ 0. Further, for k ≥ 2 we have the identity of

R-modules

Vu(ρk) = V(ρk) = Rη
3k
2 . (11.1)
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As M-modules each of the above is free of rank 1 with basis {η
3k
2 }. For n ∈ N0,

dim(V(ρk))n =


0 if n ≡ 1 (mod 2)

⌊ n
12⌋ if n ≡ 2 (mod 12)

⌊ n
12⌋+1 otherwise,

(11.2)

where ⌊x⌋ denotes the floor function of a real number x.

Proof. Theorem 10.2.5 gives that ρk is a 1-dimensional representation for even k.

Further, ρk is irreducible as it is 1-dimensional and we note any irreducible 1-

dimensional representation must also be congruence (see, for example, [17, Section

3.1] for more details). This gives Part 1.

For Part 2, note that the representation ρk is trivial if and only ρk(T) = 1. By

Theorem 10.2.5, ρk(T) = e
( k

24

)
, thus the representation is trivial if and only if k is a

multiple of 24.

We consider Parts 3 and 4 together. In the case k = 0, it is well known that

L(0,0) � C, and it follows that V(ρk) = C, which is strictly contained in H(ρ0, νh0).

Therefore, we consider the case k > 0, and thus wt[u] > 0 by Theorem 10.2. Note

for dimensions three or less spaces of holomorphic vector-valued modular forms are

always cyclic R-modules, and hence all six conditions in Theorem 9.3 are satisfied,

which implies

Vu(ρk) = V(ρk) = η
3k
2 H
(
ρk, ν− k

2

)
(11.3)

and the dimension formula (11.2) follows using Equation (9.17). Further, the cyclic

generator of H(ρk, ν− k
2
) has weight 0 and thus can be chosen to be 1, which gives the

formula Ψk(u, τ) = η
3k
2 .

11.2. Dimension two. We turn to describing the 2-dimensional setting and prepare

some notation. Let j(τ) be Klein’s j-invariant (normalised so that the leading term is

q−1) and J(τ) = j(τ)/1728. Additionally, for a,b,c ∈ C, c not a negative integer, and

a variable z, let 2F1(a,b;c;z) denote the Gaussian hypergeometric function, which is

given by

2F1(a,b;c;z) = 1+
∞

∑
n=1

(a)n(b)n

(c)n
zn

n!
(11.4)
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with (x)n being the (rising) factorial for x ∈ C given by (x)n = x(x+ 1) · · · (x+ n− 1)

for n ∈ N. Finally, set

Φ =

 J
1

24 2F1
(
−1
24 ,

7
24 ; 3

4 ; J−1
)

J−
5

24 2F1
( 5

24 ,
13
24 ; 5

4 ; J−1
)
, (11.5)

where J−1 = 1/J.

Theorem 11.5. Let 0 ≤ λ ≤ k, λ even, u ∈ L(k,λ) as in (10.3), and let ρλ be the

representation associated to Ψλ(u, τ). The dimension of the vector-valued modular

form Ψλ(u, τ) is 2 if and only if λ = k−1 and hence the level k is odd.

(1) The representation ρk−1 is irreducible. Moreover, among all indecomposable

representations ρ′ of Γ satisfying ρ′(T ) = diag(e
( k−2

24

)
,e
( k+4

24

)
), ρk−1 is the unique

(up to isomorphism) one that is irreducible.

(2) The representation ρk−1 is congruence with congruence level N = 8 for k ≡ 2

(mod 3) and N = 24 otherwise.

(3) We have an inclusion V(ρk−1) ⊂H(ρk−1, νhk−1) for all odd k ≥ 3. This inclusion is

an equality if 3 ≤ k ≤ 13 and proper if k ≥ 15.

(4) There exists a normalisation of the intertwining operator underlying Ψk−1(u, τ)

such that

Ψk−1(u, τ) = η
3k2+2k−5

2(k+2) Φ (11.6)

for all odd k ≥ 1. Further, for k ≥ 3 we have the identity of R modules

Vu(ρk−1) = V(ρk−1) = Rη
3k2+2k−5

2(k+2) Φ. (11.7)

AsM-modules each of the above is free of rank 2 with basis {Ψk−1(u, τ),∂Ψk−1(u, τ)}=

{Ψ(u, τ),Ψk−1(L[−2]u, τ)}. For n ∈ N0,

dim
(
V(ρk−1)n

)
=


0 if n ≡ 1 (mod 2)

⌊n6⌋+1 otherwise.
(11.8)

Proof. That ρk−1 is a 2-dimensional representation if and only if λ = k− 1 is even

follows directly from Theorem 10.2.5. To show Part 1 we use the criterion in
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Lemma 11.3 and note by Theorem 10.2.5 that

ρk−1(T) = diag
(

e
(

k−2
24

)
,e
(

k+4
24

))
. (11.9)

Thus, by Lemma 11.3, ρk−1 is irreducible if neither of the ρk−1(T)-eigenvalues are

a 12th root of unity. This is clearly the case, since k is odd. The fact that ρk−1 is

the unique irreducible representation among indecomposable representations with T

given by the formula (11.9) is due to [63, Theorem 3.1].

Part 2 follows from [63, Theorem 3.7], where are all 2-dimensional irreducible

finite image representations are classified. They turn out to all be congruence repre-

sentations. The congruence levels are recorded in the tables following that theorem,

where each representation is characterised by the fractions (or rather the smallest

non-negative representative of their integer coset) that appear in the formula (11.9)

for ρk−1(T). The congruence level is then always the order of ρk−1(T), that is, 8 if

k ≡ 2 (mod 3) and 24 otherwise. A simple calculation reveals that for all odd k each

ρk−1(T) corresponds to a case in [63, Table 3].

We consider Parts 3 and 4 together. By Theorem Theorem 10.2.3 the leading

exponents of Ψk−1(u, τ) are

µmin = h k−1
2
−

c
24
=

k2−3
16(k+2)

, µmax = h k+1
2
−

c
24
=

k2+4k+5
16(k+2)

=
k2−3

16(k+2)
+

1
4
.

(11.10)

Clearly these exponents are non-negative if and only if k ≥ 3, which proves the

inclusion in Part 3. Since spaces of holomorphic vector-valued modular forms of

dimension three or less are always cyclic R modules, and since the two exponents

above differ by 1
4 , all six assumptions of Theorem 9.3 apply if k ≥ 3. Hence

Vu(ρk−1) = V(ρk−1) = η3 k2−3
2(k+2)H

(
ρk−1, ν 2−k

2

)
(11.11)

for k≥ 3. For k= 1, by Proposition 9.1, we can still assertVu(ρk−1)⊂ η3 k2−3
2(k+2)H(ρk−1, ν 2−k

2
).

