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Abstract

We propose several new models in finance known as the Fractal Activity Time Ge-
ometric Brownian Motion (FATGBM) models with Student marginals. We summarize
four models that construct stochastic processes of underlying prices with short-range and
long-range dependencies. We derive solutions of option Greeks and compare with those in
the Black-Scholes model. We analyse performance of delta hedging strategy using simu-
lated time series data and verify that hedging errors are biased particularly for long-range
dependence cases. We also apply underlying model calibration on S&P 500 index (SPX)
and the U.S./Euro rate, and implement delta hedging on SPX options.

Keywords: option pricing, fractal activity time, student processes, dependence structure,
supOU processes, delta hedging.

1. Introduction

Financial markets are difficult to forecast, while modelling financial price movements are not
only useful for investment decisions, but also critical for derivative pricing. Granger (2005)
proposed his view on the non-Gaussian nature of financial data and future research routes to
address this issue. Following this paper, we propose supOU and related models (Barndorff-
Nielsen and Shepard 2001; Barndorff-Nielsen and Leonenko 2005) for stochastic pricing with
the dependence structure and introduce applications on option pricing and hedging. Stochas-
tic models are widely adopted in asset pricing, however, still face the challenge of replicat-
ing empirical properties of financial returns, in particular, non-normal and fat-tails, depen-
dence of squared and absolute returns (named as Taylor effect) (Granger 2005; Heyde 2009).
To tackle this problem, there emerges a series of studies. Barndorff-Nielsen, Mikosch, and
Resnick (2012) documented recent work of time-changed models that use Lévy processes with
Student, normal inverse Gaussian (NIG), variance-gamma (VG) distributions. Since incre-
ments of Lévy processes are independent and functions of the elapsed time, all these models
can fit the non-Gaussian properties but not the dependencies of squared returns. Another
group of researchers focused on establishing models with random time changes (see Barndorff-
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Nielsen (1997); Madan and Cherny (2010)) which provide alternative methods to construct
fat-tailed distributions, however again, cannot produce dependent properties (even weak de-
pendence). The geometric Brownian motion with fractal activity time (FATGBM) models
proposed by Heyde (1999) successfully capture both non-Gaussian and dependencies proper-
ties.
In the FATGBM model, a random activity time {Tt : t ≥ 0}, modelled as a positive, non-
decreasing stochastic process with stationary but not necessarily independent increments, is
incorporated with the standard Brownian motion {Wt : t ≥ 0}:

St = S0eµt+θTt+σWTt , t ≥ 0, T0 = 0, (1)

where we assume that {Wt : t ≥ 0} is independent of {Tt : t ≥ 0}. It is the strong solution
of the SDE (see Kobayashi (2011); Kerss, Leonenko, and Sikorskii (2014) and the reference
therein):

dSt = µStdt +
(

θ + σ2

2

)
StdTt + σStdWTt , (2)

where µ, θ ∈ R and σ > 0 are constants. The following stochastic representation log-returns
is applied:

R̃t = log St

St−1

d= µ + θτt + σ
√

τtW1, t = 1, 2, ..., (3)

where d= denotes equality in distributions, and τt = Tt − Tt−1 is the increments over the
(small) unit time. We can also write an approximation of simple-returns:

Rt = St − St−1
St−1

d
≊ µ +

(
θ + σ2

2

)
τt + σ

√
τtW1, t = 1, 2, ..., (4)

where
d
≊ denotes approximate equality in distributions. It is worth noting that this approx-

imation holds only if the time step between t − 1 and t is small, for example, a day or
shorter in practice. Moreover, when using daily or higher frequency data, the log-return and
simple-return are numerically close.
Remark 1.1. Approximate equality in distribution (4) follows from (2) if dt is small.

Mathematical theories of FATGBM have been developed in recent years. The distributions
of returns are exact. The stochastic volatility models, such as the Heston model and GARCH
models, are kind of close to FATGBM models, but many of them do not guarantee explicit
distributions of returns. In particular the famous Barndorff-Nielsen and Sheppard stochas-
tic volatility model has only approximated hyperbolic distributions (Barndorff-Nielsen and
Shepard 2001). Here we express some properties of dependence structures of the processes
Rt, which are also identified in empirical finance, for example, Granger (2005). Assuming
finiteness of moments, we have for integer s ≥ 1,

Cov(R̃t, R̃t+s) = θ2Cov(τt, τt+s), (5)

Cov(R̃2
t , R̃2

t+s) =
(
σ4 + 4θ2µ2 + 4θµσ2

)
Cov(τt, τt+s) + θ4Cov(τ2

t , τ2
t+s)

+
(
θ2σ2 + 2θ3µ

) (
Cov(τt, τ2

t+s) + Cov(τ2
t , τt+s)

) , (6)

For θ = 0, this is a symmetric model and these covariance measures reduce to Cov(R̃t, R̃t+s) =
0 and Cov(R̃2

t , R̃2
t+s) = σ4Cov(τt, τt+s). Thus, the dependence structure expressed by covari-

ance function for the process τt implies those for R̃2
t , irresponsive of the size of µ. Moreover,

for θ = µ = 0 we have
Cov(|R̃t|, |R̃t+s|) = 2

π
σ2Cov(τ1/2

t , τ
1/2
t+s). (7)
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It has been verified that FATGBM models are more suitable to fit the real financial data (Heyde
2009, 2002; Seneta 2004; Heyde and Leonenko 2005; Finlay and Seneta 2007; Leonenko, Peth-
erick, and Sikorskii 2011; Finlay, Seneta, and Wang 2012). More importantly, financial prices
seasonality and business cycles can be well explained under using the fractal active time Tt

with dependence structures. Regarding model calibration and application, Kerss et al. (2014);
Leonenko et al. (2011) pointed out that the marginal distribution of Rt and its dependence
structure can be fitted separately. With all these nice mathematical properties, FATGBM
models have advantages in derivative pricing and trading.
The conditional distribution of R̃t given V = τt ≥ 0, is normal with mean µ + θV and vari-
ance σ2V . With the idea of subordinated processes, returns can be modelled as a variety of
hyperbolic distributions by choosing different distributions for τt. For example, Kerss et al.
(2014), Leonenko, Petherick, and Sikorskii (2012), Finlay and Seneta (2012) and Castelli,
Leonenko, and Shchestyuk (2017) modelled prices following normal inverse Gaussian, gen-
eralized hyperbolic, tempered stable, and Student distribution, respectively. Moreover, this
model can be downgraded to the classic Brownian motion by defining Tt = t (i.e. τt ≡ 1). In
this paper, we investigate option pricing, Greeks and delta-hedging using Student FATGBM
models. Relevant theorems are documented and proved in Heyde and Leonenko (2005), Leo-
nenko et al. (2011) and Castelli et al. (2017). If the marginal distribution of τt is the inverse
(or reciprocal) gamma RΓ(a, b) with density

fRΓ(x; a, b) = ba

Γ(a)
1

xa+1 exp{− b

x
}, x > 0. (8)

and if a = ν
2 , b = δ2

2 , the strictly stationary stochastic process {R̃t, t = 0, 1, 2...} has marginal
Student distribution, known as generalized hyperbolic skew student’s t-distribution. Without
loss of generality, we apply E[τt] = 1, leading to δ2 = ν − 2, since any scaling can be absorbed
into µ and σ as required (assuming E[τt] < ∞). The density of R̃t is

fST (x) =


c1(ν)

