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Abstract

The placenta is crucial for a successful pregnancy, facilitating oxygen exchange and nutrient

transport between mother and fetus. Complications like fetal growth restriction and pre-

eclampsia are linked to placental vascular structure abnormalities, highlighting the need for

early detection of placental health issues. Computational modelling offers insights into how

vascular architecture correlates with flow and oxygenation in both healthy and dysfunctional

placentas. These models use synthetic networks to represent the multiscale feto-placental

vasculature, but current methods lack direct control over key morphological parameters like

branching angles, essential for predicting placental dysfunction.

We introduce a novel generative algorithm for creating in silico placentas, allowing user-

controlled customisation of feto-placental vasculatures, both as individual components (pla-

cental shape, chorionic vessels, placentone) and as a complete structure. The algorithm is

physiologically underpinned, following branching laws (i.e. Murray’s Law), and is defined by

four key morphometric statistics: vessel diameter, vessel length, branching angle and asym-

metry. Our algorithm produces structures consistent with in vivo measurements and ex vivo

observations. Our sensitivity analysis highlights how vessel length variations and branching

angles play a pivotal role in defining the architecture of the placental vascular network.

Moreover, our approach is stochastic in nature, yielding vascular structures with different

topological metrics when imposing the same input settings. Unlike previous volume-filling

algorithms, our approach allows direct control over key morphological parameters, generat-

ing vascular structures that closely resemble real vascular densities and allowing for the

investigation of the impact of morphological parameters on placental function in upcoming

studies.
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Author summary

The placenta is important in ensuring a healthy pregnancy by facilitating the exchange of

oxygen and nutrients between the mother and the fetus. Disturbances of placental func-

tion are often associated with abnormalities in the placental vascular structure, and detect-

ing these issues early on is crucial. To understand the connection between placental

vascular architecture, blood flow, and oxygenation, computational models have been

used. These use synthetic networks which lack precise control over crucial morphological

parameters, such as branching angles, essential for predicting placental dysfunction. Our

contribution is a new approach that allows for the creation of virtual placentas that closely

resemble real vascular characteristics. It enables users to customize the feto-placental vas-

cular architecture at various levels, including individual components like placental shape,

chorionic vessels, and placentone, as well as the complete structure. The flexibility of this

pipeline opens the door for investigating the direct impact of morphological parameters

on placental function.

Introduction

The placenta is vitally important for a successful pregnancy and influences the lifelong health

of both the child and the mother [1, 2]. Fetal and maternal blood flow separately through a

complex branching system that maximises oxygen exchange between mother and fetus to

enable appropriate fetal growth (Fig 1). At a macro scale, the feto-placental vasculature encom-

passes the fetal umbilical vessels, connecting the placenta to the fetus and carrying either deox-

ygenated fetal blood (via the umbilical arteries) or oxygenated fetal blood (via the umbilical

vein). These umbilical vessels give rise to chorionic vessels, which extend through the

Fig 1. Schematic representation of the placenta and feto-placental vascular structures. (A) Placental macroscopic components and associated

structures, including the chorionic and basal plates and the umbilical cord. (B) A functional lobule of the feto-placental circulation is shown in detail:

exchange occurs in the IVS, most specifically in the maternal blood pools arising from the spiral arteries. Oxygenated blood enters the IVS through the

spiral arteries. Deoxygenated blood from the fetal side enters the placental parenchyma through the umbilical arteries, via the villous tree up to the

capillaries, where it is oxygenated before returning to the fetus in the umbilical vein. Oxygen-depleted blood then leaves the IVS through the decidual veins

located in the septa between the IVS.

https://doi.org/10.1371/journal.pcbi.1012470.g001
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chorionic plate and supply smaller-scale villous trees. At a microscale, the villi further branch

into intricate capillary pathways that facilitate the aforementioned gas exchange. The villous

trees are considered functional units of the placenta, and define the intervillous space (IVS),

where maternal blood enters to provide nutrients and gas exchange. The spiral arteries arising

from the uterus yield low-velocity, low-pressure blood flow in the IVS, optimising villous tree

perfusion [3–5]. This oxygenated blood then becomes deoxygenated as it passes through the

villous trees, exiting the IVS through decidual veins [5–7]. The spatial arrangement of the feto-

placental vasculature is influenced by various structural and functional factors, including pla-

cental size and shape, or blood flow velocity within the IVS.

Many pregnancy complications, including fetal growth restriction (FGR) and pre-eclamp-

sia, are associated with placental dysfunction, including abnormalities of placental vascular

structures and function [8–10]. Quantitative measurements of placental health during preg-

nancy can improve detection and monitoring of pregnancy complications. However, despite

the emergence of promising techniques such as placental magnetic resonance imaging (MRI)

[4, 11–14], non-invasive observation of the placenta during pregnancy remains highly chal-

lenging. There is hence poor understanding of the links between pregnancy complications and

underlying placental structure and function [15–17]. While animal models allow insights into

specific pathophysiological mechanisms, they do not allow us to study the unique aspects of

the development, adaption, structure and function of the human placenta [18]. On the other

hand, biophysical models can provide insights into placental structure and function as they

employ vascular structures as inputs to predict functional parameters relevant to the perfor-

mance of the human placenta [19]. Such models can simulate blood flow patterns and solute

transport within the placental vasculature, helping to identify regions with optimal or compro-

mised perfusion [20, 21], and underlying the transport of nutrients and oxygen across the pla-

cental barrier [22, 23]. Therefore, they allow testing of different structural-functional

hypotheses in an in silico setting to better understand human pregnancy [24–26].