Further, for all odd k ≥ 1 we have that η−3 k2−3
2(k+2)Ψ(u, τ) is a cyclic generator for

H(ρk−1, ν 2−k
2

), since it has the right weight and spans a 1-dimensional weight space. By

construction, a cyclic generator ofH(ρk−1, ν 2−k
2

) has leading exponents {0, 1
4 }= {λ1,λ2}

(these exponents are a minimal admissible set) and the weight of this cyclic generator
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is 1
2 , in particular it satisfies the equality in (8.15) and so its components form a fun-

damental system of solutions to a monic modular differential equation. This allows

us to use [46, Theorem 3.1] and its proof (which additionally requires ρ(S2) be a

scalar matrix, but this is automatic due to ρk−1 being irreducible; see the discussion

below (8.7)). This gives the existence of a non-zero vector-valued modular form

F of weight p0 = 6(λ1 + λ2)− 1 = 1
2 such that H(ρk−1, νhk−1) = RF (as R-modules)

and H(ρk−1, νhk−1) =MF ⊕M∂F (as M-modules). Moreover, the component func-

tions of F form a fundamental system of solutions of a second order monic modular

differential equation of the form

(
∂2

p0
+ϕ
)

f = 0, (11.12)

where ϕ ∈M4. Note that since M4 = spanC{G4}, up to a scalar p1 we have that (11.12)

can be rewritten as (
∂2

p0
− p1G4

)
f = 0. (11.13)

This equation is characterised by its indicial roots being λ1 and λ2 (these are related

to p1 via p1 = 180(λ1−λ2)2 − 5) which are the exponents of the first and second

component functions of F, respectively, as detailed in the proof of [46, Theorem 3.1]

(cf. (8.8) and (8.9)). Meanwhile, [64, Proposition 2.2] (see also [65, Section 4.1])

gives that the functions

f1 = η2p0 J−
6(λ1−λ2)+1

12 2F1

(
6(λ1−λ2)+1

12
,
6(λ1−λ2)+5

12
;λ1−λ2+1; J−1

)
f2 = η2p0 J−

6(λ2−λ1)+1
12 2F1

(
6(λ2−λ1)+1

12
,
6(λ2−λ1)+5

12
;λ2−λ1+1; J−1

)
(11.14)

form a fundamental set of solutions for (11.13). We make some notes pertaining

to our use of [64, 65]. First, loc. cit. assumes integral weights, however, a careful

examination of the proof shows that it also holds for real weights. Second, there

is a difference of normalisations of Eisenstein series between the G2k in this paper

and the E2k of [64, 65] given by E2ℓ = −
(2ℓ)!
B2ℓ

G2ℓ for ℓ ∈ N. Since f1 and f2 form

a fundamental set of solutions for (11.13), up to a matrix A ∈ GL(2,C), we have

A( f1, f2)t = F. That is, ( f1, f2)t is a vector-valued modular form of weight p0, but
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Level k Cyclic generator Ψk−1(u, τ)

3
q3/40

(
1+ 1

5q− 117
25 q2− 84

125q3+ 3659
625 q4+ · · ·

)
q13/40

(
1− 9

5q− 2
25q2− 39

125q3− 126
625q4+ · · ·

)
5

q11/56
(
1− 19

7 q− 264
49 q2+ 6061

343 q3+ 22963
2401 q4+ · · ·

)
q25/56

(
1− 33

7 q+ 247
49 q2+ 1672

343 q3− 18183
2401 q4+ · · ·

)
7

q23/72
(
1− 17

3 q+ 23
9 q2+ 3128

81 q3− 13429
243 q4+ · · ·

)
q41/72

(
1− 23

3 q+ 170
9 q2− 391

81 q3− 10948
243 q4+ · · ·

)
9

q39/88
(
1− 95

11q+ 2340
121 q2+ 48165

1331 q3− 2895523
14641 q4+ · · ·

)
q61/88

(
1− 117

11 q+ 5035
121 q2− 74100

1331 q3− 1011465
14641 q4+ · · ·

)
11

q59/104
(
1− 151

13 q+ 7611
169 q2− 35636

2197 q3− 9959957
28561 q4+ · · ·

)
q85/104

(
1− 177

13 q+ 12382
169 q2− 383087

2197 q3+ 1229442
28561 q4+ · · ·

)
13

q83/120
(
1− 73

5 q+ 1992
25 q2− 18177

125 q3− 224261
625 q4+ · · ·

)
q113/120

(
1− 83

5 q+ 2847
25 q2− 48472

125 q3+ 309009
625 q4+ · · ·

)
Table 1. The first five terms of the q-series expansions for Ψk−1(u, τ)
for all levels k at which Ψk−1(u, τ) generates H(ρk−1, νhk−1). In each
case the series have been normalised so that the leading coefficient is 1.
This can always be achieved by an appropriate choice of normalisation
of the intertwining operators in Ψk−1(u, τ).

with representation Aρk−1A−1. However, the leading exponents of f1 and f2 are

λ1 and λ2, respectively (we note that this disagrees with [64, Remark 2.3], where

there is a minor typographical error listing the exponents in reverse order). Thus,

it must be that A = diag(α,β) for some α,β ∈ C× and we have Aρk−1A−1 = ρk−1. In

particular, Fα,β = (α f1,β f2)t. It remains to show that (α f1,β f2)t is equal to the right-

hand side of (11.5). This follows immediately from (11.14) by specialising p0 =
1
2 ,

λ1 = 0, λ2 =
1
4 . The dimension formula (11.8) then follows from the evaluation of

(9.17) [46, Corollary 3.2]. Finally the inclusion of Part 3 is an equality if and only

the leading exponents of Ψ(u, τ) lie in the interval [0,1) which happens if and only of

3 ≤ k ≤ 13.

See Table 1 for explicit expansions of Ψk−1(u, τ) as q-series for the first few values

of the level k.

11.3. Dimension three. Here we consider the 3-dimensional case. Recall, 3F2,

the generalised hypergeometric function, which for a,b,c,d,e ∈ C, d,e not negative
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integers, and a variable z, is given by

3F2(a,b,c;d,e;z) = 1+
∞

∑
n=1

(a)n(b)n(c)n

(d)n(e)n
zn

n!
. (11.15)

We set

Φk =


J

(k+1)
12(k+2) 3F2

(
−

(k+1)
12(k+2) ,

11k+14
24(k+2) ,

19k+30
24(k+2) ;

3k+7
4(k+2) ,

1
2 ; J−1

)
J−

k+1
6(k+2) 3F2

(
k+1

6(k+2) ,
3k+5

6(k+2) ,
5k+9

6(k+2) ;
5k+9

4(k+2) ,
5
8 ; J−1

)
J−

5k+11
12(k+2) 3F2

(
5k+11

12(k+2) ,
9k+19

12(k+2) ,
13k+27
12(k+2) ;

3
2 ,

5k+11
4(k+2) ; J−1

)
, (11.16)

where J = j/1728 is the same renormalisation of Klein’s j-invariant as in the previous

section.

Theorem 11.6. Let 0≤ λ≤ k, λ even, u ∈ L(k,λ) as in as in (10.3), ρλ the representation

associated to Ψλ(u, τ). The dimension of the vector-valued modular form Ψλ(u, τ) is

3 if and only if λ = k−2 and hence the level k is even.

(1) The representation ρk−2 is irreducible.

(2) The representation ρk−2 has finite image. Additionally, the order of ρk−2(T) is

12(k+2) if k ≡ 4 (mod 6), and is 4(k+2) otherwise.

(3) If the order of ρk−2(T) does not divide 25,401,600 = 28 · 34 · 52 · 72, then the

representation is non-congruence, in particular, this gives an infinite family of

non-congruence representations and a finite bound on the number of congruence

representations.

(4) We have an inclusion V(ρk−2) ⊂H(ρk−2, νhk−2) for all even k ≥ 4. This inclusion

is an equality if 4 ≤ k ≤ 10 and it is proper if k ≥ 12.

