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Abstract— In this paper, we propose a deep reinforcement
learning-based method for quadrotors to learn depth-based
tracking policies autonomously. To this end, we present a
novel reward function that guides the quadrotor to follow the
target, avoid collisions, and keep the target close to the centre
of the onboard camera’s field of view without occlusions. In
addition, to improve learning efficiency, we suggest using a
teacher-student learning strategy. Specifically, we first train a
state-based teacher policy encoding low-dimensional obstacle
information, which then guides the vision-based student policy
during training. Moreover, we introduce a variant of the
Proximal Policy Optimisation algorithm based on the impor-
tance sampling algorithm. It facilitates the teacher-student
learning process and enables the vision-based agent to escape
local minima. The experimental results have demonstrated the
satisfactory performance of our proposed method.

I. INTRODUCTION

Autonomous aerial tracking is highly demanded for many
applications, such as environmental surveillance, security,
and aerial photography. However, it is challenging to allow
a quadrotor, defined as a tracker, to autonomously track a
moving target in unfamiliar and cluttered environments [1].
To ensure safety, the drone must accurately perceive targets
and obstacles using onboard cameras and quickly respond to
unforeseen obstacles within its limited field of view (FOV).
This is challenging for drones constrained by size, weight,
and power (SWaP), which limits their computing and sensing
capabilities.

Most autonomous aerial tracking research focuses on
non-learning, optimisation-based trajectory planning [2], [3].
Specifically, these methods decompose the tracking task
into various sub-tasks, including sensing, mapping, planning,
and trajectory optimisation [2]. However, this decomposition
can increase processing latency due to computation and
communication time between different components and may
lead to a complex system [4].

In recent years, deep reinforcement learning (DRL) has
shown promising performance in many research fields, in-
cluding quadrotor control [5], [6]. With powerful representa-
tion learning capabilities, DRL methods bring about the pos-
sibility of learning control policies directly from raw sensory
inputs, resulting in a simplified and straightforward system.
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Fig. 1: A tracking task example. The tracker follows the
target, keeps the target within the FOV and avoids obstacles
simultaneously.

However, most works primarily focus on the problem of
drone manoeuvrability [7] and navigation [8]. In particular,
there is a lack of research on the use of DRLs for aerial
tracking in cluttered environments.

In this paper, we propose a DRL-based and depth-based
autonomous tracking method for quadrotors. In particular,
first, we construct a novel reward function. It encourages
the quadrotor to follow the target within a designated safe
distance range, avoid collisions, and keep the target close to
the FOV centre of the onboard camera without occlusions.
In addition, perceiving environmental obstacles using depth
images presents challenges in training deep neural networks
from scratch due to potential instability and convergence
issues. Although pre-training an autoencoder for encoding
depth images is effective, it is time-consuming due to the
image collection and training processes. Alternatively, since
obstacle state information, including radius and relative po-
sitions, is available in simulation environments, a state-based
teacher tracking policy can be trained. We suggest using
obstacle state information instead of depth images, which
can significantly accelerate teacher policy training. Once a
satisfactory teacher policy is established, it guides the depth-
based student policy during exploration.

Finally, to utilise such a teacher-student learning structure,
we propose a variant Proximal Policy Optimisation (PPO)
algorithm [9]. Under the teacher-student framework, some
trajectory samples are collected from the teacher policy.
However, training the vision-based student policy with these
trajectory examples using the standard PPO algorithm [9]
could lead to training collapse. This is due to the substantial
initial differences between the teacher and the student policy,
while the PPO algorithm imposes constraints on policy
differences between two consecutive updates. To address
this issue and train the policy effectively, we introduce a



variant of the PPO policy based on the importance sampling
algorithm [10].

Our main contributions are as follows:
• We propose a DRL-based method that enables the

quadrotors to track moving targets in cluttered environ-
ments.

• We introduce a novel reward function that encourages
the quadrotor to follow the target, keep the target close
to the centre of the FOV without occlusions, and avoid
obstacles simultaneously.

