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The special issue “Advances in pluvial and fluvial flood
forecasting and assessment and flood risk management”
builds on topics covered in the session “Advances in pluvial
and fluvial flood forecasting and assessment and flood risk
management” organized since 2018 at the European Geo-
sciences Union (EGU) General Assembly held in Vienna,
Austria. It gathers five research papers on flood modelling
and management.

Worldwide, flooding is the foremost natural hazard. It
affects human life and property, directly and indirectly
(e.g. IPCC, 2022; Prieto et al., 2020; Blöschl et al., 2019a;
Phillips et al., 2018; Berghuijs et al., 2017; European Par-
liament, 2017). In the European Union and in the United
Kingdom, river flooding causes annual losses of about
EUR 7.6 billion and affects around 160 000 people per year
(European Commission, 2023). Dottori et al. (2023) state
that under a 3 °C temperature increase scenario and with-
out adaptation, annual flood losses in Europe would rise to
EUR 44 million, affecting 0.5 million of Europeans every
year until the end of the century. Flooding and severe storms
are among the most recurrent weather and climate disasters
in the United States, causing USD 492 billion in economic
damages in the past 30 years (NOAA, 2024). In developing
or least developed economies, 28 million people are prone
to coastal flooding due to tropical storms (Edmonds et al.,
2020). Additionally, in these countries, especially in the trop-
ics, long-term climatic fluctuations such as ENSO (El Niño–

Southern Oscillation) can lead to extreme sea level events
and related coastal hazards (Pelckmans et al., 2023).

Developed countries are expected to benefit from the most
advanced mitigation measurements. Nonetheless, the costli-
est flood event over the last decade occurred in July 2021
in Germany and Belgium, with losses of EUR 44 billion
(European Environmental Agency, 2023), showcasing that
the whole world needs to adapt to offset the projected rise
in flood risk. In 2022, floods caused the death of roughly
7400 people globally, and more than 54 million people were
impacted by floods worldwide in 2022 (Burgueno, 2023).
Global warming will also slow down atmospheric dynamics,
resulting in more precipitation falling over a longer period,
thus increasing flooding hazard (Kossin, 2018; IPCC, 2023).

Despite the many hydrological and hydrodynamic mod-
elling techniques currently available to inform flood risk as-
sessment and management (Prieto et al., 2021; 2022; Han,
2011; Mignot and Dewals, 2022), many open questions re-
main, as reflected for instance in the list of “Twenty-three
Unsolved Problems in Hydrology” (Blöschl et al., 2019b)
and in the programme of the HELPING decade of the In-
ternational Association of Hydrological Sciences (IAHS).
Two particularly timely challenges in flood risk manage-
ment relate to (1) improvement of spatial predictions of ur-
ban flooding and the quantification of their uncertainties (Sk-
ougaard Kaspersen et al., 2017; Hooker et al., 2023) and
(2) evaluation of the effectiveness and efficiency of non-
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structural measures (e.g. nature-based solutions, dam oper-
ation rules) to mitigate flood hazard (Guido et al., 2023; Pel-
ckmans et al., 2023; Férnandez-Nóvoa et al., 2024). The pa-
pers in this special issue contribute to addressing these two
challenges, as outlined in the next sections.

1 Challenge 1: improvement of spatial predictions of
urban floods and quantification of their uncertainties

Societies face fast-growing urbanization and city develop-
ment, which increase the frequency, severity, and impact of
extreme events (Skougaard Kaspersen et al., 2017). Predict-
ing flood extent and flow depth in urban pluvial flooding is
a major scientific and practical challenge. Two-dimensional
hydrodynamic models (Abebe et al., 2019; De Almeida et
al., 2016) are nowadays complemented by data-driven ap-
proaches for flood hazard mapping (Costabile et al., 2017;
Guo et al., 2022). The latter are comparatively less de-
manding in computational resources. Data-driven models
are known to perform well in domains in which they have
been trained, while a remaining challenge is how to trans-
fer such models beyond their training domain (e.g. Kratzert
et al., 2019). In this special issue, Seleem et al. (2023) in-
vestigate the transferability of data-driven models, particu-
larly convolutional neural network (CNN) and random for-
est (RF), to emulate a 2D hydrodynamic model (TELEMAC-
2D) in three neighbourhoods in Berlin. The data-driven mod-
els were trained to map topography, land cover, and precip-
itation variables to observed flood water depths. The depth
of a depression was found to be the most influential pre-
dictive feature, for both CNN and RF. The models’ perfor-
mance was assessed by comparing the water depths and in-
undation extents predicted by the data-driven models against
TELEMAC-2D outcomes. The authors found that CNN per-
formed better than RF in generalizing beyond the training do-
main and benefiting from transfer learning. The study high-
lights the importance of collecting extensive training and
testing datasets, as well as the potential offered by data-
driven methods for flood hazard mapping in urban environ-
ments.

