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Background: Procalcitonin (PCT) is a blood marker used to help diagnose bacterial infections and guide antibiotic 
treatment. PCT testing was widely used/adopted during the COVID-19 pandemic in the UK. 

Objectives: Primary: to measure the difference in length of early (during first 7 days) antibiotic prescribing be-
tween patients with COVID-19 who did/did not have baseline PCT testing during the first wave of the pandemic. 
Secondary: to measure differences in length of hospital/ICU stay, mortality, total days of antibiotic prescribing 
and resistant bacterial infections between these groups. 

Methods: Multi-centre, retrospective, observational, cohort study using patient-level clinical data from acute 
hospital Trusts/Health Boards in England/Wales. Inclusion: patients ≥16 years, admitted to participating 
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Trusts/Health Boards and with a confirmed positive COVID-19 test between 1 February 2020 and 
30 June 2020. 

Results: Data from 5960 patients were analysed: 1548 (26.0%) had a baseline PCT test and 4412 (74.0%) did not. 
Using propensity-score matching, baseline PCT testing was associated with an average reduction in early anti-
biotic prescribing of 0.43 days [95% confidence interval (CI): 0.22–0.64 days, P < 0.001) and of 0.72 days (95% 
CI: 0.06–1.38 days, P = 0.03] in total antibiotic prescribing. Baseline PCT testing was not associated with increased 
mortality or hospital/ICU length of stay or with the rate of antimicrobial-resistant secondary bacterial infections. 

Conclusions: Baseline PCT testing appears to have been an effective antimicrobial stewardship tool early in the 
pandemic: it reduced antibiotic prescribing without evidence of harm. Our study highlights the need for embed-
ded, rapid evaluations of infection diagnostics in the National Health Service so that even in challenging circum-
stances, introduction into clinical practice is supported by evidence for clinical utility. 

Study registration number: ISRCTN66682918.

Introduction
Even before the coronavirus disease 2019 (COVID-19) pandemic, 
community acquired pneumonia (CAP) was a prevalent and ser-
ious disease, with evidence that early administration of antibiotics 
improves outcomes. It remains challenging to differentiate bac-
terial from viral causes of lower respiratory tract infection (LRTI) 
on clinical grounds and antibiotics are often administered inappro-
priately. A lack of reliable, rapid diagnostics to determine the 
pathogen in patients with LRTI has led to measurement of the in-
flammatory marker procalcitonin (PCT) in blood samples to help 
diagnose bacterial infections and aid antibiotic prescribing deci-
sions, particularly in respiratory tract infections.1 Two systematic 
reviews of the diagnostic accuracy of PCT for differentiating bacterial 
from viral infection have found similar specificity (73% and 76%) but 
very different sensitivity (92% and 55%).2,3 In spite of these contra-
dictory findings, a further systematic review of PCT-guided treat-
ment in acute respiratory infections (undertaken pre-COVID-19) 
found that 30-day mortality was significantly lower in patients 
with PCT-guided treatment than in control patients.4 PCT use was 
also associated with a significant 2.4-day average reduction in anti-
biotic exposure and a reduction in antibiotic-related side-effects.

During the first wave of the COVID-19 pandemic, there was con-
cern about potential overuse of antibiotics and a negative impact 
on antimicrobial resistance. International guidelines included re-
commendations for empirical antibiotic therapy for patients with 
suspected or confirmed severe COVID-19, COVID-19-related sepsis 
and CAP5 and a high proportion of patients with COVID-19 (75%) 
were prescribed antibiotics.6 In an attempt to strengthen anti-
microbial stewardship in times of uncertainty, many National 
Health Service (NHS) hospitals in the UK used PCT testing to assist 
antibiotic prescribing in patients with COVID-19,7 and some cen-
tres reported the value of PCT in reducing antibiotic use.8 Local 
guidance decisions to use PCT were contrary to National 
Institute for Health and Care (NICE) recommendations, which ac-
knowledged the lack of evidence and promoted engagement with 
research.9 Large, publicly funded, randomized controlled trials10–12

are currently underway in the UK to assess the impact of PCT test-
ing on antibiotic use but these are not specifically focused on pa-
tients with COVID-19. We therefore conducted a multi-centre 
observational assessment of the impact of PCT testing on antibiot-
ic use and patient outcomes in patients with COVID-19.