• We suggest using a teacher-student learning strategy
to improve learning efficiency. Also, we reconstruct
the standard PPO algorithm based on the importance
sampling algorithm to ensure the convergence of the
teacher-student framework.

• Experimental results have demonstrated the remarkable
performance of the proposed DRL-based autonomous
tracking method.

The rest of this paper is organised as follows. Section II
discusses the related work. Section III provides important
preliminaries, and Section IV describes the proposed method
in detail. Section V introduces our experiment setup and
results. Section VI summarises our work.

II. RELATED WORK

Conventional non-learning aerial tracking methods can be
roughly divided into two categories: control-based meth-
ods [11], [12] and trajectory planning-based methods [13],
[14]. Control-based methods tackle the tracking task by di-
rectly computing optimal drone control signals, such as drone
velocities or drone attitude. Most works utilise PID control
methods to reduce tracking errors defined in the image plane,
ensuring that the target appears in the horizontal centre of the
image and occupies enough pixels [11], [12]. However, these
works present experiments in simple environments and do
not require the avoidance of obstacle collision or occlusion.
Also, the target to be tracked is static or moves at a relatively
low speed.

Trajectory planning-based methods, instead of optimising
control commands, optimise trajectories that are collision-
free, occlusion-free, and dynamically feasible, ensuring tar-
gets remain centred in the observation. Most trajectory
planning-based methods [13], [14] have achieved satisfactory
results in simple environments. The target’s trajectory is also
easy to predict as it moves straightforwardly. In cluttered
environments with random target movements, a coarse path
is typically pre-planned using graph-based search [15], [16],
A∗ [17], or kinodynamic search [1], [2]. Subsequently, a
smooth trajectory is optimised to fit the pre-planned coarse
path. With the coarse path, collision-free flight corridors
will be produced serving as constraints during the trajectory
smoothing phase. By optimising trajectories, the algorithm
can plan further into the future, enabling it to deal with
complex environments. However, this benefit comes at the
expense of requiring more computational resources and being
more time-consuming, such as constructing the Euclidean
Signed Distance Field (ESDF).

Learning-based algorithms can simplify the system in an
end-to-end way, bypassing all the intermediate steps of the
conventional methods. Imitation learning [18], DQN [19],
DDPG [20] and PPO [21] have been applied to tackling the
tracking task with simplified settings. These works are based
on many assumptions, such as non-real quadrotor physics,
minimal or no environmental obstacles, and predictable tar-
get movements. The obstacle information is also presumed
to be available for decision-making. These assumptions may
limit the capability of the methods for real-world tracking
tasks.

III. PRELIMINARIES

In this section, we will briefly review the important
preliminaries on which our variant PPO algorithm is built,
including Markov Decision Processes (MDPs) and standard
PPO.

MDP: RL solves problems under the MDP framework.
Physical processes are described by a state transition model
p(st+1|st, at) where states s are in the state space S and
actions a belong to action space A. The reward function
Rt(st, at): S × A → R is designed to evaluate action
decisions based on task requirements. Strategies can be
optimised by pursuing maximum overall discounted rewards
R(τ) =

∑∞
k=0 γ

krt received during the whole process.
State-action value functions Qπ(st, at) = Eτ∼π[R(τ)|st, at]
and/or state value function V π(st) = Eτ∼π[R(τ)|st] are
usually constructed to reconfigure the objective function,
where π: a ∼ π(·|s, θ) represented by policy parame-
ters θ representing. The advantage function is defined as
Aπ(s, a) = Qπ(s, a)− V π(s).

PPO: PPO is a policy gradient-based algorithm, which
directly optimises the strategy πθ. Reliability is achieved
by limiting consecutive network updates during training to
avoid large deviations that can cause training collapse. This
constraint can be implemented by introducing a penalty to
significant update differences evaluated using KL-divergence
(PPO-Penalty) or by clipping update values (PPO-Clip) [9].
We adopt PPO-clip in this work, which has the following
update process:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (1)

where L is given by

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
(2)

in which ϵ is a small hyperparameter and g(ϵ, A) ={
(1 + ϵ)A A ≥ 0
(1− ϵ)A A < 0.

