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A B S T R A C T

Hierarchical Reinforcement Learning (HRL) has shown superior performance for mapless navigation tasks.
However, it remains limited in unstructured environments that might contain terrains like long corridors
and dead corners, which can lead to local minima. This is because most HRL-based mapless navigation
methods employ a simplified reward setting and exploration strategy. In this work, we propose a novel reward
function for training the high-level (HL) policy, which contains two components: extrinsic reward and intrinsic
reward. The extrinsic reward encourages the robot to move towards the target location, while the intrinsic
reward is computed based on novelty, episode memory and memory decaying, making the agent capable of
accomplishing spontaneous exploration. We also design a novel neural network structure that incorporates
an LSTM network to augment the agent with memory and reasoning capabilities. We test our method in
unknown environments and specific scenarios prone to the local minimum problem to evaluate the navigation
performance and local minimum resolution ability. The results show that our method significantly increases
the success rate when compared to advanced RL-based methods, achieving a maximum improvement of nearly
28%. Our method demonstrates effective improvement in addressing the local minimum issue, especially in
cases where the baselines fail completely. Additionally, numerous ablation studies consistently confirm the
effectiveness of our proposed reward function and neural network structure.
1. Introduction

Mapless navigation refers to the task of finding a collision-free
path to a specified goal relative to the agent, in situations where the
mobile robot receives only local environmental information, without
pre-constructed descriptions of the environment or online constructed
maps. The mapless navigation ability is crucial for various applica-
tions in unstructured environments. These include indoor and outdoor
scenarios, such as service robots for domestic and public environ-
ments, logistics in industrial warehouses, and urban search and rescue
missions, where obtaining detailed and accurate maps in advance is
challenging.

In recent years, deep reinforcement learning (DRL) has proven to
be suitable for various complex tasks [1], including robot mapless
navigation [2–5]. DRL-based mapless navigation works on a simple
principle that an agent receives a positive reward for reaching the
target location and a penalty for colliding with an obstacle [2,4,5].
Also, performance is usually evaluated based on the success rate of
reaching the target location without collisions [4,6]. These works have
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good performance in simple environments [2,5], but it is difficult to
obtain satisfactory results in complex ones, because of the long decision
horizon and the sparse rewards. As a result, the agent tends to be stuck
in a local region when it encounters complex and unseen environments,
i.e., the local minimum problem.

Hierarchical Reinforcement Learning (HRL) is considered a promis-
ing learning framework for tackling the local minimum problem [7–9].
This is attributed to the nature of HRL that enables an agent to
decompose a long-horizon task into a series of subtasks, which, in
the case of navigation tasks, are intermediate destinations (subgoals).
Such subgoals are easier to reach than a distant goal. Navigation
planning can be divided into two levels, with a high-level (HL) policy
selecting a subgoal for short-term navigation and a low-level (LL) policy
controlling the robot’s locomotion, which allows the robot to reach the
subgoal [7–10].

Despite the effectiveness of HRL for tackling the local minimum
problem [7–9], it remains limited for complex cluttered environments.
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Fig. 1. This is an example of a local minimum problem, where the purple and yellow circles denote the starting and target locations, respectively. The target is situated behind
a long wall. (a) Initially, the HL policy selects subsequent subgoals (denoted by the orange circles) in a downward direction, leading the robot towards the target based on the
simple Euclidean distance. (b) However, since there is no direct path to the goal due to the obstruction posed by the wall, the robot would need to find alternative routes to
bypass the wall. (c) The robot will continue to be attracted by the goal while exploring areas further away from the target, potentially getting trapped in the local area. To address
this, we consider a memory mechanism or effective exploration motivation would enable the agent to avoid re-entering previously visited states, thereby mitigating the issue of
local minima. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
As one example, Fig. 1 illustrates one case, where the target is located
behind a long wall. In this case, the HRL agent can easily be trapped
in a local area.

This is due to the following reasons. First, most (H)RL-based mapless
navigation methods rely on a simplified reward setting, e.g. rewarded
when getting closer to the goal and penalised for any collisions [8–
10]. The distance-based reward is usually simply calculated based on
the Euclidean distance, which is unrealistic in cluttered environments.
Second, exploration is usually based on a simple inefficient random
strategy for exploring unknown areas, especially for complex cluttered
environments [8,9]. Last, in the case of being trapped in local areas,
it would be desirable for the agent to choose alternative paths. We
hypothesise that incorporating a memory mechanism could effectively
address and resolve such issues.

To address these issues, we propose a new reward function for the
HL policy, containing two main components, namely extrinsic reward
and intrinsic reward. The extrinsic reward motivates the agent to move
closer towards the target location, expressed as the change in the
distance from the robot to the target at two consecutive HL steps.

The intrinsic reward in our work is inspired by the novelty the-
ory defined in [11], which posits that animals reward themselves for
identifying something novel. Analogously, an intrinsic reward can be
designed to encourage robots to explore unknown environments by
quantifying novelty as an intrinsic mechanism that drives curiosity
about the world [12–14]. Episode memory is also an important at-
tribute for designing an intrinsic reward [15]. Therefore, in this work,
our intrinsic reward function has the following features. First, when
the agent reaches a subgoal, previously visited areas or states will
be retrieved for calculating the reward. Specifically, we use a count-
based method [13]. Second, memory decaying is introduced in our
work [16] as the basis for assigning rewards, where the size of the
reward depends on the steps required to move from the current state
to the corresponding state in the memory.

Our main contributions are as follows:

∙ We propose a novel intrinsic reward function, which incorporates
components of novelty, episode memory, and memory decaying,
that encourage the agent to explore the environment effectively.

∙ A novel neural network (NN) structure combined with an LSTM
network [17] is introduced, enabling the agent with the capability
to memorise past states for reasoning about subgoal selection.

∙ Numerous comparisons and ablation studies are conducted to
demonstrate the superior performance of our method, focused
specifically on the local minimum issue.
2 
The rest of this paper is organised as follows. Section 2 discusses
related works. Section 3 briefly reviews important preliminaries. Sec-
tion 4 introduces our proposed method in detail. Section 5 introduces
our experiment setup, followed by experimental results and discussions
in Section 6. Section 7 concludes the paper.

2. Related work

Conventional map-based navigation methods have some obvious
limitations. They require significant computational resources to build
and update maps of the environment, using techniques such as Simulta-
neous Localisation and Mapping (SLAM) [18]. The control performance
is entirely dependent on a mathematical model of the robot that is often
simplified or linearised. This can often lead to weakened robustness
for the system [2,3]. Mapless navigation is widely regarded as an
approach that relieves the navigation system from the prerequisites of
a map [2,3,5]. In particular, the approach based on DRL can model
a direct mapping between sensory inputs and robot actions and has
gained increasing interest in recent years [2,3,19]. For example, Tai
et al. [2] successfully apply DRL to mapless navigation, using sparse
Lidar readings, robot velocity, and the relative position of the target
location as inputs. The policy network can output control commands for
nonholonomic robots. Lin et al. [20] enables the robot to learn a map-
less navigation policy that prevents localisation failure by proposing a
reward metric to penalise behaviours that lead to localisation failures
and a reconfigured state representation, including the current observa-
tions and historical trajectory information to transfer the problem to a
Markov Decision Processes (MDP) model.

