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This paper introduces a new mathematical technique
for deriving continuum rheological models of
granular matter. Specifically, it is shown that,
under the hypothesis of Onsager symmetry, three-
dimensional dynamic constitutive laws for general
strain rates can be derived from a three-dimensional
yield condition plus steady-state empirical data
of quasi-two-dimensional flow. To illustrate the
technique, a new rate-dependent three-dimensional
yield condition, suitable for dry granular materials in
the inertial regime, is proposed and combined with
discrete-element method (DEM) particle simulation
data of simple shear flow. In combination with
Onsager symmetry, this generates a complete
three-dimensional viscoplastic model for such
materials. Despite the simplicity of the inputs, the
resulting constitutive laws agree very well with the
pioneering non-planar DEM simulations of Clemmer
et al. Phys. Rev. Lett. 127 (2021). Unlike several
previous theories, the novel Onsager-symmetric
constitutive relations incorporate a non-zero second
normal stress difference in simple shear and are able
to distinguish between general triaxial deformations
via dependence on the Lode angle.
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1. Introduction
The main purpose of this paper is to demonstrate a surprising consequence of Onsager
symmetry: in the context of viscoplastic modelling of particulate flows, partial three-dimen-
sional constitutive information—specifically, a yield condition—can be extended to com-
plete three-dimensional constitutive relations using only certain empirical two-dimensional
rheological data. Here this technique is illustrated via one specific choice of three-dimensional
yield condition appropriate for granular flow in the inertial regime.

Onsager’s theory of the thermodynamics of irreversible processes [1] prescribes a precise
balance of variations between conjugate pairs of micro-state ‘forces’ and ‘fluxes’ in order that
dissipation is minimized. These reciprocal relations therefore represent a unique and powerful
ingredient both for deriving and for closing governing equations. Indeed, many theories across
soft matter physics [2], continuum mechanics [3] and in the thermodynamic description of
granular materials [4] already utilize Onsager symmetry in various ways. Here the nonlinear
Onsager symmetry of Edelen [5], which, as processed by Goddard & Lee [6], corresponds to
partial differential equations linking principal stresses to their dependence on the principal
strain rates, will be employed. While it remains unclear whether real granular materials actually
possess Onsager symmetry, information about the consequences of Onsager symmetry, such as
the present paper, may help resolve this issue.

Attention here will be limited to granular materials composed of monodispersed hard
spheres of diameter d and density ρ*. Only liquid-like inertial flow, in which the solid volume
fraction ϕ lies in an intermediate range 0.4 ≲ ϕ ≲ 0.6 between the gaseous and quasi-static
solid-like regimes [7], will be considered. Two features of inertial flow—Bagnold scaling [8], in
which stresses scale with the square of strain rates, and Φ(I)-rheology [9,10], whereby the solid
volume fraction and inertial number I are functions of one another in steady planar flow—will
form key ingredients of the theory.

To illustrate the application of Onsager symmetry and to go beyond the previous two-
dimensional theories, such as μ(I), Φ(I)-rheology [9,11] and compressible I-dependent rheology
(CIDR) [12], a new three-dimensional yield function is proposed. Like the Lade–Duncan and
the Matsuoka–Nakai criteria [13], this includes dependence on the stress Lode angle [14],
describing non-planar triaxial aspects of the flow. However, unlike in incompressible rate-inde-
pendent models [15], the new yield condition also includes dependence on ϕ and I as in the
two-dimensional inertial compressible I-dependent rheology (iCIDR) [16].

Given that the yield condition depends on the stress Lode angle, it follows that the stress and
strain-rate Lode angles are independent variables. In particular, the constitutive laws predict
that the second normal stress difference in planar simple shear is non-zero. Further implications
of the new theory are illustrated for a range of non-planar flows, matching those detailed in
the discrete-element method (DEM) particle simulations of Clemmer et al. [17]. By first fitting
their data for simple shear flow, the new theory is able to make close predictions of non-pla-
nar constant-volume flow data which were not used in the fitting. This suggests that many
assumptions used in the construction of the model, including Onsager symmetry, are realistic.
In fact, the new theory makes predictions for arbitrary three-dimensional deformation rates,
including for unsteady flows with non-zero compression/dilation rate. Testing these predictions
poses a future challenge for experiments and/or simulations.

The derivation of the constitutive laws relies on interesting, unfamiliar, mathematics.
Specifically, we shall see that the combination of a yield condition with Onsager symmetry
leads to an over-determined system of algebro-differential equations. The occurrence of an
over-determined system may help motivate one surprising aspect of this paper—that complete
three-dimensional constitutive information can be deduced from partial three-dimensional
information plus certain two-dimensional results.

The paper is organized as follows. Section 2 describes in detail the necessary definitions
for working with three-dimensional flows and defines precisely the constitutive assumptions
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from which the equations are derived. Section 3 reports the final constitutive relations and
demonstrates their usage, implications for a range of typical flows and provides comparison
with the DEM data of Clemmer et al. [17]. Section 4 details the full derivation of the constitutive
relations, working from what are known as the characteristic ODEs. Section 5 summarizes
the conclusions and discusses some related issues. Four appendices are included which cover
the following: appendix A, in which the characteristic equations are derived using differential
geometry; appendix B, which analyses the three-dimensional yield condition; appendix C, in
which the method of fitting DEM data is detailed; appendix D, which contains certain technical
proofs that would be distracting in the main body of the paper. Proofs of convexity of the
dissipation potential are included in electronic supplementary material I and extensions of
the theory to include suspensions and generalized yield surfaces are detailed in electronic
supplementary material II.

2. Modelling inputs and definitions
In this section, the four main inputs of our model: material isotropy with an ordering principle,
Onsager symmetry, Φ(I)-rheology for steady simple shear and a yield condition, are introduced
along with a review of cylindrical coordinates for the stress and strain-rate eigenvalues.

(a) Isotropic constitutive laws with an ordering principle
We consider granular flow in three spatial dimensions. To fix notation, let σ denote the stress
tensor, u the velocity field, D = (∇u + ∇uT)/2 the strain-rate tensor and ϕ the volume fraction.
The pressure is defined by p = −trσ/3 and τ = σ + p1 is the shear stress tensor. Volumetric
changes are described by the rate of dilation q = trD = divu, and the remaining aspects of the
deformation rate by the deviatoric strain-rate tensor S = D − (q/3)1. Tensor norms are defined by‖T‖ = TijTij/2, for any tensor T, such that τ = ||τ|| is the shear stress and s = ||S|| is the shear rate.

By constitutive law we mean here a continuous function

(2.1)σ = Σ(D, ϕ)

that relates the stress tensor with the strain-rate tensor and volume fraction. This rules out, for
example, dependence on spin [18], fabric [19], non-locality [20], fluctuations [21,22] and history
[23]. Once specified, equation (2.1) may be paired with mass and momentum conservation to
generate closed-form equations of motion; however in this work, we do not explore this, instead
focussing on the rheological behaviour in isolation.

In the following, several hypotheses will be made for such a constitutive law. To begin with,
we assume that the tensor function Σ(D, ϕ) is isotropic in D; that is,

(2.2)Σ(RDRT, ϕ) = RΣ(D, ϕ)RT,

for any orthogonal matrix R. According to [24, pp. 32–33], such a Σ(D, ϕ) admits a representa-
tion formula1

(2.3)Σ(D, ϕ) = a1 + bD + cD2,

where a, b and c are functions of the invariants of D and ϕ. Thus, the stress and strain-rate
tensors are simultaneously diagonalizable and equation (2.1) is completely determined by the
inter-relations between the three eigenvalues of stress σi and the three eigenvalues of strain rateDi such that

(2.4)σi = Σi(D, ϕ), for i = 1,2,3,

where D is a vector shorthand for (D1,D2,D3). Moreover, we assume that2
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(2.5)σi < σj < σk whenever Di < Dj < Dk.
Constitutive laws that satisfy both equations (2.2) and (2.5) will be referred to as isotropic with an
ordering principle.

(b) Onsager symmetry
As detailed in Goddard & Lee [6], based on the work of Edelen [5], isotropic constitutive laws
specified by equation (2.4) are said to be Onsager symmetric if

(2.6)∂Σi
∂Dj = ∂Σj

∂Di , (i, j = 1, 2, 3)  for D ∉ ℝ1 .

The condition ‘D ∉ ℝ1’ specifies all strain-rate tensors that are not a multiple of the identity; our
reason for including this restriction is to allow Σ to be non-smooth near ℝ1.

