ARDIE **INIVERSI PRIFYSGOI AERDYA**

ORCA – Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/172101/

This is the author's version of a work that was submitted to / accepted for p u blication.

Citation for final published version:

Davies, Jordan, Mazzotta, Luca, Sato, Daisuke, Mashruk, Syed, Pugh, Daniel, Borello, Domenico and Valera Medina, Agustin 2025. Experimental and numerical investigation of NH3/H2/N2 combustion in a premixed/stratified swirl burner. Journal of Engineering for Gas Turbines and Power 147 (1), 011006. 10.1115/1.4066207

Publishers page: https://doi.org/10.1115/1.4066207

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

GTP-24-1236

Syed Mashruk Cardiff University Cardiff, UK

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF NH3/H2/N2 COMBUSTION IN A PREMIXED/STRATIFIED SWIRL BURNER

Jordan Davies Cardiff University Cardiff, UK

Luca Mazzotta Sapienza University of Rome / Baker Hughes Rome, Italy

Daniel Pugh Cardiff University Cardiff, UK

Domenico Borello Sapienza University of Rome Rome, Italy

Daisuke Sato Cardiff University Cardiff, UK

Agustin Valera Medina

Cardiff University Cardiff, UK

ABSTRACT

Interest in using renewably produced, partially cracked ammonia in gas turbines is gaining traction, but challenges relating to emissions of NOx and unburned ammonia remain. The present work progresses existing research on using hydrogen stratification to reduce NOx from ammonia/hydrogen flames by experimentally and numerically investigating the effects of also injecting nitrogen from the cracking process. It additionally assesses the NOx reduction capability of a recently developed novel swirl burner by adding hydrogen to the stratified flow to maintain the diffusive equivalence ratio at two high NO production conditions, slightly lean and stoichiometric.

At slightly globally rich conditions, maintaining the diffusive equivalence ratio at 0.9 resulted in an order of magnitude reduction in NO emissions with only a 33% increase in unburned NH3, compared to a fully premixed flame with the same fuel and air flow rates. This stratified configuration was found to increase consumption of NO by NH2, likely due to flame morphology effects, while NO production from OH and HNO pathways was reduced. The reduced OH intensity was posited as the cause for increased NH3 emission. A strong emissions sensitivity to diffusive equivalence ratio was found, as the case with a stoichiometric diffusive equivalence ratio did not show such marked improvements over its corresponding premixed condition. Both stratified and premixed flames were found to be stable, however stratification has potential to trigger instabilities at different frequencies to premixed.

Keywords: Ammonia, hydrogen, combustion, emissions, 30 stratification, partial premixing.

-
-
-

NOMENCLATURE

1. INTRODUCTION

Renewably produced ammonia is considered a promising 54 carbon-free energy vector due to its relative ease and low cost of storage and transportation compared to pure hydrogen [1]. Although these advantages are even greater if pure ammonia is 57 used directly as a fuel, there are combustion challenges relating 58 to its low reactivity and NO_x emissions [2,3].

59 Blending ammonia with other fuels to increase reactivity has been studied extensively. Mixing ammonia with methane or hydrogen has shown favourable improvements in burning 62 velocity $[4,5]$ and flammability limits $[6]$. Combustion with 63 methane as part of the fuel will always result in carbon dioxide 64 emissions, so mixing with hydrogen is the better option for decarbonisation. Furthermore, as ammonia has significant 66 hydrogen content of $~18\%$ on a mass basis [7], an

ammonia/hydrogen fuel blend can be achieved by partially cracking the ammonia immediately prior to combustion [8]. This has the added benefit of reducing cost by having to store only one fuel.

5 Numerous studies have also investigated NO_x mitigation ⁶strategies from ammonia/hydrogen fuel blends. Mashruk et al. 7 demonstrated the NO_x emission dependence on ratio of ammonia 8 to hydrogen [9], and the strong unimodal relationship between 9 global equivalence ratio (Φ G) and NO emissions, with a peak 10 near Φ G = 0.9 [6]. These studies noted that negligible NO_x 11 emissions could be achieved at Φ _G = 1.2-1.3 due to NO 12 consumption by $NH₂$ but resulted in significant unburned NH₃ 13 emissions due to a decrease in the availability of H, O and OH 14 radicals. They also showed significant N_2O emissions at lean 15 conditions (Φ _G < 0.8) due to a reduction in flame temperature 16 inhibiting N_2O consumption by free H atoms and shorter flames 17 reducing residence time for the third-body reaction to act in 18 [10,11,12]. N₂O is an important exhaust gas to monitor as it has ¹⁹a global warming potential roughly 250 times larger than carbon 20 dioxide, meaning a flame with no $CO₂$ emissions but around 21 240ppm N_2O would have a similar global warming effect to a 22 methane-air flame, as calculated in $[13]$.

²³Recently, partially premixed ammonia/hydrogen ²⁴combustion has received considerable attention to further reduce ²⁵NO emissions. An NH3/H2 partially premixed concept was ²⁶initially proposed and examined by Pugh et al. [14] at rich 27 conditions. A diffusive flow of either $NH₃$ or $H₂$ was injected 28 through a central lance with the main aim of creating local fuel-29 rich regions in the middle of the reaction zone. This resulted in a 30 reduction in NO emissions but significant unburned NH₃ 31 emissions were recorded. This study also examined the effect of 32 elevated inlet pressures and temperatures more relevant to gas ³³turbine conditions and reported an increase in NO emissions, 34 particularly at rich conditions. As this is a complex 35 nonmonotonic relationship depending on multiple variables, any ³⁶kinetic mechanism selected for predicting emissions from 37 pressurised stratified flames would require careful testing and ³⁸validation. Franco et al. [15] proposed an alternative 39 configuration for $NH₃/H₂$ flames, using two co-axial tubes, 40 injecting fuel axially through the inner tube and air tangentially 41 through the outer tube via a bluff body. However, the results 42 presented by Franco et al. [15] did not deliver details of unburned 43 ammonia, thus requiring further investigations. Mashruk et al. ⁴⁴[16] recently presented a novel stratified combustion system that 45 can operate in both premixed and stratified modes using 46 ammonia/hydrogen blends. They observed that an increase in 47 hydrogen stratification resulted in a reduction of NO and NO₂ 48 emissions, but increased N₂O because of the reduced fuel in the 49 premixed flow. It should be noted that the above works used only ⁵⁰blends of ammonia, hydrogen and air, neglecting the nitrogen 51 produced alongside the hydrogen in the cracking process.

52 The current work builds upon previous investigations by 53 studying the influence of stratification in $NH₃/H₂/N₂$ flames 54 utilising the same burner described by Mashruk et al. [16] at ⁵⁵Cardiff University. Initially the premixed flow was maintained 56 as a 20% _(vol.) cracked ammonia blend and extra diffusive

⁵⁷hydrogen was added to the stratified flow to preserve two set 58 diffusive equivalence ratios (Φ_D) , whilst varying the global 59 equivalence ratio (Φ _G). Additionally, a numerical study using the ⁶⁰CFD-CRN approach enabled a rate of production analysis to be 61 carried out on the emissions results.