However, most of the works have been trained and tested in simple
environments [2,5,20]. Considering that most methods have long de-
cision horizons and sparse rewards [5], they struggle to perform well
in complex environments. Wijmans et al. [21] propose the DD-PPO
algorithm to achieve great performance in mapless navigation tasks.
DD-PPO represents a decentralised distributed framework designed for
GPU clustering. Specifically, they utilise 64 Nvidia V100 GPUs to train
their model over 2.5 billion steps. However, meeting these training
requirements is challenging.

HRL is widely regarded as a promising way to learn goal-conditioned
behaviours in long-horizon and complex tasks [22–25]. Such methods
typically design HL policies that operate on a coarser time scale
and control the execution of the LL policy. Typical HRL approaches,
such as Option Critic [26], Feudal Networks (FuN) [27], and HiRO
Networks [24] make use of these ideas of generating subgoals and
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hierarchically integrating policies to combine them with NNs and RL
algorithms. FuN and HiRO combine the HL policy, which generates
subgoals at a lower frequency, and the LL policy, which reaches these
subgoals and receives an intrinsic reward.

Numerous works have applied HRL to robotic navigation tasks with
promising performance [7–10]. Wohlke et al. [7] use grids to represent
a rough map of the environment, providing the agent with obstacle and
reachability information. The HL policy will select a subgoal in a 3 × 3
ubgoal space centred at the agent and pass relevant information to
he LL policy. Bischof et al. [9] divide the entire path from the robot’s
urrent location to the target location into several segments, i.e., a list
f discrete waypoints, which can be seen as subgoals of the HL policy.

However, most HRL methods do not consider the performance of
he LL policy in the HL planning and always assume that the robot
nder the control of the LL policy can reach any subgoal selected by the
L policy [28,29]. In addition, some methods require prior knowledge,

uch as a coarse grid map of the environment [7,9]. Furthermore,
espite the promising performance with HRL for mapless navigation
asks, the local minimum problem remains challenging in complex
nvironments. This might be due to the simplified HL reward setting,
.g. the agent is rewarded based on a simple Euclidean distance-
ased metric, ignoring the complexity of cluttered environments [8–
0]. Most HRL-based approaches use simple exploration strategies,
uch as 𝜖-greedy [8,9], such that the agents lack effective exploration
otivation. Also, most agents lack the memory mechanism, so they
ay revisit those already visited areas, including the paths that have
roven infeasible for the navigation task and will be trapped in a local
egion.

With regard to exploration in unknown environments, many stud-
es show that biological entities use novelty as the driving force for
xploration [30]. Inspired by this phenomenon, many researchers have
ttempted to quantify novelty in artificial intelligent (AI) algorithms,
ormulating novelty as an intrinsic mechanism of AI agents that drives
he curiosity for understanding the world [12–14]. For example, Tang
t al. [14] combine hash tables and classical count-based exploration
o compute novelty rewards. This combination enables the method to
chieve state-of-the-art performance in various continuous DRL bench-
ark tests. Zhelo et al. [4] delve into the examination of exploration

trategies employed by DRL to learn navigation policies. Specifically,
hey enhance the conventional extrinsic reward utilised for training
RL algorithms by incorporating intrinsic reward signals obtained

hrough modelling curiosity. Currently, in RL, when the agent is antici-
ated to be subject to rewards emanating from multiple sources concur-
ently (such as intrinsic and extrinsic rewards), it is commonly observed
hat all rewards are aggregated through summation to construct a
omprehensive reward function. This approach has been demonstrated
o be effective [4,31].

Moreover, as discussed, it is hypothesised that a memory mecha-
ism could enhance navigation performance. Hausknecht et al. [32]
ropose to replace the first post-convolutional fully-connected layer
ith a recurrent LSTM to enable the agent to memorise past states.
number of related works, including this paper, have adopted a

imilar architecture to address various problems. For example, Mnih
t al. [1] train an RL-based model combined with an LSTM network
o enable agents with memory units for navigating in 3D mazes. Singla
t al. [33] propose a memory-based DRL method for avoiding collisions
n indoor environments, with an LSTM network processing partial
nformation acquired previously. Hu et al. [34] present a sim-to-real
ipeline for DRL-based autonomous robot navigation in cluttered rough
errain, where an A3C-based policy is adopted [1]. In the work, LSTM
s employed to capture information from previous states. Mirowski
t al. [35] construct a stacked LSTM framework demonstrating en-
anced data efficiency and task performance through the incorporation
f supplementary navigation-related signals. Tang et al. [36] combine
he cognitive mapping capability of the entorhinal cortex with the

pisodic memory function of the hippocampus. By recollecting past p

3 
travel experiences stored in episodic memory, robots construct a map
of the environment, facilitating more sophisticated cognitive navigation
tasks. In our work, new NNs are proposed to equip the agent with
memory and reasoning capabilities. To the best of the authors’ knowl-
edge, no research has been conducted considering these issues of the
HRL-based navigation scheme.

In addition, most HRL-based mapless navigation approaches have
primarily been evaluated in straightforward synthetic environments,
such as ROS/Gazebo. The authors are not aware of any work on HRL-
based mapless navigation in photo-realistic environments with intricate
characteristics, like in iGibson [37] and Habitat [38].

3. Preliminaries

In this section, we will briefly review the important preliminaries on
which our HL model and LL model are built, including Markov Decision
Processes (MDPs), Reinforcement Learning-based Mapless Navigation,
Goal-conditioned Reinforcement Learning (GRL), and two main Rein-
forcement Learning algorithms, namely Deep Q Network (DQN) and
Deep Deterministic Policy Gradient (DDPG).

