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Abstract. In many elections or competitions, a set of voters assign
points to the candidates in a way that indicates their preferences, with
the winning candidate being the candidate with the highest total score.
When it comes to revealing the result after all votes have been cast, some
competitions proceed by having a roll call where each voter announces
their vote in turn. This is often done for entertainment purposes, leading
to the introduction of the score reveal problem: Which ordering of the
voters should be chosen to maximise the entertainment value of the roll
call? We define several entertainment measures and consider their prop-
erties, motivated by considerations such as avoiding early resolution of
the outcome, focusing attention on the leading candidates, and catering
towards preferences for surprise or suspense. We compare several ap-
proaches for finding optimal solutions, comparing the hardness of doing
so with different entertainment measures and voting formats.

Keywords: computational social choice · entertainment · score reveal
problem · voting · combinatorial optimisation

1 Introduction

Competitions with many candidates often rely on the assignment of points to
decide a winner, for example the use of league tables in many team sports. In
subjective contexts, judges may be used to award points to each candidate to
decide a winner. After all votes have been cast the points are revealed in discrete
stages such as rounds or votes and there exists a race between the candidates
to earn the most points, yielding additional entertainment as candidates move
up and down in the current rankings. This roll call format raises the question of
whether entertainment can be increased by changing the order in which points
are revealed.

A large real-world instance of the score reveal problem can be found in the
Eurovision Song Contest [1]. During the competition, the winning candidate is
decided by a combination of jury votes and public votes from each participating
country. Since 2016, the jury and public votes have been revealed to the audience
separately [2]. During the jury round, each country reveals the points awarded
by their jury one by one, with candidate scores being updated after each vote.
Due to the high number of participating countries (37, as of 2024) this requires
a segment consisting of brief talks by relevant personalities from each country,
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wherein each presenter announces the receiver of that country’s points. As points
are incremented after each vote, we can graph the progress of the candidates
over time to see how their scores interact during the jury voting phase. Figure 1
shows the candidate scores after each jury vote in the 2021 Eurovision final, with
Switzerland’s Gjon’s Tears highlighted in blue and France’s entry Barbara Pravi
in red. We can see that for most of the reveal these are the only two countries
battling for first place, with the ultimate winner becoming known after the 36th
vote (with three votes yet to be revealed) causing the outcome to be known
earlier than necessary. By changing the order that votes are announced it is
possible to control the way candidates move during the reveal without changing
the final outcome, leading us to our two main questions:

– How do we measure the entertainment of a reveal order?
– Given an entertainment measure, how do we find the most entertaining reveal

order?

This paper serves as a starting point for research into this new problem, providing
a formal definition in section 2 before establishing a common framework for
discussing and solving the problem in later sections. We briefly explore existing
models for entertainment from the fields of economics and consumer behaviour in
section 3 and whether they can be applied directly to the problem, before making
a case for the use of entertainment measures to measure the entertainment of
a given roll call. We present some concrete entertainment measures in section
4, classifying them using using various entertainment properties and proving
that one measure can be solved in polynomial time. In section 5 we explore
the hardness of optimising the remaining measures, using an exact method and
various optimisation approaches, before concluding in section 6.
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Fig. 1: Candidate scores as seen in the 2021 Eurovision final
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2 The Score Reveal Problem

An instance of the score reveal problem consists of a score matrix S, representing
the points assigned by a set of voters V = {v1, v2, . . . , vN} to a set of candidates
C = {c1, c2, . . . , cM} such that each element sij ∈ S represents the score given
to ci by vj (we assume V ∩C = ∅). In most cases voters assign points according
to some agreed-upon rule, assigning a decreasing series of values to candidates
in order of their preference. In cases where each vote (the column S∗,j for voter
j) is a permutation of some shared non-increasing vote vector, we refer to this
as permutation voting with the vector itself being the voting format. The vot-
ing format used in Eurovision is (12, 10, 8, 7, . . . , 1, 0, . . . ). We use permutation
voting in our examples and experiments but proofs apply for any possible score
matrix. A reveal order is some permutation ρ of the columns of S representing
the order in which the votes are announced. We define ρS such that the j-th
column of ρS is the ρ(j)-th column of S. Given the voters are numbered 1 to N ,
we assume them to be ordered and give ρ using one-line notation. Below is an
example with 3 voters and 3 candidates using the voting format (2, 1, 0), where
voter 3 reveals first followed by voter 2 and then voter 1.