IV. METHOD

We propose a DRL-based method for addressing the
dynamic target-tracking tasks in cluttered environments. The
overall requirements encompass visibility, safe distance, oc-
clusion avoidance, and collision avoidance. To simplify the



problem, we assume the obstacles to be spherical in shape.
Then, the problem can be formulated as

min
π(x)

Jo =
∫ T

0

∥Cptarget(x, y, t)∥2dt, (3a)

s.t. xt+1 = f(xt, π(xt)), (3b)
x0 ∈ X , (3c)
p(t) ∈ P, ∀t ∈ [0, T ], (3d)
p(t) ∈ Vt, ∀t ∈ [0, T ], (3e)
dl ≤ ∥p(t)− ptarget(t)∥ ≤ du, ∀t ∈ [0, T ], (3f)

where xt represents the quadrotor states such as position pt
and attitude qt at timestep t. Cptarget(x, y, t) is the target
coordinate with respect to the image coordinate frame at
timestep t. Otherwise, representations are under the world
frame without specifications. The visibility requirement can
be re-configured as Eq. 3a that puts the target in the centre
of the x− y plane. Eq. 3b shows the dynamics of the drone.
P denotes obstacle collision-free area and Vt represents the
occlusion-free area at timestep t. dl and du are the distance
boundaries describing the tracking distance requirement.
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Fig. 2: Teacher-student learning pipeline.

A. Variant PPO Algorithm

In this work, we propose a variant PPO algorithm with a
teacher-student learning structure to train the tracking policy.

State-based Teacher PPO Policy: We suggest training a
state-based teacher using ground truth obstacle information.
Then, this teacher will serve as an expert to guide the
training of the vision-based student policy, thereby signifi-
cantly improving learning efficiency. We utilise the standard
PPO algorithm to train the teacher policy, and the network
parameter is denoted as ξ.

Vision-based Student PPO Policy: Fig. 2 outlines the
training process for the vision-based student policy. Both

the teacher and student policies receive current observations
during sample collection, making action decisions based on
shared and individual components. A selective module picks
actions from the teacher policy with probability ε, otherwise,
from the current student policy. These actions, body rate
[wx, wy, wz] and collective thrust fT commands, are fed
to a body rate controller. Transitions [st, at, st+1, rt] are
produced by the environment and stored in the rollout buffer.
Upon collecting a set number of transitions, the student
policy is updated by randomly sampling data from the buffer.
This is summarised in Algorithm 1.

We treat the training samples as if they all come from
the teacher’s policy and use importance sampling to get a
non-biased cost function estimation.

E
s,a∼πθk

[L] =

∫
πθkLdx =

∫
πθkπξ
πξ

Ldx = E
s,a∼πξ

[
πθk
πξ

L

]
(4)

Hence Eq. 2 can be approximated by:

θk+1 = argmax
θ

E
s,a∼πθk

[L] = argmax
θ

E
s,a∼πξ

[
πθk
πξ

L

]
(5)

Algorithm 1 Variant Proximal Policy Optimisation

1: Input: teacher policy πξ, initial student policy parameters
θ0, initial value function parameters ϕ0;

2: for k = 0, 1, 2, ... do
3: Initialise rollout buffer Dk;
4: for step = 1, ...,m do
5: With probability ε sample an action from π(s, ξ);

otherwise sample from π(s, θk);
6: Execute action at in the environment; receive

reward rt and new state st+1;
7: Store transition (st, at, rt, st+1) ;
8: end for
9: Compute rewards-to-go R(t);

10: Compute advantage estimates Ât based on the
teacher value function Vξ;

11: Update the policy by maximising the importance
sampling weighted objective:

θk+1 = argmax
θ

1

|Dk|T
∑
∀τ∈D

T∑
k=0

πθk
πξ

L (6)

via stochastic gradient ascent with Adam;
12: Fit value function via gradient descent algorithm:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
∀τ∈D

T∑
t=0

(Vϕ −R(t))2 (7)

13: end for

B. Tracking Policy

In this section, we will explain the implementation details
of our method.