σ̃

(
1 + ( x−µ

σ̃ )2

ν

)− ν+1
2

for θ = 0

c2(ν)
σ̃

(
σ̃2

θ2

(
ν +

(
x−µ

σ̃

)2))− ν+1
4 e

x−µ

σ̃2 θ ν−2
ν K ν+1

2
( ν−2

ν
|θ|
σ̃

√
ν +

(
x−µ

σ̃

)2) for θ ̸= 0
,

x ∈ R,

(9)

where µ ∈ R is location parameter, σ̃ = σδ/
√

ν > 0 is scaling parameter, ν > 2 is degrees of

freedom, c1(ν) = Γ( ν+1
2 )√

νπΓ( ν
2 ) , c2(ν) =

√
2
π

ν−2
ν

( ν
2 −1)

ν
2

Γ( ν
2 ) , and Kλ(x) = 1

2
∫∞

0 zλ−1e− x
2 (z+ 1

z )dz is the
modified Bessel functions of the third kind. See Appendix A for more details.
Although theorems of FATGBM models are sufficiently explored, academic finance research on
model applications is scarce. To the best of our knowledge, hedging strategies of FATGBM
are still not investigated. That explains why, despite good mathematics properties, this
modelling technique has not raised much attention in industrial practices. In this paper, we
formulate the option Greeks and the basic delta hedging strategy for European options priced
by FATGBM models. We show that analytical solutions of Greeks exist for these models,
hence, instant risks are measurable. However, in FATGBM models, there are two sources of
randomness, Tt and Wt, that construct an incomplete market. Hence, a perfect hedging does
not exist (for more details, see Section 3.4). We compare the Greeks and hedging errors of
the Student FATGBM model (with short- and long-range dependency) and the Black-Scholes
model. We also run an application experiment by fitting the S&P 500 Index data to the
model, and show the European option pricing and hedging.

2. The facts
In this section, we present the time series and statistical properties of financial returns using
examples of S&P 500 Index and U.S./Euro rate. It is well-known that financial returns
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are not normal. They are usually slightly skewed and fat-tailed, even heavy-tailed. We
can observe these in Figure 1 and that the Student distribution gives better fitting than
the normal distribution. The statistics also indicates that Student model successfully fits

(a) S&P 500 Index

(b) U.S./Euro rate

Figure 1: Fitting returns to Normal dist. and Student-T dist.

the leptokurtic property of returns. There have been studies of Student like models with
skewness (Borland and Bouchaud 2004), while they are not based on the FATGBM. Indeed,
skewness is sometimes ignored by financial analysts due to the lack of economic explanations.
Hence, we think symmetric FATGBM models are sufficient for practitioners.

Definition 2.1 (Self-similarity). Stochastic process {Zt, t ≥ 0} is self-similar if some H ∈
(0, 1) exists such that ∀c > 0, Zct

fdd= cHZt, t ≥ 0, where fdd= denotes equality in a sense of
finite dimensional distributions.

We show this property through Q-Q plot in Figure 2 of empirical returns Rct and Rt, taking
c = 2, 3, ..., 10. (Kerss et al. 2014; Leonenko et al. 2012; Castelli et al. 2017) prove that returns
produced by FATGBM models approximately self-similar processes.
Another important empirical property is the dependence structures of absolute and squared
returns. Figure 3 shows that autocorrelation of returns is weak or statistically insignificant.
While both absolute and squared returns have strong autocorrelations. For the S&P 500 Index
in Figure 3a, these autocorrelations decay fast, indicating short-range dependence (SRD). On
the contrary, in Figure 3b, absolute and squared returns of the U.S./Euro rate have long-range
dependence (LRD). In the theories of FATGBM models, it has been proved that SRD and
LRD can be modelled by defining corresponding dependence structures for τt (Heyde 1999;
Heyde and Leonenko 2005). Detailed methods particularly for Student FATGBM models are
in Section 3.1.
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(a) S&P 500 Index
(H = 0.500)

(b) U.S./Euro rate
(H = 0.535)

Figure 2: Asymptotic self-similarity of returns

(a) S&P 500 index (b) U.S./Euro rate

Figure 3: Dependence structures of returns

3. Pricing and hedging of Student FATGBM models
Recall that there are two independent stochastic processes in FATGBM: a standard Brownian
motion Wt, and the fractal activity time Tt. Also, in Student FATGBM, τt := Tt − Tt−1 ∼
RΓ(ν

2 , δ2

2 ). Under two special cases we get returns follow symmetric Student distribution
T (µ, σ δ√

ν
, ν). One case is θ = 0, R̃t ∼ T (µ, σ δ√

ν
, ν). The other case is θ = −1

2σ2, leading
to Rt ∼ T (µ, σ δ√

ν
, ν). The latter is required by the martingale construction for derivative

pricing, which is explained in details in Section 3.3. Specific model constructions below are
symmetric Student processes; hence, they apply to either of the two cases.

3.1. Models with dependence structures

Student FATGBM models in finance have been well explored by Heyde and Leonenko (2005), Leo-
nenko et al. (2011) and Castelli et al. (2017), including the construction of SRD and LRD for
τt that produce dependence structures of squared returns (see Equation (6)). As we do not
observe dependences structure of returns, we believe θ should be small.

Definition 3.1 (Short-range dependence). A stationary process {Xt : t ∈ R} with E[X2
t ] < ∞

is called short-range dependence (SRD), or short-memory, if∫ ∞

0

∣∣Cov [Xt, Xt+s]
∣∣ds < ∞ and

∫ ∞

0
Cov [Xt, Xt+s] ds ̸= 0.

Definition 3.2 (Long-range dependence). A stationary process {Xt : t ∈ R} with E[X2
t ] < ∞

is called long-range dependence (LRD), or long-memory, if∫ ∞

0

∣∣Cov [Xt, Xt+s]
∣∣ds = ∞ and

∫ ∞

0
Cov [Xt, Xt+s] ds ̸= 0.
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We summarize construction models of SRD and LRD processes Xt with inverse gamma
marginal distributions introduced in Heyde and Leonenko (2005), Finlay and Seneta (2007), Leo-
nenko et al. (2011), Finlay et al. (2012), Leonenko et al. (2012), Finlay and Seneta (2012)
and Castelli et al. (2017). Regarding all these models, define X̃t =

∫ t
0 Xtdt. For some nor-

malising sequence AN that tends to infinity, by Lamperti’s limit theorem (see Theorem 2.8.5
in Pipiras and Taqqu (2017)), 1

AN

(
X̃[Nt] − E[X̃[Nt]]

)
, t ∈ [0, 1] converges in a sense of finite-

dimensional distributions (or in the Skorokhod space D[0, 1]) to certain H-self-similar process
Zt, such as fractional Brownian motion, sum of independent Rosenblatt processes or more
general Hermite-type processes. Further, we find the range of the self-similarity parameter H
(in Definition 2.1) in Section 5.
Model I: It is known that inverse gamma distribution is infinitely divisible and self-
decomposable (Barndorff-Nielsen and Shepard 2001; Heyde and Leonenko 2005; Massing
2018). According to Barndorff-Nielsen and Shepard (2001) and Heyde and Leonenko (2005),
there exists a strictly stationary Ornstein–Uhlenbeck (OU)-type process {Xt, t ≥ 0} that has
RΓ(ν