(5) There exists a normalisation of the intertwining operators underlying Ψk−2(u, τ)

such that

Ψk−2(u, τ) = η
3k2−2k−8

2(k+2) Φk (11.17)

for all even k ≥ 2. Further, for k ≥ 4 we have the identity of R-modules

Vu(ρk−2) = V(ρk−2) = Rη
3k2−2k−8

2(k+2) Φk. (11.18)
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As M-modules each of the above is free of rank 3 with basis{
Ψk−2(u, τ),∂Ψk−2(u, τ),∂2Ψk−2(u, τ)

}
={

Ψk−2(u, τ),Ψk−2
(
L[−2]u, τ

)
,Ψk−2

(
L2

[−2]u+δL[−4]u, τ
)}
,

(11.19)

where δ = 2(16+k−6k2)
3(k−2)(4+3k) . For n ∈ N0,

dim
(
V(ρk−2)n

)
=


0, if n ≡ 1 (mod 2),

⌊n4⌋+1, otherwise.
(11.20)

Proof. Note that Theorem 10.2.5 gives that ρλ is a 3-dimensional representation if

and only if λ = k−2 is even.

To establish Part 1 we use the irreducibility criterion in Lemma 11.3. Note that

Theorem 10.2.5 yields the formula

ρk−2(T) = diag
(

e
(

k(k−2)−6
24(k+2)

)
,e
(

k(k+4)
24(k+2)

)
,e
(

k(k+10)+18
24(k+2)

))
. (11.21)

The fractions in the formula for ρk−2(T) above multiplied by 12 are, respectively,

k
2
−2+

1
k+2

≡
1

k+2
(mod 1),

k
2
+

k
k+2

≡
k

k+2
(mod 1),

k
2
+4+

1
k+2

≡
1

k+2
(mod 1).

(11.22)

These are never integral since the numerators on the right-hand sides of the above

identities are always strictly less than the denominators. Proper subproducts of two

eigenvalues correspond to sums of two of the above fractions. The numerator of such

sums cannot exceed k+ 1, so they are never integral for any k ∈ 2N, concluding no

twelfth root of unity arises as a product of one or two ρk−2(T) eigenvalues. Thus ρk−2

is irreducible.

Moving to Part 2, we show that ρk−2 has finite image by using the criterion [66,

Proposition 5.1], which states that a 3-dimensional irreducible representation with

diagonalisable ρ(T) has finite image if there exist two eigenvalues of ρ(T) whose ratio
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is −1. To this end, observe that

k(k+10)+18
24(k+2)

−
k(k−2)−6
24(k+2)

=
1
2
. (11.23)

Hence ρk−2 has finite image. To determine the order of ρk−2(T ), note that it is the

least common multiple of the denominators of the reductions of the fractions in the

exponents in (11.21). Since k is even, we take k = 2ℓ for ℓ ≥ 0 and consider all three

exponents

k(k−2)−6
24(k+2)

=
2ℓ(ℓ−1)−3

24(ℓ+1)
,

k(k+4)
24(k+2)

=
ℓ(ℓ+2)

12(ℓ+1)
,

k(k+10)+18
24(k+2)

=
2ℓ(ℓ+5)+9

24(ℓ+1)
.

(11.24)

Next we compute the greatest common divisor of the numerator and denominator

of the first and third fractions above to reduce them. Denote a = 2ℓ(ℓ − 1)− 3 =

2(ℓ−2)(ℓ+1)+1, b = 2ℓ(ℓ+5)+9 = 2(ℓ+1)(ℓ+4)+1, and c = 24(ℓ+1) so that the

first and third fractions are equal to a
c and b

c , respectively. Note that a,b are odd

while c is even, so gcd(a,c) and gcd(b,c) will both be odd. Further, if a prime p ≥ 5

divides c, then it must divide (ℓ+ 1), but then a ≡ 1 (mod p) ≡ b. So p does not

divide gcd(a,c) or gcd(b,c). Both of these greatest common divisors are therefore a

power of 3. We have that 3 divides a if and only if ℓ ≡ 0,1 (mod 3) and the same is

also true for b. Further, if ℓ ≡ 0,1 (mod 3), then ℓ+1 ≡ 1,2 (mod 3), and so 9 does

not divide c. Thus,

gcd(a,c) = gcd(b,c) =


1 ℓ ≡ 2 (mod 3)

3 ℓ ≡ 0,1 (mod 3).
(11.25)

Therefore, after reduction, the denominators of the first and third fractions in (11.24)

are 24(ℓ+1) = 12(k+2) if k ≡ 4 (mod 6), and 8(ℓ+1) = 4(k+2) if k ≡ 0,2 (mod 6).

Next we see that the reduced denominator of the middle fraction divides 12(ℓ+ 1)

if ℓ ≡ 2 (mod 3), and that it divides 4(ℓ+ 1) if ℓ ≡ 0,1 (mod 3). It follows that the

least common multiple of the reduced divisors in (11.24), the order of ρk−2(T), is as

claimed.
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Part 3 follows from [66, Corollary 3.5], which states that ρk−2 is non-congruence

if there exists a prime dividing N
(N,28·34·52·72) . This quotient reduces to 1 if and only

if N divides 28 ·34 ·52 ·72. Thus, there exists a prime p dividing N
(N,28·34·52·72) if and

only if N does not divide 28 ·34 ·52 ·72.

We consider Parts 4 and 5 together. By Theorem 10.2.3 the leading exponents of

Ψk−2(u, τ) are

µmin = h k−2
2
−

c
24
=

k2−2k−4
16(k+2)

,

h k
2
−

c
24
=

k
16
= µmin +

k+1
4(k+2)

,

µmax = h k+2
2
−

c
24
=

k2+6k+12
16(k+2)

= µmin +
1
2
.

(11.26)

Clearly these exponents are non-negative if and only if k ≥ 4, which proves the

inclusion in Part 4. Spaces of holomorphic vector-valued modular forms of dimension

three or less are always cyclic over R, and the maximal and minimal exponents above

differ by 1
2 . Therefore, all six assumptions of Theorem 9.3 apply if k ≥ 4. Hence

Vu(ρk−2) = V(ρk−2) = η3 k2−2k−4
2(k+2) H

(
ρk−2, ν 3+k−k2

2(k+2)

)
(11.27)

for k≥ 4. For k= 2, by Proposition 9.1, we can assertVu(ρk−1)⊂ η3 k2−2k−4
2(k+2) H(ρk−1, ν 2−k

2
),

however, for all even k ≥ 2 we still have that η−3 k2−2k−4
2(k+2) Ψ(u, τ) is a cyclic generator for

H(ρk−2, ν 3+k−k2
2(k+2)

), since it has the right weight and spans a 1-dimensional weight space.

By construction, the leading exponents of the cyclic generator of H(ρk−2, ν 3+k−k2
2(k+2)

) are

{0, k+1
4(k+2) ,

1
2 } (they form a minimal admissible set) and the weight of this cyclic genera-

tor is k+1
k+2 . This implies the components of this vector-valued modular form form a set

of fundamental solutions for a third order monic modular linear differential equation

of the form (
∂3

p0
+ p1G4∂p0 + p2G6

)
f = 0, (11.28)

see [65, Equation 15] and the surrounding text. While [65] works in the context of

integral weight vector-valued modular forms, a careful analysis of their construction

of solutions [65, Equation 16] to (11.28) shows that it is valid for real weight as well.