Objectives
Our primary objective was to measure the difference in days on 
early antibiotic treatment between patients with COVID-19 
who did/did not have baseline PCT testing. Secondary objectives 
were to measure differences in length of hospital/ICU stay, mor-
tality, total days of antibiotic treatment and resistant bacterial in-
fections between these two groups.

Methods
Ethics and approvals
The study was approved by the NHS Research Ethics Committee (West 
Midlands—Solihull Research Ethics Committee, reference 21/WM/0052), 
Health Research Authority and Health and Care Research Wales on 
3 March 2021. Study registration: ISRCTN66682918. The Procalcitonin: 
Evaluation of Antibiotic prescribing in COVID-19 Hospitalized patients 
(PEACH) study collected patient data in accordance with the notice under 
Regulation 3(4) of the Health Service (Control of Patient Information) 
Regulations 2002 (COPI).

Study design
This was a multi-centre, retrospective, observational, cohort study using 
patient-level clinical data and designed/reported with consideration of 
STROBE criteria.13 A study protocol and statistical analysis plan have 
been previously published.14

Setting
Eleven NHS acute hospital Trusts/Health Boards in England and Wales 
took part in the study including both teaching and district general hospitals. 
Rates of PCT use in patients with COVID-19 during the study period varied 
considerably between these sites.7 Patients were followed up until dis-
charge/death. The study period was between 1 February and 30 June 2020.

Participants
Potentially eligible patients were identified from institutional databases/ 
medical records by the clinical teams at each participating organization. 
Inclusion criteria were that patients ≥16 years had been admitted to a 
participating organization and had a confirmed positive PCR COVID-19 
test (according to local testing procedures) during the study period. 
Exclusion criteria were second and subsequent admissions after index 
admission with COVID-19.
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Variables
The collected variables have been published previously.14 Sex assigned at 
birth was recorded as documented in medical records. Day 1 of COVID-19 
infection was considered the day of the first positive sample. ‘Baseline’ 
variables were those collected on/around the time of COVID-19 diagnosis, 
i.e. day 1 (±1 day). The primary outcome was days of early antibiotics ther-
apy (≤day 7 after first positive COVID-19 test sample during the study per-
iod). Early ICU admission was defined as admitted to/already on ICU at 
baseline. Secondary outcomes were: total days of antibiotic treatment; 
days of late (>day 7 after positive COVID-19 test sample) antibiotic treat-
ment; 30-day mortality; 60-day mortality; length of stay (hospital and ICU 
after day 3) and antimicrobial-resistant secondary bacterial infection (on-
set after day 3). Antimicrobial resistance was defined as resistant to ≥3 
antibiotic classes (with sensitivity analyses for resistance to ≥1 or ≥2 
classes). Descriptive outcomes were frequency of PCT testing and types 
of secondary bacterial infection.

Data sources
Routine clinical data from a patient’s episode of hospitalization were col-
lected manually from individual patient medical records/NHS databases. 
Data were de-identified at source and entered into a bespoke study data-
base developed by the Centre for Trials Research (CTR) (MACRO version 
4.9.1) and hosted on Cardiff University secure servers. Some study vari-
ables were preferentially collected directly from primary care medical re-
cords and, if not available, from their secondary care records.

Data quality control
Extensive data quality control was performed. If paired start/end dates 
were incomplete, the pair was excluded from the analysis (e.g. hospital 
admission date missing while discharge date was present). If logical in-
consistencies were observed, such data points were excluded (e.g. anti-
biotics start date after end date, ICU discharge date after hospital 
discharge date). Self-evident corrections were made where appropriate 
in cases of obvious typographical errors (e.g. year 2020 entered as 
2002). If blood laboratory tests were performed repeatedly on the 
same date for the same patient, the highest value was used.