2 , δ2

2 ) distribution and satisfies the stochastic differential equation:

dXt = −λXtdt + dL(λt), t ≥ 0, (10)

where {L(t) : t ≥ 0} is the background driving Lévy process (BDLP) for Xt. Its cumulant
function is given in Heyde and Leonenko (2005).
Model II: Define {Xt, t ≥ 0} as the weak solution of the stochastic differential equation:

dXt = −λ

(
Xt − δ2

ν − 2

)
dt +

√
4λ

ν − 2X2
t dWt, δ > 0, ν > 2, (11)

where {Wt : t ≥ 0} is a standard Brownian motion. According to Remark 3.3 in Heyde and
Leonenko (2005), this SDE has a unique Markovian weak solution, which is also ergodic (see
more details in Castelli et al. (2017)), with invariant RΓ(ν

2 , δ2

2 ) distribution.
Both Model I and Model II produce short-memory. The autocorrelation function of Xt ∼
RΓ(a, b) exists if b > 2, and is given by ρX(s) = e−λs, s ≥ 0. Furthermore, the discrete time
process {Xt, t = 0, 1, 2...} is strictly stationary and has inverse gamma marginal. According
to Proposition 4 in Castelli et al. (2017),

X̄N (t) = 1
c
√

N

(
X̃[N ·t] − [N · t]

) Skd=⇒ Wt, t ∈ [0, 1] , as N → ∞, (12)

where Skd=⇒ means the weak convergence in the Skorokhod space, {Wt : t ≥ 0} is the standard
Brownian motion, and c is a normalizing constant given by c2 = Var [τ1] eλ+1

eλ−1 . Hence, the
process X̃t − t is asymptotically self-similar (see, for details in Kerss et al. (2014), Heyde and
Leonenko (2005) and Leonenko et al. (2011)) such that

X̃t − t
d
≊

√
t
(
X̃1 − 1

)
,

where
d
≊ denotes asymptotic equality in distribution.

Remark 3.1. Let τt = Xt, t = 0, 1, 2, ... be a discrete time stochastic process with RΓ(ν
2 , δ2

2 )
marginal distribution, and ỸN =

∑N−1
0 τt. For

ȲN (t) = 1
c̄
√

N

(
Ỹ[N ·t] − E

[
Ỹ[N ·t]

])
= 1

c̄
√

N

(
Ỹ[N ·t] − [N · t]

)
, t ∈ [0, 1] ,

similar to Billingsley (1968, p.178–179), one can prove

δN = sup
t

∣∣∣ȲN (t) − X̄N (t)
∣∣∣ P−→ 0, N → ∞.

It means that limit distributions of mixing stochastic processes with discrete time τt, t =
0, 1, 2, ... and continuous time Xt, t ≥ 0 coincide.
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Model III: Following Barndorff-Nielsen and Shepard (2001), Barndorff-Nielsen and Leo-
nenko (2005) and Grahovac, Leonenko, and Taqqu (2019), we have a strictly stationary su-
perpositions of OU processes (supOU):

Xt =
∫ ∫

(0,∞)×(−∞,t]
e−ξ(t−s)Λ(dξ, ds), t ∈ R (13)

where Λ is a homogeneous infinitely divisible random measure (Lévy basis) on R+ × R with
comulant function logEeiζΛ(A) = (π × Leb) (A)κL(ζ), for A ∈ B(R+ × R) and involves π

such that
∫

(0,∞)
π(dx)

x < ∞, Leb and κL which we now define. The probability measure π
on R+ “randomizes” the rate parameter ξ, Leb is the Lebesgue measure on R, and κL is the
cumulant function of some infinitely divisible random variable L(1) with Lévy-Khintchine
triplet

(
ã, b̃, µL

)
:

κL(ζ) = logEeiζL(1) = iζã − ζ2

2 b̃ +
∫
R

(
eiζx − 1 − iζx1[−1,1](x)

)
µL(dx),∫

R
min(1, x2)µL(dx) < ∞,

∫
|x|>1

log |x|µL(dx) < ∞, ã ∈ R, b̃ ≥ 0.
(14)

As RΓ(a, b) is a self-decomposable marginal distribution, we can find corresponding BDLP
Lévy process such that the strictly stationary supOU process (13) has the chosen marginal
distribution (see Barndorff-Nielsen and Shepard (2001) and Grahovac et al. (2019) for more
details). Heyde and Leonenko (2005), Barndorff-Nielsen and Shepard (2001) and Massing
(2018) also show that the Lévy triplet should be (a0, 0, µL) in which µL is a σ-finite measure
in (0, ∞) satisfying

∫∞
0 (u ∧ 1) µL(du) < ∞. More precisely,

a0 = a −
∫

|u|≤1
uµL(du), µL(du) =

(1
u

∫ ∞

0
e−su2bga(4bs)ds

)
du,

ga(x) = 2
π2x

(
J2

a (
√

x) + Y 2
a (

√
x)
)−1

, x > 0.

where Ja and Ya are the Bessel functions of the first and the second kind respectively. We also
know that the Blumenthal-Getoor index of this process βBG = inf

{
s ≥ 0 :

∫
|x|≤1 |x|s µL(dx)

}
satisfies 0 ≤ βBG ≤ 1 for a subordinator (see Section 6 in Blumenthal and Getoor (1961)).
The correlation function of supOU process Xt, under the condition that E[X2

t ] < ∞, is of the
form

ρX(s) =
∫
R+

e−ξsπ(dξ), s ≥ 0. (15)

Using the Tauberian theorem (see, e.g., Fasen and Klüppelberg (2007)), one can obtain that
if for some α > 0 and some slowly varying at infinity function ℓ(·), the density π((0, x]) ∼ p(x)
of a measure π satisfies p(x) ∼ ℓ(x−1)xα, x → 0, then the correlation function (15) becomes
ρX(s) = Γ(1 + α)ℓ(s)s−α, s → ∞, and, in particular, α ∈ (0, 1) yields the LRD. It is also
worth noting that this model can be downgraded to Model I, a SRD case, when ξ ≡ λ. We
use some elementary properties of slowly varying functions below (see (Bingham, Goldie, and
Teugels 1987, Proposition 1.3.6)).

Proposition 3.1. If ℓ(x) is a slowly varying function, then

1. ℓ(x)k is slowly varying for each k ∈ R;

2. for each ε > 0, limx→∞ xεℓ(x) = ∞ and limx→∞ x−εℓ(x) = 0.

Using Theorem 3.2 in Grahovac et al. (2019), as b̃ = 0 and βBG < 1 + α, α ∈ (0, 1), we have

1
N1/(α+1)ℓ#(N)1/(α+1) X̃N ·t

fdd=⇒ L1+α(t),



Austrian Journal of Statistics 145

where fdd=⇒ means the convergence to a finite-dimensional distribution, ℓ#(x) is de Bruijn con-
jugate of 1

ℓ(x1/(α+1)) , and L1+α is (1 + α)-stable Lévy process. The de Bruijn conjugate of some
slowly varying function ℓ is the unique slowly varying function ℓ# such that ℓ(x)ℓ#(xℓ(x)) → 1
and ℓ#(x)ℓ(xℓ#(x)) → 1 (Grahovac et al. 2019). We then use Proposition 3.1 above. Let
H = 1

1+α , we get

1
NHℓ#(N)H

(
X̃N ·t − N · t

) fdd=⇒ L1+α(t), t ∈ [0, 1] , as N → ∞. (16)

In other words, through a well-defined normalizing factor, X̃t − t is asymptotically H-self-
similar. As H = 1

1+α and 0 < α < 1, we also have 1
2 < H < 1.