We remark that, although Onsager symmetry arises in Edelen’s nonlinear theory of
irreversibility [3,5] and is related to the existence of a dissipation potential, its definition does
not rely on the existence of such a potential.

(c) Review of cylindrical coordinates for stress and strain rate
We follow several authors [14,17,25] in using cylindrical coordinates (p, τ, θ) and (q, s,φ) for the
stress and strain-rate eigenvalues, respectively, wherein the angular components, θ and φ are
the Lode angles. These coordinates are related to the rectangular coordinates by the formulae

(2.7)

σ1 = − p + τ cos θ + sin θ
3

,

σ2 = − p + τ −cos θ + sin θ
3

,

σ3 = − p + τ − 2sin θ
3

,

D1 =q/3 + s cosφ + sinφ
3

,

D2 =q/3 + s −cosφ + sinφ
3

,

D3 =q/3 + s − 2sinφ
3

.

Regarding stresses, the pressure measures distance along the line {σ1 = σ2 = σ3}, which is the
‘z’-axis of cylindrical coordinates; τ, θ represent polar coordinates in a plane {p = const}. Simple
shear is characterized by q = 0 and φ = 0. In the constitutive laws developed below, θ is non-zero
in simple shear even though φ = 0.

Note that the quantities

(2.8)sin 3θ = 27 det τ
2τ3 and sin 3φ = 27 det S

2s3

are invariants of σ and D, respectively, but θ and φ are not—which value is appropriate
depends on the ordering of the relative eigenvalues. For instance, σ2 < σ3 < σ1 corresponds to the
principal range3 θ ∈ [ − π/6, π/6], similarly D2 < D3 < D1 to φ ∈ [−π/6, π/6], where the minimum
and maximum values correspond to triaxial compression and triaxial expansion, respectively.

Another key result for cylindrical coordinates comes from following the appendix of [26]
and writing the representation formula (equation (2.3)) as a linear system

(2.9)

M abc =
σ1σ2σ3

, where M =

1 D1 D1
2

1 D2 D2
2

1 D3 D3
2

,

which, by inverting M and substituting equation (2.7), allows us to derive general formulae for
the coefficients
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(2.10a)a = − 9ps2cos 3φ − 3q2τsin θ − φ + 6 3s2τsin θ − φ + 3qsτcos θ + 2φ
9s2cos 3φ ,

(2.10b)b = 3sτcos θ + 2φ − 2 3qτsin θ − φ
3s2cos 3φ ,

(2.10c)c = 3τsin θ − φs2cos 3φ .

As will be demonstrated in §3, these formulae allow for convenient use of the representation
formula to construct the stress tensor for general three-dimensional flow.

(d) Φ(I)-rheology for steady simple shear
For steady simple shear, the μ(I),Φ(I)-rheology [10,11] establishes that the volume fraction ϕ is a
function of the inertial number

(2.11)I = 2dsp/ρ∗ ,

such that

(2.12)ϕ = Φ(I).
The simple linear function

(2.13)Φ(I) = ϕc − II* ,

where ϕc (the critical density) and I* are constants, is sufficiently accurate for most purposes. Let
Ψ(ϕ) be the inverse relation, for equation (2.13),

(2.14)I = Ψ(ϕ) = I* ϕc − ϕ .

Substituting the definition (2.11) into this equation and solving for p yields an expression for
the pressure in steady simple shear

(2.15)pSS = 4ρ∗d2 ‖S‖
Ψ(ϕ)

2
.

Thus, any constitutive law that is compatible with Φ(I)-rheology must satisfy: wheneverq = φ = 0, the pressure is given by equation (2.15).

(e) Yield conditions in three dimensions

(i) The Lade–Duncan and Matsuoka–Nakai yield conditions

In three dimensions, the popular Lade–Duncan and Matsuoka–Nakai conditions [13] may both
be written in terms of the solution of a cubic equation

(2.16)β(ϕ)r 3sin (3θ) + r 2 = Y (ϕ),

where

(2.17)
β(ϕ) =

2/ 27, Lade–Duncan,
(3 − Y (ϕ))/ 27, Matsuoka–Nakai,

and Y (ϕ) reflect the internal friction of the flow.
If material is flowing, these yield conditions require that
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(2.18)τp = r (θ, ϕ),

where r (θ, ϕ) is the only positive root of equation (2.16) if sin (3θ) > 0, and the smaller positive
root if sin (3θ) < 0. In appendix B, we show that provided

(2.19)0 < β < β0(Y ) := 2
27Y ,

which we assume throughout, the solution set of equation (2.16) in the r, θ-plane has a unique
bounded component.

(ii) A rate-dependent yield condition

For isotropic constitutive laws, a direct consequence of equation (2.3) is that Σ(D, ϕ) is a
multiple of the identity whenever D is; in other words, if there is no distinguished direction in
strain-rate space, there should be no distinguished direction in stress space either. This property
cannot be achieved with the rate-independent yield conditions (equation (2.16)); thus, we seek a
rate-dependent modification of equation (2.16).

Inspired by the two-dimensional iCIDR theory [16], we assume a three-dimensional yield
condition defined in terms of the appropriate solution r(θ, I, ϕ) of

(2.20)β(ϕ) Ψ(ϕ)I r3sin (3θ) + r2 = Y (ϕ) I
Ψ(ϕ)

2
.

If material is flowing, the yield condition requires that

(2.21)τp = r(θ, I, ϕ).

Here, r(θ, I, ϕ) relates to the solution r (θ, ϕ) of equation (2.16) via

(2.22)r(θ, I, ϕ) = r (θ, ϕ) I
Ψ(ϕ) .

Clearly, ‖S‖ = 0 implies I = 0 and τ = 0. Also note that, in steady simple shear, I/Ψ(ϕ) = 1,
and equation (2.20) reduces to equation (2.16). Furthermore, taking β = 0 corresponds to the
ϕ-dependent form of the μ(I),Φ(I)-rheology [16,27] with Y (ϕ) acting as the μ(Ψ(ϕ)) relation.

Without appealing to any particular physical insights, beyond curve fitting (as detailed in
appendix C), here the functions

(2.23)Ψ(ϕ) = I* ϕc − ϕ ,

(2.24)Y (ϕ) = Y0 + (Y∞ − Y0) tanh ΓYΨ(ϕ) ,

(2.25)β(ϕ) = β0 + (β∞ − β0) tanh ΓβΨ(ϕ) ,

are chosen for the free ϕ-dependent steady constitutive relations. Incidentally, forms for Y  andβ inspired by the μ(I) function of Jop et al. [28] were also tried, but found to give worse fits to
the data, especially for low values of ϕ, than the tanh forms (equations (2.24) and (2.25)) chosen
here. Plots of the functions so obtained for one set of DEM parameters are shown in figure 1.

3. A summary of the main results
Before detailing the full technical analysis, it is illuminating to outline the structure and
implications of the new equations which result from a combination of the ingredients in §2.
Here these results will be presented alongside DEM simulation data available in the literature.
In particular, the work of Clemmer et al. [17] provides key data for homogenous non-planar
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(φ ≠ 0) flows, albeit only for isochoric cases with q = 0. Following the method detailed in
appendix C, the coefficients in Ψ(ϕ), β(ϕ) and Y (ϕ) are first derived from the simple shear
simulations of Clemmer et al. [17], leading to the values listed in table 2. While all aspects of
the new theory rely on these choices, it is only through synthesis with Onsager symmetry that
predictions for non-planar flow can be derived from this simple shear data.

(a) Constitutive relations
We seek constitutive laws that express stress as a function of packing fraction and strain rate as
in equation (2.1). Thus, a priori, the Lode angle might depend on all three invariants of the full
strain-rate tensor, but as we show in §4, it depends only on φ as

(3.1)θ = Θ(φ, ϕ).

We will also see in §4 that Θ(φ, ϕ) is the solution of a system of ODEs and does not have
a closed-form expression. Instead, numerical solutions are plotted for some selected packing
fractions in figure 2, which match closely with [17].

0.6

0.1

0.15

0.2

0.2

0.1

0

0.65

0.7

0.52 0.54 0.56 0.58 0.6

0.52 0.54 0.56 0.58 0.6

0.52 0.54 0.56 0.58 0.6

Y
β

Y

φ

Figure 1. DEM data (open circles) of Srivastava et al. [29] compared against the solid line fits of equations (2.23)–(2.25) with
parameters listed in table 1.

Table 1. Best fit parameters for the three-dimensional constitutive functions (2.14), (2.24) and (2.25) using the DEM data of
Srivastava et al. [29]. See figure 1.

