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Defining the Ideal Criteria for Stable Skeletonisation in Object Point
Clouds

Qingmeng Wen1, Seyed Amir Tafrishi1, Ze Ji1 and Yu-Kun Lai2

Abstract— In recent years, there has been notable interest in
skeletonization methods for 3D object models, driven by their
broad applicability in fields such as computer graphics and
robotics. However, existing studies have lacked a clear quantita-
tive standard for evaluating skeletonization quality. This paper
extends prior research on point cloud skeletonization to examine
the intrinsic properties of the process across diverse object
shapes, aiming to provide intuitive insights into the quality
of resulting skeletons. Additionally, we propose a novel concept
of stable convergence of contraction, leveraging distributions of
geometric curvature and vectorial normal changes.

I. INTRODUCTION

The exploration of skeletonization methods for 3D object
models has surged in recent years, driven by their versatile
applications across computer graphics and robotics [1]–[4].
However, despite the extensive research conducted in this
domain, a notable gap persists in the lack of established
quantitative benchmarks for assessing the quality of resulting
skeletons [2], [5]. This work addresses this deficiency by
delving into the inherent characteristics of skeletonization
processes across objects of varying shapes. Through a com-
prehensive analysis, we aim to offer intuitive insights into
the quality of generated skeletons, paving the way for more
informed decision-making in practical applications.

Furthermore, we introduce a novel concept termed stable
convergence of contraction, which leverages distributions
of geometric curvature and vectorial normal changes. This
addition to the evaluation metrics not only enhances the
understanding of skeletonization methods but also opens new
avenues for improving their performance. By presenting our
methodology for evaluating metrics and defining high-quality
skeletons, followed by the presentation of experimental re-
sults and observations, we contribute to advancing the field of
skeletonization research. Our findings hold promise for refin-
ing existing techniques and informing future developments,
ultimately enhancing the effectiveness of skeletonization
methods in real-world applications.

II. METHODOLOGY

In this section, we look into the meaningful geometrical
properties of stable contraction and skeletonisation, address-
ing the challenge of evaluating the skeletonisation results,
after the brief introduction of Laplacian-based skeletonisa-
tion (LBC).

A. Overview of Laplacian-based skeletonisation
The Laplacian-based skeletonization pipeline (Fig. 1) ex-
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Fig. 1: General structure of Laplacian-based contraction of
point clouds [4], [6].

point clouds using Laplacian weights. It starts with the k-
nearest neighbors (KNN) algorithm to compute neighbor
points for each point in the input cloud. These neigh-
bor points are processed using Delaunay triangulation and
Principal Component Analysis (PCA) to derive neighbor
rings. A Laplacian matrix is then constructed from these
rings, and an iterative contraction process shrinks the point
cloud by balancing contraction and attraction weights until
a termination condition is met. The resulting contracted
points form an approximation of the medial surface, known
as the surface skeleton. This surface skeleton is abstracted
into skeleton vertices using farthest point sampling, with
connections established based on neighbor ring information.
Finally, the skeleton undergoes necessary refinements to
achieve the desired structure.

B. Characteristics of the stable contraction & skeletonisa-
tion

The evaluation of Laplacian-based contraction, crucial for
generating surface and curve skeletons, faces significant
challenges. We analyze changes in surface normal vectors
and curvatures to assess contraction quality, utilizing cosine
similarity to measure directional insights. Additionally, we
examine curvature differences between original and con-
tracted point clouds.

To gauge stability, we propose assessing boundedness
and stable convergence through symmetry in normal vector
and curvature differences, respectively. Boundedness ensures
contraction results remain within expected boundaries, while
distributions in normal vector and curvature differences con-
verging to a symmetric and unimodal pattern indicate stable
convergence. The normal vector difference is given by

Dθ,k,i =
arccos(SC(nk,i, n0,i))

π
, (1)

where
SC(nk,i,n0,i) =

nk,i · n0,i

∥nk,i∥∥n0,i∥
. (2)
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Fig. 2: Changes of normal vector and curvature differences
within contraction process.The selected point cloud object is
chilli.
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Fig. 3: Curvature vector and normal differences between the
input and point cloud after contraction by Laplacian-based
skeletonisation. The obtained contracted point sets (red) are
expected to be bounded by the original point clouds (grey).

nk,i and n0,i are the surface normal vectors of i-th point
in the point cloud contracted k times and the original point
cloud respectively. And the curvature differences are defined
by

∆κn,k = κn,k − κn,0, (3)

where κn,k and κn,0 are the normal curvature of i-th point
in the point cloud contracted k times and the original
point cloud respectively. Understanding these metrics aids
in evaluating surface skeleton quality and contributes to
generating superior curve skeletons for various applications.

III. RESULTS AND DISCUSSION

In this section, we present the experimental results of
our analysis on Laplacian-based skeletonisation conducted
on real-scanned point cloud data. Using point cloud models
from the OmniObject3D dataset [7], we analysed the classic
Laplacian-based skeletonisation method [6].

As illustrated in Fig. 2, the distributions of normal vector
differences and curvature differences evolve during the con-
traction process. The curvature difference (3) remains mini-
mal and maintains a consistent shape throughout, while the
normal vector difference (1) distribution gradually stabilises
over iterations. This stabilisation aligns with the criteria
defined in Section II-B, indicating the stable convergence
of the chilli point cloud contraction. Fig. 3 further contrasts
the distribution patterns of well-contracted point clouds with
those of undesirable contraction results, clearly showing the
stable and unstable patterns, respectively.

These findings highlight the importance of curvature and
surface normal vector differences in indicating stable conver-
gence during contraction and Laplacian-based skeletoniza-
tion. The method continuously corrects distribution patterns
to ensure stability throughout the process.

IV. CONCLUSIONS

This study explores how contraction methods, using
Laplacian-based contraction as an example, achieve stable
convergence in skeletonization. We identify stability indica-
tors through changes in curvature and normal vectors. Future
work will focus on scoring the quality of skeletons.
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