Realistic in silico placental geometries required for biophysical modelling have been previ-

ously acquired via detailed imaging of post-delivery placentas using techniques such as micro-

computed tomography [27], photoacoustic imaging [28], and MRI [29]. However, such tech-

niques are costly and time consuming and require a trade-off between spatial coverage and spa-

tial resolution [30]. Moreover, while the placenta has a round, curved shape determined by the

curvature of the uterine wall, post-delivery it appears flatter and more irregular, and may also

show signs of physical damage or detachment from the uterine wall [31] caused by the birthing

process. This means that in vivo and ex vivo feto-placental vasculature differs and geometrical

details captured post-delivery may not be entirely representative of the in vivo placenta.

Several modelling approaches have therefore utilised growing algorithms to generate plausi-

ble in silico feto-placental vascular structures, including the definition of an outer placental

surface, the growth of chorionic vessels and the generation of villous trees. This has typically

been achieved through the use of volume filling algorithms, where segments grow towards

user-defined seed points based on heuristic constraints, such as maximum branching angles

and fractional distances towards seed point centres of mass [20, 21, 32].

A major limitation of volume-filling algorithms is that multiple vital morphological param-

eters, such as the actual branching angle, number of branching generations and length-to-

diameter ratios are not directly controllable, but rather are emergent properties of the algo-

rithm [33]. It is therefore difficult, and potentially impossible, to directly control a single mor-

phological parameter, and study its effect on the flow and transport properties of the placenta.

To test hypotheses about the influence of structural differences in dysfunction, we need to con-

trol these parameter settings while generating in silicomodels. Given the uncertainty associ-

ated with morphological parameters arising from different acquisition techniques (in vivo and
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ex vivo), sensitivity analyses of the effect of key parameters on topological metrics becomes

paramount to quantify the impact of uncertainty in input parameters on vascular structures,

providing informed insights into the relationships between inputs, structure and function.

In this paper we address these limitations with a flexible generative algorithm for growing

in silico placentas where all the salient morphological parameters are user controlled. We

derive sensible default values for these parameters from the literature and assess their influence

on vasculature topology via a sensitivity analysis. This is crucial, given the uncertainty in pla-

cental structural parameters arising from different assessment techniques. The algorithm and

exemplar in silico placental structures are made freely available at [34]. These can underpin

subsequent placenta modelling including, flow, oxygen and nutrient transport, and simula-

tions of MRI signals.

Background: Morphology of the placenta and feto-placental

vasculature

Key features and association with pathology

Several morphological features of the placenta and its vascular structure determine placental

efficiency and the appropriate growth of the fetus. These features need to be accounted for in a

generative algorithm for the feto-placental vasculature at a multi-scale level (Fig 1).

At a macroscopic scale, the placenta is usually described as round or oval, with high vari-

ability in size and shape (with e.g. average thickness of placental disk varying from 0.951 to

3.095 cm and the placental surface diameter from 14.933 to 33.499 cm within one clinical data-

set [35]) [36, 37]. From a structural point of view, placental shape and size are usually viewed

as markers of placental health and efficiency, as well as perinatal outcome [35]. For example,

alterations to placental shape observed post-delivery [6, 9, 38] and with in vivoMRI [39], such

as smaller total placental volumes and smaller IVS volume, have been associated with patholo-

gies such as FGR and pre-eclampsia, which impact appropriate fetal growth [6, 9, 38, 39].

The chorionic and basal plates form the fetal and maternal sides of the placenta, respec-

tively, with the umbilical vessels arising from the umbilical cord forming the chorionic plate.

Variability in vasculature specifics (e.g. spread of chorionic vessels) influence the shape of the

chorionic plate and the overall placental shape [37, 40]. Indeed, Salafia et al. found a connec-

tion between abnormal chorionic plate shapes and altered vascular structures, in turn associ-

ated with reduced placental efficiency [37]. The position of the placental umbilical cord

insertion is also considered a marker of perinatal outcome. For example, eccentric cords,

which yield largely asymmetric chorionic vasculatures, have been associated with placental

insufficiency [36, 41]. This means that both the position of the umbilical cord insertion and

the structure and dispersion of the chorionic vessels over the chorionic plate affect blood flow

supply to and from the smaller-scale villous trees and ultimately the capillary vessels, effectively

dictating placental efficiency [36, 41].

The placental basal surface consists of functional lobules separated by grooves, representing

placental septa. Each functional lobule usually aligns with fetal villous trees and corresponding

decidual vessels. During early pregnancy, maternal spiral arteries undergo remodelling caused

by placental cells (trophoblasts), transforming into wide, funnel-like structures [3, 4, 6]. This

process facilitates low-velocity, low-pressure blood flow in the IVS [3–5]. Disruptions in spiral

artery (SA) remodelling are linked to complications such as placental insufficiency and pre-

eclampsia [4, 42]. For instance, incomplete remodelling can lead to smaller SA vascular

lumens, elevated, jet-like blood flow rates into the IVS and impacting villous tree maturation

over gestation [3]. SA mega-jets, linked to higher flow rates, have been associated with sparser
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villous trees and lower vascular density in the placenta [3], though their impact on placental

pathology remains unclear.

The fetal villous trees are asymmetric branching structures composed of numerous villi,

extending from the chorionic plate into the IVS. The distal ends of these trees are composed

by capillary pathways [20, 43]. Ongoing vessel maturation throughout gestation yields denser

vascular trees, facilitating the exchange of nutrients, oxygen, and waste products between

maternal and fetal circulations [4]. In pathological conditions such as FGR or pre-eclampsia,

there are notable alterations in the structure of villous trees, including abnormalities in the

size, shape, and density. For example, sparse and elongated vascular networks with decreased

villous volumes and surface areas are usually observed in FGR [4, 38, 44]. The spatial distribu-

tion and structural features of villous trees are, therefore, key to placental efficiency.