Statistical analysis
Sample size

Based on a minimal difference in antibiotic duration of 1 day10,11,15 be-
tween baseline PCT-tested and non-PCT-tested patients, and an as-
sumed standard deviation (SD) of 6 days, 1500 matched patients were 
estimated to provide 90% power when using a two-sample t-test with 
two-sided 5% type I error rate. To account for the reduction in effective 
sample size due to propensity-score matching, and expecting fewer pa-
tients having PCT than not, we aimed to source data for ∼7000 patients.

Bias

To reduce the risk of bias, consecutive patients fulfilling the eligibility cri-
teria were included. Identification of subjects was carried out without prior 
knowledge of outcomes or PCT testing status and by separate teams from 
those carrying out the analysis. Potential confounding factors for inclusion 
in the propensity-score analysis, i.e. those potentially influencing both the 
outcomes and the decision to use PCT testing, were agreed in advance of 
analysis and published.14 Objective criteria for study variables were 
agreed in advance.

Descriptive statistics

Descriptive (e.g. means or medians with SDs for continuous variables, fre-
quencies and percentages for binary or categorical variables) and 

graphical summaries (e.g. histograms) were generated according to 
baseline PCT testing (yes or no).

Propensity-score matching

To assess the effect of PCT testing on antibiotic prescribing and patient 
outcomes while ensuring an even distribution of important confounders 
between groups, propensity-score matching was used. Patients who did/ 
did not receive PCT testing at baseline were matched. Propensity-score 
matching was used to reduce potential differences between the ‘tested’ 
(i.e. PCT test at baseline) and ‘untested’ patients (i.e. no PCT test at base-
line) on characteristics deemed prognostic of clinical endpoints.S1

The following covariates were used in the propensity-score modelling: 
age, sex, number of comorbidities, smoking status, ethnicity, index of 
multiple deprivation, quick Sequential (Sepsis-Related) Organ Failure 
Assessment (qSOFA) scoreS1; Confusion, Uraemia, Respiratory rate, 
Blood pressure, age ≥65 (CURB-65) scoreS2 for pneumonia severity; 
National Early Warning Score 2 (NEWS2)S3; 4C Mortality scoreS4; presence 
of early secondary bacterial infection; admission to ICU at baseline; blood 
laboratory tests (C-reactive protein, white blood cell count, neutrophil 
count, D-dimer, troponin) at baseline and chest radiograph imaging [un-
coded, definite COVID-19, normal, indeterminate, non-COVID-19 chest 
radiograph abnormalities (lobar pneumonia, pleural effusions, pulmon-
ary oedema or other patterns)] at baseline (i.e. performed ± day of a posi-
tive COVID-19 test), as well as indicator variables denoting missing blood 
test data.

Propensity-score-matched data were generated with the aim of esti-
mating the average effect of baseline PCT testing on a population of pa-
tients similar to those who received PCT testing at baseline, but who did 
not, thus measuring the effect withdrawal of baseline PCT testing might 
have; this average effect of testing on the tested (ATT, propensity-score 
matching to estimate the average effect of baseline PCT testing on the 
tested population) was considered the estimand for the primary analysis. 
In a secondary analysis we estimated the average effect of baseline PCT 
testing on a population of patients like those who did not receive PCT test-
ing at baseline, thus measuring the effect of introduction of baseline PCT 
testing to those who did not have it (i.e. the average effect of testing on 
the untested, ATU). Different methods for generating the propensity 
scores were explored, balance diagnostics were used to check the ad-
equacy of matching and the optimal method selected. Checking ad-
equacy of matching involved examining if the distributions of measured 
baseline covariates were similar between patients who received the 
PCT test at baseline and those who did not, based on the standardized 
mean difference and Kolmogorov–Smirnov statistic with 0.1 used as a 
threshold for acceptable covariate balance.S5 Plots of standardized 
mean difference and Kolmogorov–Smirnov statistics for all covariates 
for both ATT and ATU are presented in Figures S1 and S2 (available as 
Supplementary data at JAC Online).