Markov Decision Process: An MDP is defined by a tuple ⟨𝑆,𝐴,𝑅,
𝑝, 𝛾, 𝜌0⟩, where 𝑆 is the state space, 𝐴 the action space, 𝑅(𝑠, 𝑎) the
eward function, 𝑝(𝑠′|𝑠, 𝑎) the system transition model, 𝛾 the discount
actor, and 𝜌0 the initial state distribution. A policy 𝜋(𝑎|𝑠) is a mapping
rom states to actions. A state value function 𝑉 𝜋 (𝑠) is defined as the sum
f the expected, discounted returns obtained by an agent following a
olicy 𝜋 starting from state 𝑠, i.e., 𝑉 𝜋 (𝑠) = E𝑎∼𝜋,𝑠∼𝑝[

∑𝑇
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡, 𝑎𝑡)]. A
tate–action value function, 𝑄𝜋 (𝑠, 𝑎), is defined as the same quantity
tarting from taking an action 𝑎 at state 𝑠 and following a policy 𝜋
hereafter. The goal of RL algorithms is to obtain an optimal policy
hat maximises the value functions.
Reinforcement Learning-based Mapless Navigation: Mapless nav-

gation can be formulated as an MDP problem. At each timestep 𝑡, an
ction 𝑎𝑡 ∈ 𝐴 is selected, given the current state 𝑠𝑡 ∈ 𝑆, by policy
(𝑎𝑡|𝑠𝑡), formulated as:

𝑡 ∼ 𝜋(𝑎𝑡|𝑠𝑡) (1)

Specifically in this work, the MDP can be described as

𝑣𝑙𝑒𝑓 𝑡, 𝑣𝑟𝑖𝑔ℎ𝑡) ∼ 𝜋(𝑎𝑡|𝑜𝑡, 𝑑, 𝜃) (2)

here 𝑠𝑡 is substituted by the Lidar observation 𝑜𝑡 and goal location 𝑔𝑡 =
𝑑, 𝜃) in the polar coordinates with respect to the robot frame. Action
𝑡, in this case, is the angular velocities of both wheels (𝑣𝑙𝑒𝑓 𝑡, 𝑣𝑟𝑖𝑔ℎ𝑡).
t is worth noting that the policy 𝜋 does not rely on the map for
ecision making, hence mapless navigation. Also, it can be seen that
is a function of not only the observation, but also the goal. This
akes the problem a goal-conditioned reinforcement learning problem,

s introduced next.
Goal-conditioned Reinforcement Learning: A GRL problem acts

n an MDP with a goal space 𝐺. The standard RL problem pursues
single specific goal, while the agent in GRL seeks to maximise a

niversal value function conditioned by an arbitrary goal, defined as
𝜋 (𝑠, 𝑔). Typically, a goal is defined as a transition to a state, i.e., 𝑔 =
(𝑠). GRL would usually update its policy based on an achieved state
f an episode, as the conditional goal 𝑔, for training a GRL policy that
ould consider multiple goals.
Deep Q Network (DQN): DQN is an off-policy deterministic RL

lgorithm that uses NNs that are parameterised with 𝜃𝑄 to approximate
he Q function of a discrete action task. Given a specific learning sample
𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), the loss function for optimising the network parameters
s formulated as 𝐿(𝜃𝑄) = [𝑦 − 𝑄(𝑠𝑡, 𝑎𝑡)|𝜃𝑄]2, where the target 𝑦 =
𝑡 + 𝛾 max𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑎+1|𝜃𝑄). In practice, it is common to use target
etworks to stabilise the learning process. Deep Deterministic Policy
radient (DDPG): DDPG is an RL algorithm for continuous action

paces. It has an actor–critic style, using separate NNs to approximate
he Q function and the deterministic policy. DDPG updates both net-
orks at regular intervals. In practice, it is common to use a target
etwork and a second critic network to mitigate the overestimation

roblem in DDPG and to improve learning efficiency.
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Fig. 2. The overall framework. The HL policy selects a subgoal based on the HL input. The LL policy controls the robot to reach the subgoal, given the subgoal and other LL input
information. The process repeats until the robot reaches the target location. Regarding HL model training, we propose a new reward function that has two components: extrinsic
and intrinsic rewards. The environment provides the extrinsic reward, and the intrinsic reward is calculated based on novelty, episode memory, and memory decaying.
4. Methods

We propose an HRL-based mapless navigation method, where the
HL policy is responsible for selecting a subgoal in the subgoal space
and the LL policy controls the locomotion of the robot to reach the
corresponding subgoal. Fig. 2 illustrates the proposed framework. To
train the HL policy, we introduce a new reward function that includes
two components: extrinsic and intrinsic rewards. Briefly, the extrinsic
reward originates from the environment and motivates the agent to
move towards the target location. The intrinsic reward depends on
three key variables, namely novelty, episode memory and memory
decay. In this section, we will describe the working principles of the
HL and LL policies and their training processes, respectively.

4.1. High-level policy

The following subsections describe the main components of the HL
policy, namely the observation, the action/subgoal space, the reward
function, and the network structure.

4.1.1. Observation
The observation of the HL policy comprised of 6 parts, denoted

as 𝑜𝐻𝑡 = {𝑜𝐻∥𝑔𝐻𝑝_𝑡∥𝑎
𝐻
𝑡−1∥𝑟

𝐻
𝑡−1∥𝑥𝑡, 𝑦𝑡, 𝜙𝑡∥𝑁(𝑥𝑡, 𝑦𝑡)}, where ∥ denotes vector

concatenation. 𝑜𝐻 is the current sensor reading, and 𝑔𝐻𝑝_𝑡 denotes the
polar coordinates of the target location with respect to the robot frame.
For the agent to learn policies through past experience, the action 𝑎𝐻𝑡−1
executed at the last HL step 𝑡−1, i.e. the last selected subgoal, and the
HL reward 𝑟𝐻𝑡−1 at the previous step 𝑡 − 1, are also included. 𝑥𝑡, 𝑦𝑡, 𝜙𝑡
represent the coordinates of the current location and heading of the
robot. The magnitude of the reward is contingent upon the frequency
of the robot’s visits to the current location, which will be described
in Section 4.2.3. To expedite the agent’s acquisition of the correlation
between the reward and visit frequency, we add 𝑁(𝑥𝑡, 𝑦𝑡), which is the
number of visits to the current location by the robot, to the observation.

4.1.2. Action space (subgoals)
The HL action space, denoted by 𝐴𝐻 , is constructed by a list of

subgoals that are needed by the LL policy for short-term navigation.
Effectively, the HL action space can be seen as the LL goals, i.e., 𝐴𝐻 =
𝐺𝐿.

Some works use 8 adjacent regions centred on the robot as the
action space [7]. To provide the robot with more options in a complex
and obstacle-laden environment, we add 2 additional regions in the
front and rear regions of the robot, respectively, as shown in Fig. 3.
In addition, since the HL input contains the past states, to initialise the
agent when no historical experience is available, we use stand still as
historical experience for the initial state. Therefore, our subgoal space
consists of 13 subgoals, with 12 surrounding areas and one for keeping
the robot standing still.
4 
Fig. 3. Subgoal space. We set the surrounding area, centred on the robot’s current
pose, as the subgoal space (yellow circle). Each grid is 0.35 m in width and length.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

4.1.3. Reward function
As mentioned, our reward function contains two components: ex-

trinsic and intrinsic rewards. The total HL reward for each step is
the sum of the extrinsic and intrinsic rewards except when the robot
reaches the target, or the agent remains standing still. The reward 𝑅𝐻

𝑡
is defined as

𝑅𝐻
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑟𝐻𝑎𝑟𝑟𝑖𝑣𝑒 if 𝑑𝑡 ≤ 𝛿𝐻

𝑅𝑒𝑥 + 𝑅𝑖𝑛 other
𝑅𝑠 stand still

(3)

Three conditions are considered for defining 𝑅𝐻
𝑡 . 𝑅𝑠 is a negative

reward for penalising standing still. A positive value 𝑟𝐻𝑎𝑟𝑟𝑖𝑣𝑒 is assigned
to the reward, when the robot reaches the target location. This is based
on a distance threshold condition when the distance to the target 𝑑𝑡 is
within a radius 𝛿𝐻 . 𝑅𝑒𝑥 and 𝑅𝑖𝑛 are the extrinsic and intrinsic rewards,
respectively, and their summation of them forms the reward in other
situations. This approach has been demonstrated to be effective [4,31].