⁶³**2. MATERIALS AND METHODS**

62

⁶⁴This study assessed the NOx reduction capability of a 65 recently commissioned burner system operating on a base blend 66 of 20%(vol.) cracked ammonia ((66.7/25/8.3%(vol.) NH₃/H₂/N₂). 67 Extra diffusive H_2 was injected into the stratified flow with the 68 aim of promoting NO_x production, to aid in identifying 69 mechanisms for NO_x reduction. In Case 1 Stratified, the extra 70 diffusive H₂ flow rate was set to maintain the central diffusion 71 flame at a slightly lean equivalence ratio ($\Phi_D = 0.9$), known to 72 produce peak NO emissions. For Case 1 Premixed, the same 73 extra H_2 was instead added to the premixed flow, to offer a direct 74 comparison. The global equivalence ratio was then varied $0.8 <$ 75 Φ _G < 1.12. Addition of extra diffusive H₂ slightly varied the fuel ⁷⁶blend, but this change was mirrored in the premixed 77 configuration so comparisons could be drawn. This process was 78 repeated in Case 2, but with the central diffusion flame 79 maintained at stoichiometry ($\Phi_D = 1.0$) to increase flame 80 temperature. As Case 2 had a richer diffusive flame, the global 81 equivalence ratio could be increased further, allowing $0.8 < \Phi_{\rm G}$ $82 \leq 1.2$ to be tested. As mentioned previously, operating at 83 conditions leaner than Φ _G = 0.8 produces prohibitively high N₂O 84 emissions and so was not investigated here. All experiments 85 were conducted at a constant thermal power of $10kW$.

⁸⁷**2.1 Swirl Combustor**

FIGURE 1: SCHEMATIC OF THE EXPERIMENTAL SETUP (NOT TO SCALE).

¹Experiments were conducted using an optically accessible 2 radial-tangential swirl combustor ($S_g = 1.05$) shown in Figure 1 ³at atmospheric conditions (1.1 bar, and 288K).

⁴Fuel and air were supplied using Bronkhorst mass flow 5 controllers (\pm 0.5% between 15-95% of maximum flow). Figure ⁶2 shows a diagram of the combustor architecture and flow paths. 7 When operating in fully premixed mode, all H_2 was injected at 8 the base of the swirler, mixing with $NH₃$, $N₂$ and air before 9 flowing through the injector nozzle $(d = 31.5 \text{mm})$, using a central 10 injection lance ($d = 22.5$ mm) as a bluff body. In stratified mode, 11 the central injection lance was unblocked to allow some $NH₃$, N₂ 12 and air through. Additionally, a portion of the H_2 was injected 13 from the end of the central injection lance, ensuring the diffusion 14 flame was maintained at either $\Phi_D = 0.9$ or 1.0 to promote NO_x 15 production. The global equivalence ratio Φ G was calculated 16 relative to the stoichiometric air-fuel ratio (AFR) as (Φ _G = total 17 AFR_{stoichiometric} / total AFR_{actual}), including both premixed and 18 diffusive flows shown in Figure 2. The diffusive equivalence 19 ratio Φ_D was calculated in the same manner but only considering 20 the flow through the central injector.

FIGURE 2: SIMPLIFIED DIAGRAM OF COMBUSTOR ARCHITECTURE.

²¹To facilitate optical access for flame monitoring, 22 chemiluminescence imaging and spectrometry, the flame was 23 confined within a quartz glass tube ($d = 156$ mm). The flame was ²⁴monitored from a distance of 5m using a Logitech Brio camera. 25

²⁶**2.2 Exhaust Gas Measurements**

27 NO, $NO₂$, $N₂O$, $NH₃$, $O₂$ and $H₂O$ were measured simultaneously using an Emerson CT5100 quantum cascade laser system. The cross-shaped sample probe with equidistant holes for homogenous sample collection was situated 25mm above the quartz tube outlet. Measured oxygen content was 32 negligible at stoichiometric conditions, indicating no outside air was entrained into the sampling probe. The samples were carried to the gas analyser via a heated line, with measurements 35 performed at 463K. For each condition, 120 samples were 36 captured with a sampling rate of $1Hz$ ($\pm 1\%$ repeatability, 0.999 37 linearity), averaged, and normalised to dry 15% O₂ following ³⁸equation 14 in [17]. Ongoing discussion surrounds this emission ³⁹normalisation method [18], due to elevated water content in the 40 exhaust of hydrogen-based fuels inflating dry ppmv values. 41 However, as this paper focuses solely on cracked ammonia as a 42 fuel, and no direct comparisons were drawn with carbon-based 43 fuel, this method was deemed acceptable. For conditions where 44 raw readings were above the analysers range, N_2 dilution was 45 used $(\pm 10\%$ repeatability), as explained in detail in [11].

⁴⁷**2.3 Chemiluminescence Measurements**

46

70

80

48 OH* (309nm; $A^2\Sigma$ -X² Π system), NH* (336nm $A^3\Pi$ -X² Σ 49 system) and NH₂* (630nm; single peak of NH₂ α band) images ⁵⁰were captured simultaneously by multiple LaVision cameras 51 each with a Sony ICX285AL sensor and Hamamatsu HB105831 52 intensifier and appropriate Edmund Optics bandpass filters as in ⁵³[11]. The cameras recorded at a sampling frequency of 10Hz for ⁵⁴a period of 20 seconds and the captured images were background 55 corrected, 3x3 median filtered and averaged in Davis v10. The ⁵⁶averaged chemiluminescence images then went through an Abel ⁵⁷Deconvolution script in Matlab [19]. In this study, a positive 58 correlation between ground state and excited radicals is assumed, ⁵⁹as in [14,20].

⁶⁰An Avaspec-ULS4096CL spectrometer was used to capture ⁶¹broadband chemiluminescence intensity for a wide range of 62 wavelengths, from 200-1100nm. It featured a 100 μ m slit and a ⁶³300 lines/mm grating, resulting in a full width half maximum 64 resolution of 4.6nm. The spectrometer specified a 4096-pixel 65 CMOS detector measuring $7 \times 200 \mu m$, set to an exposure time 66 of 1 second and averaged over 120 scans to improve the signal 67 to noise ratio. Via a $600 \mu m$ fibre optic cable, it was connected to ⁶⁸a collimating lens for UV and visible light, mounted 30mm 69 above the burner outlet and 240mm away from the central axis.