Uncertainty quantification of flood mapping is instrumen-
tal to allow stakeholders to take informed decisions (e.g. Pri-
eto et al. 2021, 2022). Unlike deterministic flood hazard
maps (Arnal et al., 2020), the uncertainty in the flood pre-
dictions can be represented by an ensemble of forecasted
inundation maps, providing a location-specific likelihood of
flooding (e.g. Cloke and Pappenberger, 2009). In this spe-
cial issue, Hooker et al. (2023) present a novel approach to
assess the spatial predictability and spread skill of ensemble
flood mapping based on historical flood events. The method
computes two metrics: (i) the ensemble spatial spread is the
agreement between every unique ensemble member pair of
floods map at each grid cell, and (ii) the ensemble spatial
skill is the agreement between each ensemble flood map

and each ensemble flood map derived from a synthetic aper-
ture radar (SAR). The difference between (i) and (ii) can be
mapped into a so-called spatial spread skill (SSS) map. The
SSS map shows whether the ensemble is over-spread, under-
spread, or well-spread for each location. The methodology
is showcased for the August 2017 flood on the Brahmapu-
tra River in the Assam region of India. Spatial variations in
spread skill can be linked to the physical characteristics of
the flood event.

2 Challenge 2: flood mitigation using non-structural
measures

Nowadays, flood risk management increasingly relies on
measures which do not involve the construction of grey in-
frastructures. In this move, nature-based solutions (NBSs)
have gained popularity, given their capacity to enhance flood
resilience while delivering side benefits. The International
Union for Conservation of Nature (IUCN, 2022), the World
Bank Group, and the World Resources Institute (WRI) define
NBSs as “actions to protect, sustainably manage, and restore
natural and modified ecosystems that address societal chal-
lenges effectively and adaptively, simultaneously providing
human well-being and biodiversity benefits” (IUCN, 2022).
Therefore, NBSs are often regarded as low- or no-regret
options that provide benefits for both people and the envi-
ronment (Faivre et al., 2017; European Commission, 2024).
Examples of NBSs are reforestation and afforestation, wet-
land restoration, and sustainable land management practices
which reduce runoff. Although NBSs have proved effective
in reducing and/or delaying flood peaks and volumes in ur-
ban or coastal areas, they are still not mainstream due to lim-
ited knowledge and testing compared to more traditional en-
gineering solutions. A current key challenge is how to incor-
porate NBSs into hydrological and hydrodynamic models.

In this issue, Guido et al. (2023) propose an integrated
methodology for selecting, modelling, and evaluating the
performance of NBSs to alleviate hurricane-driven floods.
Flooding induced by Hurricane Matthew in the United States
was used as a case study. Guido et al (2023) applied the hy-
drological model HEC-HMS and the hydrodynamic model
HEC-RAS to identify the optimal positioning of NBSs in a
catchment. Three types of NBSs were considered (flood stor-
age ponds, riparian reforestation, and afforestation in crop-
land). Afforestation in croplands leads to the most substan-
tial reductions in flood discharge and inundation extent. This
result is attributed to the larger scale at which this measure
operates compared to flood storage ponds and riparian refor-
estation. Importantly, the study by Guido et al. (2023) indi-
cates that identifying optimal NBSs is case-dependent and
that several scientific questions remain unanswered (e.g. ef-
fect of low-intensity storms, steeper slopes).

Current knowledge on how mangroves can attenuate high
water levels in large-scale deltas is restricted to modelling
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studies, which did not capture the complex geometry of chan-
nels intertwined with intertidal wetlands, or small-scale stud-
ies, which only quantified attenuation inside mangroves. In
this special issue, Pelckmans et al. (2023) present a delta-
scale hydrodynamic model, accounting for complex land-
forms, for the case of the Guayas River delta (Ecuador),
which is the largest estuarine system on the Pacific coast
in Latin America. The authors used water depth measure-
ments in the mangroves to calibrate the mangrove platform
elevation. Despite limited data availability, the delta-scale
model captured the propagation of high water levels during
a spring tide. The authors make the following key contribu-
tions: (i) mangrove elevation and the presence or absence of
mangroves is more important than mangrove-induced drag
(and hence mangrove vegetation properties) in determining
high water levels across the delta; (ii) the elevation of in-
tertidal flats, located near the downstream end of the delta,
has less effect on along-channel attenuation than upstream-
located wetlands; and (iii) the degree of channelization inside
the mangrove forests determines high water levels both up-
stream and downstream. Therefore, mangroves with a lower
surface elevation, lower vegetation density, and higher de-
gree of channelization favour attenuation of high water lev-
els in the deltaic channels. Future research could apply the
methodology proposed by Pelckmans et al. (2023) in com-
bination with freely accessible global remote sensing data to
cover a wide variety of river deltas and evaluate the poten-
tial of conserving wetlands as NBSs for reducing flooding in
river deltas.