S =

2 0 1
1 2 0
0 1 2

 ρ =
(
3 2 1

)
ρS =

1 0 2
0 2 1
2 1 0

 (1)

The votes are revealed one by one to a spectator, whose entertainment we
wish to maximise. Let ES(ρ) denote some measure of the spectator’s entertain-
ment given a reveal order ρ on S. Throughout this paper we will assume that the
spectator is neutral over the sets of candidates and voters, meaning they have
no preferences or beliefs regarding the identities of either group. In particular,
they are not a member of either group. A suitable measure of E must be defined
that adheres to certain properties of the spectator (addressed in section 4) after
which we can define the score reveal problem as follows:

SCORE REVEAL
INSTANCE: A score matrix S and spectator with entertainment measure E
QUESTION: What is the reveal order ρ such that ES(ρ) is maximal?

After each vote is announced, the scores from that voter are added to the
current candidate scores. Thus, in many cases we will need to refer to the cu-
mulative scores of the candidates at each moment in time. Let Σ denote the
cumulation of a matrix, where the j-th column of Σ(S) is the sum of the first j
columns in S. The cumulative scores of the candidates given some reveal order
ρ are given by Σ(ρS), where each element Σ(ρS)i,t is the score of candidate i
at time t.

Σ(ρS)i,t =

t∑
j=1

(ρS)i,j Σ

1 0 2
0 2 1
2 1 0

 =

1 1 3
0 2 3
2 3 3

 (2)
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The reader may note that in many applications the score matrix is not known
in advance, particularly the scheduling of sports leagues. Given some knowledge
base of score predictions (e.g., probability of a win, draw, or loss for each pairwise
comparison of teams) we can estimate the entertainment utility of a reveal order
by repeatedly sampling the score matrix to obtain a distribution of entertainment
utilities for that reveal order. One can then approach the problem by changing
the question to “What is the reveal order ρ such that E(ES(ρ)) is maximal?”, or
using a threshold value K to ask “What is the reveal order ρ such that ES(ρ) > K
with a 95% confidence interval?”. Such variations of the problem allow us to
tackle cases with unknown score matrices using the same techniques we would
use for a determined score matrix, due to the central utility function ES(ρ) being
unchanged.

3 Background: Entertainment Utility

Before we can maximise entertainment we need to determine how to measure
it, and we can refer to existing work in the fields of economics and consumer
behaviour. Dobni’s conceptual model of entertainment value [6] considers the
spectator’s characteristics, the medium of the entertainment, and the benefit and
sacrifice components prior, during, and after the consumption of entertainment.
We consider this model too broad for the score reveal problem, since we only
consider entertainment during the revealing of the votes and do not consider any
sacrifice components like monetary cost. Ely et al.’s model of suspense and sur-
prise [7] considers entertainment of a spectator derived from non-instrumental
information (information that they have no control over), making it more ap-
propriate for use here. Suspense and surprise are defined in terms of a set of
outcomes and a discrete number of world states over time. A world state is the
probability of each outcome ω ∈ Ω at a moment in time. Surprise is defined
as a moment where the world state has changed greatly, meaning the difference
between the current outcome probabilities and the previous outcome probabili-
ties is large, for example, a team has just scored in a football match. Its utility
function is the sum of squared differences between consecutive world states over
time. Suspense is defined as a moment of high uncertainty where there is high
variance in the possible next world states, for example, a team is close to scoring
and there is a high difference between the world state given they score and the
world state given they miss. The suspense utility function is the sum of differ-
ences between each world state and the believed next world state given some
prior belief. Suspense is shown to improve entertainment value [5] and audience
retention [10], and the suspense and surprise model is supported by data from
the Wimbledon tennis championships [4] and live e-sports competitions [11].

Applying suspense and surprise to the score reveal problem, we must define
a set of outcomes, Ω. We consider the outcome of a score reveal instance to be
the final ranking of the candidates. However, there are M ! unique rankings of
M candidates not including non-strict rankings where ties are present, making
evaluating the entertainment of even a single reveal order intractable. Smaller
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sets of outcomes such as {ωi,p | candidate i finishes p-th}, {ωi,j | candidate i
beats candidate j}, or even {ωi | candidate i wins} each have polynomial size
with respect to M , however, accurately estimating outcome probabilities for each
world state and set of believed world states remains difficult, with approaches
such as a Monte Carlo method requiring very high sample sizes to obtain stable
estimates while still being subject to random noise affecting the scores of solu-
tions, making optimisation inconsistent. This is our motivation for the use of
entertainment measures to estimate suspense and surprise.