Model IV: Let η1(t), η2(t), ..., ην(t), ν > 4, t ≥ 0 be independent copies of zero mean,
mean-square continuous Gaussian stationary stochastic process with a correlation function
ρη(s) ≥ 0, s ∈ R. The chi-squared process χ2

ν(t) is defined by

χ2
ν(t) = η2

1(t) + η2
2(t) + ... + η2

ν(t)
2 , t ≥ 0.

Note that

E[χ2
ν(t)] = ν

2 , Var[χ2
ν(t)] = ν

2 , ϱχ2(s) = Cov[χ2
ν(t), χ2

ν(t + s)] = ν

2ρ2
η(s), s ∈ R.

Let Xt = G(χ2
ν(t)), G(u) = δ2

2u , then Xt is a strictly stationary process with RΓ(ν
2 , δ2

2 )
marginal distribution. Note that G(u) ∈ L2((0, ∞), p(u)du) if ν > 4, where fΓ( ν

2 ,1) = p(u) =
e−uu

ν
2 −1/Γ(ν

2 ), u > 0. A more recent study about mathematical properties of this model can
be found in Wang (2013).
It is worth noting that this model can construct both long- and short-memory processes. If
the correlation function ϱχ2(s) is summable, then χ2

ν(t) and Xt have short-memory, otherwise,
it has long-memory. For example, using the correlation function ρη(s) =

(
1 + s2)− α

2 , then
Corr[χ2

ν(t), χ2
ν(t + s)] = ρ2

η(s) and the stationary process χ2
ν(t) has LRD if 0 < α < 1

2 and
SRD if 1

2 < α < 1. Similarly, when 0 < α < 1
2 , the process Xt have long-memory; while

1
2 < α < 1 gives short-memory (see Leonenko et al. (2011) for more details). Similar results
hold for class of correlation function ρη(s) = L(s)

sα , where L(s) is a slowly varying function. If
the SRD condition holds, then

1
σ

√
N

(
X̃[N ·t] − [N · t]

) fdd=⇒ Wt, as N → ∞, (17)

where Wt is a standard Brownian motion and σ2 is variance of Xt. If Xt has LRD, then

1
N1−α

(
X̃[N ·t] − [N · t]

) fdd=⇒ −1
ν

ν∑
i=1

Ri(t), as N → ∞, (18)

where Ri(t), i = 1, 2, ..., ν are independent Rosenblatt processes. For detailed proofs, see
Section 7.2 in Leonenko et al. (2011) (similarly Section 5.1 in Heyde and Leonenko (2005))
and Section 6 in Taqqu (1975). Hence, X̃t is H-self-similar for H = 1 − α and α ∈ (0, 1

2).
Here we confirm that H ∈

(
1
2 , 1
)

for long-memory.

Remark 3.2. Similar to Lemma 5.2 in Berman (1979), see also Lemma 1 in Leonenko and
Taufer (2006), one can prove that the limit distribution of a normalized sum of the stochastic
process LRD under discrete time τt = Xt, t = 0, 1, 2, ..., where Xt, t ≥ 0 is stochastic process
with continuous time as in Proposition 3.1, and that in (16) and (18) are the same. See also
Remark 3.1 for similar fact for (17).
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3.2. Construction of fractal activity time

Let τt = Xt and Tt = X̃t, t = 1, 2, .... We consider a typical construction of Tt below:

Tt =
[t]∑

i=1
τi + τ[t]+1 (t − [t]) , T0 = 0, (19)

where {τt : t ≥ 0} is a strict stationary process with finite second moment, also recall the
assumption E[τi] = 1, i = 1, 2, .... This construction creates a discrete model of Tt. Limit
distributions of normalized sum of this stochastic process with discrete time are the same
as limit distributions of stochastic processes with continuous time (see Remarks 3.1 and 3.2)
and limit theorems in (12), (16), (17), (18), and Proposition 3.1. As a kind of adjustment to
Lambert’s theorem, we know that if covariance functions are similar asymptotically at infinity
and second moments exist, then asymptotic distributions of sums and integrals of stationary
processes are the same. Hence, limit theorems for sums and integrals are the same, including
both SRD and LRD cases (see Lemma 1 in Leonenko and Taufer (2006) for proof). The time
unit in this construction model can be any natural time period, e.g. 5 minutes, 2 hours, 1
day. Ideally, we should pick a time unit as small as possible in practice.

As Tt is H-self-similar, we have Tct − ct
d
≊ cH (Tt − t), where

d
≊ denotes asymptotic equality

in distributions, H is the self-similar parameter, and H = 1/2 and 1/2 < H < 1 for SRD
and LRD respectively. Hence, with c = Y , t = 1, as well as the assumption T0 = 0, we have
TY

d
≊ Y + Y H (T1 − 1) and

fTY
(s) ≊ 1

Y H
fτ

(
s

Y H
−
(
Y 1−H − 1

))
, (20)

where fτ (s) is the marginal density of τ1.

3.3. European option pricing

The derivative pricing typically requires the discounted underlying asset price {e−rtSt, t ≥ 0}
to be a martingale, in which r is the risk-free rate. The simplest solution is a skew-correcting
martingale construction that constrains µ = r and θ = −1

2σ2 (see details in, e.g., Finlay
and Seneta (2006); Finlay et al. (2009))). We consider the σ-algebras Fs = σ{{W (u), u ≤
Ts}, {Tu, u ≤ s}} and F⋆

s,t = σ{{W (u), u ≤ Ts}, {Tu, u ≤ s}, Tt}, 0 ≤ s ≤ t, then Fs ⊆ F⋆
s,t.

Then

E[e−rtSt | Fs] = S0E[e(µ−r)t+θ(Tt−Ts+Ts)+σ(WTt −WTs +WTs) | Fs]

= Sse(µ−r)t−µsE[E[eθ(Tt−Ts)+σ(WTt −WTs) | F⋆
s,t] | Fs]

= e−rsSse(µ−r)(t−s)E[e(θ+ 1
2 σ2)(Tt−Ts) | Fs]

= e−rsSs

, 0 ≤ s ≤ t. (21)

where we used the moment generating function of a normal variable. In this case, we take
µ = r and θ = −1

2σ2 which renders e−rtSt a Q-martingale under the risk-neutral probability
measure Q, with four free parameters r, σ, ν and H, which can be estimated from real data.
With such a setup, one can use this model to price options.
Hence, we say

S⋆
t = S0ert− 1

2 σ2Tt+σWTt ,

is the underlying pricing process under the risk-neutral measure Q.
As a summary, for options expire at time Y , the call price C(·) is and put price P (·) are formu-
lated below (see Kerss et al. (2014), Heyde and Leonenko (2005), Leonenko et al. (2011), Leo-
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nenko et al. (2012) and Castelli et al. (2017)):

C(S, K, r, Y ) = ETY
[SΦ(d1(TY )) − Ke−rY Φ(d2(TY ))],

P (S, K, r, Y ) = ETY
[Ke−rY Φ(−d2(TY )) − SΦ(−d1(TY ))],

d1(TY ) =
log S

K + rY + 1
2σ2TY

σ
√

TY
, d2(TY ) =

log S
K + rY − 1

2σ2TY

σ
√

TY
,

(22)

where S is the spot underlying price, K is the strike price, r is the risk-free rate, Φ(·) is the
standard normal cumulative distribution function. E[g(TY )] means the expectation of r.v.
g(TY ) with respect to TY , where g(·) is Borel function.