Morphological parameters

A range of morphological parameters describes the placental surface and the vascular network

of blood vessels representing the feto-placental vasculature. Here we focus on structural met-

rics that will be directly used to create in silico placentas and feto-placental vasculatures with

our generative algorithm (see Fig 2). For a certain vessel B, defined by start and end nodes i
and j, we can also define the length-to-diameter ratio (ltd) as

ltdB ¼
lB
dB
; ð1Þ

where dB and lB are the vessel diameter and length, respectively [30]. Using the same notation as

in Fig 2B, the 3-dimensional (3D) branching angle between vessel segments ji and ig is given by

yjig ¼ arccos
ðCj � CiÞ � ðCg � CiÞ
jjCj � Cijj � jjCg � Cijj

; ð2Þ

where Ci, Cj, Cg are the spatial positions of vascular nodes i, j, g in a universal coordinate system,

respectively [30]. Planar branching angles, also represented in Fig 2B, have been previously used

to characterise fetal villi [10]. Planar branching angle values can then be used to approximate 3D

branching angles when generating the feto-placental vasculature.

Model

In this section, we derive our generative algorithm whilst explaining the underpinning ratio-

nale and definitions (Algorithm overview and general notation-Capillary representation and

venous system). We also describe how key metrics are computed (Morphological metrics com-

puted), our sensitivity analysis on the influence of algorithm input parameters on key topologi-

cal metrics (Topological assessment and sensitivity analysis), stochastic effects (Stochastic

effects) and generated feto-placental vasculatures (Generating healthy and dysfunctional feto-

placental vasculatures). A MATLAB implementation of our algorithm, including examples of

synthetic placental structures generated, is available at [34].

We introduce our algorithm in stages. We focus on the generation of arterial vessels while

still accounting for empty space to be occupied by venous vessels. For each stage, we state the

generative procedure and the required user-defined parameters, and the motivation underly-

ing our choices. We specify fixed parameters, but reserve the details of user-defined parame-

ters and literature-based estimates until the Methods section (Tunable parameter definitions

and suggested ranges). In-depth algorithm implementation details such as fine-tuning of vessel

spatial distribution (Computational implementation: Fine-tuning spatial distribution of feto-
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placental vasculature) and vessel-to-vessel intersection checks (Computational implementa-

tion: Branch intersection checks) are provided in the Methods section. For those solely inter-

ested in grasping the algorithm’s overarching concepts, we recommend consulting section

Algorithm overview and general notation, Fig 3.

Algorithm overview and general notation

Our generative algorithm is implemented in MATLAB (MATLAB, R2021b, 9.11, The Math-

Works Inc., Natick, MA, USA). In the following sections, we describe:

• The notation used to define the feto-placental vasculature as trees (Tree notation) and

branching rules imposed (Branching rules)

• The definition of placental shape and placental surface mesh, as well as cord insertion (Step-

by-step description of placental size and shape-Step-by-step description of placental mesh

and cord insertion)

Fig 2. Schematic representation of important placental morphological parameters. (A) Typical descriptions of chorionic surface shape and size rely on

ellipsoid representations characterised by major (rmaj) and minor (rmin) radii [36, 37] and half the placenta thickness (thalf), as represented in a side view of

the placental surface (left side) [20]. Other relevant parameters represented in an axial view of the chorionic plate (right side) include the position of the

umbilical cord insertion in the chorionic plate (green star), determined by the distance of the insertion from the ellipsoid centre (dc) and the minimum

distance between the insertion and the periphery of the chorionic plate (mt) [36]. (B) Blood vessels are typically characterised by length (l) and diameter (d)

(left side) and 3D branching angles (θ) (middle) [20, 21]. Planar branching angles are defined upon vessel branching properties (right side): The parent-

daughter branching angle of a certain segment is defined as the angle of a daughter segment from its parent’s axis (e.g. θpd), while the daughter-daughter

branching angle is represented as the angle between two daughter segments (e.g. θdd).

https://doi.org/10.1371/journal.pcbi.1012470.g002
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• General notions for vasculature generation in the placenta (General notions of feto-placental

vasculature generation)

• The definition of chorionic plate and generation of chorionic vessels (Step-by-step descrip-

tion of chorionic vessel generation)

Fig 3. User options and main steps of the generative algorithm.

https://doi.org/10.1371/journal.pcbi.1012470.g003
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• The definition of a placentone domain (Step-by-step description of placentone domain gen-

eration) and the creation of villous trees (Step-by-step description of villous vessels

generation)

• The representation of the capillary and venous systems (Capillary representation and venous

system)

Depending on the end purpose, the algorithm can generate each part of the feto-placental

vasculature independently or the full geometry. A flowchart of the algorithm options and an

overview of the generative algorithm is provided in Fig 3.

Tree notation. The notation of the Trees Toolbox [45] is applied to all feto-vascular struc-

tures generated with the algorithm, specifically the chorionic vessels and the villous trees. We

define a vascular tree by a series of start and end nodes (defined by coordinates in a 3D space),

an adjacency matrix, and diameters. For a tree with N nodes we have

C1‥N ¼ fC1;C2; . . . ;CNg; where Ci ¼ ðXi;Yi;ZiÞ 2 R
3; ð3Þ

where Ci is the set of all tree nodes defined by Cartesian coordinates (Xi, Yi, Zi). The connec-

tions between nodes—or vessel segments—are denoted by the adjacency matrix A, an N × N
matrix with entries

Aij ¼
1; if node i has parent j

0; otherwise:

(

ð4Þ

These connections yield a tree withM segments defined as

B1‥M ¼ fB1;B2; . . . ;BMg; ð5Þ

where each segment is characterised by a certain diameter d

d1‥M ¼ fd1; d2; . . . ; dMg; ð6Þ

where di denotes the diameter of the connection between node i and its parent node. This defi-

nition of a vascular tree resembles that of previous computational approaches [20, 32, 46].

Branching rules. Assuming that all segments are circular cross-section cylinders, the

bifurcation of a parent segment into two daughter segments is dictated by Murray’s Law, a

power-law relationship between the diameters of the parent vessel d0 and those of the daughter

segments d1, d2:

d0

k
¼ d1

k
þ d2

k
; ð7Þ

where d0 > d1 = d2 for a symmetric bifurcation. This law minimises the resistance to flow

throughout a vascular network, and the bifurcation exponent k is key to determine the energy

dissipation associated with a certain vascular structure.