ϕc = 0.594 Y0 = 0.103 Y∞ = 0.284 ΓY = 3.50I* = 4.00 β0 = 0.688 β∞ = 0.603 Γβ = 11.8

Table 2. Best fit parameters for the ϕ-dependent constitutive functions (2.14), (2.24) and (2.25) using the DEM data of
Clemmer et al. [17].

ϕc = 0.589 Y0 = 0.112 Y∞ = 0.360 ΓY = 2.93I* = 3.88 β0 = 0.640 β∞ = 0.639 Γβ = 7.54
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This behaviour differs from constitutive laws [12,28] of the form

(3.2)τ ∝ S||S|| ,
which predict that θ = φ. As shown in figure 2, θ and φ are equal only for triaxial expansionθ = φ = π/6 and triaxial contraction θ = φ = −π/6, with θ < φ for all intermediate flows in the
inertial regime.

The next key outcome of the analysis is the equation of state for the pressure

(3.3)p = P(q, s,φ, ϕ) = ρ∗d2 q2 + 4Z(0, ϕ)Z(φ, ϕ)s2 − q
Ψ(ϕ)Z(0, ϕ)

2

,

where

(3.4)Z(φ, ϕ) = 1
2rcos (Θ − φ),

in which functional dependencies have been hidden from the right-hand side of equation (3.4)
for brevity. This new expression equation (3.3) shares many similarities with the equation of
state for two-dimensional iCIDR as derived in [16], which, in our present notation, may be
written

(3.5)PiCIDR(s, q, ϕ) = ρ*d2 q2 + μ(ϕ)2s2 − q
Ψ(ϕ) μ(ϕ)/2

2

,

with μ(ϕ) being the steady bulk friction coefficient. Comparison of equation (3.5) with equation
(3.3) reveals that the new theory can differentiate between the ‘type’ of the deformation, as
tracked by φ, in addition to the strain-rate magnitude s and compression rate q. Validation of
these dependencies via comparison with DEM is reserved for future studies as Clemmer et al.
[17] fix the pressure and only consider volume-preserving flows with q = 0.

Specification of the constitutive relations is completed via an expression for the shear stress

(3.6)τ = r(θ, I, ϕ)p,

–1 –0.5

–0.5

–1

0

0.5

1

0

6ϕ /π

6
θ
/
π

0.5

0.59

0.56

0.51

φ

1

Figure 2. Plots of the stress Lode angle θ as a function of the strain-rate angle φ for a range of packing fractions ϕ. Solid
lines are predictions of the new theory, open circles are derived from the DEM data of Clemmer et al. [17] (with interparticle
friction 0.3) and the black dashed line denotes θ = φ. Note that the three simple shear points with φ = 0 match almost
precisely with the theory as they are used in the fitting, whereas all other predictions result consequently owing to the
structure of the full theory.
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which is simply reconstructed from its definition (equation (2.18)), the prediction (equation
(2.22)) of the three-dimensional yield condition, and substitution of p and θ from equations (3.1)
to (3.3) above.

(b) Consequences for prototypical flows
Consider the steady velocity field in simple shear flow

(3.7)u = γ̇yex, with γ̇ ∈ ℝ ∖ {0},

aligned with the x-axis and varying linearly in the perpendicular coordinate y. This corre-
sponds to a constant solid volume fraction ϕ = ϕ

*
, zero compression rate q = 0, and a strain-rate

tensor

which has constant shear rate s = |γ̇|/2 and zero polar strain-rate angle φ = 0. The pressurep = pSS is that given by the Φ(I)-rheology (equation (2.15)), while the new constitutive laws give
the stress Lode angle as θ0 = Θ(0, ϕ

*
) and the magnitude of the shear stress as τ = r 0pSS, wherer 0 = r (θ0, ϕ

*
). Strict two-dimensional alignment (equation (3.2)) would imply that the shear

stress tensor τ is proportional to the strain-rate tensor (equation (3.8)). Instead, three-dimen-
sional alignment, as embodied by the representation formula of equation (2.3), predicts

(3.9)

τ =

1
3cs2 bs 0

bs 1
3cs2 0

0 0 − 2
3cs2

.

For the normal stress differences [30–33], which are typically defined as

(3.10)N 1 = τ11 − τ22, N 2 = τ22 − τ33,

the new theory predicts that the first normal stress difference N 1 = 0 vanishes and the second
normal stress difference

(3.11)N 2 = cs2 = 3 r 0pSS sin θ0 ,

using equation (2.10). A normalized second normal stress difference N 2/pSS is plotted in figure
3, and the other steady stress functions are plotted as black curves in figure 4. These values and
trends, which rely on the DEM fitting of the Clemmer et al. simple shear flow data [17], are close
to those reported elsewhere in the literature [18,29,32,34].

Before considering fully three-dimensional flow, note that the planar bi-axial (‘pure shear’)
deformations

have the same set of strain-rate coordinates as simple shear i.e. s = |γ̇|/2 and q = φ = 0. This,
therefore, results in the same set of stress coordinates as for simple shear and the two cases are
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essentially equivalent. This was confirmed by the closely matching DEM simulations of [17] for
each type of shear flow and suggests that rotational effects are minimal.

For the fully three-dimensional analogue of equation (3.12) i.e. triaxial deformations
described by

the strain-rate angle φ = ±π/6 is non-zero, with sign matching the sign of γ̇, while the other
invariants remain the same: s = |γ̇|/2 and q = 0. Figure 4 demonstrates that solutions of our new
theory predict significant deviations in the stress fields for these triaxial deformations compared
with simple shear, and that these are matched by DEM data.

–0.3

–0.25

–0.2
Srivastava et al. (2021)

Clemmer et al. (2021)

–0.15

–0.1

φ
0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

2
/p
ss

Figure 3. The normalized second normal stress difference N 2/pSS for simple shear given a range of packing fractions ϕ
in the inertial regime. Comparison is made between the new theory (solid line), computed using the right-hand side of
equation (3.11), and available data in the literature [17,29] (both with interparticle friction 0.3), computed using equation
(3.10), plotted as symbols.

−0.5

−1

0.5 0.52 0.54 0.56 0.58

0

0.5

0.4

0.5r

0.3

0.5 0.52 0.54 0.56 0.58

0.6

0.71

φ

ϕ

φ

6
θ/
π

−π /6
−π /12
0

π /12
π /6

Figure 4. Plots of the stress Lode angle θ and the bulk friction r = τ/p for a range of triaxial deformations, with different
strain-rate Lode angles φ and for a range of packing fractions ϕ. Solid lines are predictions of the new theory and open
circles are reproductions of the DEM data of Clemmer et al. [17] (with interparticle friction 0.3). Only the black data (simple
shear φ = 0) is used for fitting whereas φ ≠ 0 cases are novel predictions. Vertical dashed lines denote the upper limit of
inertial flow ϕ = ϕc.
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Finally, it is also interesting to consider the limiting cases of large compression or dilation.
The pressure P(q, s,φ, ϕ), as predicted by the equation of state (equation (3.3)), grows quadrati-
cally (as expected from Bagnold scaling) in |q| for compression, i.e. as q −∞, and for dilation

limq +∞
P(q, s,φ, ϕ) = 0.

Indeed, for purely volumetric deformations, with D = (q/3)1, then

(3.14)
p = C(ϕ)q2, for q < 0,

0, for q ≥ 0,

where C(ϕ) = ρ*d2/(Ψ(ϕ)Z(0, ϕ)) comes from evaluating equation (3.3) with s = 0.

4. Derivations and proofs
In this section, we derive the constitutive relations given in §3. Because of isotropy (equation
(2.2)), it suffices to consider diagonal matrices σ and D; a constitutive law is then determined
by functions σ = Σ(D, ϕ) (equation (2.1)). Thus the objective is to determine three unknown
functions Σi of the strain rate and ϕ (equation (2.4)), subject to the yield condition (equation
(2.20)) and Onsager symmetry (equation (2.6)). The yield condition is a scalar relationship
between the three functions; Onsager symmetry is a system of three PDEs. Thus requiring
both of these results in a system of four algebro-differential equations for three unknowns—i.e.
an over-determined system. A local analysis of such a system can be conveniently handled
by Cartan’s theory of exterior differential systems [35]. However, since the construction of a
constitutive law is global, and in view of the fact that Cartan’s theory may not be familiar to
most readers, we derive the constitutive relations with ad hoc methods that take advantage of
the structure of the system. Even so, our approach is quite geometric, and we put part of the
analysis in appendix A, the part that we expect might be an obstacle for readers less acquainted
with differential geometry.