4 Entertainment Measures and Properties

The purpose of an entertainment measure is to measure entertaining features of
reveal orders with minimal computational cost, allowing optimisation algorithms
to run very quickly. The entertainer can then define exactly what features they
want in a reveal order and quickly find permutations that maximise those fea-
tures. In this section we define properties including Late Resolution, Anonymity,
and k-Tail Independence and use them to design entertainment measures.

4.1 Resolution

A general principle is that the outcome should be in doubt to the spectator
for as long as possible. Our first measure considers that the eventual winner
should not be known until the last possible moment, which was not satisfied by
the reveal order shown in figure 1. We consider a reveal order ρ to be resolved
with respect to S if at some time t less than the final time N it is impossible
for the current leader to be overtaken by another candidate. In instances using
permutation voting the format is known by the audience, so we will consider
h to be the highest amount of points a candidate can receive from a single
voter, and l to be the lowest1. At any moment in time, if any candidate is close
enough to overtake the current leader it follows that the second-placed candidate
can overtake the current leader. If the current second-placed candidate cannot
overtake the leader, it follows that no candidate can overtake the current leader.
Therefore, to measure resolution we need only consider the candidate in second
place at that moment in time. Let Σ

1

∗,t, Σ
2

∗,t denote the greatest and second-
greatest candidate scores at time t (in the case of a tie they are equal). Assuming
the leader receives l points from all remaining voters and the runner-up receives
h points from all remaining voters, we can state that a reveal order ρ is resolved
on S at time t if Σ(ρS)1∗,t − Σ(ρS)2∗,t > (N − t)(h − l). We define the level
of resolution in terms of the number of unrevealed votes, so a reveal order is
k-resolved if it is resolved at time N − k. Intuitively, if a solution is resolved
on S with k votes remaining then it is resolved with k − 1 votes remaining. A
solution is “indecisive” if it is not resolved for any value of k. This occurs if and

1 In other voting cases, h and l may not necessarily be known, so a reveal order cannot
be deemed resolved.
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only if the final outcome is a tie as Σ
1

∗,N −Σ
2

∗,N ≤ 0 can only be satisfied when
Σ

1

∗,N = Σ
2

∗,N . All permutations on a tied instance will yield indecisive solutions
since the sum of all scores is independent of their order.

We call any reveal order that is k-resolved for some k > 0 resolved since the
winner is known with some unrevealed votes remaining, while we refer to solu-
tions that are 0-resolved only as unresolved since the winner is not guaranteed
until after the final vote. The reveal order in the 2021 Eurovision final (shown
previously in figure 1) is 3-Resolved, however, the difference in final points be-
tween the winner (Switzerland) and runner-up (France) is only 19. Both Belgium
and Denmark gave 12 points to Switzerland and zero points to France, so if ei-
ther of those countries had announced their vote last the difference in points
prior to the final vote would have been a mere 7 points, making the reveal order
unresolved. Traditionally in Eurovision the host country announces their jury
vote last. In this case it was the Netherlands who gave 5 points to Switzerland
and 12 points to France, meaning the gap prior to their vote was 26 points. If we
choose to keep their vote as the final vote, we can put either Belgium or Denmark
immediately before the Netherlands, bringing the difference down to 14 points
with 2 votes remaining and hence achieving a solution that is only 1-resolved.
This demonstrates that, while it is very easy to find a reveal order that is as
unresolved as possible, we often only need to fix one or two votes to minimise
resolution and the remaining votes can be freely placed in any order allowing
plenty of room for further optimisation. Let RESS(ρ) denote the greatest value
of k for which ρS is k-resolved, giving us the Late Resolution property.

Property 1 (Late Resolution (LATE)). We say E satisfies LATE if, for all
matrices S and reveal orders ρ1, ρ2, RESS(ρ1) < RESS(ρ2) implies ES(ρ1) >
ES(ρ2).

One may consider Late Resolution to be a minimum requirement for choosing
an entertaining reveal order, but once a partition of the votes has been found
such that Late Resolution is satisfied we may choose any permutation of each
subset while maintaining the optimality of the solution (demonstrated in The-
orem 1). If we want to guarantee Late Resolution we can use −RESS(ρ) as an
entertainment measure of its own (made negative so that maximising the value
results in minimal resolution), which we call the Resolution measure.