The extrinsic reward is defined in a similar manner as employed in
other non-hierarchical RL-based mapless navigation methods [2,4]. Its
mathematical expression is

𝑅𝑒𝑥 = 𝐿𝑒𝑥𝑡−1 − 𝐿𝑒𝑥𝑡 (4)

The extrinsic reward is defined as the change of distance from the
robot to the target location between two consecutive HL steps. 𝐿𝑒𝑥𝑡
represents the distance from the target at HL step 𝑡. The extrinsic
reward magnitude increases as the robot approaches the target with
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Fig. 4. Network structure of HL policy. The input 𝑖𝐻𝑡 includes the agent’s current observation and also the observations from the last three HL steps. The output is the Q value
of each subgoal.
greater proximity. This is directly useful for the agent to be motivated
by the extrinsic reward to learn to move towards the target location.

The intrinsic reward encourages the agent to explore unknown
environments. Analogous to the behaviours of animals that rely on
spatial memories to determine the novelty of a location [39], for navi-
gation tasks, we consider spatial memory an important mechanism for
implementing robot intrinsic motivation for exploration. Specifically,
in the work, we store the coordinates of all subgoals the HL policy has
previously selected, formulated as below:

𝑀 = [𝑥0, 𝑦0; 𝑥1, 𝑦1; ...; 𝑥𝑡−1, 𝑦𝑡−1] (5)

The novelty of the current state is derived from the number of
occurrences in which the agent has visited the corresponding location.
We name this the Novelty Count (NC), denoted by 𝑁(𝑥, 𝑦).

A threshold 𝛿𝐵 is used as the condition to determine if the location
has been visited. The number of visits at the current place 𝑁(𝑥𝑡, 𝑦𝑡)
will be increased by 1 if the current location is within 𝛿𝐵 to the
corresponding location.

A high NC indicates low novelty for the current state of the agent.
The intrinsic reward function can be formulated as

𝑅𝑖𝑛 = 𝛼𝑁(𝑥𝑡, 𝑦𝑡) (6)

where 𝑁(𝑥𝑡, 𝑦𝑡) is the NC and 𝛼 is a weighting factor that is negative.
The intrinsic reward encourages the robot to explore more areas

efficiently by avoiding reaching locations that have been previously
visited. However, this is not ideal in all situations. One example is
when the robot arrives at a dead end, where alternative paths are
limited or do not exist. In this case, the above intrinsic reward would
prohibit the robot from leaving the local region through the only path
that has been traversed. Although previously visited places are less
favourable, we consider them still worth further exploration. In our
work, we introduce a memory decaying factor 𝑀𝑑 to the intrinsic
reward. Mathematically, we define 𝑀𝑑 as a function of the time that
the agent has spent travelling to the current location (𝑥𝑡, 𝑦𝑡) from the
corresponding location in the episode memory. 𝑀𝑑 is formulated as
follows:

𝑀𝑑 = 𝑒−(𝐿𝑀−1)∕10 (7)

where 𝐿𝑀 represent the number of HL steps since the last time the
robot visited the location. 𝑀𝑑 is zero if the location has not been
previously visited. A high 𝐿𝑀 indicates that the agent visited the cor-
responding place long ago, leading to a small value of 𝑀𝑑 . Conversely,
if the agent recently visited a location, the value of 𝐿𝑀 will be low.
𝐿𝑀 is 1 if the agent visited the place in the previous HL step. Since
𝛼 is negative, the agent will incur a significant penalty for revisiting
recently visited locations. Integrating the memory decaying with the
intrinsic reward function gives Eq. (6), as follows:
𝑅𝑖𝑛 = 𝛼𝑁(𝑥𝑡, 𝑦𝑡)𝑀𝑑 (8)

5 
In order to avoid an infinitely small reward, a minimum value 𝑅0
is set, and 𝑅𝑒𝑥 + 𝑅𝑖𝑛 thus becomes:

𝑅𝑒𝑥+𝑖𝑛 = max(𝑅0, 𝑅𝑒𝑥 + 𝑅𝑖𝑛) (9)

In addition, to enable the HL policy to take the LL policy’s ability
into account when selecting subgoals, we add some penalty elements
to the reward function. The complete reward function 𝑅𝐻

𝑡 for the HL
policy becomes:

𝑅𝐻
𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑟𝐻𝑎𝑟𝑟𝑖𝑣𝑒 if 𝑑𝑡 ≤ 𝛿𝐻

𝑟𝐻𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 if collision
𝑟𝐻𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 if 𝑡𝐿 ≥ 𝑇
𝑅𝑒𝑥+𝑖𝑛 other
𝑅𝑠 stand still

(10)

where 𝑟𝐻𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 and 𝑟𝐻𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 are the penalty values that occur when the
LL policy fails to reach a selected subgoal due to collision or timeout.

4.1.4. Network structure
We use DQN to train our HL policy. As shown in Fig. 4, we employ

the LSTM network to equip the agent with memory and reasoning capa-
bilities. By leveraging memory units and gating mechanisms, the LSTM
module enables the capture and utilisation of past information, thereby
assisting the agent in making more informed policies. Specifically, we
input a sequence of the four recent states 𝑖𝐻𝑡 = {𝑜𝐻𝑡−3, 𝑜

𝐻
𝑡−2, 𝑜

𝐻
𝑡−1, 𝑜

𝐻
𝑡 }

into a single layer of 30 LSTM cells, facilitating the extraction and
integration of relevant temporal patterns. These are followed by two
fully connected layers with 120 and 128 units. The network output
includes the Q values for selecting the corresponding subgoals with a
given input. Alg. 1 details the algorithmic implementation of our HL
policy.

4.2. Low-level policy

The LL policy is responsible for outputting the robot’s control com-
mands in order to navigate to any given short-term goal. This subsec-
tion will introduce the LL policy in terms of observation, action, reward,
and network structure.

4.2.1. Observation
The observation of the LL policy comprises five parts, formulated

as 𝑜𝐿𝑡 = {𝑜𝐿‖𝑣𝐿‖𝑔𝐿𝑝_𝑡‖𝑎
𝐿
𝑡−1‖𝑟

𝐿
𝑡−1}, where ∥ denotes vector concatenation,

𝑜𝐿 represents the Lidar readings at the current pose, 𝑔𝐿𝑝_𝑡 represents the
target location in the polar coordinates of the robot frame, 𝑎𝐿𝑡−1 is the
action produced by the LL policy at the last timestep and 𝑟𝐿𝑡−1 is the
reward by executing action 𝑎𝐿 .
𝑡−1
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4.2.2. Action
We use a TurtleBot, which has a differential drive configuration.