In terms of the leading exponents {λ1,λ2,λ3} a set of fundamental solutions is given



74 J SHAFIQ

by

f1 = η2p0 J−
4λ1−2λ2−2λ3+1

6 3F2

(
4λ1−2λ2−2λ3+1

6 , 4λ1−2λ2−2λ3+3
6 , 4λ1−2λ2−2λ3+5

6 ;λ1−λ2+1,λ1−λ3+1; J−1
)
,

f2 = η2p0 J−
4λ2−2λ1−2λ3+1

6 3F2

(
4λ2−2λ1−2λ3+1

6 , 4λ2−2λ1−2λ3+3
6 , 4λ2−2λ1−2λ3+5

6 ;λ2−λ1+1,λ2−λ3+1; J−1
)
,

f3 = η2p0 J−
4λ3−2λ1−2λ2+1

6 3F2

(
4λ3−2λ1−2λ2+1

6
, 4λ3−2λ1−2λ2+3

6 , 4λ3−2λ1−2λ2+5
6 ;λ3−λ1+1,λ3−λ2+1; J−1

)
,

with p0 = 4(λ1+λ2+λ3)−2. Specialising to {λ1,λ2,λ3} = {0, k+1
4(k+2) ,

1
2 } gives

f1 = η
2k

k+2 J
(k+1)

12(k+2) 3F2

(
−

(k+1)
12(k+2)

,
11k+14
24(k+2)

,
19k+30
24(k+2)

;
3k+7

4(k+2)
,
1
2

; J−1
)
,

f2 = η
2k

k+2 J−
k+1

6(k+2) 3F2

(
k+1

6(k+2)
,

3k+5
6(k+2)

,
5k+9

6(k+2)
;

5k+9
4(k+2)

,
5
8

; J−1
)
,

f3 = η
2k

k+2 J−
5k+11

12(k+2) 3F2

(
5k+11

12(k+2)
,

9k+19
12(k+2)

,
13k+27
12(k+2)

;
3
2
,

5k+11
4(k+2)

; J−1
)
. (11.29)

The components of the cyclic generator are therefore linear combinations of the

above fundamental solutions. More specifically, since the leading exponents of the

respective components are {0, k+1
4(k+2) ,

1
2 }, the cyclic generator must be of the form

(α f1,β f2,γ f3)t, α,β,γ ∈ C×. Hence

Ψ(u, τ) = η3 k2−2k−4
2(k+2)


α f1

β f2

γ f3

 (11.30)

and the underlying intertwining operators can be normalised such that α = β = γ = 1,

so (11.17) and (11.18) follow. That the left-hand side of (11.19) is an M-basis

follows from Theorem 9.3. So all that remains is to relate powers of the modular

derivative the action of Virasoro generators. By the a = ω̃ case of (8.23) we have

Ψk−2(L[−2]u, τ) = ∂Ψk−2(u, τ). Furthermore, using [67, Theorem 5.10], we find that

the components ψµ, k−2
2 ≤ µ ≤

k+2
2 of Ψ(w, τ), w ∈ L(k,k−2) satisfy

ψµ(ω̃[−3]u, τ) = ψµ(L[−4]u, τ)

=
∞

∑
m=1

(
m+2

m

)
Gm+3(τ)ψµ(L[m−1]u, τ)

= 3wt[u]G4(τ)ψµ(u, τ).

(11.31)
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We also have

ψµ
(
ω̃2

[−1]u, τ
)
= tr
∣∣
L(k,µ)

(
L0−

c
24

)
o(ω̃[−1]u)qL0−

c
24 +

∞

∑
m=1

(−1)m+1Gm+1(τ)ψµ(L[m−1]L[−2]u, τ)

=
1

2πi
d
dτ

tr
∣∣
L(k,µ)o(ω̃[−1]u)qL0−

c
24 + (wt[u]+2)G2(τ)ψµ(ω̃[−1]u, τ)

+
∞

∑
m=2

(−1)m+1Gm+1(τ)ψµ(L[m−1]L[−2]u, τ)

= ∂2ψµ(u, τ)+
∞

∑
m=2

(−1)2mG2m(τ)ψµ(L[2m−2]L[−2]u, τ)

= ∂2ψµ(u, τ)+G4(τ)ψµ(L[2]L[−2]u, τ)

= ∂2ψµ(u, τ)+
(

4wt[u]+
c
2

)
G4(τ)ψµ(u, τ).

(11.32)

Combining (11.31) and (11.32) we find ∂2Ψk−2(u, τ) =Ψk−2((L2
[−2]+δL[−4])u, τ) with

δ = −(4wt[u]+ c/24)/(3wt[u]). Plugging in the formula above for wt[u] and c gives

the stated formula for δ.
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Level k Ψk−2(u, τ)

4

q1/24
(
1− 6991

171 q− 1462930981
198531 q2− 11520966474250

5360337 q3− 467661528323716250
627159429 q4+ · · ·

)
q1/4

(
1+ 134

9 q+ 167509
81 q2+ 24672291010

45927 q3+ 2054193740460070
11986947 q4 · · ·

)
q13/24

(
1− 31

27q+ 473
1215q2− 27056

32805q3− 1533931
2657205q4+ · · ·

)

6

q5/32
(
1− 1041

20 q− 28822341
3040 q2− 34699584029

12160 q3− 2170275413391777
2140160 q4+ · · ·

)
q3/8

(
1+ 74

5 q+ 317943
130 q2+ 8423595

13 q3+ 21692516271
104 q4+ · · ·

)
q21/32

(
1− 31

8 q+ 423
128q2+ 14247

7168 q3− 485683
229376q4+ · · ·

)

8

q11/40
(
1− 46803

775 q− 14944931541
1375625 q2− 574656427747084

171953125 q3− 782261040133149248781
649123046875 q4+ · · ·

)
q1/2

(
1+ 1704

125 q+ 108483138
40625 q2+ 5094872662288

7109375 q3+ 5893213005533601
25390625 q4+ · · ·

)
q31/40

(
1− 503

75 q+ 44149
3125 q2− 206842

78125 q3− 420276376
17578125 q4+ · · ·

)

10

q19/48
(
1− 44717

666 q− 14421863479
1222776 q2− 243672512766437

66029904 q3− 68038738170466662661
50617747584 q4+ · · ·

)
q5/8

(
1+ 107

9 q+ 2963152
1053 q2+ 64959522367

85293 q3+ 5516615806491181
22261473 q4+ · · ·

)
q43/48

(
1− 259

27 q+ 8110
243 q2− 251140

6561 q3− 25036652
531441 q4+ · · ·

)
Table 2. The first five terms of the q-series expansions for Ψk−2(u, τ)
for all levels k at which Ψk−2(u, τ) generates H(ρk−2, νhk−2). In each
case the series have been normalised so that the leading coefficient is 1.
This can always be achieved by an appropriate choice of normalisation
of the intertwining operators underlying Ψk−2(u, τ).

See Table 2 for explicit expansions of Ψk−2(u, τ) for the first few values of the level

k.

11.4. Select higher dimensions. We conclude this section by providing some results

concerning non-congruence representations in some higher dimensions. Specifically,

we provide a criterion for non-congruence applicable to a particular case of higher
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dimension and results on certain spaces of vector-valued modular forms in dimension

four.

Theorem 11.7. Let the level be k = pt − 2, where p > 3 is prime and t is a positive

integer. For 2 ≤ λ ≤ k with λ even, if the representation ρλ is irreducible, then it is

non-congruence if t = 1 or if t > 1 and λ+1 > pt−2.

