
SCaR: Refining Skill Chaining for Long-Horizon
Robotic Manipulation via Dual Regularization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Long-horizon robotic manipulation tasks typically involve a series of interrelated1

sub-tasks spanning multiple execution stages. Skill chaining offers a feasible2

solution for these tasks by pre-training the skills for each sub-task and linking3

them sequentially. However, imperfections in skill learning or disturbances during4

execution can lead to the accumulation of errors in skill chaining process, resulting5

in execution failures. In this paper, we investigate how to achieve stable and6

smooth skill chaining for long-horizon robotic manipulation tasks. Specifically,7

we propose a novel skill chaining framework called Skill Chaining via Dual8

Regularization (SCaR). This framework applies dual regularization to sub-task skill9

pre-training and fine-tuning, which not only enhances the intra-skill dependencies10

within each sub-task skill but also reinforces the inter-skill dependencies between11

sequential sub-task skills, thus ensuring smooth skill chaining and stable long-12

horizon execution. We evaluate the SCaR framework on two representative long-13

horizon robotic manipulation simulation benchmarks: IKEA furniture assembly14

and kitchen organization. Additionally, we conduct real-world validation in desktop15

robot pick-and-place tasks. The experimental results demonstrate that with the16

support of SCaR, the robot performs long-horizon tasks with a higher success rate17

than relevant baselines and is more robust to perturbations.18

1 Introduction19

Long-horizon robotic manipulation tasks are characterized by sequences of diverse and interdependent20

sub-tasks, which makes it crucial to maintain the stability of multi-stage sequential execution. For21

instance, in the robotic assembly of a stool (Fig. 1) involving two sub-tasks of leg installation, overall22

success is evaluated based on both the sequential installation success and factors affecting the assembly23

within environmental constraints. Although recent advances in deep reinforcement learning (RL) and24

imitation learning (IL) show promise in training robots for such complex tasks [1, 2, 3, 4, 5, 6, 7],25

managing long-horizon tasks with a scratch RL or IL policy remains challenging due to computational26

demands, extensive exploration, and intricate step dependencies [8, 9]. Skill chaining, which involves27

decomposing long-horizon tasks into smaller sub-tasks, pre-training skills for each, and executing28

them sequentially, offers a practical solution [10, 11]. However, as shown in Fig. 1(a)(b), such29

methods tend to fail when sub-task skills are insufficiently trained or unexpected states arise due30

to disturbances, especially when applied to high-degree-of-freedom robots performing contact-rich,31

long-horizon tasks. [12, 13, 14, 15, 16, 17].32

In this paper, we argue that the coordination and enhancing of dependencies within and between sub-33

task skills is necessary for stable and smooth skill chaining of long-horizon robotic manipulation [10].34

For instance, as depicted in Fig. 1 (a)(b), the robot must consider following two points to ensure the35

overall task is accomplished: 1) ensuring the gripper consistently grasps and installs the stool leg36
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Figure 1: Illustration of the problem setting and the motivation of SCaR, using the example of a stool
assembly task with two sub-tasks.

stably within each sub-task skill range. and 2) ensuring the terminal state of previous skill aligns with37

the initial state of next skill for smooth skill chaining. We define the above two points as intra-skill38

dependencies between sequential actions within each sub-task skill and inter-skill dependencies39

between sequential sub-task skills, respectively. In this context, we propose a novel robotic skill40

chaining framework, Skill Chaining via Dual Regularization (SCaR). This framework enhances the41

aforementioned dependencies alternately through dual regularization during sub-task skill learning42

and chaining, aiming to provide stability for the execution of long-horizon robotic manipulation.43

Specifically, in the pre-training phase of each sub-task skill, we propose the adaptive sub-task skill44

learning shceme, which employs a two-part policy learning objective that focuses on what sub-tasks45

the robot should perform (via RL) and how the robot should perform that task (via IL), and utilizes46

a novel adaptive equilibrium scheduling (AES) regularization to balance these two parts based on47

the robot’s learning progress. This process aims to reinforce the intra-skill dependencies, ensuring a48

coherent sequence of actions in each sub-task skill. Subsequently, bi-directional adversarial learning49

is introduced in the fine-tuning phase of SCaR for better chaining sequential sub-task skills. This50

mechanism uses bi-directional regularization to bring the terminal state of the current skill close to the51

initial state of its successor, and also to bring the initial state of the successor close to the terminal state52

of the current skill. This bi-directional alignment aims to reinforce robust inter-skill dependencies53

between sequential skills. Through the two innovative designs described, SCaR ensures coordination54

between the intra-skill and inter-skill dependencies, provides dual constraints for skill learning and55

skill chaining, as described in Fig. 1 (c), leading to a smooth skill chaining from the inside (within the56

sub-task skills) to the outside (between sub-task skills). Experimental results show that compared57

to scratch-training and skill chaining baselines, SCaR provides better task execution performance and58

stronger robustness to environmental perturbations in various long-horizon and contact-rich robotic59

manipulation simulation tasks. In addition, SCaR achieves higher task success rates in long-horizon60

real-robot pick-and-place tasks compared to previous skill chaining method.61

The principal contributions of our work are delineated as follows: 1) We propose a novel robotic skill62

chaining framework via dual regularization, SCaR, for smoothly executing long-horizon manipulation63

tasks. 2) We introduce an adaptive sub-task skill learning scheme that acts as a regularization to64

enhance intra-skill dependencies between sequential actions within each sub-task skill. 3) We develop65

a bi-directional adversarial learning mechanism that serves as a regularization for reinforcing inter-66

skill dependencies between sequential sub-task skills. 4) In all eight simulated long-horizon robotic67

manipulation tasks, SCaR performs significantly better than scratch-training and skill chaining68

baselines. In addition, SCaR also shows better task completion performance compared to skill69

chaining baseline in real-robot long-horizon pick-and-place experiments. Video demonstrations are70

available at: https://tinyurl.com/4333d6np.71
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2 Related Work72

2.1 Long-horizon Robotic Manipulation73

Training robots from scratch for complex, long-horizon tasks using reinforcement learning (RL)74

and imitation learning (IL) is challenging due to computational demands and distributional errors.75

Solutions involve decomposing tasks into reusable sub-tasks [18]. Typically, such algorithms con-76

sist of a set of sub-policies that can be obtained through various methods, such as unsupervised77

exploration [19, 20, 21, 22, 23], learning from demonstrations [5, 6, 24, 25], and predefined mea-78

sures [26, 27, 28, 29, 14]. Despite the merits of each of these approaches, they do not address well79

the challenges of long-horizon robot manipulation in environments that are object-rich, contact-rich,80

and characterized by multi-stage tasks [28, 29, 14]. Thus, even when pre-trained skills are provided,81

ensuring a smooth connection between manipulation policies remains a formidable challenge.82

2.2 Skill Chaining for Long-horizon Tasks83

Previous skill chaining methods for long-horizon tasks mainly focus on updating each sub-task84

policy to encompass the terminal state of the previous policy [11, 14, 30], implementing option85

chains [11, 31, 32] to forge logical skill sequences, or utilizing modulated skills to facilitate smoother86

transitions [33, 34, 35, 36, 14, 16]. However, these methods, while effective, often lead to a broad87

range of skill start and end states, a challenge in complex robotic manipulation tasks. T-STAR [15] is88

closely related to our work, addressing this by regularizing the learning process with a discriminator89

to control the expansion of the terminal state space. However, it focuses only on uni-directional90

dependencies between skills and ignores intra-skill dependencies within sub-task skills under long-91

horizon goals. Sequential Dexterity [17] centers on dexterous hand manipulation, introducing an92

optimization process to backpropagate long-term rewards across a policy chain. However, its scope93

still primarily emphasizes strengthening the dependencies between sub-task skills. GSC [37] attempts94

to solve skill chaining by employing diffusion models. It trains and chains primitive skills (pick,95

place, push, pull) through a Transformer-based skill diffusion model. However, due to the use of96

Transformer-based techniques, GSC requires high computational resources and cannot scale well to97

task environments with object-rich and contact-rich conditions. Our method instead employs simple98

and intuitive dual regularization constraints based on the lightweight policy network. By coordinating99

the dependencies within and between skills, we achieve refinement within sub-task policies and100

bi-directional alignment between them. This allows for stable skill chaining while also being scalable101

to various long-horizon manipulation tasks.102

3 Preliminaries103

Among several related works on skill chaining, we consider a challenging yet practical problem104

setting that deals with long-horizon manipulation tasks through a combination of reinforcement105

learning (RL) and imitation learning (IL). In each sub-task in the long-horizon task, we consider106

robotic agents acting within a finite-horizon Markov Decision Process [38] (S,A,P, r, γ, dI , T ),107

where S is the state space, A is the action space, P(s′|s, a) is the transition function, r(s, a, s′) is108

the reward function, γ is the discount factor, dI is the initial state distribution, and T is the episode109

horizon of sub-task. We define a policy π : S → A that maps states to actions and correspondingly110

moves the robotic agent to a new state according to the transition probabilities. This sub-task policy is111

trained to maximize the expected sum of discounted rewards E(s,a)∼π[
∑T

t=1 γ
tr(st, at, st+1)]. We112

assume that each sub-task policy has an initial state set I ∈ S and a terminal state set β ∈ S, where113

the initial set I contains all the initial states that lead to the successful execution of the policy and114

the terminal state set β contains all the final states of the successful execution. The environment115

provides the environmental feedback for each step taken by the agent and success metrics for each116

sub-task, derived from the terminal states of sub-task policy. For instance, as shown in Fig. 1(c),117

the alignment of the back and legs of the stool triggers the connect action and the realization of the118

sub-task goal, which indicates the successful completion of the sub-task. Additionally, we posit that119

during each sub-task policy learning, the agent receives a set of pre-defined expert demonstrations,120

DE = {τE1 , . . . , τEN }, to facilitate the IL process. Here, N represents the number of episodes, and121

each demonstration comprises a sequence of state-action pairs, τE = (s1, a1, . . . , sT−1, aT−1, sT ).122
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Figure 2: The Pipeline of Skill Chaining via Dual Regularization (SCaR). (Left) Phase 1: Sub-task
skill pre-training ( ) merges environmental feedback and expert guidance, using adaptive
equilibrium scheduling (AES) regularization to balance learning, which enhances intra-skill depen-

dencies within skills. (Middle) Phase 2: Bi-directional discriminators ( ) coupled with AES to
fine-tune pre-trained sub-task skills, as regularization for reinforcing inter-skill dependencies. (Right)
Evaluation: Evaluation of SCaR on long-horizon manipulation.