Therefore, the LL policy outputs the velocities of the two wheels,
i.e., 𝑎𝐿𝑡 = {𝑣𝑙𝑒𝑓 𝑡, 𝑣𝑟𝑖𝑔ℎ𝑡}.

.2.3. Reward function
The reward function for the LL policy is shown below:

𝐿(𝑜𝐿𝑡 , 𝑎
𝐿
𝑡 , 𝑔

𝐿) =

⎧

⎪

⎨

⎪

⎩

𝑟𝐿𝑎𝑟𝑟𝑖𝑣𝑒 if 𝑑𝑡 ≤ 𝛿𝐿

𝑟𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 if collision
𝑟𝐿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ otherwise

(11)

where

• 𝑟𝐿𝑎𝑟𝑟𝑖𝑣𝑒 is a large positive value that will be given when the robot
reaches the target location, i.e., when its distance to the target 𝑑𝑡
is within a radius 𝛿𝐿;

• 𝑟𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 penalises the policy when the robot collides with an
obstacle; and

• 𝑟𝐿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ = 𝑐𝑑 (𝑑𝑡−1−𝑑𝑡) is the approaching reward, where (𝑑𝑡−1−𝑑𝑡)
is the distance difference to the target between the current and
the last timesteps, and 𝑐𝑑 is a weighting factor.

.2.4. Network structure
DDPG is used for the LL policy. The actor network for the DDPG-

ased agent has a single layer of 64 LSTM cells first, followed by three
LP layers, with the same size of 512. The critic network also contains
single layer comprising 64 LSTM cells and three MLP layers, where

he sizes of the first and last MLP layers are both 512, and the second
ayer has two extra dimensions for the actions, making the size 514.
oth the actor and critic networks use ReLU activation on each MLP

ayer, except for the output. The actor network uses hyperbolic tangent
o activate the final layer, and the critic network has no activation on
he output.
Algorithm 1: HL policy of our HRL model
Given:

∙ Pretrained LL policy 𝜋𝐿𝐿;
∙ HL policy 𝜋𝐻𝐿, HL buffer 𝐷𝐻𝐿;

Initialise DQN of HL policy;
for 𝑚 = 0 to 𝑀 epoch do

# Sample training environment Env 1, 2, 3...(once m is
changed, sample another different environment in turn)
for 𝑗 = 0 to 𝐽 training steps do

𝑡𝐻𝐿 = 0,
𝑑𝑜𝑛𝑒 = 0
Sample a target location 𝑔𝑡
while do

# Obtain a subgoal 𝑔𝑠
𝑔𝑠 ∼ epsilon-greedy(𝜋𝐻𝐿(𝑖𝐻𝑡 ))
while do

𝑡𝐿𝐿 = 0
𝑎𝑡𝐿𝐿 ∼ 𝜋𝐿𝐿(𝑜𝐿𝑡 )
𝑡𝐿𝐿 = 𝑡𝐿𝐿 + 1
𝑜𝐿𝑡 = 𝑜𝐿𝑡+1
if 𝑡𝐿𝐿 ≥ 𝑇𝐿𝐿, or 𝑔𝑠 reached, or collision then

break
𝑡𝐻𝐿 = 𝑡𝐻𝐿 + 1
if 𝑡𝐿𝐿 ≥ 𝑇𝐿𝐿, or 𝑔𝑡 reached, or collision, or 𝑡𝐻𝐿 ≥ 𝑇𝐻𝐿
then

𝑑𝑜𝑛𝑒 = 1
𝐷𝐻𝐿 ← (𝑖𝐻𝑡 , 𝑔𝑠, 𝑅𝐻 , 𝑖𝐻𝑡+1,done)
𝜆𝑡𝐻𝐿+1

← Adam (𝜆𝑡𝐻𝐿
, 𝐷𝐻𝐿)

𝑖𝐻𝑡 = 𝑖𝐻𝑡+1
if 𝑑𝑜𝑛𝑒 = 1 then

break
6 
5. Experiments

In our work, we use the iGibson simulator [37], which is developed
based on the Gibson dataset [40] that contains 572 realistic 3D indoor
environments. The robot we use for training is a TurtleBot equipped
with a 360 laser beam Lidar covering a field of view (FoV) of 360
degrees.

We use a total of 10 different environments to train the HL policy
and the LL policy separately. As mentioned, one main cause for failure
in mapless navigation tasks is the local minimum problem. To better
illustrate the effectiveness of our approach in addressing this issue,
three complex indoor environments which have never been seen before
are chosen for testing, as shown in Fig. 5. The dimensions of the
environments are as follows: Env 1 is 9.5 m × 8.5 m, Env 2 is 12.0 m
× 8.0 m, and Env 3 is 10.0 m × 9.5 m.

The tests in each environment are divided into three difficulty
levels, which are defined according to the distance between the robot’s
initial location and the target location, ranging from 2–5 m, 5–8 m, and
8–10 m. The greater the distance, the more difficult the task. Difficult
tasks may contain complex scenarios and more likely result in local
minima. We perform 500 episodes per test and record the average
success rate, with the initial and target locations randomly generated
by the environment. Every randomised initial state needs to satisfy the
corresponding task difficulty. To ensure fair evaluation, the initial and
target locations are the same across different methods when testing. In
addition, to verify our method’s superior performance in tackling the
local minimum problem, we also choose 3 specific scenarios that are
prone to this problem for demonstration, as shown in Fig. 6. In the three
chosen scenarios, the length of the wall between the initial location and
the target location is 5 m, 6 m and 3.5 m, respectively. Each scenario
is tested for 100 episodes, and the success rates are recorded.

5.1. LL policy training

The LL and HL policies are trained separately. Considering that the
reward function of the HL policy takes into account the performance of
the LL policy, we train the LL policy first. In each episode, the initial
location of the robot is randomised. Since the LL policy is responsible
for short-range navigation, we randomly generate the target location
within a square with a side of 2 m centred on the robot.

The parameters in Eq. (11) are set as below. The arrival reward
𝑟𝐿𝑎𝑟𝑟𝑖𝑣𝑒 = 20 is given when the robot is no more than 𝛿𝐿 = 0.36 m away
from the target location (the chassis radius of Turtlebot is 0.36 m). The
collision penalty is 𝑟𝐿𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −3. The hyperparameter 𝑐𝑑 in 𝑟𝐿𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ is
set to 10 empirically. The full length of an episode is 1500 timesteps.
We train the LL policy for 20000 timesteps in one environment and then
continue with other environments until a total of 8 million timesteps is
reached. Our LL policy requires the computational time of 0.002 s to
compute the velocity action.