Target Dynamics: We model the target as a 2D vehi-
cle using a velocity model that can move freely along x
and y axes by controlling the acceleration speed of the
corresponding axis. The altitude of the vehicle is fixed.
The target moves freely without colliding with obstacles.
Decoupling movements along the x and y axes of the target
challenges the tracking task and enhances the quadrotor’s
general tracking capabilities.

State Space: For teacher policy, the state s = [pobstacle ∗
n, robstacle ∗ n, vtracker, qtracker, ptarget, vtarget] consists of relative
positions pobstacle and radii robstacle of the n closest obstacles,
quadrotor states: vtracker (linear velocity) and qtracker (attitude),
and target states: ptarget (relative position) and vtarget (linear
velocity). In real-world applications, the low-dimensional
state-based obstacle information is not available. Instead, we
provide depth image Odepthto perceive obstacle information.
Therefore, the state for the vision-based student policy is
s = [Odepth, vtracker, qtracker, ptarget, vtarget].

Action Space: The teacher policy and the student policy
share the same action space. We are utilising body-rate
control a = [fT , wx, wy, wz] which is capable of agile flying
as suggested in [22]. This action command will be carried
out by a body-rate controller, which computes individual
propeller thrust to control the quadrotor.

Reward Function: We construct the reward function
with several components to satisfy the task requirements,
including visibility, safe distance, occlusion avoidance, and
collision avoidance, as described below:

R = Rvisibility +Rsafe_distance +Rocclusion +Rcollision (8)

Target

Camera
Center

Target

Camera
Center

Horizontal View Vertical View

Fig. 3: Relative horizontal and vertical angles between the
target and the camera. z is the camera-looking direction.

The visibility reward component Rvisibility is to punish
the angle of the target to the camera centre vector in the
camera frame, deviating away from the camera z axis. Fig. 3
describes the relative angles where α and β are the horizontal
and vertical FOV respectively.

Rvisibility = w(Rhorizontal +Rvertical) (9)

where w is a weight factor. The horizontal view is controlled
by the quadrotor yaw, which can be decoupled from the
control of the target pose. Thus, it can be constructed as
a hard constraint :

Rhorizontal = −0.2(e|γ|−α/2 − e−α/2) (10)

The vertical angle deviation can not always be guaranteed
to be zero as it is controlled by the pitch of the quadrotor.

Hence, we only punish the action when the relative vertical
angle is larger than half of the vertical field of view, which
makes the target disappear from the image.

Rvertical =

{
−0.2e|ψ|−β/2 ψ ≥ β/2

0 otherwise
(11)

Rsafe_distance ensures a safe distance between the quadrotor
and the target:

Rsafe_distance =

{
0 dl ≤ ∥ptracker − ptarget∥ ≤ du

−10 otherwise
(12)

Rcollision is activated when the distance between the
quadrotor and an obstacle is smaller than the sum of the
obstacle’s radius and the quadrotor’s radius.

Rcollision =

{
0 diobstacle > ri + rquadrotor|i = 0, ..., N

−10 otherwise
(13)

Target Target Trajectory

FOV Line of sight

Obstacle Inflated Obstacle

Fig. 4: An illustration of occlusion.

Rocclusion is set to avoid occlusion. Occlusion occurs when
obstacles intersect with the line of sight connecting the
tracker and the target. This can be detected by ensuring
that the distance between the obstacle and the line of sight
exceeds the obstacle’s radius, or by verifying that the closest
point from the line of sight to the obstacle centre is behind
the camera. We increase the obstacle occlusion radius such
that the occlusion avoidance is robust, as illustrated by Fig. 4.

Network Structure: The network structure of our vision-
based policy is shown in Fig. 5. The depth image carries
high-dimensional information and will first be fed through
the CNN module to obtain a low-dimensional latent feature
vector. This vector will be concatenated with the remaining
information ([vtracker, qtracker, ptarget, vtarget]) to provide inputs
for the fully connected layers of the value network and the
policy network.