4 Method123

In Section 4.1, we present the pipeline of the SCaR framework. Sections 4.2 and 4.3 provide further124

elaboration on the key design elements.125

4.1 Overall Pipeline126

As illustrated in Fig. 2, the SCaR framework has two phases: (a) pre-training (adaptive sub-task127

skill learning) and (b) fine-tuning (bi-directional adversarial learning). In the pre-training phase,128

the agent co-learns sub-task skills by integrating environmental feedback and expert demonstrations.129

In the fine-tuning phase, it refines these skills through bi-directional adversarial learning, enabling130

sequential integration of sub-task skills. After fine-tuning, SCaR can smoothly chain sub-task skills131

to complete long-horizon manipulation tasks. Specific modules and mechanisms for these phases are132

detailed in Sections 4.2 and 4.3.133

4.2 Adaptive Sub-task Skill Learning134

Weighted Reward Function To learn sub-task skills better, we combine goal-conditional RL and135

generative adversarial imitation learning (GAIL) [39], to pre-train skills that enable the agent to136

perform challenging sub-tasks in a desired expert behavioral style [40, 15]. More specifically, we137

consider the weighted reward function that is used to train each sub-task policy πθ
i consists of two138

components specifying: what sub-task the agent should perform - learning from environmental139

feedback, and 2) how the agent should perform that task - learning from expert demonstrations:140

r(st, at, st+1;ϕ) = λRLr
Env
i (st, at, st+1, g) + λILr

Pred
i (st, at;ϕ). (1)

As shown in Eq. 1, the first component is represented by a task-specific reward rEnv
i (st, at, st+1, g),141

which defines general objectives that the agent should satisfy to fulfill a given sub-task goal g for142

current MDPM (e.g. assembling a stool leg). The second component is represented through a learned143

task-agnostic predict-reward rPred
i (st, at;ϕ), which specifies manipulation details of the behaviors144

that the agent should adopt when performing the sub-task (e.g., the expert way to grab a stool leg145

and attach it), and rPred
i (st, at;ϕ) is the predicted reward by a least-square GAIL discriminator146

f i
ϕ [41, 40, 15], which is more stable than the standard GAIL objective using the sigmoid cross-147

entropy loss function. Therefore, the predicted reward is:148

rPred
i (st, at;ϕ) = max[0, 1− 0.25 · [f i

ϕ(st, at)− 1]2]. (2)

We adopt the training objective of the least-squares GAIL discriminator with a gradient penalty149

term [42, 43], This penalty term mitigates the instability of the training dynamics due to the interplay150

between the discriminator and the policy [40], as follows:151

argminfi
ϕ
E(s)∼DE [(f i

ϕ(s)− 1)2] +E(s)∼πi
θ
[(f i

ϕ(s) + 1)2] +
ηgp

2
E(s)∼DE [∥∇sf

i
ϕ(s)∥2], (3)
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where ηgp is a manually-specified coefficient. The scales of rEnv and rPred in previous related152

works are set by fixed weights and linearly combined into the final reward function [40, 15]. This153

could lead to the agent rigidly imitating experts and curbing self-exploration, finding it difficult to154

adjust intra-skill dependencies and adapt to dynamic task perturbations. We propose a principle to155

counter this: If the agent fails to imitate the expert’s demonstration well, it should shift focus to156

self-learning from the environment. Conversely, effective imitation should continue, focusing on157

the expert to mitigate low sample efficiency in reinforcement learning. Accordingly, we extend158

the automatic discount scheduling (ADS) solution [9] to our problem setting, and propose adaptive159

equilibrium scheduling (AES) to regularize the scales of rEnv and rPred in sub-task skill learning for160

adaptive scheduling the focus of reinforcement and imitation learning, as shown in Fig. 3.161

Adaptive Equilibrium Scheduling (AES) Regularization Specifically, AES balances the scales of162

rEnv and rPred during the learning process of each skill through adaptive scheduling of λRL and λIL,163

according to how well the agent imitates the expert’s demonstration. To capture the agent’s imitation164

progress, AES refers to the solution in ADS [9] and uses the imitation identifier Φ to continuously165

monitor whether the agent is imitating the expert demonstration well enough.166

Expert
demos

Environment

Action

AES
Monitor

Scheduling

Scheduling

Figure 3: AES regularization for
sub-task skill learning.

At the beginning of training, the agent is assigned two initial167

balance factors λRL = α, λIL = 1 − α, where base exponent168

α ∈ [0, 1]. We set α = 0.5 in the experiments and the agent is169

assigned two identical balance factors λRL = λIL = 0.51, indicat-170

ing that at the beginning of learning, the agent imitates the expert’s171

behavior with the same weight as the behavior of environment172

exploration according to the task goal. As training progresses, the173

imitation progress recognizer Φ is queried periodically to monitor174

the progress of the agent’s imitation of the expert’s behavior. Φ175

receives the agent’s collected trajectories and infers the agent’s176

current imitation progress p ∈ [0, T ), where p in an integer and T177

is the step of the entire episode.178

The construction of Φ, with reference to ADS, first requires179

the construction of a sequence Q(q1, . . . , qT ), where qi =180

argminjc(si, s
E
j ) is the index of the nearest neighbor of si in τE , c is the cosine similarity. The181

progress alignment between τ and τEj is measured as the length of the longest increasing subsequence182

(LIS) in Q, denoted as LIS(τ, τE). Specifically, the agent’s imitation progress p is increased by 1 if183

the following inequality holds:184

max
τ́E∈DE

LIS(τ1:p+1, τ́
E
1:p+1) ≥ ρ× min

τ́E ,´́τE∈DE

LIS(τ́E1:p+1,
´́τE1:p+1), (4)

where τ́E ̸= ´́τE , the subscript 1 : p+ 1 denotes the first p+ 1 steps of the trajectory, and ρ ∈ [0, 1]185

controls the strictness of the imitation progress monitoring. This suggests that the similarity of the186

agent trajectory to its best matching expert trajectory at time step p+1 exceeds the minimal similarity187

criterion within the expert demonstration. See Appendix B for detailed explanation of AES.188

After obtaining the current imitation progress p of the agent, AES then adopts a mapping function189

φλ(p) to schedule the two new balance discount factors λRL and λIL. Straightforward idea of setting190

φλ(p) is that If p is larger and reaches a certain threshold, i.e., the agent is able to imitate191

the expert behavior well, then the more the agent tends to imitate the expert’s behavior in192

subsequent training, and vice versa. Therefore, we set the threshold as T
2 . If p ∈ [0, T

2 ), we193

propose φλ(p) = 1 − e(−
p
k ); if p ∈ [T2 , T ), we propose φλ(p) = e

(
−

p−T
2

k

)
, where k is used to194

flatten the curve of the mapping function. Then λRL and λIL are scheduled to be :195 {
λRL = αφλ(p), λIL = 1− αφλ(p). if p ∈ [0, T

2 )

λIL = αφλ(p), λRL = 1− αφλ(p). if p ∈ [T2 , T )
(5)

Consequently, the RL and IL components of sub-task skill learning can be adaptively scheduled and196

regularized through AES, effectively enhancing intra-skill dependencies between sequential actions.197

The pseudo-code of adaptive sub-task skill learning is outlined in Algorithm 1 in Appendix A.1.198

1We further explore what effect different α would have in the Ablation Experiments.
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4.3 Bi-directional Adversarial Learning for Skill Chaining199

Executing pre-trained sub-task skills sequentially without considering inter-skill dependencies may200

lead to failure. To address this, we propose bi-directional adversarial learning to further refine and201

better integrate sequential sub-task skills. The pseudo-code of bi-directional adversarial learning is202

outlined in Algorithm 2 in Appendix A.2.203

Bi-directional Regularization In contrast to previous uni-directional regularization schemes that204

only augment the initial state set Ii or regularize the terminal state set βi [12, 15], we impose the205

bi-directional constraints (C1,C2) on inter-skill dependencies, facilitating smooth skill chaining, as206

shown in Fig 4. With the bi-directional constraint, we implement the bi-directional adversarial207

learning, centered on the joint training of a bi-directional discriminator, denoted by ζiω , which is208

adept at distinguishing between the terminal state set of the preceding policy and the initial state set209

of the subsequent policy. The bi-directional constraints C1,C2 are defined as Eq. 10:210

next initial→ previous terminal: C1 = EsI∼Ii
[ζiω(sI)− 1]2 + EsT∼βi−1 [ζ

i
ω(sT )]

2

previous terminal→ next initial: C2 = EsT∼βi
[ζiω(sT )− 1]2 + EsI∼Ii+1

[ζiω(sI)]
2

(6)

“pull” to previous sets “push” to next sets

“pull” to previous sets

“push” to next sets

“push” to next sets

“pull” to previous sets

uni-directional

bi-directional (ours)

Figure 4: Bi-directional regular-
ization for sub-task skill chain-
ing.

ζiω is trained for each policy to minimize the objective func-211

tion2:Li(ω) = 1
2C1 + 1

2C2. Guided by ζiω, the bi-directional212

adversarial learning not only steers the terminal state set of the213

current policy towards the initial state set of the subsequent policy,214

but also ensures alignment of the initial state set of the subse-215

quent policy with the terminal state set of current policy. This dual216

alignment establishes a balanced mapping between the initial and217

terminal states of sequential skills to reinforce inter-skill depen-218

dencies, ensure consistency and stability in multi-stage tasks, and219

guarantee smooth transitions between sequential skills. Accord-220

ingly, the bi-directional regularization can be added to the overall221

objective function of policy learning in the form of the following222

reward term: rBi
i (s;ω) = 1s∈βi

ζi+1(s) + 1s∈Ii
ζi−1(s).223

Overall Objective Function So far, the objective function via224

dual regularization, i.e., AES regularization and bi-directional225

regularization, to pre-train, fine-tune and chain sub-task skills can be rewritten as a weighted sum of226

the individual reward terms:227

ri(st, at, st+1;ϕ) =λRLr
Env
i (st, at, st+1, g) + λILr

Pred
i (st, at;ϕ)︸ ︷︷ ︸

AES regularization

+ λBir
Bi
i (st+1;ω)︸ ︷︷ ︸

bi-directional regularization

,
(7)

where λRe is the weighting factor of the bi-directional regularization. The objective function features228

AES regularization and bi-directional regularization to enhance intra- and inter-skill dependencies.229

It enables the agent to adaptively pre-train skills that can solve different sub-tasks well through230

environmental feedback and expert guidance, and further fine-tune them through the bi-directional231

discriminator to achieve dual alignment between sequential skills. At the same time, the fine-tuned232

sub-task skills help to collect terminal and initial states to refine the bi-directional discriminator. This233

iterative process ensures smooth long-horizon task skill chaining.234

5 Experiments235

5.1 Experiment Setup236

We conduct simulation experiments on six IKEA furniture assembly tasks and two kitchen organi-237

zation tasks, and also perform long-horizon pick-and-place experiments on the real Sagittarius K1238

robot. Please refer to the Appendix for more detailed simulation experiment setup (Appendix G),239

network architecture (Appendix H), training details (Appendix I), more quantitative (Appendix D) and240

qualitative results (Appendix E) of the simulation tasks, and the real-robot experiments (Appendix F).241

Furniture Assembly We conduct experiments in six IKEA furniture assembly tasks in [44]:242

chair_agne, chair_bernhard, chair_ingolf, toy_table, table_lack and table_bjorkudden.243

2We explore the impact of different scales of C1 and C2 in Appendix D.3
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Figure 5: Evaluation Performance of Sub-task Skill Learning. Best viewed zoomed.