Step-by-step description of placental size and shape

Motivation. Post-partum [35, 37] and in vivoMRI [47] studies assessing placental shape

found common deviations from a mean round shape. This can be quantified through placental
eccentricity, a parameter that mathematically ranges between 0 and 1 (0 = completely circular

shape), although typical placental eccentricities are well below 1 [10, 36, 37].
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Generative procedure. We characterise our in silico placentas as oblate spheroids based

on user-defined parameters:

V : placental volume

rmaj : long placental radius

E : placental eccentricity

The placental thickness 2thalf is estimated from the placental volume, V, using Eq 8 [48, 49]:

thalf ¼
3V

4pr2
maj

: ð8Þ

We use the equation of Pathak et al. [36] to obtain the corresponding short placental radius

(rmin) from the placental eccentricity (E) and long placental radius (rmaj):

rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
majð1 � E2Þ

q
: ð9Þ

For given values of rmaj, rmin and 2thalf, we mathematically define a 3D oblate spheroid as a sur-

face object, characterised by 3D spatial coordinates. We employ a default patch conversion

function in MATLAB to convert the geometry from this surface object to a patch structure

containing directly associated face and vertex information [50]. This is represented as a closed

quadrangular surface mesh whose elements are then further subdivided to form triangular ele-

ments, yielding a triangulated surface mesh. This mesh will be used to provide seed points for

the vasculature growing algorithms (more details in subsequent sections). Alternatively, a

patient-specific closed triangulated mesh can be directly obtained from in vivo imaging, such

as placental MRI.

Step-by-step description of placental mesh and cord insertion

Motivation. The umbilical cord inserts into the chorionic plate and gives rise to vessels

spreading over the chorionic plate [51]. A measure of relative insertion eccentricity of the

umbilical cord has been proposed by Pathak et al. [36]: the umbilical cord centrality index. This

parameter ranges between 0 (insertion at plate centroid) and 1 (insertion at plate margin) [36].

Generative procedure. We characterise the shape of the chorionic plate and cord inser-

tion based on two main user-defined parameters:

CCI : umbilical cord centrality index

mt : minimum distance between cord insertion point and chorionic plate periphery

The placental mesh is divided into chorionic and basal plates. First, rmaj, rmin and thalf are

used to estimate the chorionic surface area, Achor, based on the equation for half of the area of

an ellipsoid:

Achor ¼ 2p
ðrmajrminÞ

1:6
þ ðrmajthalf Þ

1:6
þ ðrminthalf Þ

1:6

3

 !1=1:6

: ð10Þ

This surface area is then used to extract the mesh corresponding to the chorionic plate from

the total placental mesh. This is performed by iteratively removing rows of mesh elements

until the actual chorionic mesh surface area matches the area obtained using Eq 10. We found

that the resulting mesh density had insufficient seed points and therefore hindered chorionic

vessel generation (S1 Table). As such, we performed sub-triangulation of mesh elements to
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provide sufficient seed points for the generative process, yielding 13—30 seeds/mm2 (depend-

ing on the size of the placental surface). We use the equation of Pathak et al. [36] to determine

the umbilical vessel insertion in the chorionic plate mesh. Specifically, we employ the umbilical

cord centrality index, CCI, to determine the distance of the umbilical cord from the chorionic

plate centroid, dc:

dc ¼ CCI � rmaj: ð11Þ

A search is then performed on the chorionic plate mesh nodes to find the node which matches

dc the closest. This node is then assumed as the 3D insertion point in the chorionic plate mesh.

General notions of feto-placental vasculature generation

Both chorionic and villous vessels are characterised by a range of user-defined parameters and,

despite being based on different morphological data and being generated on different domains

(chorionic—2D mesh surface; villous—3D domain), the basics for their generative procedure

are similar. Broadly speaking, they are created iteratively, branching generation after branch-

ing generation, following four main steps:

1. Sampling of candidate daughter nodes based on morphological (e.g. branching angles,

length-to-diameter ratios) and branching law (bifurcation exponents, asymmetry values)

parameters;

2. Selecting the best candidate daughter nodes based on global branch distribution penalties,

which are used to influence the spatial distribution of vessels in the chorionic plate and the

IVS (more details in Methods—Computational implementation: Fine-tuning spatial distri-

bution of feto-placental vasculature);

3. Ensuring there are no branch intersections;

4. Assessing criteria for termination at each iteration.

To facilitate the selection of candidate daughter nodes, heuristic tolerances in branch

lengths determined from ltd (toll) and parent-daughter branching angles (tolθ) are allowed.

Final branch lengths (lf) and branching angles (θf) then take the form

lf ¼ l � toll and yf ¼ ypd � toly: ð12Þ

Users have the flexibility to define the tolerances toll and tolθ; For all experiments in this paper,

we heuristically selected toll and tolθ to align with user-defined constraints while ensuring the

creation of a vascular structure containing an appropriate number of vessels, consistent with

prior in silicomodels and observations from in vivo/ex vivo studies. We found that reducing

the tolerances resulted in fewer candidate daughter nodes being selected and fewer vessels

being generated, leading to an abrupt termination of vascular structures in both chorionic and

villous vessels (see S3 and S6 Tables). Specifically, lower values of tolθ hindered appropriate

spread of chorionic vessels through the chorionic plate (see S4 Table). Ultimately, we defined

toll = 8–13% and tolθ = 25–35% for generating chorionic vessels, while for villous vessels we set

tolθ = 15%. Users wishing to generate significantly different feto-placental vascular structures

may need to modify these tolerances accordingly.