Theorem 1. If E = RES, SCORE REVEAL can be solved in polynomial
time.

Proof. A polynomial-time algorithm to find an optimal reveal order is given as
follows:

procedure Late Resolution(S)
Vu ← {1, 2, . . . , N} ▷ Unfixed votes
Vf ← {} ▷ Fixed votes
Let i, j be the indices of the final winner and runner-up, respectively.
∆← Σ(S)i,N −Σ(S)j,N
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while ∆ > (N − |Vf |)(h− l) do
k ← argmaxg∈V (Si,g − Sj,g)
Vu ← Vu \ {k} ▷ Move k from Vu to Vf

Vf ← Vf ∪ {k}
∆← ∆− Si,k + Sj,k ▷ New difference at time N − |Vf |

Let π1, π2 be any permutations on Vu, Vf

return ρ← π1 ◦ π2 ▷ Concatenate π1 and π2

This algorithm calculates ∆, the score difference between the overall winner
and runner-up, and checks if the solution is resolved at time N . If not, it selects
the vote that maximises the points given to the winner and minimises the points
given to the runner-up and fixes that vote so that it will be revealed last, therefore
closing the gap by the greatest amount. If the new value for ∆ at time N − 1 is
still too large, then no reveal order exists on S that is unresolved at time N − 1
as we have fixed the optimal vote to reveal last. The algorithm continues to fix
votes until the size of the gap at time N − |Vf | is small enough to be unresolved
and then exits the while loop. Upon exiting the loop, we will have a set Vu of
unfixed votes and a set Vf of fixed votes. As long as all unfixed voters announce
their scores before the fixed voters then the reveal order will be optimal, as no
solution exists that is non-|Vf | − 1-resolved and all permutations of the votes
in Vu will yield a non-|Vf |-resolved solution. Hence, the algorithm returns any
permutation ρ given by the concatenation of π1(Vu) and π2(Vf ). This algorithm
provides us with a reveal order that has optimal Resolution score, and has worst-
case time complexity O(MN +N2). ⊓⊔

4.2 Suspense and Surprise Approximations

Our next entertainment measure is Position Shifting (POS), inspired by Ely et
al.’s surprise function. If large changes in the world state result in high sur-
prise, this can be approximated by considering changes in the ranking of the
candidates. POS compares each pair of successive candidate rankings in Σ(ρS)
and counts the total difference in rank between each candidate’s current and
previous position. The rank of a given candidate ci at time t can be found by
counting the number of candidates with greater score at that time. This is done
by the function rankΣ(ρS)(i, t) = |{g | Σ(ρS)g,t > Σ(ρS)i,t}| + 1, such that the
candidate with the greatest score is given a rank of 1 representing first place.

POSS(ρ) =
∑
i;t>1

∣∣∣(rankΣ(ρS)(i, t)− rankΣ(ρS)(i, t− 1)
∣∣∣ (3)

Proximity (PROX) takes the spirit of the suspense function. Suspense is a
moment where a large change in world state is possible, which is most likely to
occur when candidates are close in points (the likelihood of a candidate over-
taking another, or pulling away to solidify their place, is higher). The Proximity
measure approximates suspense by considering each candidate at each point in
time, and measuring the distance between that candidate and their closest rival.
Small distances to rivals indicate higher suspense, as there is a higher chance of
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the world state changing, while greater distances indicate lower suspense. The
measure is calculated as

PROXS(ρ) = −
∑
i,t

min
k ̸=i

{∣∣Σ(ρS)i,t −Σ(ρS)k,t
∣∣} (4)

where the sum is negative, so smaller distances result in a greater output value.

4.3 Neutrality and Anonymity

As mentioned in section 2 we assume that the spectator has neutral preference
over the set of candidates, and no prior knowledge about the voters. In this case,
any measure of entertainment value should consider the points revealed only,
with no reference to the identities of the candidates or voters. In this section
we define several properties that entertainment measures should satisfy for a
neutral spectator and show that POS and PROX satisfy them. The first of these
properties is Point Equivalence (PE), which requires that if the same points
are read out in the same order, regardless of instance, the entertainment should
remain the same. Point Equivalence is given as

Property 2 (Point Equivalence (PE)). We say E satisfies PE if, for all
score matrices S1, S2 and reveal orders ρ1, ρ2 on them, ρ1S1 = ρ2S2 implies
ES1

(ρ1) = ES2
(ρ2).