In our geometric approach, we view constitutive relations as the following one-parameter
family of three-dimensional graphs

(4.1)M(ϕ) = {(σ,D) ∈ DM3 × DM3 : σ = Σ(D, ϕ)},

what we call constitutive manifolds. If Σ(D, ϕ) is Onsager symmetric, then M(ϕ) is also called
Onsager symmetric.

(a) Further simplification from isotropy and ordering
The angle θ that is obtained by solving the first of equations (2.8) is sensitive to the ordering of
the stress eigenvalues. Assuming no two eigenvalues are equal, there are six such orderings. We
divide the space of stress eigenvalues into six wedges Wn n = 1, 2, …, 6  corresponding to these
orderings. Figure 5 shows the intersection of a plane {σ1 + σ2 + σ3 = const} with the wedges. Each
wedge is associated with a range of θ. For example, in

(4.2)W1 ∩ {p = const} = {(p, τ, θ) ∈ DM3 : p = const, τ > 0, |θ| < π/6}.

Note that on the boundary between two wedges, two eigenvalues are equal; for example,σ2 = σ3 < σ1 on the boundary between W1 and W2. With the obvious modifications of notation,
we regard the wedges Wn as subsets of the space of strain-rate eigenvalues as well. As with
stresses, for φ in each of the wedges, the strain-rate eigenvalues have a specific ordering.

Given a constitutive manifold M(ϕ), let us define its restrictions to the individual wedges to
be
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(4.3)Mn(ϕ) = {(σ,D) ∈M(ϕ):D ∈Wn}, n = 1, 2, …, 6.

The condition of isotropy implies that the constitutive relations are invariant under simultane-
ous permutations of σi and Di, which can be seen by taking R in equation (2.2) to be the
permutation matrices. Thus, a function σ = Σ(D, ϕ) initially defined on W1 extends, by isotropy,
to be defined for all D ∈Wn n = 1, 2, …, 6 . Since the union of all six Wn is dense in DM3, the full
constitutive law is obtained by continuous extension, whenever possible. In other words, with
isotropy, Mn(ϕ) are determined by M1(ϕ), and

(4.4)M(ϕ) = ⋃n = 1

6
Mn(ϕ) .

The ordering principle (equation (2.5)) implies that if D ∈Wn, then Σ(D, ϕ) must belong to the
same wedge Wn; in symbols, Mn(ϕ) ⊂Wn ×Wn. In terms of cylindrical coordinates, this means
that θ and φ as related by a constitutive relation must be associated with the same wedge.

(b) The characteristic differential equations
Assuming the yield condition (equation (2.21)), for each value of ϕ, M(ϕ) must be contained in
the five-dimensional submanifold4

(4.5)S(ϕ) = (p, τ, θ, q, s,φ) : τ = p r(θ, I, ϕ), p ≥ 0 ⊂ DM3 × DM3,

where r(θ, I, ϕ) is the appropriate root of equation (2.20); note that we use cylindrical coordi-
nates on both copies of DM3.

Our goal is to find M(ϕ) ⊂ S(ϕ) that are Onsager symmetric and satisfy a few other
properties. As shown in appendix A, the key to this lies in understanding solutions of the
following system of ODEs, called the characteristic equations:5,6

(4.6)

(a) dp
ds = 0,

(b) dθ
ds = − sin(θ − φ)sΔ(θ,φ) ,

(c) dq
ds = r(θ, I)

Δ(θ,φ) ,

(d) dφ
ds =sin(θ − φ) − G(θ)cos(θ − φ)sΔ(θ,φ) ,

where G is defined in terms of the solution of equation (2.20):

(4.7)G(θ) = r ′(θ)r (θ) = − 3βr (θ) cos (3θ)
3βr (θ) sin (3θ) + 2 ,

σ3 < σ2 < σ1σ3 < σ1 < σ2

σ2 < σ1 < σ3σ1 < σ2 < σ3

σ1 < σ3 < σ2 σ2 < σ3 < σ1

τ 
s
in

 θ

τ cos θ

23

5 6

14

Figure 5. The six wedges Wn viewed in each subset {p = const} of DM3.
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wherein

(4.8)Δ(θ,φ) = cos (θ − φ) + G(θ) sin (θ − φ).

In equations (4.6)–(4.8), the volume fraction ϕ is treated as a parameter, and for brevity, its
appearance is suppressed; similarly below.

Remark 4.1. The characteristic equations (4.6) are obtained from Hamilton’s equations for the
Hamiltonian H = pr(θ, I) − τ (see appendix A). Regularity of these equations for s > 0 is provided
by the following two facts: (a) In G(θ) the denominator 3βr (θ) sin (3θ) + 2 is positive (lemma B.1);
(b) If θ,φ belong to the same wedge Wi, then Δ(θ,φ) > 0 (lemma A.1).

To explain the relation between M(ϕ) and the characteristic equations (4.6), suppose that7

(p, θ, q,φ)(s) is a solution of equations (4.6). Let τ(s) be defined by the formulae

τ = r(θ, I)p , where I(s) = 2dsp/ρ∗ .

Then let σ(s) = (p, τ, θ)(s) and D(s) = (q(s), s,φ(s)); it is clear from the definition of τ that, as s
varies,

(4.9)(σ,D)(s)
traces out a curve in S(ϕ), what we call a characteristic curve.

These characteristic curves are the building blocks of M(ϕ). As we show in appendix A (see
proposition A.1), if one point on a characteristic curve belongs to M(ϕ), then the entire curve is
contained in M(ϕ); in symbols, if σ(s0) = Σ(D(s0)) for some s0, then for all s,

(4.10)σ(s) = Σ(D(s));
moreover, M(ϕ) is a union of such curves.

Remark 4.2. Figure 6 shows the projection into the q, s-subspace of a characteristic curve
that passes through a strain rate D⋆ = (0, s⋆, 0) describing simple shear; it terminates at a pure
compression i.e. at a point where s = 0 and q < 0. Although τ, θ,φ vary along the curve, the
pressure does not. This fact suggests an interpretation of these curves: they specify a trade-off
between shearing and compression that leaves the pressure unchanged.

(c) The φ, θ-subsystem: behaviour as s 0 and s ∞
In equations (4.6), the φ- and θ-equations form a separate subsystem, which is singular as s 0.
To handle this singularity, it is useful to change the independent variable by defining

(4.11)s~ = ln s,
so that s = 0 corresponds to the limit as s~ tends to −∞. The resulting transformed equations are
autonomous:

(4.12)

dφ~
ds~ =sin(θ~ − φ~) − G(θ~)cos(θ~ − φ~)

Δ(θ~,φ~)
,

dθ~
ds~ = − sin(θ~ − φ~)

Δ(θ~,φ~)
.

Now, since Δ(θ~,φ~) > 0, one can rescale s~ and consider instead the simpler equations below, for
which we use the same notations as in equations (4.12):

(4.13)

dφ~
ds~ =sin(θ~ − φ~) − G(θ~)cos(θ~ − φ~),

dθ~
ds~ = − sin(θ~ − φ~) .
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Figure 7 shows the phase-plane portrait of equations (4.13) in the square {|φ|, |θ| ≤ π/6}. We note
the following properties:

— Equations (4.13) have two equilibria in {|φ|, |θ| ≤ π/6}, namely, E− = (−π/6, −π/6) (a saddle)
and E+ = (π/6, π/6) (a sink), which we show below.

— The unstable manifold emanates from the saddle E− and asymptotes to the sink E+ ass ∞. This trajectory lies below the diagonal {θ = φ}.
In appendix A(c), we argue that the physically relevant characteristic curves in M1 are

defined for all s > 0 and their projections on to φ, θ are either one of the two equilibrium
solutions (φ, θ)(s) ≡ ( ± π/6, ± π/6) of equations (4.6) or they trace out the unstable manifold ass varies from 0 to ∞. (Note that there are many different solutions {(φ, θ)(s)} that map into this
trajectory, resulting from the invariance of equation (4.13) under the translation s~ s~ + c for
any c ∈ ℝ.)

To conclude the analysis of the φ, θ-subsystem, we verify that the equilibria E− and E+ of
equations (4.13) are, respectively, a saddle and a sink, as claimed above. The Jacobians at E− andE+ are, respectively,

(4.14)
J− =

−1 J12
−

1 −1
, J+ =

−1 J12
+

1 −1

where

(4.15)J12
± = 1 − G′(±π/6).