⁷¹**2.4 Pressure and Temperature Measurements**

A water-cooled Kistler 211B6 pressure transducer mounted in the combustion chamber near the burner exit was used to measure combustor dynamics. Pressure fluctuations were measured at a sampling rate of 25kHz for a period of 20 seconds and then Fourier Transformed using a Matlab script for analysis.

77 The red dots in Figure 1 denote positions of R and K type ⁷⁸thermocouples which had sampling rates of 1Hz and were 79 averaged over a two-minute period for each operating condition.

⁸¹**2.5 CFD-CRN approach**

82 The combination of Computational Fluid Dynamics (CFD) 83 and Chemical Reactor Networks (CRNs) allows for the precise 84 configuration of CRNs by discretising volumes accurately. This ⁸⁵method is commonly used in analysing complex combustion 86 processes like those in gas turbines [21] with relatively low 87 computational cost and short processing times.

88 In this research, the CFD-CRN approach was applied to ⁸⁹simulate and analyse the ammonia/hydrogen/nitrogen 90 combustion. First, CFD was used to simulate a single test case,

FIGURE 3: NORMALISED VELOCITY FIELD PREDICTED BY CFD SIMULATION. VOLUME DISCRETISATION AND ZONE DIVISION FOR CRN ANALYSIS.

obtaining temperature and velocity fields being crucial for defining different zones in the experimental setup. CRN numerical simulations of the flame were carried out using CHEMKIN-PRO. The CFD simulation was set up in ANSYS Fluent 2R2 using the Reynolds-Averaged Navier-Stokes (RANS) approach, to simulate one of the test points in the experimental campaign. A previous study [22] demonstrates that 8 surrogate models can accurately predict NO_x emissions, temperature, and velocity fields. In this work, the burner's geometry is modelled using a three-dimensional (3D) 11 computational domain, comprising a total of 6M polyhedral 12 cells. The Realizable k- ϵ model with an enhanced wall function was the selected turbulence model. The Partially Premixed Combustion Model was implemented with the Flamelet Generated Manifold (FGM) approach [23]. The flamelets were 16 carried out in Ansys Fluent, while the turbulence-chemistry 17 interaction involved pre-integrating the look-up table with a β -PDF. The chemical kinetics from Otomo et al. [24] for the 19 oxidation of ammonia-hydrogen flames, comprising 33 species and 213 reactions, was chosen for finite chemistry calculation. Zimont's Turbulent Flame Speed Closure (TFSC) [25] modelled 22 the source term for the progress variable, defined as $c = Y_c/Y_{ea}$, 23 where $Y_c = Y_{N0} + Y_{N_2} + Y_{H_2O} - Y_{H_2}$, and Y_{eq} is its equilibrium value. The laminar flame speeds included in the FGM combustion model were generated natively within Ansys Fluent after the boundary conditions were set and 1-D flamelets 27 calculated. These laminar flame speeds were verified in CHEMKIN-PRO using the axisymmetric opposed-flow diffusion flame model by varying the equivalence ratio to account for the wide ranging degree of premixing present in a 31 stratified flame. Figure 3 displays the axial velocity field with 32 zone subdivisions characterising the Chemical Reactor Network

FIGURE 4: NORMALISED TEMPERATURE DISTRIBUTION PREDICTED BY CFD SIMULATION.

33 (CRN). Four inlets of air, NH_3 , H_2 and N_2 were used to feed two 34 Perfectly Stirred Reactors (PSRs) considering Premixed (P) and ³⁵Stratified (S) sections, respectively. Additionally, a PSR for the ³⁶Flame zone and other two PSRs for Central Recirculation Zone ³⁷(CRZ) and External Recirculation Zone (ERZ) were included. ³⁸One Plug Flow Reactor (PFR) represented the flow zone where 39 the velocity was completely axial. To validate temperature trends 40 within the PSRs and PFR reactors in the CRN, a thermal analysis ⁴¹was carried out; Figure 4 shows the temperature field derived 42 from CFD analysis. To determine the role of various reactions in ⁴³changing NO emissions with stratification, absolute rate of 44 production (ROP) values were calculated within the flame zone. ⁴⁵The rate of consumption (ROC) is presented as a negative ROP, 46 consistent with other studies [12]. Estimations of necessary heat ⁴⁷loss were obtained from thermocouple measurements, located in ⁴⁸appropriate positions in the burner.

49 50

52

54

⁵¹**3. RESULTS AND DISCUSSION**

⁵³**3.1 Effect of Stratification on Emissions**

 In Case 1 Stratified, extra diffusive H₂ was injected into the 56 stratified flow to maintain $\Phi_{\rm D} = 0.9$ to promote NO production. It was compared to Case 1 Premixed, where the extra diffusive H2 was injected into the premixed flow.

59 The order of magnitude reduction in NO emissions seen in 60 Figure 5 from Case 1 Stratified at Φ _G = 1.05 can be explained by 61 two main mechanisms, a reduction in NH and OH production 62 and an increase in NO consumption by NH₂. HNO is an ⁶³intermediary radical which can be formed from NH and OH ⁶⁴radicals via the reaction shown in Equation 1. 65

$$
f_{\rm{max}}
$$

66

$$
NH + OH \leftrightarrow HNO + H \tag{1}
$$

$$
N + OH \leftrightarrow NO + H \tag{2}
$$

$$
NH + NO \leftrightarrow N2O + H \tag{3}
$$

⁶⁷Figure 6 demonstrates the reduction in NO production for ⁶⁸Case 1 Stratified via HNO radicals, as well as from OH radicals 69 directly via Equation 2. Again, assuming a positive correlation ⁷⁰between ground state and excited radicals, these numerical 71 results were validated by the chemiluminescence images shown in Figure 7. OH* intensity was found to be similar, but over a smaller flame volume, supporting lower NO production from routes consuming OH and HNO. Although OH* intensity can be directly correlated with changes in temperature, Figure 8 shows only small differences between the two configurations in the post 6 flame zone.

FIGURE 5: MEASURED EMISSIONS FROM CASE 1 WITH CHANGING GLOBAL EQUIVALENCE RATIO. NO (TOP) AND NH3 (BOTTOM). (BEST-FIT LINES FOR CLARITY RATHER THAN MODELLED DATA).

FIGURE 6: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM³ -SEC] FOR THE MOST SIGNIFICANT NO REACTIONS AT Φ G = 1.05 FOR CASE 1 STRATIFIED (BLUE) AND PREMIXED (ORANGE)

FIGURE 7: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 1 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT Φ ^G = 1.05. EACH SPECIES NORMALISED TO ITS CASE $1 \Phi_G = 1.05$ MAXIMUM.