Step-by-step description of chorionic vessel generation

Motivation. Chorionic vessels typically branch 6–8 times over the chorionic plate [51],

which, in a healthy scenario, will then feed 30–100 villous trees in the IVS [3, 43, 52].
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According to literature descriptions, the chorionic arteries have a mostly dichotomous

branching pattern, with average parent-daughter diameter ratios ranging between 0.76 to 0.8

[51].

Generative procedure. We characterise the generation of chorionic vessels based on user-

defined parameters:

ud : umbilical artery diameter

kc : chorionic Murrays Law bifurcation exponent

ypd : parent-daughter branching angle

ydd : daughter-daughter branching angle

ltdc : chorionic length-to-diameter ratio

a : asymmetry of branching generations

bgc : maximum number of branching generations

bnc : maximum number of segments

cf1 : global distribution penalty weight 1 ðdistance to other vascular tree nodesÞ

cf2 : global distribution penalty weight 2 ðdistance to chorionic plate centroidÞ

The distal ends of the umbilical arteries are represented by two segments 20 mm long [20].

These segments are inserted into the chorionic plate close to the designated point of insertion,

ensuring no intersections by displacing their position in x by a distance = ud. Chorionic arter-

ies are generated iteratively from these cord insertions, spreading through the chorionic mesh.

For each non-terminal end node, candidate branching nodes are selected from the chorionic

mesh based on the desired daughter segment length and branching length priors within prede-

fined tolerances (Eq 12). These nodes are further selected and ranked using a global distribu-

tion penalty. They are iteratively tested for intersection and termination criteria following the

determined rank and a node is accepted if it respects the criteria. The subsequent creation of

villous trees in the placenta involves creating intraplacental vessels of 2 mm in length. These

originate from the midpoint of each chorionic artery and penetrate the IVS at angles ranging

from 60 to 90 degrees [51].

Branch termination. Biologically-inspired criteria: Based on previous studies [43, 51, 52],

branching occurs until either the maximum number of branching generations (bgc) is 8, or the

maximum number of vessel segments (bnc) is 100.

Topological criteria: We compute the Euclidean distance of a daughter branch node 1) to

other tree points and 2) to the nodes in the chorionic plate boundary. If this distance is less

than the daughter branch diameter in the first case or less than two times the daughter branch

diameter in the second case, the branch is terminated. This ensures appropriate distance

between vessel segments.

Step-by-step description of placentone domain generation

Motivation. Villous trees are associated with high variability in vascular density within the

IVS [53]. However, they have been described as hollow-centred, bud-like structures supplied by

a maternal SA located near their centres [3, 43]. Such functional units are commonly described

as placentones, which have been characterised as semi-hemispheres [5] or cuboids [3].
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Generative procedure. To generate a placentone surface, the following parameters are

required

V : placental volume

2thalf : placental thickness

np : number of placentones

CCr : central cavity radius

CCh : central cavity height

To create a placentone, a cuboidal closed triangular mesh is initially created. This method

assumes that the placenta can be approximated as uniform in width over a single placentone.

The placentone, represented in Fig 4A, is assumed to have thickness equal to that of the pla-

centa (2thalf) and cross-sectional dimensions Xp = Yp [3]. Cross-sectional dimensions are

defined via Eq 13:

Xp ¼ Yp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2thalf � np

s

ð13Þ

where V and np represent the placental volume and the number of placentones, respectively.

Furthermore, a central cavity was delineated, positioned adjacent to the opening of the SA and

characterised as a semi-ellipsoid. The dimensions of this villous-free area, denoted by its radius

(CCr) and height (CCh), were used to define its shape. Fetal villi are not allowed to grow within

this central cavity.

Fig 4. Placentone representation. (A) Main placentone dimensions are identified, including those for the central cavity, and a fetal tree with five

branching generations is showcased for clarity. (B) A fetal tree branched up to 14 generations is displayed. Key: 2thalf, placental thickness; Xp, x-direction

length; Yp, y-direction length; CCr, central cavity radius; CCh, central cavity height.

https://doi.org/10.1371/journal.pcbi.1012470.g004
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Step-by-step description of villous vessels generation

Motivation. Villous vessels originate from intraplacental vessels (or stem vessels, see Sec-

tion Step-by-step description of chorionic vessel generation) and define the IVS, branching up

to 15 generations and forming tree-like geometries [20, 43].

Generative procedure. Villous trees grow inside a surface mesh domain which effectively

represents a 3D volume. Their generation process varies depending on whether they are gener-

ated as a single functional unit (mesh domain = placentone surface), or as part of the whole

feto-placental vasculature (mesh domain = placental surface). In the first case (Section Step-

by-step description of placentone domain generation), supplementary parameters are selected

to delineate (1) a cuboid in which the tree grows, and (2) a villous-free region near the SA

opening (central cavity) [3].

The subsequent parameters defined by the user describe the formation of villous trees for

any mesh domain:

ds : stem diameter

ltdv : villous length-to-diameter ratio

kv : villous tree Murrays Law bifurcation exponent

a : asymmetry of branching generations

ypd : parent-daughter branching angle

ydd : minimum daughter-daughter branching angle

cf1 : global distribution penalty weight 1 ðdistance to plane defined by nVÞ

cf2 : global distribution penalty weight 2 ðdistance to basal plateÞ

bgv : maximum number of branching generations

The selection of candidate branching nodes and branch generation is schematised in Fig 5.

For each non-terminal end node C, candidate branching nodes are uniformly created on a

spherical triangulated surface of radius li, centered around the parent node [54]. A plane is

then defined by three points (Cg, current node; Cg−1, parent node; Cg−2 parent-parent node),

whose unit normal (nV) is obtained via Eq 14:

nV ¼ jjðCg� 1 � CgÞ � ðCg� 2 � CgÞjj: ð14Þ

Candidate nodes are split using this plane and those respecting branching angle priors

within predefined tolerances (Eq 12) are further selected and ranked using a global distribu-

tion penalty. The nodes are iteratively tested for intersection and termination criteria following

the determined rank and a node is accepted if it respects the criteria. An example of a fetal tree

with 14 branching generations is showcased in Fig 4B.