Both J− and J+ have negative trace; moreover,

(4.16)

det J− = G′( − π/6) = 9βr ( − π/6)
3βr ( − π/6) − 2 < 0,

det J+ = G′(π/6) = 9βr (π/6)
3βr (π/6) + 2 > 0,

where both inequalities follow from lemma B.1. This verifies that E− is a saddle and E+ a sink.
Also note that

(4.17)J12
− , 1

is an eigenvector of J− with the eigenvalue J12
− − 1 > 0. This eigenvector is tangent to the

unstable manifold at E−.

simple shear

D2 = –s
*
 < D3 = 0 < D1 = s

*

pure compression

D1 = D2 = D3 < 0

q

s0

Figure 6. Projection of a characteristic curve that connects a simple shear deformation (0, s⋆, 0) to pure compression.
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(d) Calculation of the constitutive laws

(i) Overview

As noted in §4a, to determine the constitutive manifold M, it suffices to focus on M1, the
graph of the restriction of Σ to W1. To set the notation: given a point D⋆ = (q⋆, s⋆,φ⋆), we seekσ⋆ = Σ(D⋆) = (p⋆, τ⋆, θ⋆). For the time being, we assume s⋆ > 0 and |φ⋆| < π/6; we deal with the
boundary cases at the end of the section.

As we have stated above, M1 is a union of characteristic curves; the projections of these
curves on to the (φ, θ)-plane emanate from the equilibrium E− of equations (4.13) and follow the
unstable manifold through the points (φ⋆, θ⋆). Thus, for the determination of σ⋆, we need one of
these characteristic curves

(4.18)(σ,D)(s), 0 < s ≤ s⋆
that satisfies the boundary conditions

(4.19)q(s⋆) = q⋆, φ(s⋆) = φ⋆ .

In fact, these boundary conditions alone do not determine the curve uniquely (see proposition
4.1), but as we will see in §4a(iv) and §4a(v), we do obtain a unique characteristic curve when
Φ(I)-rheology is imposed. Once the appropriate characteristic (σ,D)(s) has been found, the stressσ⋆ is given by

(4.20)Σ(D⋆) = σ(s⋆) .

(ii) The Lode angle Θ(D⋆, ϕ)
Let us argue that θ⋆ = Θ(D⋆) is independent of q⋆ and s⋆. Restricting equations (4.19) to theφ, θ-subsystem of equations (4.6), we seek a solution (φ, θ)(s)(0 ≤ s ≤ s⋆) with

(4.21)lims→ 0+
(φ, θ)(s) = ( − π/6, − π/6), and φ(s⋆) = φ⋆ .

Such a solution follows the unstable manifold of equations (4.13) through E−. Thus, θ⋆ is
just the θ-coordinate of the point where the unstable manifold, illustrated in figure 7, crosses
the vertical line φ = φ⋆. We claim that such a point is unique; in appendix D, we show that

Ε+

Ε–

–π/6

–π/6

π/6 θ-nullcline

ϕ-nullcline

π/6 ϕ

θ

Figure 7. Phase diagram of equations (4.13) for ϕ = 0.56, which corresponds to (β,Y ) = (0.610, 0.183) via equations
(2.24) and (2.25) and the parameters listed in table 1. The red curve is the unstable manifold emanating from E−.

15

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20230955
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
13

 D
ec

em
be

r 
20

24
 



dφ/dθ > 0 along the unstable manifold, which confirms the claim. Since the unstable manifold is
independent of q⋆ and s⋆, so is θ⋆. Accordingly, we write θ⋆ = Θ(φ⋆).

In the language of §4a(i), we may choose a solution (φ, θ)(s) of the φ, θ-subsystem that
parametrizes the unstable manifold and satisfies

(4.22)θ(s⋆) = Θ(φ⋆), φ(s⋆) = φ⋆ .

In appendix C, we derive a polynomial approximation of Θ(φ⋆).

Remark 4.3. To compute Θ directly, note that by eliminating s from the θ,φ-equations in
equations (4.6), one obtains the ODE

(4.23)dθ
dφ = − sin(θ − φ)

sin(θ − φ) − G(θ)cos(θ − φ) .

Let θdir(φ) φ ≥ − π/6  (‘dir’ is mnemonic for ‘direct’) be the solution of equation (4.23) that
satisfies the initial conditions8

(4.24)θdir( − π/6) = − π/6, dθdir

dφ ( − π/6) = 1J12
−

.

Then Θ(φ) is just θdir(φ).

(iii) Solution of the q-equation
Although the boundary conditions (equations (4.19)) are sufficient to determine the Lode angleθ⋆, as the following proposition shows, they are not sufficient to determine the pressure p⋆. In
the proposition, we use the function

(4.25)Z(φ) = 1
2r (Θ(φ)) cos [Θ(φ) − φ]

defined in §3. Let (θ,φ)(s) be a solution of the θ,φ-subsystem that satisfies equations (4.22).

Proposition 4.1. For any positive constant Γ, if

(4.26)(a) p(s) =
4ρ∗d2

Ψ2 Γ, (b) q(s) = 1
Γ
Z(φ(s))s2 − Z(φ(s⋆))s⋆2 + q⋆,

then (p, θ, q,φ)(s) is a solution of equations (4.6) that satisfies equations (4.19).

Remark 4.4. The constant Γ may be interpreted as the pressure scaled by a factor that gives it the
units of rate squared.

Proof. We claim that if p is given by equation (4.26a), then

(4.27)q(s) = 1
Γ
Z(φ(s))s2 + K ,

where K is an arbitrary constant, is the general solution of equation (4.6c). To see this, note thatθ(s) = Θ(φ(s)), so ddsΘ(φ(s)) = θ′(s) .

A direct computation yields

(4.28)

dds [Z(φ(s))s2] = sr (θ)cos(θ − φ) + 1
2s2r ′(θ)θ′cos(θ − φ)

− 1
2s2r (θ)(θ′ − φ′)sin(θ − φ);
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in the right-hand side of this formula, we omit the argument s for θ,φ and their derivatives. By
applying the identity r ′(θ) = r (θ)G(θ) equation (4.7) and equations (4.6b,d) to (4.28), we derive

(4.29)dds [Z(φ(s))s2] = sr (θ)
Δ(θ,φ) .

Thus, if q is given by equation (4.27), then

(4.30)ddsq(s) = s
Γ

r (θ)
Δ(θ,φ) = I

Ψ
r (θ)

Δ(θ,φ) = r(θ, I)
Δ(θ,φ) ,

where the last step follows from equation (2.22). This verifies the claim. The proof is completed
by observing that equations (4.19) determine the constant K and yields equation (4.26b). ∎
(iv) Application of Φ(I)-rheology
In case of simple shear D† = (0, s†, 0), the pressure along the characteristic through D† is
determined by Φ(I)-rheology equation (2.15); in this case, equations (4.26) become

(4.31)(a) p(s) =
4ρ∗d2

Ψ2 s†2, (b) q(s) = 1s† Z(φ(s))s2 − Z(0)s†2 .

It is useful to follow such a characteristic to the volumetric axis, by which we mean {s = 0} in
strain-rate space. Here all three strain-rate eigenvalues are equal, specifically equal to divu/3.
According to equations (4.31), q(0) = −Z(0)s†. It follows that along the compressive part of the
volumetric axis,9 i.e.

(4.32){D = (q, 0, ⋅ ) : q ≤ 0},

the pressure in Σ(D) is given by

(4.33)p =
4ρ*d2

Ψ2Z(0)2q2.

Alternatively, in the manifold M1, the variable q along this axis may be expressed in terms of
the scaled pressure Γ as in equations (4.26),

(4.34)q = −Z(0) Γ.

(v) Calculation of the pressure P(D⋆, ϕ)
Now the characteristic derived from equations (4.26) meets the volumetric axis at

(4.35)q(0) = − 1
Γ
Z(φ(s⋆))s⋆2 + q⋆ .

But equation (4.34) expresses q along this axis in terms of the scaled pressure Γ, so we must
have

(4.36)−Z(0) Γ = − 1
Γ
Z(φ(s⋆))s⋆2 + q⋆ .

This may be rewritten as a quadratic equation for Γ for which the positive solution is

(4.37)Γ =
−q⋆ + q⋆2 + 4Z(0)Z(φ⋆)s⋆2

2Z(0) .

Squaring and undoing the scaling p⋆ = [4ρ*d2/Z(0)2Ψ2]Γ, we obtain the constitutive equation
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(4.38)p⋆ = ρ*d2 q⋆2 + 4Z(0, ϕ)Z(φ⋆, ϕ)s⋆2 − q⋆
Ψ(ϕ)Z(0, ϕ)

2

of §3.
Of course, for the shear stress we have

(4.39)τ⋆ = r(θ⋆, I⋆)p⋆.