We can also model the intuition that permuting the score matrix and reveal
order such that the scores are given in the same order but by different voters
has no effect on the entertainment:

Property 3 (Voter Neutrality (VN)). We say E satisfies VN if, for all score
matrices S and reveal orders ρ, π on V , ES(ρ) = EπS(π

−1ρ).

Voter Neutrality explicitly assumes that the second score matrix is a per-
mutation of the first, however, some readers may note that Point Equivalence
implicitly assumes the same, as it only applies when S2 = [ρ1ρ

−1
2 ]S1.

Proposition 1. Let E be an entertainment measure. Then E satisfies Point
Equivalence iff it satisfies Voter Neutrality

Proof. First, by letting π = ρ it follows that any E satisfying VN also satisfies
ES(ρ) = EρS(ρ

−1ρ) = EρS(ι). We can use this to prove VN implies PE as,
if ρ1S1 = ρ2S2 then by VN it follows that ES1(ρ1) = Eρ1S1(ι) = Eρ2S2(ι) =
ES2(ρ2) satisfying PE. We can verify that PE implies VN by assigning ρ1 = ρ,
ρ2 = [π−1ρ], S1 = S, and S2 = πS. ρS = [ππ−1ρ]S so PE applies, and by PE
ES(ρ) = EπS(π

−1ρ) as required. ⊓⊔

Both Point Equivalence and Voter Neutrality describe an entertainment mea-
sure’s relationship with the voters, however, neither of them describes the anonymity
of the candidates. We will use σ to represent any row-wise permutation of the
score matrix, to distinguish candidate-wise permutations from the voter-wise
permutations ρ and π. Candidate Neutrality requires that permuting the rows
of the score matrix has no effect on the entertainment value.
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Property 4 (Candidate Neutrality (CN)). We say E satisfies CN if for
all score matrices S, permutations σ on C, and reveal orders ρ on V , ES(ρ) =
EσS(ρ).

Now that we have definitions for Voter Neutrality and Candidate Neutral-
ity, a combined definition that requires both the candidates and voters to be
anonymous can be given.

Property 5 (Anonymity (ANON)). We say E satisfies ANON if for all
score matrices S, permutations σ on C, and reveal orders ρ, π on V , ES(ρ) =
E[σπ]S(π

−1ρ).

We can show that VN and CN are jointly equivalent to ANON, verifiable
by substituting identity permutations into the definition of Anonymity. We can
also show that Position Shifting and Proximity satisfy Anonymity by inserting
the permutations into their definitions and showing that this has no effect on
the value.

4.4 Tail Independence

So far we have defined entertainment measures that consider every candidate
equally, however, we propose that even a neutral observer with no preference
over the set of candidates will still have some bias towards candidates that are
winning, meaning the candidates that are closer to first place contribute more
to suspense and surprise. Intuitively, these candidates have a greater effect on
the most important outcome: “which candidate will win?”.

For a set of candidate scores at time t, given by Σ(ρS)∗,t, let the k-head of
ρS at time t be the set of candidates where each rankΣ(ρS)(i, t) ≤ k. We can
determine if a candidate is in this set by counting the number of candidates with
greater score, and checking if this number is less than k. The candidates outside
the k-head will be referred to as the k-tail. Given a matrix Σ, the k-head mask
△kΣ is given as

(△kΣ)ij =

{
Σij if ci ∈ k-head
∗ otherwise

(5)

where any candidate scores that are part of the k-tail are replaced with the
non-numerical symbol ∗, (∗ < x for all x ∈ R). k-Tail Independence requires
that for any two cumulative matrices Σ1, Σ2, if their k-heads are equal the
entertainment must be equal. This has the result that the entertainment measure
is independent of low-ranking candidates.

Property 6 (k-Tail Independence (KTI)). We say E satisfies KTI if, for
all score matrices S and reveal orders ρ1, ρ2 on V, △kΣ(ρ1S) = △kΣ(ρ2S)
implies ES(ρ1) = ES(ρ2).
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If a measure is independent of the k-tail, it follows that it must also be in-
dependent of the k + 1-tail. For an instance with M candidates, the M -tail is
nonexistant, so while we could state that POS and PROX satisfy k-Tail Inde-
pendence for k = M , this is the only case they satisfy. We will use the term Tail
Independence to refer to measures that are independent of some non-zero tail.