Branch termination. Biologically-inspired criteria: The caliber of villous arteries is

assumed to progressively decrease at each branching generation to feed terminal vessels of

d* 0.03–0.04 mm, as observed in previous computational studies [20, 21]. This is achieved

after 13–15 branching generations (bgv).
Topological criteria: We compute the Euclidean distance of a daughter branch node 1) to

other tree points and 2) to the nodes in the basal plate. We assume that, if this distance is less

than the daughter branch diameter in the first case or less than two times the daughter branch

diameter in the first case, the branch is terminated.
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Capillary representation and venous system

The current generative algorithm generates the arterial network of the feto-placental vascula-

ture, from the umbilical cord level to intermediate villi, accounting for empty space to be occu-

pied by the venous feto-placental counterpart (more details in Sections Computational

implementation: Branch intersection checks and Morphological metrics computed). To create

an additional representation of downstream vessels (i.e. mature intermediate villous vessels

and capillaries), these can be grouped together into a lumped-parameter model, with a detailed

description provided by Clark et al. [20].

Fig 5. Schematic showcasing main steps involved in the generation of a new daughter node Ci and subsequently a new branch Bi. Key: li, candidate

branch length; nv, unit normal of plane defined by Eq 14.

https://doi.org/10.1371/journal.pcbi.1012470.g005
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Analysis of algorithm outputs

Morphological metrics computed. To assess the morphology of vascular structures gen-

erated with the algorithm, a range of topological properties were computed. These are estab-

lished metrics for determining the functional behaviour of vascular networks [20, 21]. This

includes properties directly obtained via functions from the MATLAB Trees Toolbox [45] and

direct assessment from outputted structures, such as branching angles, daughter-to-mother

diameter ratio, number of arterial branching generations, terminal vessel length and diameter,

path lengths, number of segments, length-to-diameter ratios and maximum Strahler order.

Other parameters were defined as follows:

Strahler ratios. Branching metrics such as the Strahler branching ratio, diameter ratio

and length ratio aim to quantify bifurcation characteristics within a vascular network. Differ-

ent bifurcation properties are directly related to blood flow distributions, and differ between

healthy and dysfunctional vascular structures [55]. The Strahler order of all branching nodes

obtained with the MATLAB Trees Toolbox was used to compute the Strahler branching ratio,

diameter ratio and length ratio. Each vessel segment is assigned with a Strahler order (obtained

from the node Strahler order) and the number of segments in each order is counted. The num-

ber of segments, diameters and lengths are transformed into a logarithmic scale. Regression

lines of these against the order number are determined via linear polynomial fitting, with each

Strahler ratio being the antilog of the fit gradient [56–58].

Vascular density. Mean vascular density is defined as the ratio between total vessel vol-

ume and the volume of the placenta (if growing in a complete placental structure) or the vol-

ume of the placentone (if growing as a unique fetal tree). We account for venous vascular

density by including a volume term in calculations for total vessel volume: for a certain fetal

tree branch Bi, venous length (lvi) and diameter (dvi) is expressed in function of arterial length

(lai) and diameter (dai) [59],

lvi ¼
lai
2

and dvi ¼
3

2
dai; ð15Þ

and total vessel volume (v) is calculated as

vt ¼ va þ vv ¼
XM

i¼1

p �
dai
2

� �2

� lai þ
XM

i¼1

p �
dvi
2

� �2

� lvi: ð16Þ

To compare these densities with micro-computed tomography estimates, we used a diame-

ter cut-off equal to the voxel size achievable with their whole placental imaging (� 116.5 μm)

and excluded vessels with diameter� 0.9 mm (equivalent to chorionic, not villous, vessels)

[27].

Vessel spread. Spread is defined as the standard deviation of the Euclidean distance of all

vessels to the placental centroid Gi. Remembering that a tree has N nodes defined by Ci = (Xi,
Yi, Zi), and assuming a list of candidate daughter nodes defined by δi = (Xi, Yi, Zi), we define

spread ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1
ðdi � GiÞ

2

n

r

ð17Þ

where n is the number of vessels.

Topological assessment and sensitivity analysis. A global sensitivity analysis to assess

the effect of algorithm input parameters on key topological metrics was performed for the gen-

eration of chorionic vessels and a fetal tree in a placentone. We employed Monte Carlo simula-

tions with the Morris method, with this method known for its accuracy in models with many

parameters and based on the repetition of a set of randomized one-at-a-time runs [60, 61].
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This allows us to understand the relative importance of each input variable and how it affects

the model’s output. This is particularly useful for identifying key factors that significantly influ-

ence the results. A detailed description on the Morris method can be found elsewhere [61].

Input parameters assessed for chorionic and villous vessel generation are presented in

Table 1. These ranges span biologically-plausible settings, accounting for extreme dysfunc-

tional cases. The ranges reported for global distribution penalty weights 1 and 2 (cf1, cf2) were

determined heuristically by investigating how adjustments to these weights impacted 1) the

generation and spread of chorionic vessels across the chorionic plate and 2) the creation of a

single fetal vascular structure. The placental outer shape, chorionic plate and umbilical cord

insertion were fixed in the case of chorionic vessel generation, with only vessel growth input

parameters being assessed. A uniform distribution of input parameters was imposed, with 70

and 100 samples per parameter for chorionic and villous vessel generation, respectively. A

Latin hypercube sampling strategy was adopted to generate a near-random sample of parame-

ter values using the uniform distribution previously defined [60]. This type of sampling splits

the input parameter space into equally probable intervals along each input parameter while

ensuring that the combinations of values chosen for the variables cover the entire input space

in a representative manner.

After all runs, elementary effects (EE) associated with a certain input were computed as an

absolute mean (μ*) and standard deviation (σ), which measure input influence and level of inter-

actions with other inputs, respectively [60, 61]. Output parameters assessed for both chorionic

Table 1. Sensitivity analysis settings. Range of user-defined parameters for the generation of chorionic vessels and vil-

lous tree vessels.