For the ATT estimand, optimal full matching was used, with the pro-
pensity score estimated with probit regression. For the ATU estimand, 
nearest neighbour matching without replacement was used, with the 
propensity score estimated with probit regression and a calliper (i.e. the 
used difference in the propensity scores between matched subjects) fixed 
at 0.02. G-computation in the matched sample was used to estimate the 
ATT and ATU. A cluster-robust variance was used to estimate its standard 
error with matching stratum membership as the clustering variable.

Main analysis

Regression modelling was used to examine whether baseline PCT testing 
affected the days on early antibiotic treatment and other outcomes. 
Models had treatment (i.e. PCT test done at baseline or not) as predictor 
variable and also included the matching weights derived from the propen-
sity scores. Results are presented as effect estimates with 95% confidence 
intervals (CIs) and P values for both the average effect on the tested 
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(ATT, primary analysis) and the untested population (ATU, secondary 
analysis).S5 The type of analysis model for the propensity-score-matched 
data depended on the type of outcome i.e. logistic regression for binary 
outcomes (ICU admission, mortality, SBI) and linear regression for con-
tinuous outcomes (days on early/late/total antibiotics, length of hospital 
stay). The risk of unmeasured confounding was quantified using 
E-values.S6 Subgroup analyses included testing if the number of per-
formed PCT tests or being in ICU at baseline were associated with the dur-
ation of early antimicrobial treatment.

Statistical software

STATA version 17 was used for data management and descriptive statis-
tics. Propensity-score analyses were performed in R version 4.3.1,S7 with 
add-on packages ‘MatchIt’ version 4.5.4S8 for propensity-score matching, 
‘cobalt’S9 for assessing covariate imbalance, ‘marginaleffects’S10 to per-
form g-computation and ‘ggplot2’ S11 for graphical presentation.

Results
Propensity-score matching
Nearest neighbour propensity-score matching with and without 
replacement and optimal full matching with different para-
meters were tested and found to be successful for primary 
(ATT) analysis while optimal full matching was not successful 
for secondary (ATU) analysis (Figures S1 and S2).

Participants
Data for 6173 individuals with a positive COVID-19 test were col-
lected. After quality control, 6089 remained (patient characteris-
tics in Tables S1 and S2). Data from 5960 of 6089 (97.9%) people 
were used for the propensity-score-matched primary (ATT 

analysis (Figure 1). The 5960 comprised 1548 (26.0%) partici-
pants with and 4412 (74.0%) without a PCT test at baseline 
(Table 1). 2818 people were included in the secondary (ATU) ana-
lysis, comprising 1513 (53.7%) with and 1305 (46.3%) without a 
PCT test at baseline.

Descriptive analysis
Recruitment figures across participating organizations are in 
Table S3. Four organizations contributed with more than 13% 
each to the overall sample. A breakdown of the primary data 
sources is presented in Table S4. Most COVID-19 episodes were 
with community onset (72.9%), see Table S5. Descriptive statis-
tics for the main participant characteristics are presented in 
Table 2 for the primary (ATT) analysis, and for the ATU analysis 
in Table S6. The number, frequency and breakdown of comorbid-
ities per person is presented in Tables S7 and S8.

Primary outcome
The mean number of days of early antibiotics in the matched 
data was 3.96 (SD 2.53). The spread of the number of days of 
early antibiotic therapy in the primary (ATT) analysis, broken 
down by PCT test status at baseline, is presented in Figure 2. 
The secondary (ATU) analysis is shown in Figure S3. The primary 
(ATT) analysis estimated a decrease in the average duration of 
early antibiotic therapy of 0.43 days (SE = 0.11, 95% CI 0.22– 
0.64, P < 0.001), per patient who had PCT testing at baseline com-
pared to a (hypothetical) scenario in which they did not. A similar 
significant decrease of 0.30 days (SE = 0.10, 95% CI 0.11–0.49, 
P = 0.002) was estimated in the secondary (ATU) analysis.