Property 7 (Tail Independence (TI)). We say E satisfies TI if and only if,
given a score matrix S with M candidates, it satisfies k-Tail Independence for
some k < M .

We can generalise our previous measures to make them tail independent
by introducing a rank bias. Let w(p) denote a weight in the range [0, 1] of a
position p in the rankings, representing the level of interest or importance given
to candidates in that position. For Rank-Biased Proximity (R-PROX) we can
introduce this weight as shown in equation 6 where each difference is multiplied
by the weight of that candidate’s position. This has the effect that any candidates
in a position p where w(p) = 0 will be ignored. For Rank-Biased Position Shifting
(R-POS) each position change is weighted using the candidate’s current position,
however, to maintain k-Tail Independence we must also consider if the candidate
has moved up into the k-head from the k-tail. In these cases the value must be
equal regardless of the candidate’s previous position. We enforce this by passing
△pΣ(ρS) into the rank function, where p is the greatest value of p for which
w(p) is non-zero. This has the effect that candidates moving up into the k-head
are treated as if they moved up from position k + 1, regardless of their true
previous position.

R-PROXS(ρ) = −
∑
i,t

(
min
k ̸=i
{
∣∣Σ(ρS)i,t −Σ(ρS)k,t

∣∣} × w(rankΣ(ρS)(i, t))

)
(6)

R-POSS(ρ) =
∑
i;t>1

(∣∣rankΣ(ρS)(i, t)−rank△pΣ(ρS)(i, t−1)
∣∣×w(rankΣ(ρS)(i, t)

)
where p = argmax

p
(w(p) ̸= 0) (7)

Given there are many possible weight functions that could be used, we con-
sider each instance of a rank-biased measure to be a different configuration of
the measure. If a measure satisfies a property in all configurations, we say that
it necessarily satisfies the property; if a measure does not satisfy a property in
any configurations, we say that it never satisfies the property; and if a measure
satisfies a property in some configurations, but does not in others, we say that it
possibly (but not necessarily) satisfies the property. Both the rank-biased Posi-
tion Shifting and Proximity functions possibly satisfy k-Tail Independence and
necessarily satisfy Anonymity.

Proposition 2. Rank-Biased Proximity satisfies k-Tail Independence if w(p) =
0 for all p ≥ k.
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Proof. Let R-PROXS(ρ) be such that w(p) = 0 for all p ≥ k and let S, ρ1, ρ2
be such that △kΣ(ρ1S) = △kΣ(ρ2S). We must show that R-PROXS(ρ1) =
R-PROXS(ρ2). Since w(p) = 0 for all p ≥ k, the bottom m − k candidates are
ignored. Since the k-heads are equal, their utility according to the rank bias will
be equal. It follows that R-PROXS(ρ1) = R-PROXS(ρ2) as required. ⊓⊔

Proposition 3. If M ≥ 2 and w(M) ̸= 0, Rank-Biased Proximity does not
satisfy Tail Independence.

Proof. Given any M ≥ 2, let S be such that the first M−1 rows are (2, 0, 0) and
the final row is (0, 0, 1). Let ρ1 =

(
1 2 3

)
and ρ2 =

(
1 3 2

)
. Let w(M) = α ̸= 0

and assume that R-PROX satisfies Tail Independence. Since △M−1Σ(ρ1S) =
△M−1Σ(ρ2S) it follows that R-PROXS(ρ1) = R-PROXS(ρ2). Since the top
M − 1 candidates are all tied at 2 points throughout, the proximity measure
will calculate a sum of zero for those candidates. The bottom candidate has a
proximity of 5 on ρ1 and 4 on ρ2. The R-PROX scores of the two solutions are
therefore R-PROXS(ρ1) = 4α and R-PROXS(ρ1) = 5α. By Tail Independence
4α = 5α, however, we have defined α ̸= 0. Hence our assumption that R-PROX
satisfies Tail Independence reaches a contradiction, and therefore R-PROX can-
not satisfy TI when w(M) ̸= 0. ⊓⊔

Since we have shown cases where R-PROX satisfies and does not satisfy TI,
R-PROX possibly satisfies Tail Independence. The same result for R-POS can
be proven using similar methods. Both measures remain anonymous, verifiable
by inserting permutations into their definitions and simplifying.