V. EVALUATION

A. Experiments Setup

In our work, we use the Flightmare simulator [23], which
is based on the Unity game engine. To train our policy,
in each episode, the target is spawned at a fixed altitude
and will navigate to a randomly assigned goal position. The
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Fig. 5: Network structure of vision-based student policy.

obstacles are also randomly distributed. The quadrotor is
spawned 2m away from the target at the beginning of each
episode. A training environment example is shown in Fig. 6.
The parameter w in Eq. 9 is set as 1.

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
4

2

0

2

4

6

x 
/ m

Target
Tracker
FOV
Camera center

Fig. 6: A training environment example. Red circles are the
obstacles and the green circle is the navigation destination
of the target. Black thin diamonds are the starting points for
the target and the quadrotor.

To study the performance of our proposed method, we
carried out comprehensive experiments and analyses from
two aspects, as follows:

• Effectiveness of the proposed reward function.
• Performance of the variant PPO algorithm.

B. Effectiveness of our proposed reward function

This section studies the effect of our proposed reward
function. We train a state-based policy with the standard
PPO algorithm using our proposed reward function. It will
also serve as the teacher policy to guide the vision-based
agent in this work. Fig. 7 demonstrates the training result
of the state-based policy. From the figure, we can observe
that the average reward of our state-based policy steadily
increases and finally converges to −1.5. This indicates good
tracking performance where nearly all constraints are met.
It proves the effectiveness of our reward function. Fig. 8
shows an example of when the state-based policy is tested
after training. The performance is considered satisfactory,
where the quadrotor can closely follow the target and avoid
obstacles.

C. Performance of the variant PPO algorithm

To validate the design of our variant PPO algorithm, we
train two vision-based agents: 1) Vision-standard agent: the

Fig. 7: Average rewards achieved by the state-based agent.
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Fig. 8: A test example of the state-based agent after training.

agent is trained with the standard PPO algorithm; 2) Vision-
student agent: the agent is trained with our proposed variant
PPO algorithm.

Fig. 9 shows the average rewards achieved by different
agents during training. From the figure, the average rewards
achieved by the vision-standard agent do not show any
indication of improvement with increased training steps. The
average rewards fluctuate significantly at the early stage and
remain at −10 after a period of training. This is because
the agent has not yet learned the policy to avoid occlusion
initially. Consequently, the target cannot stay in the centre
of the camera as required. Such behaviour will be punished
through Eq.10 and Eq. 11. Then, the agent will try to avoid
such punishment by destroying itself as quickly as possible.
It is achieved by flying away from the target at a high
velocity. With this behaviour, the agent will only be punished
with a reward of −10. From the perspective of optimisation,
this is a local minima.

Mitigating this issue involves reducing the visibility pun-
ishment by using a smaller weight factor w as shown in
Eq.9. We also train another agent using w of 0.1 (vision-
standard2). The average rewards are also shown in Fig. 9.
From the figure, we can see that this adjustment also results
in encountering the same local minimum problem.

In contrast, the average rewards achieved by the agent
with our proposed algorithm converge to around −1.5, which
is similar to the state-based agent. It proves that the use
of the variant PPO algorithm effectively resolves the local
minimum issues. Fig. 10 illustrates a test example of our
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method. As can be seen, the agent can simultaneously follow
the target and avoid obstacles.
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Fig. 10: An example of tests of our method after training.

VI. CONCLUSION

In this work, we proposed a DRL-based approach for
aerial tracking tasks. A novel reward function and a variant
PPO algorithm are introduced for training the policy. The
reward function consists of several components designed to
encourage the quadrotor to follow the target within a safe dis-
tance range, avoid collisions, and keep the target close to the
centre of the onboard camera’s FOV without occlusions. In
addition, we suggest using a teacher-student learning pipeline
to improve learning efficiency. A variant PPO method based
on importance sampling is proposed to help the vision-based
agent escape local minima. Experimental results and analyses
highlight the effectiveness of our proposed reward function
and the variant PPO algorithm in learning the tracking policy.

For future research, we will scale up our model to handle
more difficult tracking tasks. In this work, all obstacles are
assumed to be spherical in shape. We will deploy more
realistic and general obstacles in the environment. Moreover,
we aim to deploy this work on real robots and evaluate
performance in real-world environments.
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