Figure 1. Recruitment flowchart and description of reasons for exclusions: (a) proportion of second-line therapies and (b) success rate of second-line 
therapies.
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Secondary outcomes
Antibiotic prescribing

The estimated average effect of PCT testing at baseline on total 
antibiotic prescribing was a decrease of 0.72 days (SE = 0.33, 
95% CI 0.06–1.38, P = 0.03), indicating the average effect of test-
ing was to decrease the duration of total antibiotics by 0.72 days 
per tested patient compared to a (hypothetical) scenario with no 
testing. The spread of total days antibiotic therapy in the primary 
(ATT) analysis is presented in Figures S4 and S5. The secondary 
(ATU analysis did not show a statistically significant reduction 
in total duration. There was no effect of a baseline PCT on late 
antibiotic prescribing (decrease of 0.28 days, SE = 0.29, 95% CI 
0.85- −0.27, P = 0.31) in the ATT analysis. While a PCT test at base-
line was associated with reduced antibiotic duration, a single PCT 
test any time or multiple testing during the inpatient stay was 

Table 1. Distribution and frequency of procalcitonin (PCT) tests in the 
population used for primary propensity scoring (ATT)

Frequency (%)

Baseline PCT
Yes 1548 (26.0)
No 4412 (74.0)
PCT done at any time
Yes 2200 (36.9)
No 3760 (63.1)
Number of PCT tests per person
0 3760 (63.1)
1 1404 (23.6)
2 or more 796 (13.4)
Total 5960

Table 2. Patient characteristics according to whether a PCT test was done at baseline or not, showing both propensity-score matched (ATT) and 
unmatched data

PCT at baseline, unmatched sample  
(total n = 5960)

PCT at baseline, matched sample  
(total n = 5960)

No Yes No Yes
n (%) n (%) n (%) n (%)

Age category
16–49 472 (10.7) 188 (12.1) 512.3 (11.6) 188 (12.1)
50–59 445 (10.1) 233 (15.1) 649.8 (14.7) 233 (15.1)
60–69 617 (14.0) 251 (16.2) 813.9 (18.5) 251 (16.2)
70–79 1055 (23.9) 341 (22.0) 926.6 (21.0) 341 (22.0)
>80 1823 (41.3) 535 (34.6) 1509.4 (34.2) 535 (34.6)

Sex
female 1970 (44.6) 674 (43.5) 1824.1 (41.3) 674 (43.5)
male 2434 (55.2) 872 (56.3) 2581.4 (58.5) 872 (56.3)
unknown 8 (0.2) 2 (0.1) 6.5 (0.2) 2 (0.1)

Ethnicity
white 3380 (76.6) 1227 (79.3) 3557.5 (80.6) 1227 (79.3)
mixed 35 (0.8) 11 (0.7) 43.9 (1.0) 11 (0.7)
Asian 136 (3.1) 105 (6.8) 243.0 (5.5) 105 (6.8)
black 86 (2.0) 64 (4.1) 162.8 (3.7) 64 (4.1)
other 189 (4.3) 52 (3.4) 153.8 (3.5) 52 (3.4)
Unknown 586 (13.3) 89 (5.8) 251.1 (5.7) 89 (5.8)

Smoking status
no 1864 (42.2) 619 (40.0) 1737.3 (39.4) 619 (40.0)
yes 206 (4.7) 64 (4.1) 151.1 (3.4) 64 (4.1)
ex-smoker 1208 (27.4) 351 (22.7) 984.3 (22.3) 351 (22.7)
Unknown 1134 (25.7) 514 (33.2) 1539.3 (34.9) 514 (33.2)

ICU admission at baseline
no 4193 (95) 1333 (86.1) 3796.2 (86.0) 1333 (86.1)
yes 184 (4.2) 200 (12.9) 571.9 (13.0) 200 (12.9)
Unknown 35 (0.8) 15 (1.0) 43.9 (1.0) 15 (1.0)

Has the patient died (as of when the data were collected and input in the study database)?
no 2374 (53.8) 921 (59.5) 2419.4 (54.8) 921 (59.5)
yes 2016 (45.7) 621 (40.1) 1965.4 (44.6) 621 (40.1)
unknown 22 (0.5) 6 (0.4) 27.1 (0.6) 6 (0.4)
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associated with significant increases in both late and total anti-
biotic prescribing (Tables S9 and S10). With respect to late anti-
biotic prescribing in the secondary (ATU) analysis, similar to the 
primary (ATT) analysis, non-statistically significant results were 
observed.