5.2. HL policy training

The HL policy training commences after the LL policy training is
completed. In each episode, the robot is randomly placed at a location,
and the target location is also randomly generated by the environment.
However, the distance of each episode is set at 2–10 m. The conditions
for terminating each episode are as follows. The robot reaches the
target location successfully, i.e. the distance between the robot and
the target location is less than 0.86 m. In this case, the arrival reward
𝑟𝐻𝑎𝑟𝑟𝑖𝑣𝑒 = 20 is given. When the robot collides with an obstacle, the
collision penalty is set as 𝑟𝐻𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −3. If the target location cannot be
reached after 200 subgoals selected by the HL policy, this is considered
too long and not worth further exploring. Also, if the LL policy cannot
reach the subgoal selected by the HL policy within 800 timesteps, then
the overtime penalty is 𝑟𝐻𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 = −3. If the agent chooses to stand still,
𝑅 = −2.5 will be given. In the intrinsic reward function, the weighting
𝑠
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Fig. 5. Experiment environments for testing.
7 
Fig. 6. Specific scenarios for testing. Purple and yellow circles represent the start
location and the target location, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Test success rates with different values of 𝛼 in the intrinsic reward during the
training process.

factor 𝛼 is set as −0.5 and 𝑅0 = −2. The boundary threshold 𝛿𝐵 is 0.3.
These parameters are empirically set.

We train the HL policy for 5000 steps in one environment and
then switch to another environment until the total number of training
steps reaches 1 million. Our proposed method takes about 0.0025 s for
selecting a subgoal.

6. Results

To investigate the performance of our method, we perform different
experiments to address the following aspects.

• Choice of hyperparameter in intrinsic reward
• Overall performance of our work in comparison with other RL-

based mapless navigation approaches
• Effectiveness of our proposed reward function in comparison with

other reward functions used by most HRL methods
• Effectiveness of the intrinsic reward
• Effectiveness of our proposed neural network structure

6.1. Choice of hyperparameter in intrinsic reward

In this section, we investigate the effect of the hyperparameter 𝛼 in
the intrinsic reward (Eq. (8)) on training with our model. To ensure
the reward (𝑅𝑒𝑥+𝑖𝑛) is not infinitely small, a minimum value 𝑅0 = −2
(Eq. (9)) is set. Given the dynamic nature of the extrinsic reward 𝑅𝑒𝑥
and the memory decaying factor 𝑀𝑑 , 𝛼 primarily determines the value
of 𝑁 , the number of visits to the current location by the robot, against
the reward size. That is, 𝛼 predominantly governs the point at which
the reward attains a lower bound. To investigate the effect of different
𝛼 on our model, we set three values of 𝛼: −0.2, −0.5 and −2. A large 𝑁
will be required for 𝛼 = −0.2 to attain the lower reward bound, but a
small value for 𝑁 is needed when 𝛼 is −2.

In training, we test three models with different values of 𝛼 every
25,000 HL steps, with 50 episodes per test. The test success rates during
training are shown in Fig. 7.

It shows that when 𝛼 is −0.5 and −0.2, the success rates tend to
increase. However, the success rates are noticeably higher and remain
stable at around 35%, when 𝛼 is −0.5. On the other hand, when 𝛼 is
−2, the success rates steadily increase in the early stage, and start to
decline after 500,000 training steps, eventually dropping to about 15%.
Considering the overall performance, 𝛼 = −0.5 is deployed as a suitable
choice for our reward function.
8 
Fig. 8. Test success rates of the continuous space-based method [2], discrete
space-based method [41] and our method.

Table 1
Performance comparison with two non-hierarchical methods in the continuous and
discrete space respectively [2,41].

Env Target range Continuous space [2] Discrete space [41] Ours

1 2–5 m 55.0% 38.4% 𝟓𝟗.𝟒%
5–8 m 𝟓𝟎.𝟒% 23.4% 46.6%
8–10 m 28.6% 10.2% 𝟑𝟖.𝟐%

2 2–5 m 56.6% 45.0% 𝟓𝟗.𝟎%
5–8 m 37.8% 21.6% 𝟒𝟎.𝟖%
8–10 m 21.6% 7.0% 𝟐𝟕.𝟔%

3 2–5 m 55.4% 45.0% 𝟓𝟕.𝟖%
5–8 m 𝟒𝟑.𝟒% 12.8% 40.4%
8–10 m 20.4% 5.2% 𝟐𝟔.𝟔%

6.2. Performance comparison with other RL-based approaches

6.2.1. Comparison with non-hierarchical methods
We first compare our approach with two non-hierarchical RL-based

methods proposed by Tai et al. [2] and Marchesini et al. [41] respec-
tively. Tai et al.’s work is based on DDPG, applicable to continuous
action space, while Marchesini et al.’s approach is trained with the
Double DQN algorithm [42], tailored for discrete space. Both methods
utilise Lidar observations and the polar coordinates of the target as
input. In addition, Tai et al.’s work incorporates the velocity from the
previous timestep. The output of both approaches consists of the veloc-
ity commands. We train both models with the same reward functions
proposed in [2,41], respectively. In the process of training, we test each
method every 25000 steps, with 50 episodes per test. The success rates
are shown in Fig. 8. It is clear that the success rates of all methods have
a rising trend. However, the success rates of our method are noticeably
higher and remain stable at around 35%. The methods with continuous
space and discrete space reach about 30% and 18%, respectively.

After training, tests are first performed in three unseen environ-
ments with different difficulty levels. The success rates of the testing
tasks are shown in Table 1.

It is clear that our method outperforms both non-hierarchical RL-
based methods in 7 out of 9 tasks. The gap becomes more notable
as the task difficulty increases. In the tests with the target range of
8 − 10 m, the continuous space-based method [2] and the discrete
space-based method [41] achieve average success rates of 23.5% and
7.5%, respectively, while our method demonstrates a much higher
success rate of 30.8%. As mentioned, tasks at a higher difficulty level
would be more prone to the local minimum problem. As expected,
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Fig. 9. An example in the test of scenario 1. Purple and blue circles represent the start
position and the target position, respectively. (a) The orange line represents the robot’s
trajectory generated by the non-hierarchical method [2]. (b) The orange circles are the
subgoals selected by our HL policy. The numerical sequence represents the selection
order. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

our method demonstrates its superior performance compared with the
non-hierarchical method.

Furthermore, as mentioned, we also test in three specific scenarios
(Fig. 6). Both approaches fail to complete the tests in the chosen
scenarios, while our method completes the tasks with success rates of
20.0%, 15.0%, and 30.0%, respectively.

Fig. 9 shows an example of scenario 1. The robot with the non-
hierarchical method [2] is trapped in a local region. In contrast, our
method first moves downwards, due to the large extrinsic rewards
obtained from the trajectory that shortens the distance to the target
location. However, when the robot finds that the current path would
not lead to the target location, the intrinsic reward encourages the
robot to explore more areas instead of wandering in a local place.