Input Ref. Range

Chorionic vessels ud mean (mm) [62] 3.7–5.5

ud SD (mm) [62] 0.6–1

kc [63] 3–3.4

θpd(˚) min - 0–20

θpd(˚) max - 20–80

θdd(˚) min [51] 50–90

θdd(˚) max [51] 90–130

ltdc SD - 0.4–1.5

cf1 - 0.4–0.8

cf2 - 0.1–0.5

Villous vessels V (cm3) [39, 48, 64] 400–500

2thalf (mm) [49, 65] 20–25

ds mean (mm) [43, 51] 0.51–0.89

ds SD (mm) - 0–0.1

ltdv mean [20, 21] 8–13

ltdv SD [20, 21] 0.5–5

kv [63] 2.5–3.5

θpd(˚) mean [10, 20, 21] 30–70

θpd(˚) SD [10, 20, 21] 0–30

θdd(˚) min - 15–40

CCr (mm) [3] 1–2.75

CCh (mm) [3] 3–13

cf1 - 0.4–0.8

cf2 - 0.2–0.6

https://doi.org/10.1371/journal.pcbi.1012470.t001
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and villous vessels include: mean, minimum and maximum branching angle, mean number of

branching generations, Strahler branching ratio, mean ratio of parent-to-daughter diameter and

mean path length. Additional output parameters include vessel spread (Eq 17) for chorionic ves-

sels and mean terminal diameter and vascular density for villous vessels, respectively.

To objectively determine highly influential input parameters, we normalised μ* and σ
obtained for each input parameter and ranked these based on a cost function that maximises

μ* and minimises σ:

score ¼ 0:5 � m∗ þ 0:5 � ð1 � sÞ: ð18Þ

The input parameters associated with the highest three scores as computed using Eq 18 were

selected as the most influential for each output parameter.

Stochastic effects. To provide further insight into the variability inherent in the generated

feto-placental vasculatures, multiple algorithm runs were conducted for the generation of cho-

rionic vessels and placentone villous trees using the same set of input parameters. The input

settings presented in Table 2 were used to run the algorithm 50 times for each case. The output

metrics are well represented by the univariate Gaussian distributions. Variability between runs

was quantified for each output metric by computing the Kullback-Leibler Divergence (KL) for

the univariate Gaussians, two Gaussians at a time:

KL ¼ ln
s2

s1

� �

þ
s2

1
þ ðm1 � m2Þ

2

2 � s2
2

�
1

2
; ð19Þ

where N ðm1; s1Þ and N ðm2; s2Þ represent the mean and standard deviation values of Gaus-

sians 1 and 2, respectively. KL varies between 0 and1, and the lower its value, the closest the

behaviour of two distributions.

Generating healthy and dysfunctional feto-placental vasculatures. To assess vascular

spatial variability in the healthy placenta, we generated whole feto-placental vascular structures

based on input parameters presented in Table 3. We also generated 3 placentones at 35 weeks

of gestation based on input parameters presented in Table 4: a healthy fetal tree; the presence of

Table 2. Analysis of stochastic effects. Input settings for the generation of chorionic vessels and villous tree vessels.

Chorionic vessels Villous vessels

Input Setting Input Healthy FGR

V (cm3) Unif(400, 500) V (cm3) 480 292.5

rmaj (cm) N ð9:3; 0:455Þ 2thalf (mm) 24 18

E N ð0:49; 0:17Þ np 65 42

CCI N ð0:36; 0:21Þ CCr (mm) 1.88 1.88

mt (mm) 20 CCh (mm) 5.6 5.6

ud (mm) N ð4:6; 0:9Þ ds (mm) N ð0:7; 0:03Þ N ð0:56; 0:03Þ

ltdc N ðltdcðgÞ; 1Þ, Eq 27 ltdv N ð10:5; 1Þ N ð10:5; 1Þ

kc 3.2 kv 3.2 2.8

θdd(˚) Unif(70, 100) a N ð1; 0:05Þ N ð1; 0:05Þ

θpd(˚) Unif(35, 50) θpd(˚) N ð45; 15Þ N ð54; 15Þ

a N ð1; 0:05Þ θdd(˚) 25 15

bgc 8 bgv 15 15

bnc 100 cf1 0.7 0.7

cf1 0.8 cf2 0.3 0.3

cf2 0.2 - - -

https://doi.org/10.1371/journal.pcbi.1012470.t002
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a SA mega jet, associated with a higher central cavity height [3]; and moderate FGR, represented

via a 35% decrease in placental volume [39, 66] and number of placentones [51], a 25% decrease

in placental thickness 2thalf [44], a 20% smaller stem diameter [66], a 20% increase in mean par-

ent-daughter branching angle [10] and a 13% decrease in the bifurcation exponent kv.

Results

In this section, we first present an example of an in silico feto-placental vasculature obtained

with our generative algorithm and analyse its topological properties against literature ranges,

for overall validation of the structure (Assessment of general topological properties and com-

parison with literature). This assessment is conducted by comparing predicted topological met-

rics against ex vivo and in vivo data whenever possible. In silico studies serve as the ultimate

point of comparison when no other data is available. However, relying solely on comparisons

between our topological predictions and other computational studies may be insufficient to val-

idate the generated vascular structures; thus, these comparisons are presented merely as a

benchmark. Next we assess the sensitivity analyses, evaluating the dependence of generated

shapes on input parameters (Dependence of generated shape on input parameters). The sto-

chastic effects of the algorithm are analysed in terms of key output metrics (Analysis of stochas-

tic effects) and vascular spatial variability for two feto-placental vasculatures (Variability in

vascular density: A two-case assessment). Finally, we perform a preliminary assessment of three

different placentones representing healthy and dysfunctional scenarios (Placentone fetal trees).