Proof. By Theorem 10.2.5,

ρλ(T) = diag{e(r0), . . . ,e(rk−λ)} (11.33)

where

r j =
6 j2+6 j(λ+2)+λ(λ+5)−3k

24(k+2)
. (11.34)

Evaluating at k = pt −2, the r j become

r j =
6 j2+6 j(λ+2)+λ(λ+5)−3pt +6

23 ·3pt . (11.35)

Since p > 3, the numerator in (11.35) is odd and hence indivisible by 2. Furthermore,

the numerator is divisible by 3 if and only if 3 divides λ(λ+5), which is the case if

and only if λ ≡ 0,1 (mod 3). The order of the ρλ(T) is given by the least common

multiple of the reduced denominators. To ensure this includes the factor of pt, it

suffices that p does not divide the numerator for all j = 0, . . . ,k−λ = pt −2−λ. As j

increases, the jth numerator is incremented by 18+12 j+6λ which must be divisible

by p for all numerators to be divisible by p. This is only the case if p divides 12, i.e.,

p = 2,3 which we have excluded. Thus the order of ρλ(T) is N = 23 · 3 · pt if λ ≡ 2

(mod 3) and N = 23 · pt otherwise.

To ascertain non-congruence based on the level and dimension of a representation,

we follow the argument in [17, Section 3.4]. Namely, for a d-dimensional congruence

representation ρ : Γ→ GL(d,C) of level N, its image is isomorphic to a quotient

of SL(2,ZN). If N = ∏i psi
i is the factorisation of N into distinct primes pi, then

SL(2,ZN) �∏i SL(2,Zpsi
i

) and hence any irreducible representation of SL(2,ZN) can

be constructed by tensoring irreducible representations of the SL(2,Zpsi
i

) factors.
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In [68, 69], all irreducible representations of SL(2,Zpt), for p prime and t ∈ N, were

classified and their dimensions were determined. In particular, tables summarising

the classification are given in [69, Section 9] (a summary of the minimal dimensions

of non-trivial representations in English is given in [17, Theorem 3.14]). Specifically

the minimal dimensions of a representations of level 23 or 3 are 2 and 1, respectively.

While for representations of level pt the minimal dimension is 1
2 (p−1), if t = 1 and

1
2 (pt − tt−2), if t ≥ 2. Thus, the minimal dimension among representations of level N

may be found as a product of the minimal dimensions of the representations of level

psi
i . Note that requiring each tensor factor to have respective level psi

i precludes any of

the tensor factors from being trivial. Thus for t = 1, we get that the minimal dimension

is p− 1 for both N = 23 · 3 · pt and N = 23 · pt. Comparing this to Theorem 10.2.5

at level k = pt − 2 we see that the dimension formula becomes p− 1− λ which is

less than p− 1 if λ ≥ 2. Similarly, if t ≥ 2 the minimal congruence dimension is

pt − pt−2. Hence we have non-congruence, if pt − pt−2 > pt − 1−λ, or equivalently,

λ+1 > pt−2.

Proposition 11.8. Let 0 ≤ λ ≤ k, λ even, u ∈ L(k,λ) as in (10.3), and let ρλ be the rep-

resentation associated to Ψλ(u, τ). The dimension of the vector-valued modular form

Ψλ(u, τ) is 4 if and only if λ = k−3 and hence the level k is odd. If H(ρk−3, ν−k2+4k+6
2(k+2)

)

is cyclic, then

Vu(ρλ) = V(ρλ) = η
3
2

k2−4k−3
k+2 H

(
ρk−3, ν−k2+4k+6

2(k+2)

)
. (11.36)

Proof. Theorem 10.2.5 gives that ρλ is a 4-dimensional representation if and only if

λ = k−3 is even. Next note that as h k+3
2
−h k−3

2
= 3

4 all conditions in Theorem 9.3 other

than condition 4 (cyclicity over R) obviously hold. Thus the proposition follows for

those levels where H(ρk−3, ν−k2+4k+6
2(k+2)

) is cyclic.

Note that in the case of general non-negative integral levels k and even weight

0 ≤ λ ≤ k, where one obtains vector-valued modular forms of dimension d = k−λ+1,

we have µmax −µmin = (d−1)/4. Thus, the fifth condition of Theorem 9.3 holds only

for those levels and weights chosen so that d ≤ 4 or equivalently k−λ ≤ 3. For d ≥ 5
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we therefore have that the inclusion

η−
3
2

(k−d+1)(k−d+5)−2k
k+2 Vu(ρλ) ⊂H

(
ρk−d+1, ν (k−d+1)(k−d+3)

16(k+2)

)
(11.37)

is proper.
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12. Modular actions from categorical data

So far we have studied the properties of traces of intertwining operators directly,

that is, using results from analytic number theory on modular forms. However, since

categories of modules over rational vertex operator algebras are modular tensor cat-

egories, and additionally the categorical and number theoretic notions of modularity

coincide [25], we can repeat the above analysis using categorical data. Let C be a

modular tensor category, that is, a monoidal category with many additional structures

and properties reviewed in Section 7. To compute the action of the modular group, we

will need the graphical calculus (also known as string diagram calculus, see [70, Sec-

tion 2.3] for an introduction). To convert this abstract action of the modular group

into actual matrices we will need to make explicit choices of bases (see [71, Section

2] for an introduction to working in such bases and some helpful identities), just as we

needed to choose bases of intertwining operators in Section 8 to obtain vector-valued

modular forms. Let I be a complete set of representatives of simple isomorphism

classes of objects in C , with 0 ∈ I denoting the tensor unit (that is, the vertex operator

algebra itself, if C is a category of vertex operator algebra modules). The rigid

dual of a simple object i ∈ I will be denoted i∗. For every triple i, j,k ∈ I, consider

the vector space homC (i⊗ j,k) (called a 3-point coupling space) and pick a basis

{λα(i, j)k}
dim(homC (i⊗ j,k))−1
α=0 and denote its dual basis by {Υα(i, j)k}α ⊂ homC (k, i⊗ j), where

the evaluation of dual vector on vectors is given by

λα(i, j)k ◦Υ
β
(i, j)k = δα,β idk ∈ homC (k,k) = C idk, (12.1)

where δα,β is the Kronecker δ. The 3-point coupling space homC (i⊗ j,k) is the

categorical counterpart to the space of intertwining operators of type
( k

i j

)
and picking

a basis of 3-point couplings is equivalent to picking a basis of intertwining operators.

Therefore, a natural categorical question is to ask how to characterise the subcategory

of objects which correspond to intertwining operators that map an object to itself

(and hence admit a trace as in (8.17)). Recall the adjoint category Cad is defined

to be the smallest full subcategory of C containing all objects i⊗ i∗, i ∈ C and all

of their subquotients. Note that this category is closed under taking duals. Another
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characterisation of Cad is as the centraliser of the subcategory of invertible objects [43,

Section 4.14].

Lemma 12.1. Let C be a modular tensor category. A simple object p ∈ C admits

a non-vanishing homC (p⊗ i, i) for some i ∈ C if and only if p is in the adjoint

subcategory Cad.

Proof. Recall that Hom spaces in a modular tensor category satisfy natural isomor-

phisms

homC (p⊗ i, i) � homC

(
i∗⊗ i, p∗

)
. (12.2)

Thus the Hom spaces on the right-hand side of the above identification are non-

vanishing if and only p∗ lies in the adjoint subcategory, which is the case if and only

if p does.