⁷NH* intensity was significantly lower in Case 1 Stratified, ⁸again supporting lower NO production from routes consuming ⁹HNO. Compared to Case 1 Premixed, the stratified configuration 10 showed less NO consumption by NH via the reaction shown in 11 Equation 3, which would also suggest a reduction in N_2O 12 emissions. Consistent with previous studies [9,12] most 13 conditions produced negligible N_2O emissions due to the 14 relatively high equivalence ratios examined here, and so N_2O ¹⁵was not plotted for brevity. However, at the leanest global 16 equivalence ratio investigated (Φ G = 0.8), single digit ppmv 17 (15% O₂ dry) N₂O values were measured for both Case 1 18 configurations, and the Stratified N_2O value was lower, further 19 indicating the accuracy of the numerical investigation. $NO₂$ 20 emissions followed the same general trend as NO and so were 21 not plotted for brevity. The peak of 70ppmv (15% O_2 dry) NO₂ ²²was found at the leanest conditions measured, with Case 1 ²³Stratified slightly lower and both configurations reaching 24 negligible readings by Φ _G = 1.0.

FIGURE 8: TEMPERATURE READINGS FROM A THERMOCOUPLE LOCATED IN THE CENTRE OF THE QUARTZ CONFINEMENT 50MM UPSTREAM OF THE OUTLET FOR CASE 1

1 The other mechanism by which Case 1 Stratified had lower NO emissions than Case 1 Premixed above stoichiometry was an increase in NO consumption by NH2, from the reactions in Equations 4 and 5.

$$
NH2 + NO \leftrightarrow NNH + OH \tag{4}
$$

6

5

$$
NH2 + NO \leftrightarrow N2 + H2O \tag{5}
$$

⁷These reactions do not immediately appear significant in ⁸Figure 6 until their contribution to the total NO consumption is ⁹considered. For Case 1, the contribution of these reactions was ¹⁰35% larger in the stratified flame than in the premixed flame. 11 Figure 7 shows Case 1 Stratified had slightly lower $NH₂$ * 12 intensity, centred farther away from the burner nozzle than Case 13 1 Premixed. This suggests less $NH₂$ was produced in the locally 14 lean ($\Phi_D = 0.9$) area near the central injector and was instead 15 produced further downstream where the local equivalence ratio 16 was more rich. This more spatially dispersed $NH₂$ would then 17 have a longer residence time to consume NO produced in the 18 area near the central injector and be available to consume NO in 19 the ERZ.

⁵⁵**FIGURE 9:** NORMALISED OPTICAL CHEMILUMINESCENCE SPECTROMETRY RESULTS FOR OH*, NH* AND NH2*

²⁰Also shown in Figure 6, the thermal NO reactions of ²¹Equations 2 and 6 were slightly less significant in the stratified 22 configuration than premixed for Case 1 at Φ _G = 1.05. This small 23 reduction in significance of thermal NO reactions is reflected in 24 the small reduction in temperature for the stratified configuration ²⁵at rich conditions shown in Figure 8.

$$
N + NO \leftrightarrow N2 + O \tag{6}
$$

29 Unburned NH₃ emissions have previously been shown $[26]$ 30 to increase between $0.8 < \Phi_{G} < 1.2$ in fully premixed NH₃/H₂ 31 flames due to reduced availability of OH radicals. This can 32 explain the increase in NH₃ emissions shown in Figure 5 for Case ³³1 Stratified. Figure 7 does demonstrate a reduction in OH* 34 intensity compared to Case 1 Premixed, but it is more clearly ³⁵shown by the normalised chemiluminescence spectra intensity in 36 Figure 9 at Φ _G = 1.05.

37 The approximately 15% increase in NO emissions from ³⁸Case 1 Stratified shown in Figure 5 at slightly lean conditions ³⁹can be attributed to the change in NH and OH production, 40 consistent with when $\Phi_G = 1.05$. However, the role of NH₂ in 41 consuming NO was diminished, as expected from the lower 42 NH_2^* intensity at lean conditions shown in Figure 9. There was ⁴³a smaller difference in NO emissions between the two 44 configurations at lean conditions, which is reflected in Figure 10. ⁴⁵However, some differences can still be seen. For example, both ⁴⁶HNO and OH consumption to form NO were increased for Case ⁴⁷1 Stratified. Chemiluminescence data in Figures 9 and 11 48 support these numerical results by showing higher OH* intensity 49 at Φ _G = 0.9. Figure 10 also shows the reduced significance of ⁵⁰NH2 in the NO consuming Equations 4 and 5, as there was less ⁵¹NH2 available to be consumed in these reactions at globally lean 52 conditions, compared to the globally rich conditions. 53

FIGURE 10: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM³ -SEC] FOR THE MOST SIGNIFICANT NO REACTIONS AT Φ G = 0.9 FOR CASE 1 STRATIFIED (BLUE) AND PREMIXED (ORANGE)

54

26

FIGURE 11: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 1 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT Φ G = 0.9. EACH SPECIES NORMALISED TO ITS CASE $1 \Phi_G = 0.9$ MAXIMUM

¹Studies have shown that heat loss from the flame to the ²confinement walls can have a significant influence on emissions ³from ammonia flames, with wall quenching reducing NO 4 emissions, but increasing N_2O and NH_3 emissions [27]. This is ⁵not the case in this study, demonstrated by two main reasons. ⁶First, Figures 7 and 11 show that although stratification did ⁷change the flame morphology, neither configuration caused the ⁸flame to impinge on the quartz glass confinement. The right-side ⁹edge of each chemiluminescence image is 60mm from the 10 centreline of the flame, and the quartz tube is 18mm beyond that. ¹¹The emissions data provides the second reason. Okafor et al. [27] 12 reported N_2O and NH_3 emissions of 580ppmv and 4457ppmv at 13 Φ _G = 0.8. Although this was from a pure ammonia flame and so ¹⁴not directly comparable to the current study, the fundamentals of 15 ammonia combustion do apply. That is, emissions of unburned 16 fuel at lean equivalence ratios represents a reduced combustion 17 efficiency from excessive heat loss from the flame. That is not 18 the case in the present study, proven by the negligible emissions 19 of NH₃ at all conditions below stoichiometry, and the negligible 20 or single digit ppmv emissions of N_2O at all conditions.

21 Both configurations in Case 1 reached negligible NOx 22 emissions at a global equivalence ratio of 1.1, which is leaner 23 than for $NH₃/H₂$ flames reported previously [9]. This is likely 24 due to the N_2 present in the cracked ammonia fuel included in 25 this study reducing reactivity and combustion efficiency. The 26 combined emissions profile of Case 1 Stratified is particularly 27 interesting at Φ _G = 1.05. Here, relatively low NO and NH₃ 28 emissions of 20 and 358 ppmv (15% O_2 dry), respectively were 29 found. This was an order of magnitude reduction in NO 30 emissions with only a 33% increase in NH₃ emissions compared 31 to the fully premixed configuration with the same total flow ³²rates. In summary, this reduction in NO was a result of a 33 reduction in NO production from OH and NH radicals, paired ³⁴with an increase in NO consumption by NH2. Lesser availability 35 of OH radicals also resulted in an increase in unburned NH₃ 36 emissions.