3.4. Market incompleteness

A market is complete if there exists a predictable strategy that replicates claims of the option
at every time point. In other words, a perfectly hedge can be formulated. The processes
we consider in this paper imply incomplete markets. Hence, it is impossible to hedge the
randomness of Wt and Tt at the same time. While Section 3.6 below shows that, on average,
the delta hedging strategy produces a risk-free return in the long-run. We do not aim at
a comprehensive study of how one should optimize hedging under such incomplete market
condition, but focus on comparing different option risk measures and delta hedging results
for SRD and LRD.

3.5. European option Greeks

Option Greeks are typical risk measures of European options. We derive formulas of DELTA,
GAMMA, VEGA, and THETA for the FATGBM model. Details can be found in B. For
simplicity, we use d1 = d1(TY ) and d2 = d2(TY ) throughout this paper.

Definition 3.3 (DELTA). DELTA measures the change in an option price caused by a change
in the underlying price:

DELTAcall = ∂C

∂S
= ETY

[Φ(d1)], DELTAput = ∂P

∂S
= ETY

[Φ(d1)] − 1. (23)

Definition 3.4 (GAMMA). GAMMA measures the change in an option’s DELTA caused by
a change in the underlying price:{

GAMMAcall = ∂2C
∂S2

GAMMAput = ∂2P
∂S2

}
= 1

σS
ETY

[
ϕ(d1)√

TY

]
. (24)

Definition 3.5 (VEGA). VEGA measures the change in an option price caused by a change
in volatility: {

VEGAcall = ∂C
∂σ

VEGAput = ∂P
∂σ

}
= SETY

[√
TY ϕ(d1)

]
. (25)

Definition 3.6 (THETA). THETA measures the change in an option price resulting from
reducing in time to maturity:

THETAcall = −∂C

∂Y
= −rKe−rY ETY

[Φ(d2)] − σS

2 I,

THETAput = −∂P

∂Y
= rKe−rY ETY

[Φ(−d2)] − σS

2 I,

I = H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
].

(26)
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3.6. Delta hedging of European options

We construct a portfolio Vt with the risky asset St and its European call option Ct: Vt =
Ct + γtSt, in which γt is the hedging ratio defined as γt = −∂Ct

∂St
. Given the skew-correcting

martingale and (2), we have
dSt = µStdt + σStdWTt , (27)

Using Equations (22) and (23), we have

dCt =
(

∂Ct

∂t
+ µ

∂Ct

∂St
St

)
dt + σ2

2
∂2Vt

∂S2
t

S2
t dTt + σ

∂Ct

∂St
StdWTt . (28)

We get the delta hedging result:

dVt =γtdSt + dCt = ∂Ct

∂t
dt + σ2

2
∂2Ct

∂S2
t

S2
t dTt + µ

(
γt + ∂Ct

∂St

)
Stdt + σ

(
γt + ∂Ct

∂St

)
StdWTt

=∂Ct

∂t
dt + σ2

2
∂2Ct

∂S2
t

S2
t dTt.

(29)
If we take expectation, it is

ETt [dVt] = E
[

∂Ct

∂t
dt + σ2

2
∂2Ct

∂S2
t

S2
t dTt

]
=
(

∂Ct

∂t
+ σ2

2
∂2Ct

∂S2
t

S2
t

)
dt.

This is in the same format as the GBM model: dṼt =
(

∂C̃t
∂t + σ2

2
∂2C̃t

∂S2
t

S2
t

)
dt, in which C̃t is

the Black-Scholes call option price. Using the same method, we get same results for delta
hedging of put options.

4. Simulation of option pricing and hedging
We analyse option pricing and Greeks of underlying prices driven by SRD and LRD Student
FATGBM through simulations. Recall the Equation (4) and consider the skew-correcting
martingale in Kerss et al. (2014) (and the reference therein), we have the following stochastic
representation for underlying return process:

Rt
d= r + σ

√
τtW1,

where W1 ∼ N(0, 1) and τt ∼ RΓ(ν
2 , ν−2

2 ) with certain defined dependence structure. The
model should satisfy ν > 4. The mean and variance of τt are 1 and 2

ν−4 respectively.
The parameter setting is listed in Table 1. We use Model I to simulate SRD processes with
parameter λ and Model IV for LRD processes with paramter α. To focus on impact of fat-tail
and dependencies, we use parameters that give the same mean and variance of Rt. We also
compare results with independent Student FATGBM and GBM.

4.1. Generating return processes with SRD

The simulation algorithm for Model I is introduced in Taufer and Leonenko (2009). In short,
we have

τt = e−λτt−1 + εt, t = 1, 2, ...,

in which εt is generated from distribution corresponding to the characteristic function (ch.f.):

κL(1)(ζ) = exp(κ(ζ)−κ(ζe−λ)) = iζ(
−iζ 2

ν − 2

)1/2

Kν/2−1

(
(ν − 2)

(
−iζ 2

ν − 2

)1/2 )
Kν/2

(
(ν − 2)

(
−iζ 2

ν − 2

)1/2 ) , ζ ∈ R, ζ ̸= 0,
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Table 1: Simulation parameter setting.

Student FATGBM GBM
Model A1 Model A2 Model B Model A’ Model B’

(SRD) (LRD) (LRD) (IID) (IID) (IID)

µ 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
σ 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200
ν 5.0000 5.0000 6.0000 5.0000 6.0000 −

λ 0.7000 − − − − −
H 0.5000 0.8000 0.6000 − − −

and κL(1)(0) = 0, κ(ζ) is the ch.f. of RΓ
(

ν
2 , ν−2

2

)
, and Kλ(x) is the modified Bessel functions

of the third kind (see Heyde and Leonenko (2005) for more details). Taufer and Leonenko
(2009) proves that τt has stationary RΓ(ν

2 , ν−2
2 ) distribution and autocorrelation

Corr[τt, τt+s] = e−λs, s = 1, 2, .... (30)

Because there is no explicit solution of probability density function with ch.f. κL(1)(ζ), we
apply the numerical method in Taufer and Leonenko (2009). We generate 1, 000 paths of
50, 000 fractal activity time intervals and returns for Model A1. We examine the goodness-of-
fit for marginal distributions of τt and Rt in Figures 4a and 4b respectively. According to (30),
logarithm-scale autocorrelations of both τt and R2

t are linear of lagged time (see Figures 4c
and 4d).

(a) Histogram of simulated τt (b) Histogram of simulated R̃t

(c) Serial correlation of simulated τt (d) Serial correlation of simulated R̃2
t

Figure 4: Simulation results of fractal activity time with SRD

4.2. Generating return processes with LRD
Recall the fractal time constructed by Model IV:

τt =
( 2

ν − 2χ2
ν(t)

)−1
=
(

η2
1(t) + η2

2(t) + ... + η2
ν(t)

ν − 2

)−1

, ν > 4, t = 1, 2, ....
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τt is a stationary process whose marginal distribution is RΓ(ν
2 , ν−2

2 ) with many elegant proper-
ties (see Heyde and Leonenko (2005) for more details). To obtain LRD, we use the correlation
function ρη(s) =

(
1 + s2)− 1−H

2 , s = 1, 2, ..., which requires 1/2 < H < 1. The same holds for
class of correlations ρη(s) = L(s)

s
1−H

2
, where L(s) is slowly varying at infinity function. Leonenko

et al. (2011) gives the autocorrelation function of τt:

Corr[τt, τt+s] = ν − 4
2

∞∑
k=1

C2
k(ν)ρ2k

η (s), s = 1, 2, ...,

where C2
k(ν) is given by

Ck(ν) =
(

ν

2 − 1
)∫ ∞

0

fΓ(ν/2,1)(x)Lν/2−1
k (u)

{
k! Γ(ν/2)

Γ(ν/2+k)

}1/2
dx

x
,

where Lβ
k(u) = 1

k!u
−βeu dk

duk (uβ+ke−u) is the generalized Laguerre polynomials.