1) chair_agne: Two stool legs need to be picked up and aligned with the cross notches on the stool244

back. 2) chair_bernhard: The two chair supports need to be taken and aligned with the slots at the245

bottom of the chair surface. 3) chair_ingolf : Two chair supports and front legs need to be attached to246

the chair seat, which must then be secured to the chair back while avoiding collision with each other.247

4) table_lack: The four table legs need to be picked up and aligned with the corners of the tabletop. 5)248

toy_table: The four table legs need to be picked up and aimed and inserted with the four notches on249

the table back. 6) table_dockstra: After supporting the two bases with table leg, the table top needs to250

be mounted while preventing collision. For each assembly task, we define the assembly of individual251

parts as sub-tasks. We collect 200 demonstrations per sub-task using a procedural assembly policy252

for imitation learning. Each demonstration consists of 150 steps.253

Kitchen Organization We use the Franka Kitchen tasks in D4RL [45] and collect 200 demonstra-254

tions per sub-task for imitation learning. Specifically, we refer to the kitchen task in [46] and further255

extend the task sequence: in the Kitchen task, the 7-DoF Franka Emika Panda arm needs to perform256

4 sequential sub-tasks, namely Turn on the microwave - Move the kettle - Turn on the stove - Turn on257

the light. In the Extended Kitchen task, the robot needs to perform 5 sequential sub-tasks: Turn258

on the microwave - Turn on the stove - Turn on the light - Slide the cabinet to the right - Open the259

cabinet, in which the sub-tasks have a lower probability of switching and is more challenging.260

Baselines We compare SCaR with the following two types of baselines:261

Scratch Training: 1) PPO is a model-free RL algorithm [47] that utilizes environmental rewards262

to learn tasks from scratch. 2) GAIL [39] is an adversarial imitation learning method to learn tasks263

from scratch, with a trained discriminator for distinguishing state-action distributions of experts and264

agents. 3) Fixed-RL-IL [40] uses fixed-weight environmental rewards and GAIL rewards to train265

policies from scratch. 4) SkiMo [46] is a model-based hierarchical RL approach that learns dynamic266

skill models for predicting outcomes in downstream tasks, which is used to test if modularly skill267

chaining method can surpass model-based scratch-training method on long-horizon tasks.268

Skill Chaining: 1) Policy Sequencing [12] focuses on sequentially expanding the initial sets269

in skill chaining. 2) T-STAR [15] incorporates a discriminator to uni-directionally regularize the270

terminal states of sub-skills in a skill chaining. 3) SCaR w/o Bi reference to T-STAR during the271

fine-tuning phase, only uni-directional regularization of the terminal state set is performed to verify272

the validity of the proposed bi-directional regularization. 4) SCaR w/o AES fixes the scales of the273

two reward terms at 0.5 at all times to verify the effectiveness of the proposed AES regularization.274

5.2 Quantitative Results275

Sub-task Skill Learning Performance First, we evaluate the proposed adaptive sub-task skill276

learning scheme in the sub-tasks of furniture assembly and kitchen organization. Specifically, we277

treat each sub-task as a separate task for policy learning and take the success rate of the trained278

policy tested in the reset sub-task as the criterion. All methods are trained in each sub-task with 5279

random seeds, 150 million environment steps, and evaluated with the average success rate over 100280

testing episodes. As shown in the Fig. 5, in chair_ingolf and Extended Kitchen tasks, even with the281

increase of objects in the environment and the increase of unpredictable perturbations, our proposed282

adaptive skill learning learns good sub-task skills and consistently maintains a task success rate of283

more than 85% in all stages of the sub-task. In contrast, the PPO (only RL rewards), GAIL (only IL284
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Table 1: Long-horizon tasks execution performance (varies by sub-task completion progress): *tasks
with 2 sub-tasks progress by 0.5 per sub-task, *tasks with 4 sub-tasks by 0.25, *tasks with 5 sub-tasks
by 0.2, and table_dockstra with 3 sub-tasks by 0.3, where 0.9 indicates completion of all tasks. Best
viewed zoomed.

Furniture Assembly Kitchen Organization

Method chair_agne chair_bernhard chair_ingolf table_lack toy_table table_dockstra All Kitchen E-Kitchen All

PPO (Scratch RL) 0.54± 0.18 0.42± 0.12 0.14± 0.03 0.09± 0.01 0.00± 0.00 0.31± 0.12 0.25± 0.15 0.13± 0.05 0.03± 0.00 0.08± 0.04

GAIL (Scratch IL) 0.31± 0.05 0.23± 0.02 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.21± 0.04 0.12± 0.09 0.00± 0.00 0.00± 0.00 0.00± 0.00

Fixed-RL-IL 0.68± 0.12 0.53± 0.07 0.22± 0.08 0.21± 0.11 0.13± 0.02 0.43± 0.07 0.37± 0.15 0.33± 0.06 0.18± 0.02 0.26± 0.06

SkiMo 0.75 ± 0.09 0.62± 0.05 0.47 ± 0.03 0.58 ± 0.14 0.34 ± 0.06 0.62 ± 0.11 0.56 ± 0.11 0.57 ± 0.08 0.21 ± 0.04 0.39 ± 0.13

Policy Sequencing 0.89 ± 0.08 0.82 ± 0.09 0.77 ± 0.12 0.63 ± 0.28 0.45 ± 0.18 0.61 ± 0.14 0.70 ± 0.16 0.53 ± 0.11 0.36 ± 0.09 0.44 ± 0.09

T-STAR 0.92 ± 0.02 0.90 ± 0.04 0.89 ± 0.04 0.90 ± 0.07 0.71 ± 0.21 0.77 ± 0.09 0.85 ± 0.09 0.68 ± 0.13 0.48 ± 0.08 0.58 ± 0.10

SCaR w/o Bi 0.93 ± 0.04 0.92 ± 0.02 0.91 ± 0.01 0.93 ± 0.02 0.80 ± 0.10 0.79 ± 0.02 0.88 ± 0.05 0.75 ± 0.08 0.57 ± 0.14 0.66 ± 0.09

SCaR w/o AES 0.95± 0.03 0.94± 0.03 0.93± 0.02 0.95± 0.04 0.85± 0.06 0.80± 0.03 0.91± 0.05 0.77± 0.07 0.61± 0.13 0.74± 0.05

SCaR (Ours) 0.98± 0.02 0.96± 0.04 0.95± 0.03 0.97± 0.03 0.92± 0.05 0.88± 0.02 0.94 ± 0.03 (12% ↑) 0.84± 0.16 0.73± 0.17 0.78± 0.12 (18% ↑)

rewards), and Fixed-RL-IL (fixed RL and IL reward weights) baselines fail to maintain good sub-task285

success rates as the number of sub-task stages increases. This result well validates that our proposed286

adaptive weighted reward function based on AES regularization enhances intra-skill dependencies287

for multi-stage sub-task learning and brings effectiveness and stability.288

Long-horizon Execution Performance We then demonstrate the performance of SCaR in perform-289

ing 8 long-horizon tasks in IKEA furniture assembly and kitchen organization. Table 1 shows the290

mean and standard deviation for these 8 tasks across 200 testing episodes with 5 different seeds. The291

PPO and GAIL baselines show minimal success on tasks with 4 and 5 sub-tasks, indicating the diffi-292

culty of learning complex multi-stage tasks solely from reward signals or expert demonstrations. The293

fixed RL-IL baseline, although improved compared to PPO and GAIL, mostly completed only one sub-294

task, which highlights the limitations of using fixed RL and IL reward weights in long-horizon tasks.295

While SkiMo achieves better success rates than model-free methods by building dynamic skill models,296

its performance remains inconsistent on long-horizon tasks due to its scratch learning nature. The per-297

formance of these scratch baselines demonstrates the importance of effective staged sub-task learning298

for long-horizon tasks. The results in Table 1 further highlight the superiority of the SCaR framework.299

By reinforcing intra- and inter-skill dependencies, task success rates are considerably higher than300

previous skill chaining approaches such as Policy Sequencing and T-STAR, which primarily address301

uni-directional inter-skill dependencies. Compared to T-STAR, SCaR increases average success rates302

by more than 12% on six furniture assembly tasks and 18% on two kitchen organization tasks.3.303

Table 2: Comparison of the robustness of skill chaining
in perturbed environments.

Perturbation Perturbation

chair_bernhard chair_ingolf

Method No Perturb Perturb No Perturb Perturb

Policy Sequencing 0.82 ± 0.09 0.51 ± 0.04 0.77 ± 0.12 0.50 ± 0.10

T-STAR 0.90 ± 0.04 0.60 ± 0.08 0.89 ± 0.04 0.59 ± 0.04

SCaR w/o Bi 0.92 ± 0.02 0.65 ± 0.11 0.91 ± 0.01 0.63 ± 0.05

SCaR w/o AES 0.94 ± 0.03 0.74 ± 0.09 0.93 ± 0.02 0.71 ± 0.07

SCaR (Ours) 0.96 ± 0.04 0.85 ± 0.11 0.95 ± 0.03 0.80 ± 0.13

304

5.3 Robustness to Perturbations305

Perturbation tests are conducted to evaluate306

the robustness of skill chaining for two fur-307

niture assembly tasks. As shown in the top308

figure of Table 2, for the chair_bernhard309

task, the perturbation involves applying ex-310

ternal joint torque to the robotic arm, mov-311

ing the chair back before assembling the312

second support. For the chair_ingolf task,313

the perturbation is applied by exerting ex-314

ternal torque on the robotic arms, causing315

them to move slightly before mounting the316

assembled chair seat to the chair back. The317

results in Table 2 highlight the detrimental318

impact of environmental perturbations on the success rates of baseline methods during the execution319

of multiple sub-task skills. Methods like Policy Sequencing and T-STAR, which focus solely on320

inter-skill dependencies through uni-directional regularization, struggle to complete tasks after pertur-321

bations. In contrast, SCaR, demonstrates more robust performance even under unseen perturbations.322

These results further support the advantages of our proposed dual regularization for stable skill323

chaining on long-horizon manipulation tasks.324

3The overall increase is somewhat modest due to averaging the success rates of the 2, 3, and 4 sub-tasks and
the 4 and 5 sub-tasks, respectively.