Remark 4.5. (i) It is easy to see that equation (4.38) reduces to equation (2.15) in simple shear,
that is, when q⋆ = φ⋆ = 0. (ii) Note that equation (4.38) bears a striking similarity to the two-
dimensional result (equation (3.5)).

(vi) Boundary cases
Up to this point we have assumed s⋆ > 0 and |φ⋆| < π/6. We claim that equation (4.38) continues
to be valid even if these assumptions do not hold. If s⋆ = 0, then equation (4.38) predicts thatp⋆ is zero if q⋆ > 0 and is given by equation (4.33) if q⋆ < 0, as desired. If φ⋆ = ±π/6, thenθ(s) ≡ φ(s) ≡ ± π/6, and it may be checked that the various formulas above continue to be valid
and justify equation (4.38).

5. Discussion and conclusions
A key result in this paper is to demonstrate some of the power of Onsager symmetry in the
context of viscoplastic modelling: complete, dynamic three-dimensional constitutive laws may
be derived from a three-dimensional yield condition and certain inputs from measurements
of planar flow provided that Onsager symmetry is invoked. The result generates some interest-
ing mathematics—in three-dimensions, the combination of a yield condition with Onsager
symmetry yields an over-determined system of four algebro-differential equations for the stress
eigenvalues as functions of the strain-rate eigenvalues. Here we demonstrate that a unique
consistent solution can be formed by matching certain two-dimensional empirical data.

To illustrate this novel result, we introduce a rate-dependent yield condition analogous to
the Lade–Duncan or Matsuoka–Nakai yield conditions, suitable to the inertial flow regime of
granular material. We then derive the associated constitutive laws for this yield condition. This
simple example agrees remarkably well with the DEM simulations of Clemmer et al. [17] that
begin the study of flow beyond simple shear. Other constitutive laws, for both dry granular
materials and suspensions, which follow [36], are derived from various yield conditions in
electronic supplementary material II.

Although we have defined and studied Onsager symmetry independently of dissipation
potentials, the usual derivation of the symmetry is based on such potentials. In the electronic
supplementary material, we also show that our constitutive law may in fact be derived as the
gradient of a convex dissipation potential.

Many complexities of three-dimensional flow remain uninvestigated. Steady simple shear—
divergence-free flow with one strain-rate eigenvalue vanishing—has been the primary focus of
both experiments and simulations. The pioneering work of Clemmer et al. [17] broke out of
this context by studying steady, divergence-free flow with all three strain-rate eigenvalues, and
hence the strain-rate Lode angle, non-zero. The present paper derives constitutive laws that
apply for all strain rates and allow for dynamical behaviour.

Much additional work will be required to test such predictions in these new unexplored
regimes. In addition to different geometries, dynamical problems will need to be studied as
is illustrated by the following observation: the usual two-dimensional version of μ(I), Φ(I)
rheology [9,11] may be summarized by the equations
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|τ| = μ(I)p, I = Ψ(ϕ),

but as far as steady flow is concerned, these equations cannot not be distinguished from|τ| = μ(Ψ(ϕ))p, I = Ψ(ϕ).

However, the two theories will predict different dynamical behaviour. Similar considerations
apply to our newly proposed three-dimensional yield condition, and hence the full three-
dimensional constitutive equations which result from it.

Another important task will be to establish criteria for well-posedness for these three-dimen-
sional constitutive relations. In two-dimensional CIDR, it was shown in [12] that the dynamical
equations are linearly well posed provided the underlying constitutive laws have Onsager
symmetry and the two inequalities (2.20) of [12] are satisfied. The new constitutive laws derived
here have Onsager symmetry and the three-dimensional analogues of (2.20) of [12] are satisfied.
We therefore conjecture that the resulting dynamical equations are linearly well posed.
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Appendix A. Derivation of the characteristic equations
In §4b, we claimed that for each fixed ϕ the characteristic equations (equations (4.6)) are
Hamilton’s equations derived from the Hamiltonian

(A 1)H = pr(θ, I, ϕ) − τ .

In this appendix, we prove this claim and show that the flow of the characteristic equations is
tangent to the constitutive manifold M(ϕ), and hence M(ϕ) is a union of characteristic curves.
Since ϕ is held constant throughout the derivation, we suppress its notation, as we did for most
of §4.
Given a Hamiltonian H, in Cartesian coordinates, Hamilton’s equations are the ODEs

(A 2)σi˙ = ∂H∂Di , Di˙ = − ∂H∂σi (i = 1,2,3).

However, we want to work with cylindrical coordinates for stress (p, τ, θ) and strain rate (q, s,φ),
which moreover are not conjugate to one another. To deal with the complications, as well as to
prove the tangency result, it is most efficient to call on the language of differential geometry.
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(a) Theoretical preparation
Recall that a constitutive manifold

(A 3)M = {(σ,D) ∈ DM3 × DM3:σ = Σ(D)}

is Onsager symmetric if

(A 4)
∂Σi
∂Dj = ∂Σj

∂Di .
Introducing the following symplectic 2-form (cf. [38, p. 565]):

(A 5)ω = ∑i dσi ∧ dDi
on DM3 × DM3, we claim that equation (A 4) holds if and only if the restriction of ω to (each
tangent space of) M vanishes. This is easy to see, since substituting σi = Σi(D) in equation (A 5)
yields

(A 6)ω |M = ∑i dΣi ∧ dDi = ∑i, j
∂Σi
∂DjdDj ∧ dDi = − ∑i < j

∂Σi
∂Dj − ∂Σj

∂Di dDi ∧ dDj,
and the two-forms {dDi ∧ dDj : i < j} are linearly independent. Thus, we can use the condition

(A 7)ω |M = 0

to characterize Onsager symmetry in terms of arbitrary coordinates. To invoke terminology
from symplectic geometry, constitutive relations are Onsager symmetric if and only if the
associated manifold M is Lagrangian.10

In light of the yield condition (equation (2.21)), we must seek a Lagrangian manifold M that is
contained in the zero level set of H. On the other hand, H generates a Hamiltonian vector fieldXH on DM3 × DM3, which is invariantly defined as follows (cf. [38, p. 574]):

(A 8)ω(XH,Y ) = dH(Y ) for any vector field Y .

Moreover, XH is tangent to each level set of H, and its flow is just Hamilton’s equations (see [38,
proposition 22.16]). See equation (A 15) for an interpretation of this formula in coordinates.
The following proposition, an immediate consequence of the Hamiltonian flowout theorem in
symplectic geometry (see [38, theorem 22.23]), shows that M is tangent to XH; thus, M is a
union of a two-parameter family of integral curves of XH, what we call characteristic curves.
Here, we include a proof of the proposition.
Proposition A.1. If M is a Lagrangian submanifold of DM3 × DM3 that is contained in the level setH−1(0), then for any p ∈M, the Hamiltonian vector field XH is tangent to M at p.
Proof. Suppose XH were not tangent to M at some p ∈M. As a result, the tangent space TpM
and the vector XH(p) span a four-dimensional linear subspace V of DM3 × DM3. We claim that

(A 9)ω(v1,v2) = 0, ∀v1,v2 ∈ V.

To prove this claim, write vi = wi + aiXH(i = 1,2) with wi ∈ TpM and ai ∈ ℝ. Thus,ω(v1,v2) = ω(w1,w2) + a1ω(XH,w2) + a2ω(w1, XH) + a1a2ω(XH, XH).

The first term ω(w1,w2) vanishes because M is Lagrangian; by equation (A 8),ω(XH,w2) = dH(w2), which vanishes because w2 is tangent to M ⊂ H−1(0); ω(w1, XH) vanishes
for a similar reason; the last term vanishes by the skew symmetry of ω. This proves the claim.
Since the claim violates the standard fact that ω cannot vanish on a subspace of dimension
greater than 3 = 1

2 × 6 (see [38, proposition 22.5]), we get a contradiction.
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(b) The calculation
By substituting equation (2.7) in equation (A 5), the symplectic form ω is expressed in terms of
the cylindrical coordinates (p, τ, θ, q, s,φ):

(A 10)ω = −dp ∧ dq + 2adτ ∧ ds + 2bsdτ ∧ dφ − 2bτdθ ∧ ds + 2aτsdθ ∧ dφ,

where to shorten formulas, we write a = cos (θ − φ), b = sin (θ − φ).
Defining (x1, …,x6) = (p, τ, θ, q, s,φ), we rewrite equation (A 10) as

(A 11)ω = 1
2 ∑i, j = 1

6 ωijdxi ∧ dxj,
where ωij enumerate the entries of the skew-symmetric matrix

(A 12)

W =

0 0 0 −1 0 0
0 0 0 0 2a 2sb
0 0 0 0 −2τb 2τsa
1 0 0 0 0 0
0 −2a 2τb 0 0 0
0 −2sb −2τsa 0 0 0

.