(a) Histogram of simulated τt (b) Histogram of simulated R̃t

(c) Serial correlation of simulated τt (d) Serial correlation of simulated R̃2
t

Figure 5: Statistical features of fractal activity time with LRD

Similar to the simulation in Section 4.1, we generate 1, 000 paths of 5, 000 fractal active time
intervals τt and returns Rt for Model A2. The probability density and the LRD structure of
our simulated data are presented in Figure 5.

4.3. Student FATGBM vs. GBM

We compare option prices and Greeks of Models A1, A2, B and the benchmark GBM (i.e.
the Black-Scholes) in Table 1. In Figure 6, we observe that option pricing based on Student
FATGBM is not different much from the Black-Scholes pricing.
Comparison of Greeks are presented in Figures 7, 8, 9 and 10. Here we show a few key
observations. We find trivial differences among at-the-money DELTAs (see Figures 7a and 7b).
While DELTA of Model A2 for in-the-money and out-of-money options clearly deviate from
those of other models (see Figures 7c, 7d, 7e and 7f). In Figure 10, same findings also observed
for THETA. For options expiring soon, Student models produce higher GAMMA and lower
VEGA than the Black-Scholes model, especially the at-the-money option under strong LRD,
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(a) Call option prices (b) Put option prices

Figure 6: Option prices of Student FATGBM and GBM (S0 = 100, Y = 100)

i.e., the Model A2 (see Figures 8a and 9a). But for the options with long time-to-maturity,
only GAMMA and VEGA of Model A2 are clearly different from others (see Figures 8b
and 9b). According to these observations, we conclude that dependence structure is a key
factor that makes the option prices and risks under FATGBM models different from the classic
Black-Scholes model.
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(a) At-the-money call option (b) At-the-money put option

(c) In-the-money call option (d) In-the-money put option

(e) Out-of-money call option (f) Out-of-money put option

Figure 7: DELTA of Student FATGBM and GBM (Y = 100)

(a) Short maturity: Y = 5 (b) Long maturity: Y = 100

Figure 8: GAMMA of FATGBM and GBM
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(a) Short maturity: Y = 5 (b) Long maturity: Y = 100

Figure 9: VEGA of FATGBM and GBM

(a) At-the-money call option (b) At-the-money put option

(c) In-the-money call option (d) In-the-money put option

(e) Out-of-money call option (f) Out-of-money put option

Figure 10: THETA of Student FATGBM and GBM
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5. Delta hedging analysis using simulations
Before applying the delta hedging strategy to real data, we provide some findings using
simulated data. This is because mathematical properties of simulated data match better
with the theoretical model than real data, which allows us to examine and observe theoretical
results better. In addition, financial data is limited and lacks stochastic paths, which may
lead to insufficient observations of complex statistical inference.
According to Equations (22) and (23), dependence structures are not considered in the pricing
formulas nor the delta hedging ratios. However, they should affect the hedging results. This
is because long- or short-memory of Tt should result in conditional probability distributions of
τt given previous {τ0, τ1, ..., τt−1}. However, in practice, we cannot “unpack” such information
from two random variables Tt and Wt. Hence, when using this model for pricing and hedging
at time t, we assume it is the “beginning” of time, i.e., Tt = t. We observe hedging errors due
to missing information through hedging experiments of simulated prices, in which we create
hedging portfolios:

Vt = Ct + γtSt, γt = −ETY
[Φ(d1)], for call options, and

Vt = Pt + γtSt, γt = 1 − ETY
[Φ(d1)], for put options.

We examine cumulative hedging errors of underlying processes based on Models A1, A2 and
B. For the first two models, we compare hedging results of the underlying model, the Model A’
and the GBM. Similarly, for the last model, we also compare the underlying model results with
the Model B’ and the GBM. Note that in Figures 11 and 12, X → Y means using Model X to
hedge option risks of the underlying process follows Model Y . We would like to highlight two
points of this experiment design. First, GBM → GBM creates a benchmark case in which the
risk is fully hedged. Second, H = 0.5 holds for both SRD and non-dependence models. This
is because, for Tt in non-dependence models, we have approximation by standard functional
central limit theorem

1
σ

√
N

(
T[N ·t] − [N · t]

) Skd=⇒ Wt, t > 0.

Hence, A′ → A1 and A1 → A1 have the same hedging ratios and hedging errors.
We set the initial underlying price S0 = 100 and strike prices K = 90, 100, 110, 120. The
initial time-to-maturity is 150 time steps. We compare hedging results of 20 and 150 and
time steps. The theoretically ideal hedging result should be gaining the risk-free return. We
calculate hedging errors as differences from the ideal case in percentage.
We have four key observations regarding hedging errors. First, it is hard to hedge prices
following FATGBM processes in short-term as there are many extreme outliers in Figure 12,
especially for Model A2. Also note that GBM does not produce such outliers. This confirms
the argument above about the impact of short- and long-memory on hedging errors. The
second observation is also related to dependence structures. We find that hedging SRD
processes generates much smaller variance of hedging errors than that of hedging LRD price
movements. This is true for hedging both short- and long-term. Then, in Figure 12, we get our
third finding that we tend to obtain negative outliers when hedging call options and positive
outliers when hedging put options. We lastly focus on Model B, which is closer to GBM due
to larger ν and has long-memory. Hedging Model B gives more chances of positive errors
for call options and negative errors for put options (see, for example, Figures 11a and 11b),
which is opposite to the general situation described previously.
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(a) Call options (K=90) (b) Put options (K=90)

(c) Call options (K=100) (d) Put options (K=100)

(e) Call options (K=110) (f) Put options (K=110)

(g) Call options (K=120) (h) Put options (K=120)

Figure 11: Cumulative delta hedging errors (150 time steps)
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(a) Call options (K=90) (b) Put options (K=90)

(c) Call options (K=100) (d) Put options (K=100)

(e) Call options (K=110) (f) Put options (K=110)

(g) Call options (K=120) (h) Put options (K=120)

Figure 12: Cumulative delta hedging errors (20 time steps)
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6. Application: European options pricing and delta hedging
We apply delta hedging on S&P 500 options using Student FATGBM. We use S&P 500
Index daily returns from 2010-01-04 to 2020-07-31 for model calibration. Then we consider
the option S&P 500 expired on 17th December 2021. The hedging ratio is computed by
Equation (23).

6.1. Student FATGBM calibration

The advantage of FATGBM is that the density distribution and dependence structure param-
eters can be estimated separately. As the density functions and moment generating functions
of Student distribution both yield explicit formulas, we have a variety ways to fit return data
to this model. The results of maximum likelihood estimation (MLE) and generalized method
of moment (GMM) are presented in Table 2. Since the daily returns are very small, we use a
×100 multiplier on all return data to prevent precision issues in calibration. In Sections 6.2
and 6.3, we use the GMM result as ν > 4 is required for pricing and hedging.