Mortality and hospital/ICU length of stay (LOS)

For mortality at 30 and 60 days, and LOS (both in hospital and 
ICU) there were no statistically significant differences for patients 
who had baseline PCT testing or not in both matched analyses 
(Tables S11–S18 and Figures S6 and S7).

Resistant secondary bacterial infection

There were no statistically significant differences in the rate of 
antimicrobial-resistant secondary bacterial infections for pa-
tients who had baseline PCT testing or not in both matched ana-
lyses (Tables S19-S23).

Sensitivity analysis for unmeasured confounding

E-values were calculated to evaluate the robustness of our find-
ings regarding potential unmeasured confounders.S6 The ob-
served E-values for the primary ATT and secondary ATU 
analyses were 1.59 and 1.47, respectively.

Subgroup analysis

Subgroup analysis of patients admitted early to ICU, found that 
they were more likely to receive early antibiotic therapy and a 
baseline PCT was not associated with significant changes to anti-
biotic prescribing (Tables S24 and S25). This analysis is based on 
384 patients who were admitted to ICU and 5526 who were 
not and as such is underpowered (Table S24).

Discussion
Baseline PCT testing during COVID-19 was associated with a stat-
istically significant reduction in antibiotic prescribing in the first 
seven days and in total days of antibiotic prescribing. There was 
no significant effect of baseline PCT testing on late antibiotic pre-
scribing. There was no evidence of harm in terms of a significant 
effect of a baseline PCT on mortality at 30 and 60 days, hospital/ 
ICU LOS or resistant secondary bacterial infection.

PCT was widely adopted in England and Wales during the first 
wave of the pandemic,7 contrary to subsequent NICE guidelines. 
We found that PCT measurement at baseline in hospitalized pa-
tients with COVID-19 was associated with fewer days of antibiot-
ic prescribing, which is consistent with a systematic review 
examining the impact of PCT on antibiotic prescribing in respira-
tory tract infections before COVID-19 and with local hospital re-
ports about PCT use during the pandemic.8,16–18 Confounding 
by severity of infection is a concern in many of the local studies, 
as well as their small sample size, both of which we attempted to 
address with the current design. The findings are also consistent 
with an analysis of aggregated data from English hospitals that 
found an initial fall in antibiotic use during the first wave of the 
pandemic in hospitals that used or introduced PCT, an effect 
that was slowly eroded over time.19

If PCT was responsible for the observed reduction in antibiotic 
use, its effect was small, on a patient level. This result is different 
from a meta-analysis of CAP cases which found a 2.45 day reduc-
tion in antibiotic duration in PCT-tested cases.4 This could be ex-
plained by the inconsistent way in which PCT was introduced 
with no or variable guidance on its use,7 or it may have little effect 
in this setting, similar to findings of Huang et al.20 It is possible that 
the effect of PCT-guided antibiotic use is dependent on the effect-
iveness of its implementation or that it may have greatest value in 
patients with low disease severity, where it gives clinicians more 

Figure 2. Histogram of days of primary outcome (early antibiotics, within first 7 days) according to whether a PCT test was done at baseline or not. 
Using propensity-score matching based on the ATT. This figure appears in colour in the online version of JAC and in black and white in the print version 
of JAC.
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confidence to stop or withhold antibiotics. This idea is supported 
by the finding that a baseline PCT was not associated with anti-
biotic reductions in those admitted to ICU early in their admission, 
however, this analysis was underpowered due to the small pro-
portion of patients admitted to ICU early in their hospital stay. 
Although the per-patient reduction in antibiotic duration asso-
ciated with baseline PCT was small, the cumulative effect of these 
over the study period may have an important effect reducing se-
lection for resistant bacteria, but this would need further study.