³⁷**3.2. Effect of Varying Diffusive Equivalence Ratio**

³⁸To investigate the effect of different central diffusion 39 equivalence ratios, Φ_D was increased from 0.9 in Case 1, to 1.0 40 in Case 2. As in the previous section, the extra diffusive H_2 41 injected centrally in the stratified configuration was then injected 42 into the premixed flow to provide baseline emissions for this fuel 43 blend. As Case 1 had slightly different total flowrates to Case 2, 44 the stratified configurations from each Case cannot be compared ⁴⁵directly. It is however useful to compare the stratified 46 configurations' relative difference from their respective 47 premixed configurations.

FIGURE 12: MEASURED EMISSIONS FROM CASE 2 WITH CHANGING GLOBAL EQUIVALENCE RATIO. NO (TOP) AND NH3 (BOTTOM). OUT OF RANGE NH3 AT RICH CONDITIONS NOT PLOTTED. (BEST-FIT LINES FOR CLARITY RATHER THAN MODELLED DATA).

⁴⁸Figure 12 shows that for Case 2, stratification with the 49 diffusive flame maintained at a more rich equivalence ratio of $50 \Phi_D = 1.0$ was less effective in reducing NO emissions than the 51 $\Phi_{\text{D}} = 0.9$ in Case 1. At $\Phi_{\text{G}} = 1.05$, Case 2 Stratified had NO 52 emissions roughly half that of the Case 2 Premixed, but 37% 53 higher unburned NH₃, a poorer trade-off than found in Case 1. ⁵⁴This was a significant difference from a relatively small change ⁵⁵in flow rates, so numerical simulations were performed to clarify 56 the mechanisms responsible, which were then compared with 57 chemiluminescent data again assuming a positive correlation ⁵⁸between the ground state and excited radicals. Figure 13 shows the differences in ROP/ROC between Case 2 Stratified and 60 Premixed configurations was the same as for Case 1 in Figure 6,

¹but with smaller differences. This was expected as the ²differences between NO emissions was smaller.

FIGURE 13: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM³ -SEC] FOR THE MOST SIGNIFICANT NO REACTIONS AT Φ G = 1.05 FOR CASE 2 STRATIFIED (BLUE) AND PREMIXED (ORANGE)

4

⁵Figure 13 shows a smaller relative difference in the ROP ⁶from reactions which consume HNO to form NO for Case 2 ⁷configurations. An explanation for this difference could be due 8 to the stoichiometric diffusive flame having a higher local flame ⁹temperature near the central injector, increasing the availability 10 of free H atoms to react with HNO. As NH and OH combine to 11 form HNO via the reaction in Equation 1, a smaller difference in ¹²OH* and NH* could be expected between the Case 2 13 configurations when compared to the Case 1 configurations. This 14 is demonstrated in Figure 14, where the NH* in particular has a ¹⁵similar intensity across the two configurations.

FIGURE 14: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 2 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT Φ G = 1.05. EACH SPECIES NORMALISED TO ITS CASE $2 \Phi_G = 1.05$ MAXIMUM.

16 The other major difference shown in Figure 13 is the 17 smaller De-NOxing impact of the NH₂ radicals in Equations 4 ¹⁸and 5. In Case 1, the contribution of these reactions in the ¹⁹stratified configuration was 35% larger than in the premixed 20 configuration, but only 22% larger in Case 2. The difference in 21 consumption of NH and NO from Equation 3 was similar for 22 both Cases. This reduction in NH₂ significance could relate to 23 the ratio of NO produced in the diffusive flame versus total NO 24 produced. The peak NO production was found at Φ _G = 0.9, 25 suggesting that Case 1 Stratified ($\Phi_D = 0.9$) would produce more 26 NO in the diffusive flame than Case 2 Stratified (Φ _G = 1.0). ²⁷Compared to their respective premixed configurations, they ²⁸should produce the same total emissions due to their total fuel ²⁹and air flow rates being the same. However, Case 1 producing a ³⁰larger percentage of that total NO in the region near the central 31 injector would allow that NO more residence time to be 32 consumed by the NH₂.

³³Figure 12 also shows a smaller increase in NO emissions at 34 the lean conditions for Case 2 Stratified than was found for Case ³⁵1 Stratified. This was reflected in the ROP/ROC plot shown in ³⁶Figure 15, where the only variation of significance was again in 37 the HNO decomposition reaction. As in Section 3.1, NO₂ 38 followed the same trend as NO. In Case 2, NO₂ peaked at a 39 slightly lower value of 64ppmv (15% O_2 dry) at Φ _G = 0.8 and 40 both configurations produced negligible readings at Φ _G = 1.0. ⁴¹N2O emissions were negligible at all equivalence ratios tested 42 and so neither are plotted here. 43

FIGURE 15: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM³ -SEC] FOR THE MOST SIGNIFICANT NO REACTIONS AT $\Phi_G = 0.9$ FOR CASE 2 STRATIFIED (BLUE) AND PREMIXED (ORANGE)

⁴⁵To summarise, the stoichiometric central diffusion flame in ⁴⁶Case 2 had a smaller effect on reducing NO emissions than the 47 slightly lean one presented in Case 1. This is likely related to the ⁴⁸stoichiometric diffusion flame having a locally higher 49 temperature, increasing the availability of free H atoms to react 50 with HNO and ultimately produce NO.

44

51 52 53

¹**3.3. Effect of Stratification on Flame Stability**

All tested configurations and conditions provided a stable flame, with no indication of lean or rich blowoff owing to all fuel blends being near stoichiometric. The dynamic pressure fluctuations within the quartz tube flame confinement were measured for all test conditions. However, as the same trends were observed for both Cases, only Case 1, which provided the best emissions performance is presented here.

⁹Figure 16 shows the stratified configuration generally had 10 lower RMS pressure fluctuations than the premixed 11 configuration. The stratified case did not seem to possess the 12 same sensitivity to equivalence ratio as the premixed and was 13 comparatively constant at most test conditions.

14 It has been suggested that NH_2^* can be used as a heat release 15 marker in ammonia-based flames [20]. Figures 7 and 14 showed 16 that stratification had a strong effect on flame morphology, with 17 the NH₂* production being centred further downstream than in 18 premixed configurations. This relocated centre of heat release 19 could have changed the time delay and hence phase difference ²⁰between the heat release fluctuations and pressure fluctuations to ²¹be out of phase, reducing the thermoacoustic instability in line ²²with the Rayleigh Criterion [28]. The introduction of ²³equivalence ratio fluctuations from stratification could also have ²⁴affected the phase difference.

FIGURE 16: ROOT MEAN SOUARE FLUCTUATIONS IN COMBUSTOR PRESSURE WITH CHANGING GLOBAL EQUIVALENCE RATIO FOR CASE 1. (BEST-FIT LINES FOR CLARITY RATHER THAN MODELLED DATA).