We continue fixing conventions. Note that if i= 0 or j= 0 then dim(homC (0⊗ j,k))=

δ j,k and dim(homC (i⊗0,k)) = δi,k. The non-vanishing 3-point coupling spaces

homC (0⊗ j, j) and homC ( j⊗0, j) are spanned by the left and right unitors, respec-

tively, and so we choose these as our basis elements, that is, λ0
(i,0)i = ℓi and λ0

(0, j) j = r j.

In our conventions for the graphical calculus we will always read diagrams from

bottom to top (also called the optimistic direction). The 3-point couplings and their

duals are thus displayed as

λα(i, j)k = α

k

i j

, Υα(i, j)k = ᾱ

k

i j

(12.3)
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and duality property (12.1) is then expressed as

=i j δα,β

k

k

β

ᾱ

k

. (12.4)

With these choices of bases of 3-point couplings the associator structure morphisms

(and their inverses) of C can be expressed as the matrices

i

l

j

p

k

α

β
=

k

l

j

q

i

δ

γ∑
q

∑
γ,δ

F(i j k)l
αpβ,γqδ ,

k

l

j

p

i

α

β
=

i

l

j

q

k

γ

δ
∑

p
∑
α,β

G(i j k)l
αpβ,γqδ , (12.5)

while the braiding isomorphisms are expressed as the matrix

i j

α

k

=∑
β

R(i j)k
αβ ·

i j

β

k

. (12.6)

Theorem 12.2 (Bakalov-Kirillov [70, Theorem 3.1.17]). Let p ∈ I and consider the

vector spaces Wp,i = homC (p, i⊗ i∗), i ∈ I, and their direct sum Wp =
⊕

i∈IWp,i.
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Define linear maps Sp,Tp : Wp→Wp via the diagrams

α

p

i

j

7→ ∑
j∈I

d j

D
·S(p) :

i i∗

p

α ,

i i∗

p

α7→
θi

ζ
·T(p) :

i i∗

p

α , (12.7)

where di is the quantum dimension of i ∈ I, D = ∑i d2
i , and ζ =

(
∑i θidi

∑i θ
−1
i di

) 1
6 . Then

S(p),T(p) satisfy the relations
(
S(p)T(p)

)3
=
(
S(p)

)2 and
(
S(p)

)4
= θ−1

p . That is,

S(p),T(p) satisfy the defining relations of the braid group B3 on three strands (the

modular group of the torus with one marked point) with the additional relation(
S(p)

)4
= θ−1

p being the Dehn twist about the marked point.

The above theorem is a specialisation of [70, Theorem 3.1.17 and 5.5.1], where

Theorem 3.1.17 gives the action of the modular group on duals of 3-point coupling

spaces and Theorem 5.5.1 gives the action on marked tori (which are the geometric

interpretation of traces of intertwining operators). Note that in order to be closer to

the conventions of vertex operator algebra literature, we have rescaled the definition

of T(p) by a factor of ζ relative to the conventions of [70]. Note further that the action

given in Theorem 12.2 and above is an action of B3. To deprojectify and obtain an

action of Γ one needs to include a multiplier system, which we shall do a posteriori in

the sl(2) example below. If C is a category of modules over a rational vertex operator

algebra (one satisfying all of the assumptions in the paragraph preceding (8.26)),

then the numbers appearing in the theorem above can be expressed in terms of vertex

operator algebra data as D = S−1
0,0, di =

Si,0
S0,0

, where Si, j is the modular S-matrix of
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characters, and θp = e(hp), where hp is the conformal weight of the simple module p

and ζ = e( c
24 ), where c is the central charge of the vertex operator algebra.

Theorem 12.3. Let C be a modular tensor category with a set of representatives of

simple isomorphism classes I, twist, braiding and fusing matrices given in a choice

of basis of 3-point couplings, as described above. Let p ∈ I. Then the pull back of

S(p),T(p) to spaces of 3-point couplings via evaluation and co-evaluation, expanded

in the basis {λi
(p,i)α} is given by

S(p)
iα, jβ = D−1 ·

p

α

β

i
j

=
did j

D ∑
r∈i∗⊗ j

∑
γδ,ε

θr

θiθ j
G(ii∗ j) j

0;δrγF(ii∗ j) j
εrγ ;0G(pir) j

δiα ;β jε, (12.8)

where Si, j denotes entries of the matrix for the standard S-transformation of char-

acters, γ runs over the basis of homC (i∗⊗ j,r), and ε,δ both run over the basis of

homC (i⊗ r, j). The modular T-matrix is given by

T(p)
iα, jβ = δi, jδα,β

θi

ζ
. (12.9)

The above S and T matrices are the categorical counterpart to the analytic number

theoretic ones discussed previously. Note however, that the multiplier system νhp

has not yet been included in these formulae. A similar diagrammatic formula for

S(p)
iα, jβ already appeared in [4], but with some additional assumptions on dimensions

of 3-point coupling spaces, which we do away with here.

Proof. The formula for T(p) follows immediately from Theorem 12.2, so we focus on

the formula for S(p). The transferal of S(p) as it is given in Theorem 12.2 to 3-point
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couplings via evaluation and co-evaluation is

S(p) : 7→∑
j∈I

d j

D
·α

i

p i

j

i

p

=∑
j∈I

d j

D
·

p

α

j

i

=∑
j,β

S(p)
iα jβ· β

j

p j

, (12.10)

where the first identity uses the straightening axiom of evaluation and co-evaluation

to yield a morphism in homC (p⊗ j, j) and the second identity is the expansion of

this morphism in our chosen basis, which defines the coefficients S(p)
iα jβ. To extract

the coefficient in front of each basis vector we pair with the dual basis by attaching

Υ
β
(p, j) j to the diagram from below, which will yield a morphism in homC ( j, j) = C id j,

proportional to the identity, that is,

S(p)
iα jβ ·

j

=
d j

D
·

p

j

α

i j

β̄

. (12.11)

We can then take the trace over j to get a morphism in homC (0,0) = C id0, that is,

we connect the j-strands at the top and bottom of the diagram using evaluation and

co-evaluation. The left-hand side of the identity is then just a circle labelled by j and

this evaluates to d j. The right-hand side then becomes string diagram in (12.8). To
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evaluate the string diagram we need the well known identities

i i∗

i i∗

= di ·

i i∗

i i∗

0

0

and

i∗ j

= ∑
r∈i∗⊗ j

∑
γ

θr

θiθ j
·

i∗ j

i∗ j

γ

γ

,

(12.12)

where the grey boxes in the left identity can contain any diagram and where we have

also used that θi∗ = θi. Then

p

α

β

i
j

= ∑
r∈i∗⊗ j

∑
γ

θr

θiθ j
·

i

i j

j
p

r
α

β

γ̄

γ

= di ∑
r∈i∗⊗ j

∑
γ

θr

θiθ j
·

i

i i∗
j

j

i∗

p

r
α

β

γ̄

γ
. (12.13)

Applying the well known identities

i

i∗
γ

r

0 j

=∑
ε

F(i i∗ j) j
εrγ,0 ·

i

ε̄

r

j

, (12.14)



MODULAR PROPERTIES OF sl2 TORUS 1-POINT FUNCTIONS 87

i

i∗

γ̄

j0

r

=∑
δ

G(i i∗ j) j
0,δrγ ·

i

δ

r

j

(12.15)

and

ℓ

γ̄

i

β

p α

ℓ

q
δ̄

j

k

= G(i j k)ℓ
αpβ,γqδ ·

ℓ

(12.16)

to the last diagram in (12.13) and again using the fact that the circle labelled by j

evaluates to d j yields the formula in (12.8).