By (A 8), the Hamiltonian vector field XH is defined by the equations

(A 13)ω(XH, ∂j) = ∂jH (j = 1, 2, …, 6).

Writing XH = ∑i ξi∂i and noting that ω(∂i, ∂j) = ωij, the left-hand side of equation (A 13) is just

(A 14)ω(XH, ∂j) = ∑i ξiωij = −∑i ωjiξi,
and thus equation (A 13) reduces to a system of linear equations

(A 15)Wξ = −∇H,

where ξ denotes the column vector (ξ1, ξ2, …, ξ6).
For simplicity, let us write λ = 2d ρ*. Thus, I = λs/ p, and

(A 16)

∇H =

r − I2∂Ir
−1p ∂θr
0λ p ∂Ir
0

.

On solving equation (A 15), we obtain

(A 17)

ξ =

0λa
2 p∂Ir
− λb2τ p∂Ir
r − I2∂Ir

1
2 a + bpτ ∂θr
1
2s b − apτ ∂θr

.
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Solutions of the ODEs

(A 18)

p′τ′θ′q′s′φ′

=

0λa
2 p∂Ir
− λb2τ p∂Ir
r − I2∂Ir

1
2 a + bpτ ∂θr
1
2s b − apτ ∂θr

,

define integral curves of the Hamiltonian vector field XH. Since the five variables p, θ, q, s,φ
provide coordinates for S(ϕ), we may delete the τ-equation from equation (A 18), which follow
from the relation τ = pr(θ, I) and the equations for p, θ, s. Additionally, we substitute τ = pr(θ, I)
in the denominators of ξs and ξφ to simplify the s′ and φ′ equations. For example,

s′ = 1
2 a + bpτ ∂θr = 1

2 a + br∂θr = 1
2 a + bpr r ′ ,

where r = Ψr/I, which depends on θ (and ϕ) but none of the other coordinates p, q, s,φ.
Now let us impose the yield condition (equation (2.16)):

(A 19)βr 3sin 3θ + r 2 = Y .

By differentiating equation (A 19), we obtain

(A 20)r ′(θ)r (θ) = G(θ) := − 3βr (θ) cos (3θ)
3βr (θ) sin (3θ) + 2 ,

which justifies equation (4.7). Furthermore, since

∂Ir = rI , we have λ p ∂Irτ = 1s .

Using these, equation (A 18) simplifies:

(A 21)

p′ = 0,θ′ = − sin(θ − φ)/2s,q′ = r/2,s′ = cos(θ − φ) + G(θ)sin(θ − φ) /2,φ′ = sin(θ − φ) − G(θ)cos(θ − φ) /2s .

Finally, the following lemma allows us to introduce s as the independent variable and obtain
equations (4.6).
Lemma A.1. Provided θ and φ belong to the same wedge Wi, we have

(A 22)Δ(θ,φ) := cos (θ − φ) + G(θ) sin (θ − φ) > 0.

Proof. We note that equations (A 21), and in particular Δ(θ,φ), is invariant as one performs the
following two types of transformations for θ,φ while holding the other variables fixed:

(A 23)(θ,φ) (θ + 2π/3,φ + 2π/3) and (θ,φ) (π − θ, π − φ).

Thus, it suffices to prove equation (A 22) under the assumption |θ|, |φ| ≤ π/6. For such θ andφ, cos (θ − φ) is always positive. Since G(±π/6) = 0, we have Δ(±π/6,φ) > 0 for φ ∈ [−π/6, π/6]. To
proceed, assume θ ∈ (−π/6, π/6), and we rewrite equation (4.8) as

(A 24)Δ(θ,φ) = cos (θ − φ)G(θ) tan (θ − φ) + 1G(θ) .
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In equation (A 24), cos (θ − φ) > 0 as mentioned above; G(θ) < 0 owing to equation (4.7) and
lemma B.1. Thus, it remains to prove that tan (θ − φ) + 1/G(θ) < 0. Let us write

1G(θ) = − tan 3θ + 2
3βr (θ)cos 3θ .

Because r (θ) attains maximum value at θ = −π/6 (according to equation (4.7)), lemma B.1
implies that 2/(3βr (θ)) ≥ 1; consequently,

1G(θ) ≤ − tan 3θ + 1
cos 3θ = − tan 3

2θ + π
4 ,

and therefore

tan(θ − φ) + 1G(θ) ≤ tan(θ − φ) − tan 3
2θ + π

4 ,

the right-hand side of which is negative, since θ − φ < (3/2)θ + π/4 for θ ∈ (−π/6, π/6) andφ ∈ [−π/6, π/6]. This completes the proof.

(c) Admissible characteristics
We now justify a characterization from §4c of the physically relevant characteristic curves
contained in M1. The argument is based on the observation that any characteristic curve
contained in M1 belongs to one of the following three cases.
Case 1. θ(s) = φ(s) = ± π/6 somewhere along the curve. In this case, the entire curve collapses on
to one of the equilibria of equations (4.13), giving rise to the two trivial cases in the characteriza-
tion of solutions.
Case 2. The curve meets the boundary of W1 ×W1 without belonging to Case 1. In other words, along
the curve there exists a point P where |θ| = π/6 and |φ| < π/6, or vice versa. Without loss of
generality, let us assume that θ = π/6 and |φ| < π/6 at P. Using P as the initial condition for
equations (4.6), we can extend the curve farther. Since dθ/ds ≠ 0 at P, along the extended curve
there exists a point P′, also belonging to M, at which θ > π/6 and |φ| < π/6 i.e. P′ ∈W2 ×W1. This
contradicts the ordering principle. Therefore, case 2 cannot occur.
Case 3. The curve is contained in the interior of W1 ×W1. In this case, let us assume that the
curve, (σ,D)(s), is defined on a maximally extended open interval (s1, s2) with the possibility
that s2 = ∞. For the sake of deriving a contradiction, suppose that s1 > 0. Then the right-hand
side of equations (4.6) are uniformly bounded for all s close to s1; as a result, the denominators
in equation (4.5) are bounded away from zero so the limit Q = lims→ s1+(σ,D)(s) exists. By cases 1
and 2, Q cannot belong to the boundary of W1 ×W1, but by using Q as the initial condition
of equations (4.6), the curve can be extended farther, contradicting maximality of the interval
(s1, s2). Therefore, s1 = 0. Using a similar argument, one shows that s2 = ∞. This proves that the
curve is defined for all s > 0. Any solution of equations (4.6) other than the unstable manifold
would leave W1 ×W1 at some finite, positive time, which completes the proof.

Appendix B. Properties of the three-dimensional yield surface
We recall equation (2.16):

(B 1)βr3sin 3θ + r2 = Y ,

which includes both the Lade–Duncan and Matsuoka–Nakai conditions. As we discuss below,
parameters such that

(B 2)β = β0(Y ) := 2
27

1Y
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are a limiting case for equation (B 1). This discussion also applies to equation (2.20) since the
scaling of coefficients in equation (2.20) by powers of I/Ψ(ϕ) affects both sides of equation (B 2)
equally.
If equation (B 2) is satisfied, the solution set of equation (B 1) consists of three straight lines, the
line

(B 3)r = − 3
2 sin θ Y

plus the lines obtained by rotating this one about the origin through ±2π/3 (figure 8a). In
particular, we have the factorization

(B 4)Y − r2 − β0(Y )r3sin (3θ) = Y ∏k = 0

2 2
3

rY sin θ + 2kπ
3 + 1 .

Inside the (closed) triangle in the figure, r ≤ 3 Y , the maximum value occurring, for example,
at θ = −π/6, which corresponds to triaxial compression.
On the other hand, if 0 < β < β0(Y ), we have the following lemma.
Lemma B.1. If 0 < β < β0(Y ), then the solution set of equation (B 1) has a unique bounded component in
the r, θ-plane (see figure 8b), and points on this component satisfy 3βr sin 3θ + 2 > 0.
Proof. For each θ, the radius r of a point (r, θ) on the bounded component of the solution set of
equation (B 1) is the smallest positive value of r that satisfies equation (B 1).
If sin 3θ ≥ 0, then equation (B 1) has a unique positive solution and both terms of 3βr sin 3θ + 2
are positive. If sin 3θ < 0, the left-hand side of (B 1) achieves the maximum 4/(27β2sin2 3θ),
for r ≥ 0, at r = −2/(3β sin 3θ). Thus, if Y < 4/(27β2), or equivalently |β| < β0(Y ), then (B 1) has
two positive roots, say 0 < r1 < r2, and (θ, r1) belongs to the bounded component of the sol-
ution set. Manifestly, at r = r1 the slope of the function βr3sin 3θ + r2 is positive, and hence
3βr1sin 3θ + 2 > 0, which completes the proof.