Table 2: Parameter estimation

S&P 500 index U.S./Euro

Student dist. Student dist. Empirical Student dist. Student dist. Empirical
(GMM) (MLE) data (GMM) (MLE) data

µ̂ 0.046 0.0847 − −0.007 −0.003 −
σ̂ 1.103 1.490 − 0.551 0.560 −
ν̂ 4.385 2.349 − 7.470 5.003 −

λ̂ 0.064 − − −
Ĥ 0.500 − 0.822 −

Mean 0.0459 0.0847 0.0459 −0.007 −0.003 −0.007
Variance 1.216 2.220 1.216 0.303 0.314 0.303
Skewness 0.000 Indeterminate −0.568 0.000 0.000 −0.004
Kurtosis 18.574 Indeterminate 18.668 4.729 8.981 4.729

To calculate the dependence structure parameter, we first observe the autocorrelation of R2
t

to determine whether the model exhibits SRD or LRD. For all SRD cases, Ĥ = 0.5 and we
calibrate λ in (10) and (11). Given the theoretical autocorrelation equation (31), we can run
the linear regression (32) in which {y = Corr

[
R2

t , R2
t+x

]
: x = 1, 2, 3, ...}.

Corr
[
R2

t , R2
t+s

]
= σ4Corr [τt, τt+s] Var [τt]

Var
[
R2

t

] = σ2e−λs

2µ2 (ν − 4) + σ2 (ν − 1) , s > 0. (31)

log(y) = −λx + β0

β0 = 2 log(σ) − log
(
2µ2 (ν − 4) + σ2 (ν − 1)

) (32)

In our data, squared returns of the S&P 500 index shows SRD structure and we get λ̂ = 0.064
(see Figure 13). For LRD cases, we will calibration the self-similarity H parameter. We
assume the LRD autocorrelation is a slowly varying function (33). We regress log(s) on
logarithmic aurocorrelation to find the α̂ = 0.216 and calibrate Ĥ = 1

1+α̂ = 0.822 (see
Figure 14).

Corr
[
R2

t , R2
t+s

]
≊ α0 · s−α, s > 0. (33)
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Figure 13: Model fitting of SRD

Figure 14: Model fitting of SRD

6.2. Comparison to real S&P 500 option prices

We cannot get FX options data as most of them are OTC traded. Hence, we only compare
pricing and hedging for S&P 500 options. We compute call and put option prices using the
Student FATGBM model. Although the risk-free rate changes overtime, technically, it does
not make many differences if the rate is very low. Hence, we use a flat rate 0.1%, which is
the average interbank lending rate in our evaluation. We confirm that option prices given by
the models are close to the real market prices, especially for the call options (see Figure 15a
and 15b).

(a) Comparison of call option prices (b) Comparison of put option prices

Figure 15: Comparison of option prices

6.3. Delta hedging of S&P 500 options

We finally compute the delta hedging ratios for the call and put options (see Figure 16). As
this is just a single case of hedging experiment, we cannot guarantee a low hedging error.
While according to the numerical results in the previous section, we know that, as an SRD
example, the SPX option trades will be well hedged in the long-term.
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(a) Delta hedging of SPX call option (b) Delta hedging of SPX put option

Figure 16: Delta hedging of SPX options
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A. Properties of the generalized hyperbilic skew student’s t-distribution
The r.v. ST with density (9) has the following properties:

E[ST ] = µ + θ (34)

Var[ST ] = 2θ2

ν − 4 + σ2 (35)

Skew[ST ] = 2θ
√

(ν − 4) (ν − 2)
(

σ√
2θ2 + (ν − 4) σ2

)3(
3 + 8θ2

(ν − 6) σ2

)
(36)

Kurt[ST ] = 6σ4

(2θ2 + (ν − 4) σ2)2

(
(ν − 4) + 16θ4 (ν − 4)

(ν − 6) σ6 + 8θ4 (5ν − 22)
(ν − 6) (ν − 8) σ4

)
(37)

B. Deriving option Greeks of Student FATGBM models

B.1. To derive the formula of DELTA:

DELTAcall = ∂C

∂S
= ETY

[Φ(d1)], DELTAput = ∂P

∂S
= ETY

[Φ(d1)] − 1.

We have
∂C

∂S
=
∫ ∞

0

∂

∂S

(
SΦ(d1) − Ke−rY Φ(d2)

)
· fTY

(s)ds.

We compute the partial derivative ∂

∂S

(
SΦ(d1) − Ke−rY Φ(d2)

)
:

∂

∂S

(
SΦ(d1) − Ke−rY Φ(d2)

)
= Φ(d1) + S

∂Φ(d1)
∂S

− Ke−rY ∂Φ(d2)
∂S

= Φ(d1) + 1
σ

√
s

(
ϕ(d1) − K

S
e−rY ϕ(d2)

)
.
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As d2 = d1 − σ
√

s, we have ϕ(d2) = 1√
2π

e
(d1−σ

√
s)2

2 = S
K erY ϕ(d1). Therefore,

∂

∂S

(
SΦ(d1) − Ke−rY Φ(d2)

)
= Φ(d1) + 1

σ
√

s
· 0 = Φ (d1) .

Taking expectation respect to r.v. TY , we get DELTAcall = ∂C
∂S = ETY

[Φ(d1)]. Similarly,
DELTA of put options is found: DELTAput = ∂P

∂S = ETY
[Φ(d1)] − 1.

B.2. To derive the formula of GAMMA:

{
GAMMAcall = ∂2C

∂S2

GAMMAput = ∂2P
∂S2

}
= 1

σS
ETY

[
ϕ(d1)√

TY

]
.

We have

∂2C

∂S2 =
∫ ∞

0

∂Φ(d1)
∂S

· fTY
(s)ds =

∫ ∞

0
ϕ(d1)∂d1

∂S
· fTY

(s)ds =
∫ ∞

0

ϕ(d1)
Sσ

√
s

· fTY
(s)ds

Hence, GAMMAcall = 1
σSETY

[
ϕ(d1)√

TY

]
. Doing the same, we find GAMMA of put options has

the same formula.

B.3. To derive the formula of VEGA:

{
VEGAcall = ∂C

∂σ

VEGAput = ∂P
∂σ

}
= SETY

[√
TY ϕ(d1)

]
.

We have
∂C

∂σ
=
∫ ∞

0

(
S

∂

∂σ
Φ(d1) − Ke−rY ∂

∂σ
Φ(d2)

)
· fTY

(s)ds

=
∫ ∞

0

(
S

√
s

2 ϕ(d1) + Ke−rY

√
s

2 ϕ(d2)
)

· fTY
(s)ds.

We know that ϕ(d2) = 1√
2π

e
(d1−σ

√
s)2

2 = S
K erY ϕ(d1). Hence,

VEGAcall = ∂C

∂σ
=
∫ ∞

0
S

√
sϕ(d1) · fTY

(s)ds = SETY

[√
TY ϕ(d1)

]
.

We do the same using put option price formula and get the same VEGA formula.

B.4. To derive the formula of THETA:

THETAcall = −∂C

∂Y
= −rKe−rY ETY

[Φ(d2)] − σS

2 I, THETAput = −∂P

∂Y
= rKe−rY ETY

[Φ(−d2)] − σS

2 I,

I = H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
].