8



5.4 Ablations and Analysis325

We perform ablation studies to explore the important factors that affect the performance of SCaR.326

Modular Ablation We investigate how the adaptive sub-task skill learning and bi-directional327

adversarial learning impact skill chaining through SCaR w/o Bi and SCaR w/o AES. As shown in328

Table 1, without bi-directional regularization, SCaR w/o Bi experiences significant performance329

drops in tasks with more than two sub-tasks but still outperforms T-STAR. This is because SCaR330

w/o Bi maintains the adaptive scheduling of AES during sub-task skill learning, underscoring the331

importance of focusing on the intra-skill dependencies between successive actions. Similarly, the332

absence of AES regularization reduces SCaR w/o AES’s performance, though it still maintains stable333

outcomes. This underscores the importance of reinforcing inter-skill dependencies on long-horizon334

tasks and reaffirms the contribution of bi-directional regularization. As shown in Table 2, SCaR w/o335

Bi, though slightly more robust than T-STAR due to the presence of AES, still faces challenges in336

adapting to perturbations and maintaining stable skill chaining because of its uni-directional fine-337

tuning limitations. SCaR w/o AES manages to maintain a certain level of performance stability under338

perturbations, thanks to bi-directional regularization, which ensures the bi-directional alignment of339

initial and terminal states between skills. The results show that the pre-trained skills via AES exhibit340

enhanced intra-skill dependencies within sub-tasks, and bi-directional regularization ensures stable341

long-horizon execution, even in the presence of perturbations, by reinforcing inter-skill dependencies.342

(a) (b)
Figure 6: Ablation experiments. Best viewed zoomed.

343

Parametric Ablation We further in-344

vestigate the impact of different scales345

of RL and IL reward terms, as well346

as the size of expert demonstration347

datasets. The effect of varying the348

base exponent α on task success rates349

is tested across four tasks: chair_agne,350

chair_ingolf, table_dockstra, and ex-351

tend kitchen. As depicted in Fig. 6(a),352

SCaR achieves the highest success353

rates in all four tasks when α = 0.5,354

indicating a balance between RL and IL at the beginning of learning. When α becomes smaller,355

emphasizing IL at the start, performance decreases more steeply. Conversely, as α becomes larger,356

giving more weight to RL, performance also declines but at a slower rate. We also evaluate the impact357

of different sizes of expert datasets on three skill chaining methods: Policy Sequencing, T-STAR,358

and SCaR, specifically in the chair_ingolf task. We vary the overall task expert data size from 80,359

120, 200, 400, 600, to 800 demos. As shown in Fig. 6(b), the results indicate significant performance360

improvement when increasing the dataset size from 400 to 800 demos, while the improvement is361

less pronounced when going from 80 to 120 demos. This demonstrates the importance of the demo362

dataset size in the effectiveness of data-driven approaches like skill chaining.363

6 Discussion364

Limitation and future directions Limitations of our work are that the sub-task division of the365

long-horizon task is predefined and does not involve visual and semantic processing of objects.366

Scaling up our framework to address longer-horizon visual manipulation tasks is a direction we aim367

to investigate in future work. For instance, incorporating a more scalable architecture [48] along368

with large-scale pre-training on large datasets [49, 50] would be an interesting direction. Another369

compelling direction is applying our framework to actual robotic furniture assembly tasks, beyond370

just staged robotic pick-and-place tasks. Building a real-world deployment environment for furniture371

assembly and being able to guarantee full insertion of each furniture module are huge challenges.372

Conclusion In this paper, we introduce SCaR, a novel skill chaining framework that ensures smooth373

and stable execution of long-horizon robotic manipulation tasks via dual regularization within and374

between sub-task skills. Extensive experiments demonstrate that the SCaR framework achieves better375

task success rates than the baseline methods in both simulated and real-robot manipulation tasks,376

while being robust against perturbations. We hope this work will inspire future research to further377

explore the potential of skill chaining for long-horizon robotic manipulation.378
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[53] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-nav: Robotic navigation with large522

pre-trained models of language, vision, and action. In Conference on robot learning, pages523

492–504. PMLR, 2023.524

[54] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,525

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics526

transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.527

[55] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,528

Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied529

multimodal language model. arXiv preprint arXiv:2303.03378, 2023.530

13



Technical Appendix531

A Pseudo-code532

Pseudo-code for adaptive sub-task skill learning and bi-directional adversarial learning are shown in533

Algorithm 1 and Algorithm 2 respectively. We highlight the key differences between our method and534

the most relevant T-STAR with a gray background.535

A.1 Adaptive Sub-task Skill Learning536

As shown in Algorithm 1, the innovation of the sub-task skill learning scheme we propose, compared537

to previous methods, consists of two parts: 1) We use a more stable weighted reward function for538

policy learning of sub-task skills, as shown in Eq. 1 and Eq. 3 in the main paper. 2) We introduce539

AES regularization constraints into this weighted reward function to periodically adaptively schedule540

the scale of the two reward terms, as shown in line 11-14 of Algorithm 1, allowing the robot to fully541

explore and learn from both the environment and the expert behaviors.

Algorithm 1 Adaptive Sub-task Skill Learning.
Key differences to T-STAR [15] in gray.

1: Require: expert demonstrations DE
1 , . . . ,DE

K , sub-task MDPsM1, . . . ,MK

2: Initialize sub-task policies π1
θ , . . . , π

K
θ , least-squares GAIL discriminator f1

ϕ, . . . , f
K
ϕ .

3: Initialize imitation progress recognizer Φ with DE , balance discount factor λRL ← α, λIL ←
1− α.

4: for each sub-task i = 1, . . . ,K do
5: for episode = 1, 2, . . . , N do
6: Rollout trajectories τ = (s1, a1, r

Env
1 , . . . , sT ) with πi

θ
7: // WEIGHTED REWARD FUNCTION
8: Compute balanced reward {r1, . . . , rT−1} ← λRLr

Env + λILr
Pred

9: Update f i
ϕ with τ and τE ∼ DE

i using Eq. 3
10: Update πi

θ with the rewarded trajectories {s1, a1, r1, . . . , sT }
11: // ADAPTIVE EQUILIBRIUM SCHEDULING REGULARIZATION
12: Update imitation progress recognizer Φ with τ and τE ∼ DE

i
13: Query Φ about the current imitation progress p
14: Update balance discount factor λRL, λIL ← φλ(p)
15: end for
16: end for

542

A.2 Bi-directional Adversarial Learning543

As shown in Algorithm 2, the innovation of the bi-directional adversarial learning mechanism consists544

of two parts: 1) We propose a bi-directional regularization which is trained by two balanced bi-545

directional constraints to better chain sequential skills, as shown in line 16-17 of Algorithm 2. 2)546

We also employ the adaptive sub-skill learning scheme during the bi-directional adversarial learning547

process in order to ensure inter-skill alignment while enabling the sub-task skills to be adaptively548

adjusted to task changes during fine-tuning as well, as shown in line 10-12 of Algorithm 2.549

B More Details on AES Regularization550

Following the mechanism described in ADS [9], our AES also employs an imitation progress551

recognizer Φ to monitor the extent to which the agent has assimilated the expert’s behaviors. The552

main idea is to assess the closeness of the pair of trajectories by evaluating the agent-collected553

trajectory τ = (s0, . . . , sT ) and the expert trajectory τE = (sE0 , . . . , s
E
T ) through a monotonic554

state-by-state alignment.555

To be specific, Φ receives the agent’s collected trajectories τ (line 12 in Algorithm 1) and infers556

the agent’s current imitation progress p, p ∈ [0, T ) (line 13 in Algorithm 1). The construction557
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Algorithm 2 Bi-directional Adversarial Learning
Key differences to T-STAR [15] in gray.

1: Require: expert demonstrations DE
1 , . . . ,DE

K , sub-task MDPsM1, . . . ,MK , pre-trained sub-
task policies π1

θ , . . . , π
K
θ , pre-trained GAIL discriminator f1

ϕ, . . . , f
K
ϕ .

2: Initialize dual set discriminator ζ1ω, . . . , ζ
K
ω , imitation identifier Φ with DE , balance discount

factor λRL ← α, λIL ← 1− α.
3: Initialize initial state buffers B1I , . . . ,BKI , and terminal state buffers B1β , . . . ,BKβ .
4: for iteration m = 0, 1, . . . ,M do
5: for each sub-task i = 1, . . . ,K do
6: Sample s0 from environment or Bi−1

β

7: Rollout trajectories τ = (s1, a1, r1, . . . , sT ) with pre-trained πi
θ

8: if τ is successful then
9: BiI ← BiI ∪ s1,Biβ ← Biβ ∪ sT

10: // ADAPTIVE EQUILIBRIUM SCHEDULING
11: Update imitation identifier Φ with τ
12: Query Φ about the current imitation progress p

13: end if
14: Update balance discount factor λRL, λIL ← φλ(p)
15: Fine-tune f i

ϕ with τ and τE ∼ DE
i

16: // TRAIN BI-DIRECTIONAL DISCRIMINATOR
17: Update ζiω with sβ ∼ Bi−1

β and sI ∼ BiI with Li(ω) =
1
2C1 +

1
2C2

18: // FINE-TUNE WITH DUAL REGULARIZATION
19: Update πi

θ with ri(st, at, st+1;ϕ, ω) using Eq. 7
20: end for
21: end for

Expert
Traj

Agent
Traj

(a)

Expert
Traj

Agent
Traj

(b)

Figure 7: Visualization of the construction of the sequence Q. To be more intuitive, we directly
represent the minimum cosine similarity with double arrows.

of Φ, with reference to ADS, first requires the construction of a sequence Q(q1, . . . , qT ), where558

qi = argminjc(si, s
E
j ) is the index of the nearest neighbor of si in τE , c is the cosine similarity. As559

shown in Fig. 7, If τ and τE are exactly the same, then Q becomes a strictly increasing sequence560

(Fig 7(a)). On the contrary, if τ and τE characterize some different behaviors, there are some561

unordered sequences in Q (Fig 7(b)).562

After constructing Q, the progress alignment between τ and τE is measured as the length of563

the longest increasing subsequence (LIS) in Q, denoted as LIS(τ, τE). For instance, if Q =564

{1, 3, 2, 5, 4} as in Fig 7(b), then its LIS can be {1, 3, 5}, {1, 2, 5}, {1, 3, 4} or {1, 2, 4}. The LIS565

measurement concentrates on the consistency of the macroscopic trends in these trajectories, thereby566

preventing overfitting to the microscopic features in the observation [9].567

Further, if the following inequality Eq. 8 holds, this indicates that at this time step, the agent’s568

imitation of the expert’s action is equivalent to the level of the expert’s performance, then the agent’s569

imitation progress p will increase by 1:570

max
τ́E∈DE

LIS(τ1:p+1, τ́
E
1:p+1) ≥ ρ× min

τ́E ,´́τE∈DE

LIS(τ́E1:p+1,
´́τE1:p+1), (8)

where τ́E ̸= ´́τE , the subscript 1 : p+ 1 denotes the first p+ 1 steps of the extracted trajectory, and571

ρ ∈ [0, 1] controls the stringency of the imitation progress monitoring.572
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Figure 8: Visualization of the mapping function φλ(p). In this example, we assume that T = 150.