25

26 Figure 17 shows the Fourier transformed pressure signal for 27 the Case 1 test point with the best emissions performance (Φ G = ²⁸1.05) above 50 Hz. Both configurations produced relatively high ²⁹amplitude broadband combustion noise below 50 Hz of a similar ³⁰magnitude, likely related to the injector geometry. There were 31 however some significant differences at higher frequencies, so 32 only those are presented and discussed here.

33 Both configurations experienced a significant pressure fluctuation at 95Hz and 251Hz, but stratification halved the amplitude when compared to the premixed configuration. Interestingly, the stratified configuration produced a peak at around 430Hz which is not present in the premixed data. This newly excited instability could have been triggered by 39 equivalence ratio fluctuations that a stratified flame experiences, as a premixed flame only experiences velocity fluctuations. These instabilities are too low frequency to be associated with 42 the natural frequency of the combustor, which was calculated to be the broadband signature around 630Hz present in both 44 configurations.

FIGURE 17: SPECTRAL COMPARISON OF CASE 1 STRATIFIED AND PREMIXED AT Φ G = 1.05 ABOVE 50 HERTZ

⁴⁶**4. CONCLUSIONS**

45

47 The effect of supplying varying amounts of extra diffusive 48 H₂ to the stratified flow of a 20% cracked ammonia flame was ⁴⁹investigated using a turbulent swirl burner, at a constant thermal 50 power of 10kW. Chemiluminescence data and numerical 51 simulations were used to interpret changing emissions trends.

⁵²At stoichiometric and rich equivalence ratios, stratified 53 configurations increased consumption of NO by NH₂, and 54 reduced NO production from OH and HNO reaction pathways. ⁵⁵The reduced OH intensity also resulted in an increase in 56 unburned NH₃ emissions, which was offset by a significantly ⁵⁷larger reduction in NO emissions. At slightly lean equivalence ⁵⁸ratios, an increase in NO emissions was found, also due to 59 changes in OH and NH production paired with diminished $NH₂$ 60 intensity consuming less NO. Negligible N_2O was measured at 61 all conditions as expected.

⁶²Emissions showed a strong sensitivity to the equivalence 63 ratio of the stratified flow, related to diffusive flame temperature 64 and $NO - NH₂$ residence times. Assuming an equal weighting ⁶⁵for NO and unburned NH3 emissions, the case where the ⁶⁶diffusive flame had a slightly lean equivalence ratio showed 67 better combined emissions performance.

68 Both examined configurations exhibited stable combustion. ⁶⁹Whilst stratification generally reduced the amplitude of pressure ⁷⁰fluctuations within the combustion chamber, it did also trigger ⁷¹new instabilities at different frequencies to the premixed flame 72 which need to be properly assessed in further analyses.

ACKNOWLEDGEMENTS

This work was supported by the AMBURN project with 3 funding from the Department for Energy Security and Net Zero (DESNZ) (Grant Number: IFS2-06-FLO), the EPSRC Centre for Doctoral Training in Resilient Decarbonised Fuel Energy Systems (Grant Number:  EP/S022996/1), Reaction Engines Ltd and Sunborne Systems Ltd. The research was undertaken at Cardiff University's Thermofluids Lab (W/0.17) with invaluable technical support from Mr. Malcolm Seaborne. For the purpose 10 of open access, the author has applied a CC BY public copyright 11 licence to any Author Accepted Manuscript version arising.

REFERENCES

[1] Salmon, Nicholas, and Bãnares-Alcántara, René. "Green

- 15 Ammonia as a Spatial Energy Vector: A Review."
- *Sustainable Energy & Fuels* Vol. 5 No. 11 (2021): pp.
- 17 2814–39. https://doi.org/10.1039/D1SE00345C.
- [2] Valera-Medina, Agustin., Xiao, Hua., Owen-Jones, Martin.,
- David, William., and Bowen, Phillip. "Ammonia for Power." *Progress in Energy and Combustion Science* Vol.
- 21 69 (2018): pp. 63–102.

22 https://doi.org/10.1016/J.PECS.2018.07.001.

- [3] Kobayashi, Hideaki., Hayakawa, Akihiro., Somarathne, K. D. Kunkuma A., and Okafor, Ekenechukwu C. "Science and Technology of Ammonia Combustion." *Proceedings of the Combustion Institute* Vol. 37 No. 1 (2019): pp. 109– 33. https://doi.org/10.1016/J.PROCI.2018.09.029.
- [4] Okafor, Ekenechukwu C., Naito, Yuji., Colson, Sophie.,
- 29 Ichikawa, Akinori., Kudo, Taku., Hayakawa, Akihiro., and Kobayashi, Hideaki. "Experimental and Numerical Study 31 of the Laminar Burning Velocity of CH4–NH3–Air
- Premixed Flames." *Combustion and Flame* Vol. 187
- 33 (2018): pp. 185–98.
- https://doi.org/10.1016/J.COMBUSTFLAME.2017.09.00 2.
- [5] Shrestha, Krishna Prasad., Lhuillier, Charles., Alves Barbosa, Amanda., Brequigny, Pierre., Contino, Francesco., Mounaïm-Rousselle, Christine., Seidel, Lars., and Mauss, Fabian. "An Experimental and Modeling Study of Ammonia with Enriched Oxygen Content and 41 Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature." *Proceedings of the Combustion Institute* Vol. 38 No. 2 (2021): pp. 2163–74.
- https://doi.org/10.1016/J.PROCI.2020.06.197.
- [6] Mashruk, Syed., Vigueras-Zuniga, Marco Osvaldo., Tejeda-del-Cueto, Maria Elena., Xiao, Hua., Yu, Chunkan., Maas, Ulrich., and Valera-Medina. Agustin. "Combustion Features of CH4/NH3/H2 Ternary Blends." *International Journal of Hydrogen Energy* Vol. 47 No. 70 (2022): pp. 30315–27.
- 51 https://doi.org/10.1016/J.IJHYDENE.2022.03.254.
- [7] Giddey, Sarbjit., Badwal, Sukhvinder., Munnings, Christopher., and Dolan, Michael., "Ammonia as a Renewable Energy Transportation Media." *ACS Sustainable Chemistry and Engineering* Vol. 5 No. 11 56 (2017): pp. 10231–39.