Lead and Hotseat. At the extreme, each measure has a rank-biased variant
that values only the winning candidate, given by the rank bias w(p) = 1 if p = 1,
0 otherwise. For Proximity this is the Lead (LEAD) measure, which satisfies
2-Tail Independence as it measures only the difference between 1st and 2nd
place. For Position Shifting this is the Hotseat (HOT) measure which satisfies
1-Tail Independence as, even with a 1-high mask, we can differentiate which
candidate(s) are winning from candidates that are not since ∗ is defined as
being less than any other real-valued score. Our rank-biased variants of POS and
PROX combined with RES give us the seven entertainment measures presented
in this paper, all of which satisfy ANON as shown in table 1. RES satisfies 2-Tail
Independence as it considers only the scores of the top two candidates in order
to check if a reveal order is resolved, and never satisfies 1-Tail Independence.
Its anonymity can be shown by the scores of the winner and runner up being
independent of permutations of the voters or candidates.

5 Comparison of Solving Approaches

In this section we compare several methods for finding optimal and near-optimal
solutions for each entertainment measure. We initially used the Gurobi solver,
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ANON 1TI 2TI TI LATE
PROX □ × × × ×
R-PROX □ × ⋄ ⋄ ×
LEAD □ × □ □ ×
POS □ × × × ×
R-POS □ ⋄ ⋄ ⋄ ×
HOT □ □ □ □ ×
RES □ × □ □ □

Table 1: Cross-table of entertainment measures and their properties. □ means
that the measure satisfies a property in all configurations, ⋄ means that the
measure possibly (but not necessarily) satisfies a property, and × means that no
configuration satisfies the property.

however, we found that the number of variables and constraints scales poorly
with the size of the score matrix resulting in excessive execution times. An
alternative tree-based approach was implemented that can quickly find exact
solutions within a second on score matrices up to 8x8, however, it remains too
slow for instances of a realistic size. We then compared several optimisation ap-
proaches on randomly generated 8x8 instances including tabu search, simulated
annealing, and greedy construction heuristics. All experiments were run using
Java version 21 on an Intel Core i7-1165G7 with 16GB of memory. We have
excluded Resolution from this experiment as it was proven to be solvable in
polynomial time in section 4.1. For R-POS and R-PROX we chose a rank bias
of w(p) = max( 5−p

4 , 0), giving the top 4 candidates a decreasing weight from
1 to 0.25 and the remaining candidates a weight of zero. This provides a mid-
dle ground between the measures that consider all candidates equally and the
measures that consider only the winner.

5.1 Experiment Design

Our comparison of solving approaches was run on randomly generated score ma-
trices. To achieve realistic instances, voting is correlated to some “true” ranking
of the candidates, randomly generated for each instance. Each voter’s order of
preference over the set of candidates is decided by sampling a set of normal
distributions representing the performance of each candidate. Analysis of the
points awarded in the 2019 and 2021 Eurovision finals showed that low-scoring
candidates tend to have lower variance in the points received, while high-scoring
candidates tend to have higher variance, as shown in figure 2. This method allows
the generation of instances where points are realistically distributed among the
candidates, however, it does not model the correlation between points received
by candidates (e.g., in the case of Eurovision it has been shown that countries
tend to vote for each other in blocs [12], so a candidate’s expected score would
be higher given a candidate in the same bloc receives points from the current
voter).
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Fig. 2: Mean and standard deviation of points received by candidates in the 2019
and 2021 Eurovision finals.

We found that the distribution of mean points received has a mean of 2.27,
standard deviation 3.70, and skewness of 0.90. The distribution is curved, so we
calculated a curve of best fit f(x) = 2.41+0.94 lnx using exponential regression.
The standard deviation of the residuals is 0.31. Therefore, random candidate
performance distributions can be generated by first getting the mean score using
a skewed normal distribution X ∼ N(2.27, 3.70, 0.90) and the standard deviation
is given by Y ∼ N(2.41 + 0.94 lnX, 0.31).

Several voting formats were chosen to represent varying levels of preference
information given, listed in table 2. The strongest format is Borda count, where
candidates are ranked in complete order of preference and assigned a decreas-
ing number of points from M to 1; the weakest format is single point voting,
where the assignment of a single point by each voter represents the least infor-
mation that could be given; and the two “half” formats were chosen to represent
intermediate levels of strictness. The half Borda format was chosen to mimic
Eurovision’s format, where some candidates are strictly ranked with decreasing
amounts of points and the remaining candidates receive zero points. The half
approval format was chosen to mimic sports tournaments, where half of teams
will win a match on any given round and the other half will lose. For instances
where M is odd, M

2 is rounded up meaning the middle candidate receives 1 point
in the half approval and half Borda formats.