The perceived value of PCT is its ability to differentiate bacter-
ial from viral infections. However, contrary to this, a range of peak 
PCT values have been demonstrated in patients with viral pneu-
monia indicating that viral infection can also increase PCT.21

PCT did not perform well to distinguish pure viral pneumonia 
from bacterial co-infection, but performed better as a prognostic 
rather than diagnostic marker.21 A recent analysis also found 
that PCT had poor diagnostic accuracy for detecting microbio-
logically confirmed bacterial infection at the time of presentation 
with COVID-19.22 In a mouse model of pure influenza A infection, 
PCT transcription in the lung was elevated and associated with in-
creased expression of IL-6.21 When a human lung epithelial cell 
line was infected with influenza A, PCT expression correlated posi-
tively with viral load, IL-6 and IFN-γ.21 Thus, PCT expression is dri-
ven by the innate immune system; by bacterial antigens but also 
by tissue damage. The idea that higher PCT values relate to more 
tissue damage than just pathogen, is supported by the associ-
ation of high levels with clinical deterioration in,23 and severity 
of, COVID-19.24,25 This means that PCT testing may help reduce 
antibiotics in the less severely unwell but might drive increased 
antibiotic use in the more severely unwell where diagnostic ac-
curacy for bacterial infection appears to be worse. Although 
PCT did not appear to be harmful in terms of the objective mea-
sures of mortality and LOS, the lack of a positive impact on mor-
tality contradicts data from before COVID-19, in a meta-analysis 
of data from 6708 patients.4

Strengths and limitations
We obtained a large sample of patient data from geographically 
spread hospitals and various hospital types to improve generaliz-
ability. Our sampling strategy was purposeful, deliberately includ-
ing institutions that did/did not introduce/use PCT testing during 
the first wave of the pandemic. This was a retrospective, observa-
tional, hospital record-based study with the associated problems 
of missing data, incorrectly recorded information, lack of random-
ization and reliance on data that were entered into the clinical re-
cords for the patients rather than purposefully collected and 
curated data. Although we took account of known confounding 
factors, we could not account for unknown confounders. The 
moderate E-value (1.59) suggests the primary analysis result is 
potentially sensitive to unmeasured confounders; the possibility 
of residual confounding cannot be excluded despite careful ad-
justment for available covariates during propensity-score match-
ing. We aimed to reduce the risk of selection bias by including 
consecutive patients fulfilling the eligibility criteria. Data collect-
ing/entering was separate to analysis. Collection of microbiology 
results was restricted to blood and respiratory samples; we may 
therefore have underestimated rates of secondary bacterial in-
fection. We could not retrospectively assess appropriateness of 

antibiotics according to local guidelines. The long time-interval 
between study period and reporting reflects the current difficul-
ties of collecting routine clinical data. Although this study was 
based on data from patients in NHS hospitals in the UK, the chal-
lenges faced by other healthcare systems during the first wave 
COVID-19 pandemic were similar with respect to the research 
question that we studied and therefore, these results are likely 
to be relevant to other healthcare systems. However, overgener-
alization and assumption of causation should be avoided. Only a 
future randomized controlled trial (RCT) would overcome these 
caveats. The primary aim of the study was to measure the differ-
ence in the number of days of early antibiotic treatment between 
patients with COVID-19 who did/did not have baseline PCT testing. 
A limitation of the study is that the effects of testing of repeated 
PCT were not studied. Baseline PCT testing was specifically chosen 
because it presents a straightforward and implementable proto-
col for hospitals.

Conclusions
Baseline PCT testing was associated with a statistically significant 
reduction in antibiotic prescribing in hospitalized patients with 
COVID-19, indicating that PCT may have been an effective anti-
microbial stewardship tool during the first wave of the pandemic. 
PCT testing appeared to be safe having no measurable impact on 
mortality or LOS, pending the results of RCTs, and considering the 
likely cost-effectiveness of PCT in this context (reported in the ac-
companying article26), it seems reasonable for centres who 
adopted baseline PCT as an antimicrobial stewardship measure 
to continue to do so. Our study highlights the need for embed-
ded, rapid evaluations of infection diagnostics in the NHS so 
that even in challenging circumstances, introduction into clinical 
practice is supported by evidence for clinical utility.
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