57 https://doi.org/10.1021/ACSSUSCHEMENG.7B02219/A

58 SSET/IMAGES/LARGE/SC-2017-02219T_0007.JPEG.

- [8] Mei, Bowen., Zhang, Jianguo., Shi, Xiaoxiang., Xi, Zhongya., and Li, Yuyang. "Enhancement of Ammonia Combustion with Partial Fuel Cracking Strategy: Laminar 62 Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures up to 10 Atm." *Combustion and Flame* Vol. 231 (2021): pp. 111472. https://doi.org/10.1016/J.COMBUSTFLAME.2021.11147 66 2.
- [9] Mashruk, Syed, Kovaleva, Marina., Alnasif, Ali., Chong, Cheng Tung., Hayakawa, Akihiro., Okafor, Ekenechukwu C., and Valera-Medina, Agustin. "Nitrogen Oxide Emissions Analyses in Ammonia/Hydrogen/Air Premixed 71 Swirling Flames." *Energy* Vol. 260 (2022): pp. 125183. 72 https://doi.org/10.1016/J.ENERGY.2022.125183.
- [10] Pugh, Daniel., Bowen, Phillip., Goktepe, Burak., Giles, 74 Anthony., Mashruk, Syed., Valera-Medina, Agustin., and Morris, Steven. "Influence of Steam and Elevated Ambient 76 Conditions on N2O in a Premixed Swirling NH3/H2 Flame*." Proceedings of the ASME Turbo Expo.* GT2023- 102452. Boston, MA, June 26-30, 2023. http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT2023/86953/V03AT04A064/7043786/v03at04a06 4-gt2023-102452.pdf.
- [11] Mashruk, Syed., Okafor, Ekenechukwu C., Kovaleva, Marina., Alnasif, Ali., Pugh, Daniel., Hayakawa, Akihiro., 84 and Valera-Medina, Agustin. "Evolution of N2O 85 Production at Lean Combustion Condition in NH3/H2/Air 86 Premixed Swirling Flames." *Combustion and Flame* Vol. 87 244 (2022): pp. 112299. https://doi.org/10.1016/J.COMBUSTFLAME.2022.1122 89 99.
- [12] Hayakawa, Akihiro., Hayashi, Masao., Kovaleva, Marina., 91 Gotama, Gabriel J., Okafor, Ekenechukwu C., Colson, 92 Sophie., Mashruk, Syed., Valera-Medina, Agustin., Kudo, 93 Taku., and Kobayashi, Hideaki. "Experimental and Numerical Study of Product Gas and N2O Emission Characteristics of Ammonia/Hydrogen/Air Premixed Laminar Flames Stabilized in a Stagnation Flow." *Proceedings of the Combustion Institute* Vol. 39 No. 2 98 (2023): pp. 1625–33. 99 https://doi.org/10.1016/J.PROCI.2022.08.124.
- [13] Zhu, Xuren., Khateeb, Abdulrahman A., Guiberti, Thibault 101 F., and Roberts, William L., "NO and OH* Emission 102 Characteristics of Very-Lean to Stoichiometric Ammonia– Hydrogen–Air Swirl Flames." *Proceedings of the Combustion Institute* Vol. 38 No. 4 (2021): pp. 5155–62. 105 https://doi.org/10.1016/J.PROCI.2020.06.275.
- [14] Pugh, Daniel., Runyon Jon., Bowen, Phillip., Giles, 107 Anthony., Valera-Medina, Agustin., Marsh, Richard., 108 Goktepe, Burak., and Hewlett, Sally. "An Investigation of Ammonia Primary Flame Combustor Concepts for 110 Emissions Reduction with OH*, NH2* and NH* Chemiluminescence at Elevated Conditions." *Proceedings*

of the Combustion Institute Vol. 38 No. 4 (2021): pp. 6451–59. https://doi.org/10.1016/J.PROCI.2020.06.310.

- [15] Franco, Miguel C., Rocha, Rodolfo C., Costa, Mário., and
- Yehia, Mohamed. "Characteristics of NH3/H2/Air Flames
- in a Combustor Fired by a Swirl and Bluff-Body Stabilized
- Burner." *Proceedings of the Combustion Institute* Vol. 38
- No. 4 (2021): pp. 5129–38.

https://doi.org/10.1016/J.PROCI.2020.06.141.