After obtaining the current imitation progress p of the agent, AES then adopts a mapping function573

φλ(p) to schedule the two new balance discount factors λRL and λIL. Straightforward idea of setting574

φλ(p) is that If p reaches a certain threshold, i.e., the agent is able to imitate the expert’s behavior575

well, then the more the agent tends to imitate the expert’s behavior in subsequent training, and576

vice versa. Therefore, we set the threshold as T
2 . If p ∈ [0, T

2 ), we propose φλ(p) = 1 − e(−
p
k );577

if p ∈ [T2 , T ), we propose φλ(p) = e

(
−

p−T
2

k

)
, where k is used to flatten the curve of the mapping578

function. The mapping function shown in Fig. 8, where T = 150. In our experiments, we use579

different flatten factors for the two stages, where k1 = 10 and k2 = 30.580

Then λRL and λIL are scheduled to be :581 {
λRL = αtanh( p

k ), λIL = 1− αtanh( p
k ). if p ∈ [0, T

2 )

λIL = αtanh( k
p ), λRL = 1− αtanh( k

p ). if p ∈ [T2 , T )
(9)

0.5

Figure 9: αφλ(p) based on the variation of different α sizes
in φλ(p) ∈ [0, 1]. We use α = 0.5 as the base in our experi-
ments.

As can be seen from Eq. 9, Fig 8 and582

Fig. 9, the scale of λRL is scheduled583

to be larger than λIL when p does not584

reach the imitation process threshold,585

but this gap gets smaller and smaller586

as p gets larger. When p reaches the587

threshold T
2 , the scale of λIL is sched-588

uled to be larger than λRL, while the589

scale of λIL increases as the agent im-590

itates better.591

Thus, if p is larger and reaches a592

threshold step, i.e., the agent is able593

to imitate the expert’s behavior well,594

then the more the agent tends to im-595

itate the expert’s behavior in subse-596

quent training, and vice versa. The597

entire process is adaptively scheduled598

based on Φ periodic monitoring of599

the agent’s imitation process. Con-600

sequently, the RL and IL components of sub-task skill learning can be adaptively scheduled and601

regularized through AES, effectively enhancing intra-skill dependencies between sequential actions.602
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C Sub-task Skills603

In our simulation experiments, we use sequences of sub-tasks defined internally by the environ-604

ment [44, 45] as task decomposition sub-tasks. Here we list these sequential skills to emphasize the605

difficulty of long-horizon tasks. Each skill takes a 3D position as the input g∗.606

IKEA Furniture Assembly:607

Chair_agne (2 sub-task skills): Assemble stool leg 0 to target position g0∗ → Assemble stool leg 1608

to target position g1∗609

Chair_bernhard (2 sub-task skills): Assemble support leg 0 to target position g0∗ → Assemble610

support leg 1 to target position g1∗611

Table_dockstra (3 sub-task skills): Assemble table leg 0 to target position g0∗ → Assemble table leg612

1 to target position g1∗ → Assemble table top to target position g3∗613

Chair_ingolf (4 sub-task skills): Assemble chair support 0 to target position g0∗ → Assemble chair614

support 1 to target position g1∗ → Assemble front leg 0 to target position g3∗ → Assemble front leg 1615

to target position g4∗616

Table_lack (4 sub-task skills): Assemble table leg 0 to target position g0∗ → Assemble table leg 1617

to target position g1∗ → Assemble table leg 2 to target position g3∗ → Assemble table leg 3 to target618

position g4∗619

Toy_table (4 sub-task skills): Assemble table leg 0 insert to target position g0∗ → Assemble table leg620

1 insert to target position g1∗ → Assemble table leg 2 insert to target position g3∗ → Assemble table621

leg 3 insert to target position g4∗622

Kitchen Organization:623

Kitchen (4 sub-task skills): Turn on the microwave to target position g0∗ →Move the kettle to target624

position g1∗ → Turn on the stove (rotate the stove button to target position g2∗)→ Turn on the light625

(rotate the light button to target position g3∗)626

Extended Kitchen (5 sub-task skills): Turn on the microwave to target position g0∗ → Turn on the627

stove (rotate the stove button to target position g1∗)→ Turn on the light (rotate the light button to628

target position g2∗)→ Slide the cabinet to the right target position g3∗ → Open the cabinet to target629

position g4∗630

D More Quantitative Results631

We present the training curves with different skill learning methods for sub-task skills in chair_ingolf632

task, and we further present the evaluation performance of the pre-trained skills with different methods633

across sub-tasks in the other 6 long-horizon simulation tasks. Also, we test the algorithms trained634

from scratch in the presence of perturbations to further illustrate the importance of the execution of635

sub-tasks on long-horizon tasks.636

Additionally, the main paper does not delve into the loss function Li(ω) concerning the different637

scales of the bi-directional constraints in bi-directional adversarial training. Therefore, we conduct638

further ablation experiments to examine the impact of different scales of the two constraints in the639

bi-directional discriminator.640

D.1 Sub-task Skill Learning Performance641

D.1.1 Training performance642

Fig. 10 shows the sub-task skill training curves in IKEA furniture assembly tasks. All methods are643

trained in each sub-task with 5 random seeds, 15M environment steps. As can be seen, the sub-task644

skill training based on PPO (learning only from environmental feedback), GAIL (learning only from645

expert demonstrations) and Fixed-RL-IL learning from a fixed scale of environmental feedback646

and expert demonstration) cannot maintain stability and exhibits significant training performance647

degradation as the sub-task stage increases. In contrast, the sub-task skill training process using our648

proposed adaptive sub-skill learning scheme has always been relatively stable and better performing.649
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Figure 10: Training curves for sub-task skills in IKEA furniture assembly tasks. The y-axis represents
the success rate of the sub-task.
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(a) chair_agne (b) chair_bernhard

(c) table_lack (d) toy_table

(e) table_dockstra (f) Kitchen

Figure 11: Evaluation Performance Comparison of Sub-task Skill Learning.

D.1.2 More evaluation performance650

As shown in Fig. 11, in chair_agne, chair_bernhard, table_lacktoy_table, table_dockstra, and651

Kitchen tasks, even with the increase of objects in the environment - and the increase of unpredictable652

perturbations - our proposed adaptive skill learning learns better sub-task skills. In contrast, the PPO,653

GAIL, and Fixed-RL-IL baselines fail to maintain well-learning sub-task skills.654

These results further corroborate that our proposed AES regularization can reinforce inter-step655

dependencies to the sequential actions within each sub-task skill, and thus pre-train better sub-task656

skills for long-horizon tasks.657

D.2 Robustness to Perturbations658

We test the algorithms trained from scratch in the presence of perturbations. As shown in Table 3,659

algorithms trained from scratch fail to successfully complete the task when environment perturbations660

occur during execution. This further illustrates the importance of dividing sub-tasks for multi-stage661

execution on long-horizon manipulation tasks that are contact-rich and subject to unanticipated662

perturbations. It also supports the significance of our work on long-horizon robotic manipulation663

tasks.664
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Table 3: Success rates of completing the two sub-tasks chair_bernhard and four sub-tasks
chair_ingolf in stationary and perturbed environments.

chair_bernhard chair_ingolf

Method No Perturb Perturb No Perturb Perturb
PPO (Scratch RL) 0.42 ± 0.12 0.01 ± 0.00 0.14 ± 0.03 0.00 ± 0.00

GAIL (Scratch IL) 0.23 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fixed-RL-IL 0.53 ± 0.07 0.05 ± 0.00 0.22 ± 0.00 0.00 ± 0.00

SkiMo 0.62 ± 0.05 0.10 ± 0.00 0.47 ± 0.03 0.00 ± 0.00

Policy Sequencing 0.82 ± 0.09 0.51 ± 0.04 0.77 ± 0.12 0.50 ± 0.10

T-STAR 0.90 ± 0.04 0.60 ± 0.08 0.89 ± 0.04 0.59 ± 0.04

SCaR w/o Bi 0.92 ± 0.02 0.65 ± 0.11 0.91 ± 0.01 0.63 ± 0.05

SCaR w/o AES 0.94 ± 0.03 0.74 ± 0.09 0.93 ± 0.02 0.71 ± 0.07

SCaR (Ours) 0.96 ± 0.04 0.85 ± 0.11 0.95 ± 0.03 0.80 ± 0.13

D.3 Further Ablation665

We set the loss function for the bi-directional discriminator in the main paper as Li(ω) =
1
2C1+

1
2C2.,666

where the bi-directional constraints C1,C2 are defined as:667

next initial→ previous terminal: C1 = EsI∼Ii
[ζiω(sI)− 1]2 + EsT∼βi−1 [ζ

i
ω(sT )]

2

previous terminal→ next initial: C2 = EsT∼βi
[ζiω(sT )− 1]2 + EsI∼Ii+1

[ζiω(sI)]
2

(10)

The first constraint C1 trains the policy to have the initial states approach the terminal states of the668

previous policy, while the second constraint C2 trains the policy to have the terminal states close to669

the initial states of the next policy. In the experiments, these two constraints have the same scale in670

the training process of the bi-directional discriminator.671

We wonder whether different scales of these two terms would lead to different performances, and672

for this reason, we conduct further parametric ablation experiments to explore this. Specifically,673

we define the scale parameter of the first term C1 as d1, and the second term C2 as d2 = 1 − d1,674

and set 0.1, 0.3, 0.5, 0.7, 0.9 for d1 respectively for comparison experiments. We test the effect of675

different scales of bi-directional adversarial training items d1 and d2 on the success rate of SCaR in676

each of the four tasks: chair_agne, chair_ingolf, table_dockstra, and extend kitchen. As shown in677

Fig. 12, the experimental result is also in line with our intuition that when the ratio of the two terms678

initial→ previous terminal and terminal→ next initial is the same, the performance is the best679

among the four tasks, whereas when the more imbalanced the scale of the two terms is, the worse the680

performance is.681

This ablation result further demonstrate our statement in Sec. 4.3 in the main paper: The purpose682

of the bi-directional discriminator is to establish a balanced mapping relationship between683

the initial states and terminal states to ensure the coherence and stability of the policy. If the684

constraint in one direction (e.g., from initial states to terminal states) is stronger than the constraint in685

the other direction (e.g., from terminal states to initial states), the information transmission becomes686

asymmetric. This asymmetry results in better training in one direction and insufficient training in the687

other, thereby affecting overall performance.688

E More Qualitative Results689

Fig 13 shows the qualitative comparison of skill chaining methods. Their animated versions can be690

found on our project website.691

F Real-Robot Long-Horizon Manipulation via Sim-to-Real Transfer692

Real-robot Experiment Setup We also evaluate the skill chaining performance of real-robot for693

solving simple yet intuitive real-world long-horizon manipulation. We set up two types of desktop-694
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Figure 12: Impact on skill chaining performance of different scales of bi-directional constraints in
SCaR.