12.1. The sl2 example. Explicit formulae for the Moore-Seiberg data of the modular

tensor category for affine sl2 at level k ∈ N0 are known and we reproduce them here

to compute some examples. We take the label set of simple modules to be their

highest weights I = {0, . . . ,k} with respective conformal weights hn =
n(n+2)
4(k+2) , n ∈ I and

central charge c = 3k
k+2 . Since for sl2 the 3-point coupling spaces are always at most

1-dimensional, no labels are needed for basis vectors (the Greek indices above). The

character S-matrix entries are given by

Si, j =

√
2

k+2
sin
(
π(i+1)( j+1)

k+2

)
, D = S−1

0,0, di =
Si,0

S0,0
. (12.17)

The twist, ζ, braiding and fusing matrices are, respectively, given by

θr = e(hr), ζ = e
( c

24

)
,

R(r s)t = (−1)r+s−te
(

hr +hs−ht

2

)
, F(r s t )u

pq =

t/2 s/2 p/2

r/2 u/2 q/2

,
(12.18)
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wherea b e

d c f

 = (−1)a+b−c−d−2e
√

[2e+1][2 f +1]∆(a,b,e)∆(a,c, f )∆(c,e,d)∆(d,b, f )

×

max{a+b+e,a+c+ f ,b+d+ f ,c+d+e}

∑
z=min{a+b+c+d,a+d+e+ f ,b+c+e+ f }

(−1)z[z+1]!
(
[z−a−b− e]!

[
z−a− c− f

]
!
[
z−b−d− f

]
![z−d− c− e]!

[a+b+ c+d− z]!
[
a+d+ e+ f − z

]
!
[
b+ c+ e+ f − z

]
!
)−1

(12.19)

are quantum group 6 j-symbols and

∆(a,b,c) =

√
[−a+b+ c]![a−b+ c]![a+b− c]!

[a+b+ c+1]!
,

[n] =
sin
(
πn

k+2

)
sin
(

π
k+2

) , [n]! =
n

∏
m=1

[m], [0]! = 1. (12.20)

The above formulae can be found in [72, 73]. Note that the G can be computed from

the above data using the identity

G(i j k)ℓ
pq =

R( j k)qR(iq)ℓ

R(i j)pR(pk)ℓF(k j i)ℓ
pq . (12.21)

Consider now the example when the label p of the acting object is equal to k. Then

we are in the 1-dimensional case with S and T given by

S(k) = e−
π
2 i
(
hk+

k
2
)
= e−

π
2 i

3k
8 , T(k) = e

π
4 i

k
2 . (12.22)

In particular, S(k) and T(k) are equal to the evaluation of the multiplier system νhk+
k
2
,

so the categorical data appear to detect that the natural vector u to use for torus 1-point

functions has conformal weight hk +
k
2 , as we have seen in the sections above. If we

divide the above formulae by the νhk multiplier system then we recover the formulae

in Theorem 11.4.

The above formulae for S and T can also be used to show that Theorem 11.7 admits

examples of non-congruent representations of dimension greater than three.

Proposition 12.4. Choose p = 7, t = 1 in Theorem 11.7 and hence k = 5. Then for

λ = 2, the representation ρ2 is 4-dimensional, irreducible and non-congruence.
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Proof. All of the conditions of Theorem 11.7 except for irreducibility hold by con-

struction. So we only need to show irreducibility. Note that the existence or absence

of a non-trivial invariant subspace does not depend on whether a multiplier system is

included in the formulae for S or T. Therefore, we work directly with the formulae

in Theorem 12.3. Note in particular that all of the eigenvalues of

T(2) = diag
(

e
(

1
56

)
,e
(

11
56

)
,e
(

25
56

)
,e
(

43
56

))
(12.23)

are distinct. Therefore a non-trivial invariant subspace would need to admit a basis

B that is a proper non-empty subset of T(2)-eigenvectors. The columns in S(2)

corresponding to these basis vectors would hence need to contain entries that are 0 in

those rows which correspond to T(2)-eigenvectors not in B. However,

S(2) ≈


−0.16−0.33i −0.26−0.55i −0.26−0.55i −0.16−0.33i

−0.26−0.55i −0.16−0.33i 0.16+0.33i 0.26+0.55i

−0.26−0.55i 0.16+0.33i 0.16+0.33i −0.26−0.55i

−0.16−0.33i 0.26+0.55i −0.26−0.55i 0.16+0.33i


(12.24)

has no entries that are 0 and hence the representation must be irreducible. Here

we have chosen to give a numerical approximation of S(2) to two significant digits

for simplicity, as the exact expression in terms of radicals is impractically large to

present.

Note that νh2(T) = e( 1
42 ) and so if we divide the diagonal entries in (12.23) by νh2

and take the product of the first two diagonal entries, we obtain e(1
6 ), which is a 12th

root of unity. Hence Lemma 11.3 does not apply and we were only able to conclude

irreducibility because of the categorical formulae.
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Appendix A. Modular matrices from categorical data

We document the Sage code used to extract the modular S and T matrices from

categorical data, as in Section 12. Sage documentation may be found here [74].

We begin by setting up the conformal weight based on the sl2 weight n and level k

as well as the central charge:

weight(n,k)=n*(n+2)/(4*k+8)

c(k)=k*3/(k+2)

The quantum numbers denoted [n] in Equation (12.20) are specified, being dependent

also on the level,

qnum(n,k)=sin(pi*n/(k+2))/sin(pi/(k+2))

as well as the vacuum S-matrix and the R-matrices in Equation (12.18) respectively:

Smat(i,j,k)=sqrt(2/(k+2))*sin(pi*(i+1)*(j+1)/(k+2))

Rmat(r,s,t,k)=(-1)ˆ((r+s-t)/2)*exp(-I*pi*(weight(t,k)-weight(r,k)

-weight(s,k)))

We define a function that computes a list of simples in the fusion product of two

simples, labelled by their integer indices i,j:

def fuse(i,j,k):

return range(abs(i-j),min(i+j,2*k-i-j)+1,2)

The values of ∆(a,b,c) in Equation (12.20) necessitate a helper function h(a,b,c)

and the 6 j-symbols sixj(a,b,c,d,e,f,k) as in Equation (12.19) are also defined,

dependent on a quantum factorial qfac(n,k):

def qfac(n,k):

return prod([qnum(i,k) for i in range(1,n+1)])

def h(a,b,c,k):

return sqrt(qfac(-a+b+c,k)*qfac(a-b+c,k)*qfac(a+b-c,k)/qfac(a+b

+c+1,k))

def sixj(a,b,c,d,e,f,k):
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return ((-1)ˆ(a+b-c-d-2*e))*sqrt(qnum(2*e+1,k)*qnum(2*f+1,k))*h

(a,b,e,k)*h(a,c,f,k)*h(c,e,d,k)*h

(d,b,f,k)*sum([(qfac(z+1,k)*(-1)ˆ

z)/(qfac(z-a-b-e,k)*qfac(z-a-c-f,

k)*qfac(z-b-d-f,k)*qfac(z-d-c-e,k

)*qfac(a+b+c+d-z,k)*qfac(a+d+e+f-

z,k)*qfac(b+c+e+f-z,k)) for z in

range(max(a+b+e, a+c+f, b+d+f, c+

d+e), min(a+b+c+d, a+d+e+f, b+c+e

+f) + 1)])