We know that TY is a random variable with probability density fTY
. The case TY ≡ Y (i.e.

the Black-Scholes model) is not discussed here. We have

∂C

∂Y
=
∫ ∞

0

∂

∂Y

((
SΦ(d1) − Ke−rY Φ(d2)

)
· fTY

(s)
)

ds

=
∫ ∞

0

∂

∂Y

(
SΦ(d1) − Ke−rY Φ(d2)

)
· fTY

(s)ds +
∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

)
· ∂

∂Y
fTY

(s)ds.
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The first term ∂
∂Y

(
SΦ(d1) − Ke−rY Φ(d2)

)
is

∂

∂Y

(
SΦ(d1) − Ke−rY Φ(d2)

)
= rKe−rY Φ(d2)+ Sr

σ
√

s

(
ϕ(d1) − K

S
e−rY ϕ(d2)

)
= rKe−rY Φ(d2).

The second term ∂
∂Y fTY

(s) is

∂

∂Y
fTY

(s) = ∂

∂Y

( 1
Y H

fτ

(
s

Y H
−
(
Y 1−H − 1

)))
= − H

Y
fTY

(s) − 1
Y 2H

(
H

Y
s + (1 − H)

)
f ′

τ

(
s

Y H
−
(
Y 1−H − 1

))
.

Hence, ∫ ∞

0

(
SΦ (d1) − Ke−rY Φ(d2)

)
· ∂

∂Y
fTY

(s)ds

= − H

Y

∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

)
· fTY

(s)ds

− H

Y H+1

∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

) s

Y H
f ′

τ

(
s

Y H
−
(
Y 1−H − 1

))
ds

− 1 − H

Y H

∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

) 1
Y H

f ′
τ

(
s

Y H
−
(
Y 1−H − 1

))
ds

= − H

Y
C − H

Y H+1 I1 − 1 − H

Y H
I2,

in which

I1 =
∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

) s

Y H
f ′

τ

(
s

Y H
−
(
Y 1−H − 1

))
ds,

I2 =
∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

) 1
Y H

f ′
τ

(
s

Y H
−
(
Y 1−H − 1

))
ds.

Define
F (s) =

(
SΦ(d1) − Ke−rY Φ(d2)

)
sfτ

(
s

Y H
−
(
Y 1−H − 1

))
,

then we have lims→∞
(
SΦ(d1) − Ke−rY Φ(d2)

)
= S ·1−Ke−rY ·0 = S and lims→∞ sfτ

(
s

Y H −(
Y 1−H − 1

))
= 0. Hence, lims→∞ F (s) = 0. We also have

lim
s→0

(
SΦ(d1) − Ke−rY Φ(d2)

)
=


0, log S

K + µY < 0
1
2S − 1

2Ke−rY , log S
K + µY = 0

S − Ke−rY , log S
K + µY > 0

.

and lims→0 sfτ

(
s

Y H −
(
Y 1−H − 1

))
= 0. Hence,

lim
s→0

F (s) =


0, log S

K + µY < 0
1
2S − 1

2Ke−rY , log S
K + µY = 0

S − Ke−rY , log S
K + µY > 0

 · 0 · fτ

(
1 − Y 1−H

)
= 0.

We then differentiate F (s):

d

ds
F (s) =

(
S

(
σ

4s1/2 −
log S

K + rY

2σs3/2

)
ϕ(d1) − Ke−rY

(
− σ

4s1/2 −
log S

K + rY

2σs3/2

)
ϕ(d2)

)
sfτ (·)

+
(
SΦ(d1) − Ke−rY Φ(d2)

)
fτ (·) +

(
SΦ(d1) − Ke−rY Φ(d2)

) s

Y H
f ′

τ (·)

=σS

2
√

sϕ(d1)fτ (·) +
(
SΦ(d1) − Ke−rY Φ(d2)

)
fτ (·) +

(
SΦ(d1) − Ke−rY Φ(d2)

) s

Y H
f ′

τ (·)

.
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Hence,

I1 =
∫ ∞

0
F ′(s)ds − σS

2

∫ ∞

0

√
sϕ(d1)fτ (·)ds −

∫ ∞

0

(
SΦ(d1) − Ke−rY Φ(d2)

)
fτ (·)ds

=0 − 0 − σS

2 Y HETY
[
√

sϕ(d1)] − Y H · C

= − σS

2 Y HETY
[
√

TY ϕ(d1)] − Y H · C

.

Define
G(s) =

(
SΦ(d1) − Ke−rY Φ(d2)

)
fτ

(
s

Y H
−
(
Y 1−H − 1

))
.

then we have lims→∞ G(s) = S · 0 = 0. Hence, ∀Y ≥ 1 or 1 − Y 1−H ≤ 0, we get

lim
s→0

G(s) =


0, log S

K + µY < 0
S−Ke−rY

2 , log S
K + µY = 0(

S − Ke−rY
)

, log S
K + µY > 0

 · fτ
(
1 − Y 1−H) = 0.

We differentiate G(s):

d

ds
G(s) =

(
S

(
σ

4s1/2 −
log S

K + rY

2σs3/2

)
ϕ(d1) − Ke−rY

(
− σ

4s1/2 −
log S

K + rY

2σs3/2

)
ϕ(d2)

)
fτ (·)

+
(
SΦ(d1) − Ke−rY Φ(d2)

) 1
Y H

f ′
τ (·)

= σS

2
√

s
ϕ(d1)fτ (·) +

(
SΦ(d1) − Ke−rY Φ(d2)

) 1
Y H

f ′
τ (·)

.

Hence,
I2 =

∫ ∞

0
G′(s)ds − σS

2

∫ ∞

0

ϕ(d1)√
s

fτ (·)ds − σS

2 Y HETY
[ϕ(d1)√

TY
] .

By replacing I1 and I2 in the original formula, we get

∂C

∂Y
=rKe−rY ETY

[Φ(d2)] − H

Y
C − H

Y H+1 I1 − 1 − H

Y H
I2

=rKe−rY ETY
[Φ(d2)] − H

Y
C − H

Y H+1

(
−σS

2 Y HETY
[
√

TY ϕ(d1)] − Y H · C

)
− 1 − H

Y H
· −σS

2 Y HETY
[ϕ(d1)√

TY
]

=rKe−rY ETY
[Φ(d2)] + σS

2

(
H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
]
)

.

To conclude, we have

THETAcall = −rKe−rY ETY
[Φ(d2)] − σS

2

(
H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
]
)

.

For put options, we calculate

∂P

∂Y
=
∫ ∞

0

∂

∂Y

((
Ke−rY Φ(−d2) − SΦ(−d1)

)
· fTY

(s)
)

ds

=
∫ ∞

0

∂

∂Y

(
Ke−rY Φ(−d2) − SΦ(−d1)

)
· fTY

(s)ds +
∫ ∞

0

(
Ke−rY Φ(−d2) − SΦ(−d1)

)
· ∂

∂Y
fTY

(s)ds

= − rKe−rY ETY
[Φ(−d2)] + σS

2

(
H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
]
) .

Using the same method, we find

THETAput = −rKe−rY ETY
[Φ(−d2)] + σS

2

(
H

Y
ETY

[
√

TY ϕ(d1)] + (1 − H)ETY
[ϕ(d1)√

TY
]
)

.
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