Table 4: Skill chaining performance of real-world long-horizon robotic manipulation tasks.

Method Success rate

T-STAR 70% (2 sub-tasks) / 50% (3 sub-tasks)
SCaR 90% (2 sub-tasks) / 70% (3 sub-tasks)

level long-horizon manipulation tasks. The robotic arm needs to pick-and-place 2 and 3 blue squares695

in sequence, as shown in the top figures in Table 4.696

We built the corresponding task environment using the gazebo simulation that accompanies the697

K1 robot4, and collect 50 demonstrations of grasping skills for each square for training. With698

camera calibration, we deploy agents trained under simulation in a real robot desktop task to solve699

2-square as well as 3-square pick-and-place tasks without the need for adaptation processes. We700

conduct experiments with the Sagittarius K1 and use MoveIt2 library based on ROS 2 framework for701

controlling the arm. We use RGB observations from RealSense D435i camera on the wrist of the702

robotic arm.703

Results For evaluation, we measure the success rate across 10 randomized square positions for704

each task. As shown in Table. 4, SCaR can solve the two long-horizon tasks and outperforms T-STAR705

baseline. Fig. 14 and Fig. 15 show the qualitative results of successful skill chaining in the 2 and706

3-blue-square pick-and-place tasks using SCaR. Video demonstrations are available at our webpage:707

https://tinyurl.com/4333d6np.708

G Environment Details709

G.1 IKEA Furniture Assembly710

We choose six tasks, chair_agne, chair_bernhard, chair_ingolf, toy_table, table_lack and ta-711

ble_bjorkudden from the IKEA furniture assembly environment5 [44] as the focal points of our712

4https://github.com/NXROBO/sagittarius_ws
5https://github.com/clvrai/furniture
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(a) SCaR - Successful

(b) T-STAR - Failed

Figure 13: Qualitative results of successful skill chaining performance with SCaR and failed skill
chaining performance with T-STAR. More qualitative results can be found on our project website
https://tinyurl.com/4333d6np.

experiments, as shown in Fig. 17. Our chosen robotic platform is the 7-DoF Rethink Sawyer robot,713

and we control it using joint velocity commands.714

22

https://tinyurl.com/4333d6np


Figure 14: Visualization of the successful skill chaining in the 2-blue-square pick-and-place tasks
using SCaR.

Figure 15: Visualization of the successful skill chaining in the 3-blue-square pick-and-place tasks
using SCaR.

Observation Space The observation space comprises three key components: robot observations715

(29 dimensions), object observations (35 dimensions), and task phase information (8 dimensions).716

Robot observations encompass robot joint angles (7 dimensions), joint velocities (7 dimensions),717

gripper state (2 dimensions), gripper position (3 dimensions), gripper quaternion (4 dimensions),718

gripper velocity (3 dimensions), and gripper angular velocity (3 dimensions). Object observations719

include the positions (3 dimensions) and quaternions (4 dimensions) of all five furniture pieces in the720

scene. Task information, an 8-dimensional one-hot encoding, represents the current phase, including721

actions like reaching, grasping, lifting, moving, and aligning.722

Action space The action space includes arm movement, gripper control, and the connect action,723

which can vary based on different control modes: 6D end-effector space control using inverse724

kinematics, joint velocity control, and joint torque control.725

In the context of reinforcement learning (RL), we utilize a heavily shaped multi-phase dense reward726

obtained from the IKEA Furniture Assembly Environment [44].727

Environmental Reward Function The IKEA furniture assembly environmental reward function is728

a multi-phase reward defined with respect to a pair of furniture parts to attach (e.g., a table leg and a729

table top) and the corresponding manually annotated way-points, such as a target gripping point g730

for each part. The reward function for a pair of furniture parts consists of eight different phases as731

follows:732

• Initial phase: The robot has to reconfigure its arm pose to an appropriate pose pinit for733

grasping a new furniture part. The reward is proportional to the negative distance between734

the end-effector peff and pinit.735

• Reach phase: The robot reaches above a target furniture part. The reward is proportional to736

the negative distance between the end-effector peff and a point preach 5 cm above the gripping737

point g.738

• Lower phase: The gripper is lowered onto the target part. The phase reward is proportional739

to the negative distance between peff and the target gripping points.740

• Grasp phase: The robot learns to grasp the target part. The reward is given if the gripper741

contacts the part, and is proportional to the force exerted by the grippers.742

• Lift phase: The robot lifts the gripped part up to plift. The reward is proportional to the743

negative distance between the gripped part ppart and the target point plift.744
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chair_agne chair_bernhard chair_ingolf table_lack toy_table table_dockstra

Figure 16: IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation
Tasks.

• Align phase: The robot roughly rotates the gripped part before moving it. The reward is745

proportional to the cosine similarity between up vectors uA, uB and forward vectors fA, fB746

of the two connectors.747

• Move phase: The robot moves and aligns the gripped part to another part. The reward is748

proportional to the negative distance between the connector of the gripped part and a point749

pmove_to 5 cm above the connector of another part, and the cosine similarity between two750

connector up vectors, uA and uB , and forward vectors fA and fB . Note that all connectors751

are labeled with aligned up vectors and forward vectors.752

• Fine-grained move phase: The robot must finely align two connectors until attached. The753

same reward is used as the move phase with a higher coefficient, making the reward more754

sensitive to small changes. In addition, when the part is connectable, a reward is provided755

based on the activation of the connect action a[connect].756

Upon completion of each phase, completion rewards are given to encourage the agent to move on to757

the next phase. In addition to stage-based rewards, control penalties, stabilizing wrist pose rewards,758

and grasping rewards (i.e., opening the grasping hand only during the initial, arrival, and lower stages)759

are provided throughout the process. If the robot releases the grasped object, the phase ends early760

and a negative reward is provided. Phase completion depends on the robot and part configurations761

satisfying distance and angle constraints with respect to the goal configuration. After all stages are762

completed, the stage resets to the initial stage. This process repeats until all parts are connected.763

Demonstration Collection For imitation learning (IL), we gathered 200 demonstrations for each764

furniture part assembly using a programmatic assembly policy. Each demonstration for single-part765

assembly typically spans 150 steps, reflecting the overall task’s inherently long-horizon nature.766

Sub-tasks In our experiments, we define a sub-task as the process of assembling one part to another.767

Thus, the chair_agne and chair_bernhard tasks have two distinct sub-tasks, table_dockstra has768

three distinct sub-tasks, and chair_ingolf, table_lack, and toy_table have four distinct sub-tasks.769

These sub-tasks are trained independently, with their initial state sampled from the environment and770

random noise introduced in the [-2cm, 2cm] and [-3°, 3°] ranges of the (x, y) plane. Importantly, the771

decomposition of the sub-tasks is pre-determined, which means that the environment is initialized for772

each sub-task, and the agent receives a notification when a sub-task is successfully completed. Once773

the two components are firmly connected, the corresponding sub-task is considered completed and774

the robotic arm is guided back to its initial pose, i.e., at the center of the workspace.775

Assembly Difficulty The difficulty of modeling furniture depends largely on the shape of the776

furniture. For example, the toy_table task with cylindrical legs is more difficult to grasp, whereas777

the table_lack task with rectangular legs is easier to grasp. Chairs are generally more difficult to778

assemble because of their irregular shape (e.g., seat and back). This is the reason why the success779

rates of the toy_table andchair_ingolf tasks are lower than the success rates of table_lack.780

G.2 Kitchen Organization781

We use the Franka Kitchen tasks in D4RL [45] and refer to the experimental setup in SkiMo [46] for782

the sub-task extensions. Including the following two tasks: Kitchen task and Extended Kitchen783

task, as shown in Fig. 17.784

Kitchen The 7-DoF Franka Emika Panda robot arm is tasked with performing four sequential785

sub-tasks: Turn on the microwave - Move the kettle - Turn on the stove - Turn on the lights.786
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Kitchen Extended Kitchen

Figure 17: Kitchen Organization Environment for Long-Horizon Complex Manipulation Tasks.