- [16] Mashruk, Syed., Alnasif, Ali., Yu, Chunkan., Thatcher, James., Rudman, James., Peronski, Lukasz., Meng-Choung, Chiong., and Valera-Medina, Agustin. "Combustion Characteristics of a Novel Ammonia Combustor Equipped with Stratified Injection for Low Emissions." *Journal of Ammonia Energy* Vol. 1 No. 1 (2023): pp. 21-32. https://doi.org/10.18573/JAE.10.
- [17] British Standards Institute. "British Standard ISO 11042- 1:1996, Gas Turbines. Exhaust Gas Emission Measurement and Evaluation" 1996. UK. https://www.iso.org/obp/ui/en/#iso:std:iso:11042:-1:ed-20 1:v1:en.
- [18] Douglas, Christopher M., Shaw, Stephanie L., Martz, 22 Thomas D., Steele, Robert C., Noble, David R., Emerson, 23 Benjamin L., and Lieuwen, Timothy C. "Pollutant Emissions Reporting and Performance Considerations for Hydrogen-Hydrocarbon Fuels in Gas Turbines." *Journal of Engineering for Gas Turbines and Power* Vol. 144 No. 9 (2022): pp 0910031-7
- https://doi.org/10.1115/1.4054949/6896265/GTP-22-
- 29 1225.PDF.
- [19] Mashruk, Syed. "Nitric Oxide Formation Analysis Using Chemical Reactor Modelling and Laser Induced 32 Fluorescence Measurements on Industrial Swirl Flames" 33 PhD Thesis. Cardiff University, Cardiff, UK. 2020. https://orca.cardiff.ac.uk/id/eprint/136590/.
- [20] Mashruk, Syed., Xiao, Hua., Pugh, Daniel., Chiong, Meng Choung., Runyon, Jon., Goktepe, Burak., Giles, Anthony., and Valera-Medina, Agustin. "Numerical Analysis on the Evolution of NH2 in Ammonia/Hydrogen Swirling Flames 39 and Detailed Sensitivity Analysis under Elevated Conditions." *Combustion Science and Technology* Vol. 195 No. 6 (2023): pp. 1251–78.
- 42 https://doi.org/10.1080/00102202.2021.1990897.
- [21] Chaturvedi, Shivansh., Santhosh, R., Mashruk, Syed., Yadav, Rajneesh., and Valera-Medina, Agustin. "Prediction of NOx Emissions and Pathways in Premixed Ammonia-Hydrogen-Air Combustion Using CFD-CRN Methodology." *Journal of the Energy Institute* Vol. 111 48 (2023): pp. 101406. https://doi.org/10.1016/J.JOEI.2023.101406.
- [22] Mazzotta, Luca., D'Alessio, Francesco., Meloni, Roberto., Morris, Steve., Goktepe, Burak., Cerutti, Matteo., Romano, Christian., et al. "Modelling Ammonia-53 Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner." *Journal of Engineering for Gas Turbines and Power* Vol. 146 No. 9 (2024): pp. 091022-11. https://doi.org/10.1115/GT2023-102803.
- [23] Oijen, Jeroen van., and de Goey, Phillip. "Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds." *Combustion Science and Technology* Vol. 161 60 No. 1 (2000): pp. 113–37. 61 https://doi.org/10.1080/00102200008935814.
	-
- [24] Otomo, Junichiro., Koshi, Mitsuo., Mitsumori, Teruo., Iwasaki, Hiroshi., and Yamada, Koichi. "Chemical Kinetic Modeling of Ammonia Oxidation with Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion." *International Journal of Hydrogen Energy* Vol. 43 No. 5 (2018): pp. 3004–14.
- https://doi.org/10.1016/J.IJHYDENE.2017.12.066.
- [25] Zimont, Vladimir., Polifke, Wolfgang., Bettelini, Marco., and Weisenstein, Wolfgang. "An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure." *Journal of Engineering for Gas Turbines and Power* Vol. 120 No. 3 (1998) pp. 526–32. 76 https://doi.org/10.1115/1.2818178.
- [26] Mashruk, Syed., Zitouni, Seif., Brequigny, Pierre., Mounaim-Rousselle, Christine., and Valera-Medina, Agustin. "Combustion Performances of Premixed Ammonia/Hydrogen/Air Laminar and Swirling Flames for a Wide Range of Equivalence Ratios." *International Journal of Hydrogen Energy* Vol. 47 No. 97 (2022): pp. 41170–82.
- https://doi.org/10.1016/J.IJHYDENE.2022.09.165.
- [27] Okafor, Ekenechukwu C., Tsukamoto, Masaaki., Hayakawa, Akihiro., Somarathne, Kunkuma A., Kudo, 87 Taku., Tsujimura, Taku., and Kobayashi, Hideaki. "Influence of Wall Heat Loss on the Emission Characteristics of Premixed Ammonia-Air Swirling Flames Interacting with the Combustor Wall." *Proceedings of the Combustion Institute* Vol. 38 No. 4 92 (2021): pp. 5139–46.
- 93 https://doi.org/10.1016/J.PROCI.2020.06.142.
- [28] Nicoud, Franck., and Poinsot, Thierry. "Thermoacoustic 95 Instabilities: Should the Rayleigh Criterion Be Extended 96 to Include Entropy Changes?" *Combustion and Flame* Vol. 97 142 No. 1–2 (2005): pp. 153–59. https://doi.org/10.1016/J.COMBUSTFLAME.2005.02.01 99 3.

```
1List of Figure Captions 
\overline{2}3FIGURE 1: SCHEMATIC OF THE EXPERIMENTAL SETUP (NOT TO SCALE). 
4 
5FIGURE 2: SIMPLIFIED DIAGRAM OF COMBUSTOR ARCHITECTURE. 
6 
7FIGURE 3: NORMALISED VELOCITY FIELD PREDICTED BY CFD SIMULATION. VOLUME DISCRETISATION 
8AND ZONE DIVISION FOR CRN ANALYSIS. 
9 
10FIGURE 4: NORMALISED TEMPERATURE DISTRIBUTION PREDICTED BY CFD SIMULATIONS. 
11 
12FIGURE 5: MEASURED EMISSIONS FROM CASE 1 WITH CHANGING GLOBAL EQUIVALENCE RATIO. NO 
13 (TOP) AND NH<sub>3</sub> (BOTTOM). (BEST-FIT LINES FOR CLARITY RATHER THAN MODELLED DATA).
14 
15 FIGURE 6: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM<sup>3</sup> -SEC] FOR THE MOST SIGNIFICANT NO
16 REACTIONS AT \Phi_G = 1.05 FOR CASE 1 STRATIFIED (BLUE) AND PREMIXED (ORANGE).
17 
18FIGURE 7: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 1 
19 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT \PhiG = 1.05. EACH SPECIES NORMALISED TO ITS CASE 1
20 \Phi<sub>G</sub> = 1.05 MAXIMUM.
21 
22FIGURE 8: TEMPERATURE READINGS FROM A THERMOCOUPLE LOCATED IN THE CENTRE OF THE 
23 QUARTZ CONFINEMENT 50MM UPSTREAM OF THE OUTLET FOR CASE 1.
24 
25FIGURE 9: NORMALISED OPTICAL CHEMILUMINESCENCE SPECTROMETRY RESULTS FOR OH*, NH* AND 
26 NH<sub>2</sub><sup>*</sup>.
27 
28 FIGURE 10: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM<sup>3</sup> -SEC] FOR THE MOST SIGNIFICANT NO
29 REACTIONS AT \PhiG = 0.9 FOR CASE 1 STRATIFIED (BLUE) AND PREMIXED (ORANGE).
30 
31FIGURE 11: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 1 
32 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT \PhiG = 0.9. EACH SPECIES NORMALISED TO ITS CASE 1 \PhiG
33 = 0.9 MAXIMUM.
34 
35FIGURE 12: MEASURED EMISSIONS FROM CASE 2 WITH CHANGING GLOBAL EQUIVALENCE RATIO. NO 
36(TOP) AND NH3 (BOTTOM). OUT OF RANGE NH3 AT RICH CONDITIONS NOT PLOTTED. (BEST-FIT LINES 
37 FOR CLARITY RATHER THAN MODELLED DATA).
38 
FIGURE 13: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM3 39 -SEC] FOR THE MOST SIGNIFICANT NO 
40 REACTIONS AT \Phi_G = 1.05 FOR CASE 2 STRATIFIED (BLUE) AND PREMIXED (ORANGE).
41 
42FIGURE 14: ABEL TRANSFORMED CHEMILUMINESCENCE IMAGES (OH*, NH* AND NH2*) OF CASE 2 
43 STRATIFIED (TOP) AND PREMIXED (BOTTOM) AT \Phi<sub>G</sub> = 1.05. EACH SPECIES NORMALISED TO ITS CASE 2
44 \Phi<sub>G</sub> = 1.05 MAXIMUM.
45 
46 FIGURE 15: FLAME ZONE ABSOLUTE ROP/ROC [UNIT – MOLE/CM<sup>3</sup> -SEC] FOR THE MOST SIGNIFICANT NO
47 REACTIONS AT \Phi_G = 0.9 FOR CASE 2 STRATIFIED (BLUE) AND PREMIXED (ORANGE).
48 
49FIGURE 16: ROOT MEAN SQUARE FLUCTUATIONS IN COMBUSTOR PRESSURE WITH CHANGING GLOBAL 
50EQUIVALENCE RATIO FOR CASE 1. (BEST-FIT LINES FOR CLARITY RATHER THAN MODELLED DATA). 
51
```
 $_1$ FIGURE 17: SPECTRAL COMPARISON OF CASE 1 STRATIFIED AND PREMIXED AT $\Phi_{\rm G} = 1.05$ ABOVE 50 2 HERTZ.