The above results show that the non-hierarchical method strug-
gles when faced with complex local minimum problems, whereas our
method substantially improves the success rate and demonstrates effec-
tiveness.
9 
Fig. 10. Average rewards achieved by the agent when training the HL policy of HiRO.

6.2.2. Comparison with HRL-based methods
HiRO [24] is one state-of-the-art HRL approach that leverages a

conventional MLP HL policy, trained via an off-policy RL algorithm,
TD3 [43]. It operates in the continuous state space. The LL policy is
trained to track target vectors that are generated by the HL policy.
Notably, they train both policies jointly. In [24], they apply distance-
based reward shaping to both policies to ensure comparability with our
approach. We utilise the same HL (without intrinsic reward) and LL
reward functions as proposed in our work. The average rewards per
10000 HL steps for training HiRO are shown in Fig. 10. The shaded
region corresponds to the standard deviation of the rewards.

The average rewards achieved by the agent do not show any indi-
cation of improvement or stabilisation with increased training steps.
Consequently, the results show that HiRO may struggle with complex
navigation tasks. It also suggests that a continuous subgoal space
may not be suited for the HL policy due to the considerable search
space, thereby hindering the efficiency for policy training. Additionally,
parallel training of both policies presents challenges in navigation tasks.
Efficient training of the HL policy requires a stable LL policy, which
may present considerable randomness in exploration during training,
hence highly unstable. In the absence of a properly trained LL policy,
the HL policy training may become unstable, resulting in failing to learn
effective policies.

6.3. Effectiveness of the proposed reward function

To validate the effectiveness of our proposed reward function, we
train another HRL-based model. As the LL policy only controls the
locomotion of the robot, we still use our LL policy for this model.
For the HL policy training, we utilise the reward function commonly
used by most HRL-based methods [8–10], i.e., the agent receives a
positive reward for reaching the target location and is penalised for
collisions. Regarding NN structure, instead of incorporating an LSTM
network as with our HL agent, we replace it with two MLP layers
to output the Q value for each subgoal. For evaluation purposes, we
exclude the elements of novelty from the reward function and historical
information for the NN. The HL inputs to the model include the current
Lidar readings and the polar coordinates of the target. In the following
experiments, we refer to this as the ‘‘basic HRL’’ method.

The results of the tests in three unseen environments and specific
scenarios are shown in Table 2 and Table 3, respectively.

The results show that our method performs better in all the tasks,
and this dominance is particularly evident in the specific scenarios,
which can be prone to the local minimum problem. The basic HRL-

based method achieves a success rate of nearly zero in the three specific
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Table 2
Comparison between our method and the basic HRL-based
model in the three unseen environments.

Env Target range Basic HRL method Ours

1 2–5 m 46.8% 𝟓𝟖.𝟒%
5–8 m 32.6% 𝟒𝟔.𝟔%
8–10 m 20.4% 𝟑𝟖.𝟐%

2 2–5 m 39.0% 𝟓𝟗.𝟎%
5–8 m 15.0% 𝟒𝟎.𝟖%
8–10 m 10.2% 𝟐𝟕.𝟔%

3 2–5 m 51.2% 𝟓𝟕.𝟖%
5–8 m 29.8% 𝟒𝟎.𝟒%
8–10 m 13.0% 𝟐𝟔.𝟔%

Table 3
Comparison between our method and the
basic HRL method in the three specific
scenarios.

Scenario Basic HRL method Ours

1 0.0% 𝟐𝟎.𝟎%
2 0.0% 𝟏𝟓.𝟎%
3 2.0% 𝟑𝟎.𝟎%

Fig. 11. An example of the basic HRL-based method in the test of scenario 1. The
orange points represent the subgoals selected by the HL policy. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

tasks. Fig. 11 shows an example of when the basic HRL method is tested
in scenario 1. The agent loiters in a local region; however, our method
enables the agent to escape from the dilemma (Fig. 9).

It supports our hypothesis that our proposed reward function and
the NN structure can encourage robots to explore unknown envi-
ronments and enable them to have certain memory and reasoning
abilities.

Furthermore, we conduct a comparative analysis of the training
time. Both approaches entail substantial computational resources and
necessitate considerable time for training. Specifically, our method
demands more training time, approximately 216 h. Conversely, the
basic HRL method requires a shorter time of about 168 h. We employ a
workstation equipped with an Intel i9-10900X CPU (3.7 GHz × 20) and
an Nvidia RTX-2080 TI GPU to conduct our experiments. As described,
10 environments have been selected for training in our work. In the
training, we switch to a new environment after each training session.
This requires frequent reloading and initialisation of new environments
in the iGibson simulator. This process requires about 34.08 s, thus time-
consuming. In addition, the HL policy needs to wait for the completion
10 
Table 4
Comparison between our method and the method without the intrinsic
reward in the three unseen environments.

Env Target range Without intrinsic reward Ours

1 2–5 m 50.0% 𝟓𝟖.𝟒%
5–8 m 39.2% 𝟒𝟔.𝟔%
8–10 m 22.4% 𝟑𝟖.𝟐%

2 2–5 m 40.0% 𝟓𝟗.𝟎%
5–8 m 20.4% 𝟒𝟎.𝟖%
8–10 m 13.6% 𝟐𝟕.𝟔%

3 2–5 m 55.4% 𝟓𝟕.𝟖%
5–8 m 35.4% 𝟒𝟎.𝟒%
8–10 m 18.4% 𝟐𝟔.𝟔%

Table 5
Comparison between our method and the
method without intrinsic reward in the three
specific scenarios.

Scenario Without intrinsic
reward

Ours

1 0.0% 𝟐𝟎.𝟎%
2 0.0% 𝟏𝟓.𝟎%
3 3.0% 𝟑𝟎.𝟎%

of the task of moving the robot to the subgoal under the control of the
LL policy for each HL training step. As such, the total training time is
considerably long. The longer training time required by our method is
partially due to the fixed number of HL training steps (1 million) for
both methods. Since our method encourages the agent to explore, it will
select more subgoals in various locations. Therefore, the probability
of the agent colliding or choosing an inappropriate subgoal increases.
We terminate the current episode and start the next episode when
the robot fails to reach the selected subgoal. This process involves re-
initialisation, which introduces additional time overhead and prolongs
the overall duration of training. In contrast, the basic HRL method
repetitively selects ‘safe’ subgoals that may lead to local minima, as
shown in Fig. 11. As a result, the episode does not end prematurely, re-
quiring fewer episodes in total and, consequently, reducing the training
time.

6.4. Ablation study: Intrinsic reward metric

In this section, we study the effect of our proposed intrinsic reward
in addition to the extrinsic reward, which is commonly deployed in
previous work [2,4]. Specifically, we train our HL policy without the
intrinsic reward and the LL policy remains the same. Due to the lack
of intrinsic rewards in the reward function, the HL reward will not be
changed dynamically based on past states and the subgoal selection is
only related to current observation. Therefore, the HL input includes
its current Lidar readings and the polar coordinates of the target with
respect to the robot. Also, the LSTM network is removed to increase
its learning efficiency. The success rates of the tests in the three unseen
environments and the three specific scenarios are shown in Table 4 and
Table 5, respectively.