Appendix C. Calculation of the yield functions from DEM data
Here, the method of fitting the ϕ-dependent constitutive functions using DEM data of simple
shear flow is detailed. The steps will be illustrated using the data of Srivastava et al. [29]. First,
the I = Ψ(ϕ) relation is fit against the proposed linear form equation (2.14) to identify ϕc and I*.
This is shown in the top panel of figure 1.
Fitting of the remaining yield functions Y (ϕ) and β(ϕ) is a little more involved because (for each
ϕ) the two functions satisfy the two coupled equations

(C 1)Θ(0;Y , β) = θ, and βr 3sin (3θ) + r 2 = Y ,

where θ and r  are values measured in the DEM simulation at this value of ϕ. This task was
simplified by considering the following expansion for Θ, which is also of general interest,
rather than relying on numerical solutions of the ODE (equation (4.23)). Figure 9 shows that the
approximation is quite accurate near φ = 0 where it is needed.
Claim C.1.Θ(φ, ϕ) has the expansion

(C 2)Θ(φ, ϕ) = −π/6 + 1Aφ − BA4φ3 +O(φ5)

where φ = φ + π/6 and A, B are determined as follows: let r 0 = r (−π/6, ϕ), define

(C 3)

G1 = G′( − π/6) = 9βr 0
3βr 0 − 2 ,

G3 = 1
6G‴( − π/6) = 27βr 0

(3βr 0 − 2)3 (9β2r 0
2 − 6βr 0 − 2),
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and then let

(C 4)

A = 1 − G1,

B = − 1
6
G1

2 + 2AG1 − 2G1 + 3G3
2A − 1 .

In particular, on comparing with equation (4.15), we have A = J12
− .

Proof. Write θ = θ + π/6 and φ = φ + π/6. In terms of θ  and φ, equation (4.23) reads

(C 5)dθ
dφ = − sin(θ − φ)

sin(θ − φ) − G(θ − π/6)cos(θ − φ)
.

Here G(θ − π/6, ϕ) is odd in θ , which has the expansion G(θ − π/6, ϕ) = G1θ + G3θ 3
+O(θ 5

) whereG1,G3 are given by equation (C 3). By writing θ = t1φ + t3φ3 +O(φ5), substituting it in equation (C
5), and expanding both sides of the resulting equation in powers of φ, we obtain t1 = 1/A andt3 = − B/A4 upon comparing the coefficients, where A and B are given by equation (C 4).
Solutions of equations (C 1), using the approximation equation (C 2), are given as open circles
in figure 1 with best fit parameters listed in table 1.

Appendix D. Slope of an unstable manifold
In §4d(ii), we claimed that dφ/dθ > 0 along the unstable manifold of equations (4.13) that
originates at E−; this claim further implies that the function Θ(φ, ϕ) exists and is strictly
increasing in φ. Here we justify the claim.
The idea is to show that both the θ- and φ-nullclines have strictly positive slope (figure 7). Once
this is verified, then along the boundary of the trapping region enclosed by the nullclines the
flow of equations (4.13) point inward. Therefore, the unstable manifold must be contained in
the trapping region, and its slope cannot change sign. Since the unstable manifold has positive
slope at E−, the claim is justified.
Now we verify that the θ- and φ-nullclines have positive slope. The former is a straight line with
slope 1, so it remains to show that dφ/dθ > 0 along the φ-nullcline.
The φ-nullcline is the graph of the function φ(θ) = θ − arctan (G(θ)). Direct calculation shows

r
 s

in
 θ

√3

O

Y = 1 YLD = 0.68; YMN = 0.5783

r cos θ

r
 s

in
 θ

√3
O

r cos θ

(a) (b)

Lade-Duncan
Y = 0.68

Matsuoka-Nakai
Y = 0.5783

Figure 8. (a) Solution set of equation (2.20) when Y = 1 and β = 2/ 27; (b) solution curves of Lade–Duncan (LD) and
Matsuoka--Nakai (MN) yield equations for particular choices of Y  and β given by equation (2.17).
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(D 1)φ′(θ) = 1 + −27β2[r (θ)]2 + 6βr ′(θ) cos 3θ − 18βr (θ) sin 3θ
9β2[r (θ)]2 + 12βr (θ) sin 3θ + 4

.

Hence, the condition φ′(θ) > 0 is equivalent to

(D 2)9β2r 2 + 12βrsin 3θ + 4 > 27β2r 2 − 6βr ′cos 3θ + 18βrsin 3θ,

which, by equation (4.7), is just

(D 3)4 > 18β2r 2 + 6βr sin 3θ + 3βrcos2 3θ
3βrsin 3θ + 2 .

By lemma B.1, 3βrsin 3θ + 2 > 0, so (D 3) reduces to the following in succession:

(D 4)

2(3βrsin 3θ + 2) > 9β2r 2(3βrsin 3θ + 2) + 9β2r 2 + 6βrsin 3θ,
4 > 27β3r 3sin 3θ + 27β2r 2,

4
27β2 > βr 3sin 3θ + r 2 = Y ,

where the last equality is just the yield equation equation (2.16) and the inequality 4/(27β2) > Y
follows from our assumption β < β0(Y ) equation (2.19). This proves that dφ/dθ > 0 along theφ-nullcline.

Endnotes
1A material obeying the constitutive law (equation (2.3)) is called a Reiner–Rivlin fluid [24, p. 478].
2Clemmer et al. [17] observed this ordering in all their simulations. In simple shear with D1 < D2 = 0 < D3, the
ordering principle means the largest stress (in absolute value) is associated with the compressive strain rateD1; the smallest, with the expansive strain rate D3; the intermediate stress with the vanishing strain rate D2.

3See §4a for discussion of the full range of Lode angles.
4Strictly speaking, if p = 0 then r(θ, I) is undefined because I ∼ 1/ p. However, it may be seen from equation
(2.20) that r ∼ I ∼ 1/ p as p 0, so pr(θ, I, ϕ) is continuous in this limit. Incidentally, it turns out that in the
constitutive law p = 0 if and only if s = 0 and q ≥ 0 i.e. for pure expansion without shearing.

5A physical interpretation of the characteristic equations is given in Remark 4.2.
6The characteristic equations may be formulated so that the independent variable does not involve either
the stress or strain rate, but since we seek stress as a function of strain rate, it simplifies the exposition to

numerical

cubic est.

Ε+

Ε–

–π/6

–π/6

π/6

π/6 ϕ

θ

Figure 9. The graph of a numerical solution (in red) of equation (4.23) initiating at E− and its cubic approximation using (C
2) (in blue) for ϕ = 0.56, which corresponds to (β,Y ) = (0.610, 0.183) via equations (2.24) and (2.25) and the parameter
values listed in table 1.
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reformulate them so that one component of the strain rate, the magnitude of the deviatoric strain rate s, is
the independent variable.

7We use the same letters to denote real variables, as in equation (4.5), and to denote functions of s, as in
equations (4.6). In the hope of warding off confusion, from here on we underline a letter when it denotes a
function. Even though the p-equation in equations (4.6) is trivial, we still underline p when it is part of a
solution of equations (4.6). Although equations (4.6) depend on ϕ, here and below our notation for
solutions of the equations does not indicate this dependence.

8Note that the right-hand side of equation (4.23) is singular at the initial point since both numerator and
denominator vanish there, hence, despite equation (4.23) being a first-order ODE, both the initial point and
initial derivative must be specified. The condition on the derivative uses the eigenvector (4.17) to pick out
an initial direction for which a differentiable solution of the IVP exists i.e. the unstable manifold of
equations (4.13) originating at E−.

9We do not specify φ in equation (4.32) because it is undefined along this axis.
10Given a symplectic manifold (M,ω) of dimension 2m, let N ⊂ M be a submanifold satisfying ω|N = 0. It is a

well-known fact in symplectic geometry that dim (N) ≤ m. When dim (N) is exactly m, N is called a
Lagrangian submanifold of (M,ω). See [38, pp. 566 and 568] for more detail.
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