Name Example Rule for position p
Borda (6, 5, 4, 3, 2, 1) M + 1− p
Half Borda (3, 2, 1, 0, 0, 0) max(M2 + 1− p, 0)
Half Approval (1, 1, 1, 0, 0, 0) if p ≤ M

2 then 1 else 0
Single Point (1, 0, 0, 0, 0, 0) if p = 1 then 1 else 0

Table 2: The voting formats used.

A search algorithm was implemented to find exact solutions, allowing us to
find the optimal and least-optimal scores on sufficiently small instances. Let
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ES(max) and ES(min) denote these, and let the optimality of a reveal order ρ

on S be given as 2(ES(ρ)−ES(min))
ES(max)−ES(min) − 1 such that optimal reveal orders have a

score of 1, least-optimal reveal orders have a score of -1, and other values are lin-
early interpolated in that range. Four optimisation algorithms were considered.
Tabu search [8] and simulated annealing [3] were implemented using the set of
permutations ρ on S and a neighbourhood function that swaps any two elements
in ρ. A basic greedy heuristic was implemented using the same tree structure
as the exact algorithm, choosing an optimal voter to fix at each time t without
exploring the subtree. GC L begins by fixing the first voter and working from
left to right, while GC R begins with the final voter and works from right to
left. We generated 1000 random 8x8 score matrices (250 of each voting format)
and calculated the mean optimality of each algorithm on each entertainment
measure, shown in figure 3.

5.2 Results

Across the board we see that single point voting is easy to solve, while stricter
voting formats become increasingly more difficult. A notable exception to this
is the Lead measure (figure 3c), where both optimisation algorithms achieved
slightly better results with the borda format compared with half borda. This
may be due to less consistency in point incomes on half borda: it is more likely
for a leading candidate to receive a zero and be overtaken, creating a large gap
which is less optimal.

We also see that restricting entertainment measures with a rank bias makes
them easier to solve. The consistently good performance of greedy construction
on the Lead measure indicates that this may even be polynomially solvable, while
the unrestricted Proximity measure is best tackled with simulated annealing. The
Position Shifting and Rank-Biased Position Shifting measures seem harder to
solve, with the runtimes of SA and TS averaging 4.56ms per instance, more than
double the 1-2ms per instance required for any other measure. GC R performs
exceptionally poorly here, which we believe is due to the greedy algorithm being
unable to move the candidates together while working backwards from the end
of the reveal leading to poor-quality solutions. The greedy algorithms struggled
with the Hotseat measure, most likely due to the arbitrary breaking of ties when
multiple voters could result in a change in leader. A more sophisticated heuristic
for breaking ties may result in much better performance here, so we have not
ruled out Hotseat being a polynomial-time problem.

6 Conclusion

The score reveal problem is a new problem with the unique challenge of opti-
mising a subjective function. We have formally defined a framework for tackling
the problem and describing the properties of a given spectator’s entertainment
utility, including presenting the properties of Late Resolution, Anonymity, and k-
Tail Independence. The Position Shifting and Proximity functions provide base-
line entertainment measures that can be modified with a rank bias to focus on
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Fig. 3: Average optimality achieved by each alorithm on each entertainment
measure, split by voting format. Algorithms: tabu search, simulated annealing,
greedy construction (left to right), and greedy construction (right to left).
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higher-ranked candidates. Our experiment showed that the hardness of finding
optimal reveal orders depends on the strictness of the voting format used and
the level of information required by the entertainment measure. Simulated an-
nealing was the most effective algorithm by average solution optimality for all
measures, with Position Shifting seeming to be the hardest to optimise. While
small instances were used within the experiment for comparison to known op-
tima, high-quality solutions on large matrices (>100 voters) are typically found
within minutes, demonstrating the ease of application to real contexts.

A clear area for future work is the consideration of non-neutral spectators;
this opens opportunities for modelling candidate and voter bias, which we believe
could improve entertainment value by playing into the spectator’s expectations.
There is also the natural extension to an audience of spectators, where a com-
bination of preferences can be considered using multi-objective optimisation or
compound entertainment measures. The computational complexity of solving the
Position Shifting, Proximity, Hotseat, and Lead entertainment measures remain
open questions and there remains a need to test their effectiveness in real con-
tests or through research studies. Another consideration is the use of alternate
scoring systems such as rank dependent rules [9].
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