The results show that our method has significantly higher success
rates in all cases, suggesting that our proposed intrinsic reward plays an
important role. Fig. 12 shows an example without the intrinsic reward
tested in scenario 1. The robot moves downwards in order to obtain
higher extrinsic rewards, and, due to the lack of exploration motivation
and memory mechanisms, the robot will repeat the same path.

We can observe that the extrinsic reward is effective in most nav-
igation tasks. However, the performance deteriorates in the presence
of local minima, where the role of our intrinsic reward becomes more
effective.
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Fig. 12. An example of the method without intrinsic reward in scenario 1. The orange
points represent the subgoals selected by the HL policy. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 13. Average reward for training steps using our method and the NN structure
without LSTM.

6.5. Ablation study of the proposed HL network

To validate the design of the proposed HL network, we conduct two
ablation experiments: (1) removing the LSTM network from our HL
network, and (2) replacing the LSTM network with another network,
named Frame Stacking [44,45], which enables the agent’s memory
capability.

6.5.1. Comparison between our method and the NN structure without LSTM
network

We remove the LSTM network from our HL NN. The Q value of each
subgoal is obtained through two MLP layers based on the HL input 𝑖𝐻𝑡 ,
which only includes the current observation 𝑜𝐻𝑡 . The rest, including the
HL reward functions, training strategies, etc., are identical to our HL
policy. In addition, the LL policy is also the same as ours. The average
rewards per 10000 HL steps for our methods and the one without LSTM
are shown in Fig. 13. The shaded region of each curve corresponds to
the standard deviation of the rewards.

The figure shows that, without the LSTM network, the agent cannot
learn an effective navigation policy. This is mainly due to the dynamic
11 
Fig. 14. Average reward for training steps using our method and the NN structure
utilising frame stacking.

nature of our reward function. Consequently, the agent might select
the same subgoal for identical observations but may receive varying
rewards. In the absence of pertinent memory and prior experiences, this
could lead to inconsistency of state–action mapping, failing to optimise
the agent’s policy efficiently.

6.5.2. Comparison between our method and the NN structure using frame
stacking

We replace the LSTM network with another widely used method,
Frame Stacking, which is an effective way to enable NNs to learn
temporal context knowledge [44–46]. Frame stacking is a kind of frame
re-segmentation, which stacks temporal neighbouring states to form a
state [45]. The inputs to the HL model include not only the current
observation but also the last three HL steps’ observations, denoted as
𝑖𝐻𝑡 = {𝑜𝐻𝑡 ∥𝑜𝐻𝑡−1∥𝑜

𝐻
𝑡−2∥𝑜

𝐻
𝑡−3}. The rest is identical in terms of the reward

function, training strategy, LL policy, etc. The average rewards per
10,000 steps for our method and the method with frame stacking are
shown in Fig. 14.

From the figure, we can observe that the average reward of the
method with frame stacking would not continue growing within its
training time (1 million steps), indicating that it could not learn an
effective policy and may require more training steps and resources.
In contrast, the average reward of our model is steadily increasing,
proving that the use of the LSTM network greatly improves learning
efficiency.

6.6. Real world experiments

Experiments were conducted to demonstrate the effectiveness of
the proposed method in real-world environments. The policy, trained
within simulation environments, was deployed directly onto a mo-
bile robot (Turtlebot 3) without any modifications. As illustrated in
Fig. 15, the robot is equipped with two independent controllable wheels
and a Lidar sensor (Laser Distance Sensor LDS-01), capable of 360-
degree sensing, mirroring the simulation setup. The Robot Operating
System (ROS) platform is used as the robot control and communication
framework in our real-world experiments. Each wheel’s velocity is
computed and commanded by a laptop. It takes about 0.007 s for ROS
to export the velocity command to Turtlebot. In addition, as the robot
is operated under direct speed-mode control, the robot maintains its
current velocity until a new command is received. The LL policy outputs
zero motion only upon reaching a subgoal, ensuring smooth transitions
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between consecutive subgoals. The total computational and communi-
cation time is approximately 0.01 s, during which the robot maintains
its velocity. Due to the short interval and low-speed operation, the
computational time will not have an impact on the robot’s motion.
The experimental setup featured a target location positioned behind a
long wall, approximately 6 m in length, designed to test the proposed
approach’s ability to overcome local minima. In this scenario, the robot
autonomously explores to first locate the door — the sole access point
to the adjacent room — before proceeding to enter.

For comparative analysis, the non-hierarchical method was evalu-
ated. Fig. 15(c) shows that, using this method, the robot initially moves
straight towards the goal but soon finds itself trapped in a local area
close to the goal yet obstructed by a wall. In contrast, our method
prompted the robot to explore more extensively, enabling successful
navigation into another room. Figs. 15(a) and 15(b) depict the robot
exploring various subgoals along the corridor in both forward and back-
ward directions, ultimately finding the door leading to the goal. This
observation underscores our proposed framework’s ability to encourage
further exploration and effectively prevent revisiting already-explored
areas.

7. Conclusion

In this work, we proposed an HRL-based approach for mapless nav-
igation. A novel reward function and a neural network are introduced
for training the HL policy. Our HL reward function consists of two
components, namely extrinsic reward and intrinsic reward. The extrin-
sic reward is provided by the environment and encourages the robot
to move towards the target location. The intrinsic reward is inspired
by the novelty theory [11], which suggests that animals will reward
themselves for identifying novelty. We determine the magnitude of
the intrinsic reward by the novelty of the current state. To decide the
novelty of a state, we introduce a count-based method according to
episode memory. In addition, to enhance the robot’s ability to navi-
gate in complex environments, we incorporate the memory decaying
mechanism into the intrinsic reward. Also, some penalty elements are
included in the overall HL reward function to ensure the LL policy’s
performance is considered when selecting subgoals. In addition, we
propose to add an LSTM network to equip the agent with memory and
reasoning capabilities.

Experimental results and analyses highlight the effectiveness of
our proposed reward function and the NN structure in learning the
navigation policy. Especially in complex tasks, our approach performs
better and significantly improves the success rate.

Although our approach successfully learns mapless navigation poli-
cies through an end-to-end HRL framework, the size of the episode
memory for the agent grows linearly with the states explored by
the agent. This can become problematic when the agent needs to
accomplish a task in large environments. In the future, we will focus
on solving this problem, and one possible solution is to perform a
secondary sampling of the states stored in the memory, storing only
the states that are more valuable for navigation tasks. Ultimately, we
will migrate our approach to the real world and deploy the algorithm
on a real robot to decrease the gap between reality and simulation.
Moreover, our method primarily relies on Lidar, where the lack of
semantic information is a key limitation. Extending our approach to
include visual sensors will provide richer environmental information,
enhancing the overall performance and applicability of the system.
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