Extended Kitchen The environment and task-agnostic data used in this experiment are consistent787

with those employed in the Kitchen scenario. However, we introduce a different set of sub-tasks for788

this experiment, namely: Turn on the microwave - Turn on the stove - Turn on the lights - Slide the789

cabinets to the right - Open the cabinets, as depicted in Fig. 17 (right). It’s worth noting that this790

sequence of tasks is not aligned with the sub-task transition probabilities observed in the task-agnostic791

data, posing a challenge for exploration based on prior data.792

Observation Space The agent operates within a 30-dimensional observation space, which includes793

an 11-dimensional robot proprioceptive state and 19-dimensional object states. This modified794

observation space removes a constant 30-dimensional goal state found in the original environment.795

Action Space The agent’s action space consists of 9 dimensions, encompassing 7-dimensional joint796

velocity control and 2-dimensional gripper velocity control.797

Environmental Reward Function In terms of the environmental rewards, the agent receives a798

reward of +1 for each completed sub-task. The total episode length is set to 280 steps, and an episode799

concludes once all sub-tasks are successfully accomplished. The initial state is initialized with slight800

noise introduced in each state dimension.801

Demonstration Collection For imitation learning, we collect 200 demonstrations per sub-task with802

reference to the dataset in [51] that obtained through teleoperation. This dataset covers interactions803

with all seven manipulatable objects within the environment.804

H Network Architecture805

For a fair comparison, our method and the benchmark methods use the same network structure.806

The policy network and the critic network consist of two layers of 128 and 256 hidden units fully807

connected with ReLU nonlinear properties, respectively. The output layer of the actor network808

outputs an action distribution, which consists of the mean and standard deviation of a Gaussian809

distribution. The critic network outputs only one critic value. The discriminator of GAIL [39] and810

the bi-directional discriminator of our proposed approach use a two-layer fully connected network811

with 256 hidden units. The outputs of these discriminators are clipped between [0, 1], following the812

least-square GAIL proposed by [40].813

I Training Details814

I.1 Computing Resources815

Our method and all baselines were implemented using PyTorch [52]. All experiments were carried816

out on workstations equipped with Intel(R) Xeon(R) Gold 5218 CPUs and NVIDIA GeForce RTX817

3080 2 GPUs. Pre-training of each sub-task skill policy in SCaR (150M time steps) took about 10818

hours. Testing and evaluation of skill chaining for the entire long-horizon task, approximately 10 to819

15 hours, depending on the difficulty of the task. Training of the skill dynamics model in SkiMo [46]820

took approximately 24 hours (100M steps), and PPO [47], GAIL [39], and Fix-RL-IL were slower821
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(about 48 hours) because they all train the entire long-horizon task from scratch, with 450M time822

steps for the overall long-horizon task.823

I.2 Algorithm Implementation Details824

We report the hyperparameters used in our experiments in Table 5.825

Table 5: Hyperparameters used in our experiments.

Hyperparameter Value
Rollout Size 1024
Learning Rate 0.0003
Learning Rate Decay Linear decay
Mini-batch Size 128
Discount Factor 0.99
Entropy Coefficient 0.003
Reward Scale 0.05
State Normalization True
Discriminator learning rate 1e−4

Sub-task training steps 150000000
# Workers 20
# Epochs per Update 10

Base exponent for balancing α 0.5
k1 (used to flatten the mapping function during p ∈ [0, T

2 )) 10
k2 (used to flatten the mapping function during p ∈ [T2 , T )) 30
Weighting factor λBi 10000
ρ (for imitation progress recognizer Φ) 0.9
Penalty coefficient ηgp 10

For the baseline implementations, we use the official code for PPO [47], GAIL [39], Fixed-RL-IL [40],826

SkiMo [46], Policy Sequencing [12] and T-STAR [15]. The table below (Table 6) compares key827

components of SCaR with model-based, model-free and skill-based baselines and ablated methods,828

where joint training indicates whether or not reinforcement learning combined with imitation learning829

is used for training.830

PPO [47] Any reinforcement learning algorithm can be used for policy optimization, in this paper831

we choose to use Proximal Policy Optimization (PPO) and use the default hyperparameters of832

PPO [47].833

GAIL [39] In this paper we choose to use Generative Adversarial Imitation Learning (GAIL) [39]834

as the learning algorithm for imitation learning and use the default hyperparameters of GAIL [39]. We835

specifically use an agent states s to discriminate agent and expert trajectories, instead of state-action836

pairs (s, a).837

Fixed-RL-IL [12] We adopt the AMP [40] solution combining environmental rewards and least838

square GAIL with λRL = λIL = 0.5. For implementation details of least square GAIL training and839

GAIL rewards, see original paper [40].840

SkiMo [46] We use the official implementation of the original paper and use the hyperparameters841

suggested in the official implementation.842

Policy Sequencing [12] We employ the official implementation and the hyperparameters provided843

by [15].844

T-STAR [15] We use the official implementation of the original paper and use the hyperparameters845

suggested in the official implementation [15].846

SCaR (ours) We refer to T-STAR and use λRe = 10000 for bi-directional regularization. We take847

50% of the initial state samples from the start environment of each policy, 50% of the terminal state848

samples at the end, and 50% of the initial state buffer and 50% of the terminal state buffer from the849

previous skill, respectively.850
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Table 6: Comparison to prior work and ablated methods.
Method Model-based Skill-based Scratch training Joint training

PPO [47] and GAIL [39] % % ! %
Fixed-RL-IL [40] % % ! !
SkiMo [46] ! ! ! !

Policy Sequencing [12] ! ! % !
T-STAR [15] % ! % !
SCaR (Ours) and SCaR w/o Bi and SCaR w/o AES ! ! % !

J Potential negative impacts851

Since our method is currently limited to applications in simulated environments and simple desktop-852

level robot manipulation, it is not expected to have a significant negative impact on society. However,853

privacy concerns may arise if our method is applied to real-world long time-series tasks with mobility,854

as imitation learning agents used in applications such as autonomous driving [53] or real-time855

control [54, 55] require large amounts of data that often contain controversial information. In856

addition, the imitation learning policy is a challenge because it imitates a specified demonstration857

that may include bad behavior. If the expert demonstration includes some nefarious behaviors858

(e.g., training data for a mobile manipulation task includes behaviors that may be violent towards859

pedestrians), then the policy may have a significant negative impact on the user. To address this issue,860

future directions should focus on developing agents with safety adaptations in addition to improving861

performance.862
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NeurIPS Paper Checklist863

1. Claims864

Question: Do the main claims made in the abstract and introduction accurately reflect the865

paper’s contributions and scope?866

Answer: [Yes]867

Justification: We propose a new skill chaining framework for long time-series robotic868

manipulation tasks that improves overall task completion performance by providing dual869

regularization for intra- and inter-skill dependencies. We hope this work will inspire870

future research to further explore the potential of skill chaining for long-horizon robotic871

manipulation.872

Guidelines:873

• The answer NA means that the abstract and introduction do not include the claims874

made in the paper.875

• The abstract and/or introduction should clearly state the claims made, including the876

contributions made in the paper and important assumptions and limitations. A No or877

NA answer to this question will not be perceived well by the reviewers.878

• The claims made should match theoretical and experimental results, and reflect how879

much the results can be expected to generalize to other settings.880

• It is fine to include aspirational goals as motivation as long as it is clear that these goals881

are not attained by the paper.882

2. Limitations883

Question: Does the paper discuss the limitations of the work performed by the authors?884

Answer: [Yes]885

Justification: We discuss limitations in the last section of the main paper: limitations mainly886

exist in that 1) the sub-tasks in our framework are predefined, 2) we did not test our method887

on a more challenging real robot furniture assembly task due to limited hardware.888

Guidelines:889

• The answer NA means that the paper has no limitation while the answer No means that890

the paper has limitations, but those are not discussed in the paper.891

• The authors are encouraged to create a separate "Limitations" section in their paper.892

• The paper should point out any strong assumptions and how robust the results are to893

violations of these assumptions (e.g., independence assumptions, noiseless settings,894

model well-specification, asymptotic approximations only holding locally). The authors895

should reflect on how these assumptions might be violated in practice and what the896

implications would be.897

• The authors should reflect on the scope of the claims made, e.g., if the approach was898

only tested on a few datasets or with a few runs. In general, empirical results often899

depend on implicit assumptions, which should be articulated.900

• The authors should reflect on the factors that influence the performance of the approach.901

For example, a facial recognition algorithm may perform poorly when image resolution902

is low or images are taken in low lighting. Or a speech-to-text system might not be903

used reliably to provide closed captions for online lectures because it fails to handle904

technical jargon.905

• The authors should discuss the computational efficiency of the proposed algorithms906

and how they scale with dataset size.907

• If applicable, the authors should discuss possible limitations of their approach to908

address problems of privacy and fairness.909

• While the authors might fear that complete honesty about limitations might be used by910

reviewers as grounds for rejection, a worse outcome might be that reviewers discover911

limitations that aren’t acknowledged in the paper. The authors should use their best912

judgment and recognize that individual actions in favor of transparency play an impor-913

tant role in developing norms that preserve the integrity of the community. Reviewers914

will be specifically instructed to not penalize honesty concerning limitations.915
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3. Theory Assumptions and Proofs916

Question: For each theoretical result, does the paper provide the full set of assumptions and917

a complete (and correct) proof?918

Answer: [Yes]919

Justification: We provide further explanation in the Appendix to explain the assumptions920

presented in the main paper.921

Guidelines:922

• The answer NA means that the paper does not include theoretical results.923

• All the theorems, formulas, and proofs in the paper should be numbered and cross-924

referenced.925

• All assumptions should be clearly stated or referenced in the statement of any theorems.926

• The proofs can either appear in the main paper or the supplemental material, but if927

they appear in the supplemental material, the authors are encouraged to provide a short928

proof sketch to provide intuition.929

• Inversely, any informal proof provided in the core of the paper should be complemented930

by formal proofs provided in appendix or supplemental material.931

• Theorems and Lemmas that the proof relies upon should be properly referenced.932

4. Experimental Result Reproducibility933

Question: Does the paper fully disclose all the information needed to reproduce the main ex-934

perimental results of the paper to the extent that it affects the main claims and/or conclusions935

of the paper (regardless of whether the code and data are provided or not)?936

Answer: [Yes]937

Justification: We further describe the network architecture, training details, dataset, and the938

open source codebase on which the method is based in the Appendix.939

Guidelines:940

• The answer NA means that the paper does not include experiments.941

• If the paper includes experiments, a No answer to this question will not be perceived942

well by the reviewers: Making the paper reproducible is important, regardless of943

whether the code and data are provided or not.944

• If the contribution is a dataset and/or model, the authors should describe the steps taken945

to make their results reproducible or verifiable.946

• Depending on the contribution, reproducibility can be accomplished in various ways.947

For example, if the contribution is a novel architecture, describing the architecture fully948

might suffice, or if the contribution is a specific model and empirical evaluation, it may949

be necessary to either make it possible for others to replicate the model with the same950

dataset, or provide access to the model. In general. releasing code and data is often951

one good way to accomplish this, but reproducibility can also be provided via detailed952

instructions for how to replicate the results, access to a hosted model (e.g., in the case953

of a large language model), releasing of a model checkpoint, or other means that are954

appropriate to the research performed.955

• While NeurIPS does not require releasing code, the conference does require all submis-956

sions to provide some reasonable avenue for reproducibility, which may depend on the957

nature of the contribution. For example958

(a) If the contribution is primarily a new algorithm, the paper should make it clear how959

to reproduce that algorithm.960

(b) If the contribution is primarily a new model architecture, the paper should describe961

the architecture clearly and fully.962

(c) If the contribution is a new model (e.g., a large language model), then there should963

either be a way to access this model for reproducing the results or a way to reproduce964

the model (e.g., with an open-source dataset or instructions for how to construct965

the dataset).966

(d) We recognize that reproducibility may be tricky in some cases, in which case967

authors are welcome to describe the particular way they provide for reproducibility.968
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In the case of closed-source models, it may be that access to the model is limited in969

some way (e.g., to registered users), but it should be possible for other researchers970

to have some path to reproducing or verifying the results.971

5. Open access to data and code972

Question: Does the paper provide open access to the data and code, with sufficient instruc-973

tions to faithfully reproduce the main experimental results, as described in supplemental974

material?975

Answer: [NA]976

Justification: All simulation environments, datasets, and open source code libraries that can977

reproduce our method have been described in the Appendix.978

Guidelines:979

• The answer NA means that paper does not include experiments requiring code.980

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/981

public/guides/CodeSubmissionPolicy) for more details.982

• While we encourage the release of code and data, we understand that this might not be983