Another non-structural flood mitigation measure (WMO,
2011) consists of adapting existing dams’ operation rules.
Fernández-Nóvoa et al. (2024) present a strategy to take ad-
vantage of several large dams and reservoirs located along
the Tagus River (Portugal) to effectively mitigate a record
flood (February 1979). This event is analysed based on a
validated hydrodynamic model, with a focus on the multi-
purpose reservoir of Alcántara, which contributes to water
supply and hydropower in addition to flood control. Results
indicate that the proposed strategy allows diminishing the
number of days under flood conditions by more than 80 %
with respect to a natural regime (i.e. without dam). The pro-
posed operating strategy is especially effective in reducing
water depth and water velocity in the flooded areas ( ∼ 25 %–
30 %), which is critical for reducing flood damage. A smaller
reduction in flood extent was achieved (∼ 5 %–10 %). The
study used open data (e.g. Copernicus DEM) and free mod-
elling software. The Fernández-Nóvoa et al. (2024) study can
be viewed as a step towards improving knowledge on ex-
treme floods in the lower Tagus valley and towards providing
strategies to mitigate these events. It takes advantage of ex-
isting infrastructures, thus addressing one of the most impor-
tant challenges that the scientific community will face in the
coming decades as a consequence of increasing precipitation
due to climate change, particularly in the Iberian Peninsula
(IPCC, 2023).

3 Conclusion

Each paper in this special issue addresses one or several
aspects of these research challenges: (i) improvement of
spatial flood predictions and quantification of their uncer-
tainty (Challenge 1) and (ii) enhancement of knowledge on
flood mitigation based on non-structural measures, including
nature-based solutions (Challenge 2).

Regarding Challenge 1, Seleem et al. (2023) show how
more reliable and accurate spatial flood predictions can be
achieved when transferring data-driven urban flood models
beyond their training domain, while Hooker et al. (2023) con-
tributed to evaluating the quality of uncertainty predictions in
ensembles of forecasted flood maps.

In line with Challenge 2, Guido et al. (2023) showcase a
simulation-based integrated methodology for the optimal de-
sign and positioning of NBSs to mitigate hurricane-induced
flood hazard. In the context of assessing the effectiveness of
mangroves at attenuating the propagation of extreme sea lev-
els through large (order of 100 km2) estuarine or deltaic sys-
tems, with complex geometry formed by networks of branch-
ing channels intertwined with mangrove and intertidal flat
areas, Pelckmans et al. (2023) showed that the wide range
of observed and modelled attenuation rates can be partly ex-
plained by variations in the wetland platform elevation and
degree of channelization, in addition to vegetation proper-
ties. Using a validated hydrodynamic model of a case study
in Portugal, Fernández-Nóvoa et al. (2024) present a strat-
egy to adapt the operating rules of existing infrastructure,
namely multipurpose dams and reservoirs, to mitigate ex-
treme floods, achieving a reduction in flooded areas of up
to 30 %.

The five papers in this special issue collectively highlight
the need for further research beyond the two challenges dis-
cussed here. They specifically point at research avenues such
as (i) further exploring the use of artificial intelligence for
flood predictions and particularly the transferability of such
models, as well as the associated uncertainties, and (ii) creat-
ing databases and catalogues of case studies of NBS imple-
mentations (covering both successes and failures) to progress
towards a better appraisal of their effectiveness in a broad
range of contexts.

Looking ahead, the 2030 Agenda for Sustainable Devel-
opment places great emphasis on flood risk reduction and the
interaction between flood and poverty, availability of flood,
access to healthcare, water supply, infrastructure, urban de-
velopment, adaptation to climate change, and the preserva-
tion of ecosystems. The 2030 Agenda for Sustainable Devel-
opment highlights the urgent need to reduce flood risks. In-
deed, a major disaster can wipe out the economic and social
progress that a country has taken years to achieve (Bello et
al., 2021). In order to achieve the “Sustainable Development
Goals” by 2030, in particular Goal 6 (“safe water and sanita-
tion for all”), and to move towards successful flood risk man-
agement and planning, we need to continue research and take
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rapid action to improve flood forecasting (e.g. flash floods)
and impact-based forecasting, reduce vulnerability and ex-
posure, and adapt mitigation strategies that include NBSs
(e.g. by adapting urban planning to incorporate a combina-
tion of NBSs and other measures in a holistic way).

Data availability. This special issue is a compilation of published
papers that summarize contemporaneous aspects in “Advances in
pluvial and fluvial flood forecasting and assessment and flood risk
management”. The data can be found in each individual paper.
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