Finally, we require the F-matrix in Equation (12.18) and as well as its inverse G(r,s

,t,u,p,q,k) in Equation (12.21):

def F(r,s,t,u,p,q,k):

return sixj(t/2,s/2,u/2,r/2,p/2,q/2,k)

def G(r,s,t,u,p,q,k):

return Rmat(s,t,q,k)*Rmat(r,q,u,k)*F(t,s,r,u,p,q,k)/(Rmat(r,s,p

,k)*Rmat(p,t,u,k))

We are now in a position to define the S-matrix entries which accepts as input the

indices of the simples and the acting module p:

def S(i,j,p,k):

return Smat(0,0,k)*sum([qnum(i+1,k)*qnum(j+1,k)*exp(-2*pi*I*(

weight(i,k)+weight(j,k)-weight(r,

k)))*F(i,i,j,j,r,0,k)*G(i,i,j,j,0

,r,k)*G(p,i,r,j,i,j,k) for r in

fuse(i,j,k)])

To compute the S and T-matrices, we require setting a choice of level and acting

module acting_label, as well as a helper function admlabels(p,k) giving the

modules on which p acts:

def admlabels(p,k):

return [i for i in range(k+1) if i in fuse(p,i,k)]
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Computing the matrices follows:

Smat=Matrix([[simplify(S(i,j,acting_label ,level)) for j in

admlabels(acting_label ,level)]

for i in admlabels(acting_label ,

level)])

Tmat=diagonal_matrix([exp(2*pi*I*(weight(i,level)-c(level)/24))

for i in admlabels(acting_label ,

level)])
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Appendix B. Computing q-series

We document the Sage code used to compute the explicit q-series of the vector-

valued modular forms in Section 11.2 and Section 11.3, that is, the dimension two

and three cases respectively, when the vector-valued modular form obtained generates

the entire space for the representation in question. Sage documentation may be found

here [74].

We begin by defining a helper function modone(ratnum) calculating the smallest

positive representation mod 1, fuse(i,j,k) which returns a list of simples in the

fusion product of two simples i,j at level k, and act_on_labels(p,k) which

returns the modules on which p acts:

def modone(ratnum):

return (ratnum.numerator() % ratnum.denominator())/ratnum.

denominator()

def fuse(i,j,k):

return range(abs(i-j),min(i+j,2*k-i-j)+1,2)

def act_on_labels(p,k):

return [i for i in range(k+1) if i in fuse(p,i,k)]

We define the central charge c(k), the L0 weight h(m,k) of the sl2 module as a

function of sl2 weight m, the cusp parameter cuspparam(p,k) and define q as a

symbolic variable for expansions:

c(k) = 3*k/(k+2)

h(m, k) = m*(m+2)/(4*(k+2))

def cuspparam(p,k):

return 12*modone(h(p,k)/12)

var(’q’)

These details can be found in Section 5.2 and Section 8. We now compute the value

of the j-function up to 11 terms in the q-expansion, as well as j1/24, j−5/24 and J−1

using Taylor series about q = 0 which will be needed, according to Equation (11.5).

(Higher order terms can be computed if needed to go beyond what is provided in the

thesis.)
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jqexp = j_invariant_qexp(11).truncate(11)

j124 = (jqexpˆ(1/24)).taylor(q,0,20)/(1728ˆ(1/24))

j524 = (jqexpˆ(-5/24)).taylor(q,0,10)/(1728ˆ(-5/24))

jinv = 1728*(jqexpˆ(-1)).taylor(q,0,10)

Now the acting label has to be chosen from a set level from which actlbl is

computed according to Theorem 11.5. Then we can find the pair adms of leading

powers of q and k0.

actlbl = level-1

adms = [modone(QQ((h(q, level) - c(level)/24))) for q in

act_on_labels(actlbl,level)]

k0 = 6*sum(adms) - 1

We now compute an expansion of η2k0 and the two relevant hypergeometric functions:

etak0 = ((qˆ(1/24)*qexp_eta(ZZ[[’q’]], 20).polynomial())ˆ(2*k0)).

taylor(q,0,10)

hypergeom1 = hypergeometric([-1/24, 7/24],[3/4],x).series(x,10).

truncate().substitute(x==jinv)

hypergeom2 = hypergeometric([5/24, 13/24],[5/4],x).series(x,10).

truncate().substitute(x==jinv)

The two components of the vector-valued modular form are then computed,

modularform1 = expand((etak0*j124*hypergeom1).full_simplify())

modularform2 = expand((etak0*j524*hypergeom2))

and the q-expansion can be displayed without the leading q-factors with fractional

exponents:

mf1lead = ((qˆ(-adms[0])*modularform1).expand()).coefficient(q,0)

expand(qˆ(-adms[0])*modularform1/mf1lead)

mf2lead = ((qˆ(-adms[1])*modularform2).expand()).coefficient(q,0)

expand(qˆ(-adms[1])*modularform2/mf2lead)

A similar code suffices for the dimension three case. Instead now the acting label

must be according to Theorem 11.6:
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actlbl = level-2

Now we require j
k+1)

12(k+2) , j−
k+1

6(k+2) , j−
5k+11

12(k+2) and j−1, based on jexp as before:

jk1exp = (level+1)/(12*(level+2))

jk1 = (jqexpˆ(jk1exp)).taylor(q,0,20)/(1728ˆ(jk1exp))

jk2exp = -(level+1)/(6*(level+2))

jk2 = (jqexpˆ(jk2exp)).taylor(q,0,20)/(1728ˆ(jk2exp))

jk3exp = -(5*level+11)/(12*(level+2))

jk3 = (jqexpˆ(jk3exp)).taylor(q,0,20)/(1728ˆ(jk3exp))

Now the triple of leading exponents is given by the following function, as well the

new value for k0,

adms = [modone(QQ((h(q, level) - c(level)/24))) for q in

act_on_labels(actlbl,level)]

k0 = 4*sum(adms) - 2

Lastly, we require the new hypergeometric functions:

hypergeom1 = hypergeometric([-(level+1)/(12*(level+2)), (11*level

+14)/(24*(level+2)),(19*level+30)

/(24*(level+2))],[(3*level+7)/(4*

(level+2)),1/2],x).series(x,10).

truncate().substitute(x==jinv)

hypergeom2 = hypergeometric([(level+1)/(6*(level+2)), (3*level+5)

/(6*(level+2)),(5*level+9)/(6*(

level+2))],[(5*level+9)/(4*(level

+2)),5/8],x).series(x,10).

truncate().substitute(x==jinv)

hypergeom3 = hypergeometric([(5*level+11)/(12*(level+2)), (9*

level+19)/(12*(level+2)),(13*

level+27)/(12*(level+2))],[3/2,(5

*level+11)/(4*(level+2))],x).

series(x,10).truncate().

substitute(x==jinv)

The components of the vector-valued modular form are then readily computed:
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modularform1 = expand((etak0*jk1*hypergeom1).full_simplify())

modularform2 = expand((etak0*jk2*hypergeom2).full_simplify())

modularform3 = expand((etak0*jk3*hypergeom3).full_simplify())
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