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not984

including code, unless this is central to the contribution (e.g., for a new open-source985

benchmark).986

• The instructions should contain the exact command and environment needed to run to987

reproduce the results. See the NeurIPS code and data submission guidelines (https:988

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.989

• The authors should provide instructions on data access and preparation, including how990

to access the raw data, preprocessed data, intermediate data, and generated data, etc.991

• The authors should provide scripts to reproduce all experimental results for the new992

proposed method and baselines. If only a subset of experiments are reproducible, they993

should state which ones are omitted from the script and why.994

• At submission time, to preserve anonymity, the authors should release anonymized995

versions (if applicable).996

• Providing as much information as possible in supplemental material (appended to the997

paper) is recommended, but including URLs to data and code is permitted.998

6. Experimental Setting/Details999

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1000

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1001

results?1002

Answer: [Yes]1003

Justification: We describe partial details in the main paper and provide further details in the1004

Appendix.1005

Guidelines:1006

• The answer NA means that the paper does not include experiments.1007

• The experimental setting should be presented in the core of the paper to a level of detail1008

that is necessary to appreciate the results and make sense of them.1009

• The full details can be provided either with the code, in appendix, or as supplemental1010

material.1011

7. Experiment Statistical Significance1012

Question: Does the paper report error bars suitably and correctly defined or other appropriate1013

information about the statistical significance of the experiments?1014

Answer: [Yes]1015

Justification: Our experiments perform means and standard deviations for the five seed1016

results.1017

Guidelines:1018

• The answer NA means that the paper does not include experiments.1019
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-1020

dence intervals, or statistical significance tests, at least for the experiments that support1021

the main claims of the paper.1022

• The factors of variability that the error bars are capturing should be clearly stated (for1023

example, train/test split, initialization, random drawing of some parameter, or overall1024

run with given experimental conditions).1025

• The method for calculating the error bars should be explained (closed form formula,1026

call to a library function, bootstrap, etc.)1027

• The assumptions made should be given (e.g., Normally distributed errors).1028

• It should be clear whether the error bar is the standard deviation or the standard error1029

of the mean.1030

• It is OK to report 1-sigma error bars, but one should state it. The authors should1031

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1032

of Normality of errors is not verified.1033

• For asymmetric distributions, the authors should be careful not to show in tables or1034

figures symmetric error bars that would yield results that are out of range (e.g. negative1035

error rates).1036

• If error bars are reported in tables or plots, The authors should explain in the text how1037

they were calculated and reference the corresponding figures or tables in the text.1038

8. Experiments Compute Resources1039

Question: For each experiment, does the paper provide sufficient information on the com-1040

puter resources (type of compute workers, memory, time of execution) needed to reproduce1041

the experiments?1042

Answer: [Yes]1043

Justification: We illustrate the computational resources and the time required for the experi-1044

ments in the Appendix.1045

Guidelines:1046

• The answer NA means that the paper does not include experiments.1047

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1048

or cloud provider, including relevant memory and storage.1049

• The paper should provide the amount of compute required for each of the individual1050

experimental runs as well as estimate the total compute.1051

• The paper should disclose whether the full research project required more compute1052

than the experiments reported in the paper (e.g., preliminary or failed experiments that1053

didn’t make it into the paper).1054

9. Code Of Ethics1055

Question: Does the research conducted in the paper conform, in every respect, with the1056

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1057

Answer: [Yes]1058

Justification: [TODO]1059

Guidelines:1060

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1061

• If the authors answer No, they should explain the special circumstances that require a1062

deviation from the Code of Ethics.1063

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1064

eration due to laws or regulations in their jurisdiction).1065

10. Broader Impacts1066

Question: Does the paper discuss both potential positive societal impacts and negative1067

societal impacts of the work performed?1068

Answer: [Yes]1069

Justification: We elaborate on these in the final section of the Appendix.1070
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Guidelines:1071

• The answer NA means that there is no societal impact of the work performed.1072

• If the authors answer NA or No, they should explain why their work has no societal1073

impact or why the paper does not address societal impact.1074

• Examples of negative societal impacts include potential malicious or unintended uses1075

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1076

(e.g., deployment of technologies that could make decisions that unfairly impact specific1077

groups), privacy considerations, and security considerations.1078

• The conference expects that many papers will be foundational research and not tied1079

to particular applications, let alone deployments. However, if there is a direct path to1080

any negative applications, the authors should point it out. For example, it is legitimate1081

to point out that an improvement in the quality of generative models could be used to1082

generate deepfakes for disinformation. On the other hand, it is not needed to point out1083

that a generic algorithm for optimizing neural networks could enable people to train1084

models that generate Deepfakes faster.1085

• The authors should consider possible harms that could arise when the technology is1086

being used as intended and functioning correctly, harms that could arise when the1087

technology is being used as intended but gives incorrect results, and harms following1088

from (intentional or unintentional) misuse of the technology.1089

• If there are negative societal impacts, the authors could also discuss possible mitigation1090

strategies (e.g., gated release of models, providing defenses in addition to attacks,1091

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1092

feedback over time, improving the efficiency and accessibility of ML).1093

11. Safeguards1094

Question: Does the paper describe safeguards that have been put in place for responsible1095

release of data or models that have a high risk for misuse (e.g., pretrained language models,1096

image generators, or scraped datasets)?1097

Answer: [NA]1098

Justification: Our paper does not release data or models with high risks.1099

Guidelines:1100

• The answer NA means that the paper poses no such risks.1101

• Released models that have a high risk for misuse or dual-use should be released with1102

necessary safeguards to allow for controlled use of the model, for example by requiring1103

that users adhere to usage guidelines or restrictions to access the model or implementing1104

safety filters.1105

• Datasets that have been scraped from the Internet could pose safety risks. The authors1106

should describe how they avoided releasing unsafe images.1107

• We recognize that providing effective safeguards is challenging, and many papers do1108

not require this, but we encourage authors to take this into account and make a best1109

faith effort.1110

12. Licenses for existing assets1111

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1112

the paper, properly credited and are the license and terms of use explicitly mentioned and1113

properly respected?1114

Answer: [Yes]1115

Justification: We have cited or provided URLs to all the code, data, and models used in the1116

paper.1117

Guidelines:1118

• The answer NA means that the paper does not use existing assets.1119

• The authors should cite the original paper that produced the code package or dataset.1120

• The authors should state which version of the asset is used and, if possible, include a1121

URL.1122

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1123
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• For scraped data from a particular source (e.g., website), the copyright and terms of1124

service of that source should be provided.1125

• If assets are released, the license, copyright information, and terms of use in the1126

package should be provided. For popular datasets, paperswithcode.com/datasets1127

has curated licenses for some datasets. Their licensing guide can help determine the1128

license of a dataset.1129

• For existing datasets that are re-packaged, both the original license and the license of1130

the derived asset (if it has changed) should be provided.1131

• If this information is not available online, the authors are encouraged to reach out to1132

the asset’s creators.1133

13. New Assets1134

Question: Are new assets introduced in the paper well documented and is the documentation1135

provided alongside the assets?1136

Answer: [NA]1137

Justification: Our paper does not release new assets.1138

Guidelines:1139

• The answer NA means that the paper does not release new assets.1140

• Researchers should communicate the details of the dataset/code/model as part of their1141

submissions via structured templates. This includes details about training, license,1142

limitations, etc.1143

• The paper should discuss whether and how consent was obtained from people whose1144

asset is used.1145

• At submission time, remember to anonymize your assets (if applicable). You can either1146

create an anonymized URL or include an anonymized zip file.1147

14. Crowdsourcing and Research with Human Subjects1148

Question: For crowdsourcing experiments and research with human subjects, does the paper1149

include the full text of instructions given to participants and screenshots, if applicable, as1150

well as details about compensation (if any)?1151

Answer: [NA]1152

Justification: Our paper does not do crowdsourcing experiments and research on human1153

subjects.1154

Guidelines:1155

• The answer NA means that the paper does not involve crowdsourcing nor research with1156

human subjects.1157

• Including this information in the supplemental material is fine, but if the main contribu-1158

tion of the paper involves human subjects, then as much detail as possible should be1159

included in the main paper.1160

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1161

or other labor should be paid at least the minimum wage in the country of the data1162

collector.1163

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1164

Subjects1165

Question: Does the paper describe potential risks incurred by study participants, whether1166

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1167

approvals (or an equivalent approval/review based on the requirements of your country or1168

institution) were obtained?1169

Answer: [NA]1170

Justification: Our paper does not involve crowdsourcing nor research with human subjects.1171

Guidelines:1172

• The answer NA means that the paper does not involve crowdsourcing nor research with1173

human subjects.1174
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1175

may be required for any human subjects research. If you obtained IRB approval, you1176

should clearly state this in the paper.1177

• We recognize that the procedures for this may vary significantly between institutions1178

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1179

guidelines for their institution.1180

• For initial submissions, do not include any information that would break anonymity (if1181

applicable), such as the institution conducting the review.1182

34


	Introduction
	Related Work
	Long-horizon Robotic Manipulation
	Skill Chaining for Long-horizon Tasks

	Preliminaries
	Method
	Overall Pipeline
	Adaptive Sub-task Skill Learning
	Bi-directional Adversarial Learning for Skill Chaining

	Experiments
	Experiment Setup
	Quantitative Results
	Robustness to Perturbations
	Ablations and Analysis

	Discussion
	Pseudo-code
	Adaptive Sub-task Skill Learning
	Bi-directional Adversarial Learning

	More Details on AES Regularization
	Sub-task Skills
	More Quantitative Results
	Sub-task Skill Learning Performance
	Training performance
	More evaluation performance

	Robustness to Perturbations
	Further Ablation

	More Qualitative Results
	Real-Robot Long-Horizon Manipulation via Sim-to-Real Transfer
	Environment Details
	IKEA Furniture Assembly
	Kitchen Organization

	Network Architecture
	Training Details
	Computing Resources
	Algorithm Implementation Details

	Potential negative impacts