Assessment of general topological properties and comparison with

literature

The feto-placental vasculature generated with input parameters from Table 3 is presented in

Fig 6, with morphological characteristics and key output topological metrics presented in

Table 3. Input settings for the analysis of the whole feto-placental vasculature. Analysis of vascular spatial variability of the complete feto-placental vasculature. Units:

V, cm3; rmaj, cm;mt, mm; ud, mm; θpd and θdd, ˚; ds, mm.

Placental shape Umbilical insertion

V rmaj E CCI mt
Unif(400, 500) N ð9:3; 0:455Þ N ð0:49; 0:17Þ N ð0:36; 0:21Þ 20

Chorionic vessels

ud ltdc kc a θpd θdd cf1 cf2 bgc bnc
N ð4:6; 0:9Þ N ðltdcðgÞ; 1Þ, Eq 27 3.2 N ð1; 0:05Þ N ð35; 50Þ N ð70; 100Þ 0.8 0.2 8 100

Villous vessels

ds ltdv kv a θpd θdd cf1 cf2 bgv
N ð0:7; 0:03Þ N ð10:5; 0:8Þ 3.2 N ð1; 0:05Þ N ð45; 15Þ 25 0.7 0.3 13

https://doi.org/10.1371/journal.pcbi.1012470.t003

Table 4. Input settings for the analysis of three placentone cases. A healthy fetal tree, a case with the presence of a spiral artery (SA) mega jet, and a case of fetal growth

restriction (FGR) are assessed. Units: V, cm3; 2thalf, mm; CCr, mm; CCh, mm; ds, mm; θpd and θdd, ˚.

Input

Case V 2thalf np CCr CCh ds ltdv kv a θpd θdd cf1 cf2 bgv
Healthy 390 24 65 1.88 5.6 N ð0:7; 0:03Þ N ð10:5; 0:8Þ 3.2 N ð1; 0:05Þ N ð45; 15Þ 25 0.7 0.3 15

SA mega jet 390 24 65 1.88 12.91 N ð0:7; 0:03Þ N ð10:5; 0:8Þ 3.2 N ð1; 0:05Þ N ð45; 15Þ 25 0.7 0.3 15

FGR 292.5 18 42 1.88 5.6 N ð0:56; 0:03Þ N ð10:5; 0:8Þ 2.8 N ð1; 0:05Þ N ð54; 15Þ 25 0.7 0.3 15

https://doi.org/10.1371/journal.pcbi.1012470.t004
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Table 5. This structure includes up to 13 generations beyond the chorionic arteries, with a

total of 21±4 mean branching generations up to terminal vessels of diameter 0.036±0.015 mm,

consistent with previous reports [43, 51, 67]. Strahler branching properties in the generated

vasculature show asymmetric vascular branching, with values comparable to those obtained by

previous computational models of the feto-placental vasculature. Similarly, mean morphomet-

ric properties of the structure such as branching angles and length-to-diameter ratio corre-

spond well to previous estimates for placental computational geometries accounting for

heterogeneously generated fetal trees [21].

Fig 6. Example of feto-placental vasculature generated in the case of a non-central umbilical cord insertion. Figure components are depicted in

isometric (xyz coordinate system) and side (xz plane) views.

https://doi.org/10.1371/journal.pcbi.1012470.g006

Table 5. Generated feto-placental vasculature morphological properties and key topological metrics, obtained with main input parameters as described in previous

sections. Typical ranges of structural values available in the literature are also reported.

Parameter Literature range Placental

shape

Feto-placental

vessels

V (cm3) in vivo: 400–600 [39, 48, 64] 409.1 -

rmaj (cm) in vivo: � N ð9:07; 0:181Þ [37, 49] 8.47 -

E (mm) ex vivo: � N ð0:49; 0:17Þ [36] 0.54 -

mt (mm) other: 20 mm [68] - 20

ud (mm) in vivo: � N ð4:6; 0:9Þ [62] - 4.7

θpd (˚) mean ± SD ex vivo: 40–70˚ [10, 69]

θdd (˚) min - - 13.28

θdd (˚) max - - 90

Mean length-to-diameter ratio ± SD in silico: 8.46±5.63 [20, 21] - 10.93±1.26

Mean daugther-to-mother diameter ratio ± SD ex vivo: 0.66±0.15 [67]; in silico: 0.73±0.14 [20, 21]; ex vivo: 7.51

[5.48, 8.84] [59]

- 0.79±0.006

Maximum Strahler order in silico: 11–12 [21] - 15

Strahler branching ratio in silico: 2.30–2.65 [20, 21]; ex vivo: 2.73 (chorionic vessels) [70] - 2.47

Strahler diameter ratio in silico: 1.50–1.53 [21] - 1.42

Strahler length ratio in silico: 1.23–1.41 [21] - 1.17

Mean arterial branching generations (including chorionic

vessels) ± SD

ex vivo: 16–23 [43, 51], 20.59±8.71 [67] - 21±4

Mean diameter of terminal arterial segments ± SD ex vivo: 0.03 [43]; in silico: 0.03–0.08 [20, 21] - 0.036±0.015

https://doi.org/10.1371/journal.pcbi.1012470.t005
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Dependence of generated shape on input parameters

The influence of input parameters on key topological metrics is assessed for chorionic (Chori-

onic vessels) and villous trees (Placentone). The relative changes in output metrics for chori-

onic vessels across a range of input parameters are shown in Fig 7, while the values of μ* and σ
for the elementary effects (EE) of each input parameter are presented in Fig 8. Similarly, the

corresponding results for placentone villous trees are displayed in Figs 9 and 10, respectively.

The ratio σ/μ, which allows us to characterise model parameters with regards to (non-)linear-

ity, (non-) monotony or parameter interactions [71], is also plotted in Figs 8 and 10.

Chorionic vessels. Fig 7 indicates that the standard deviation of the chorionic length-to-

diameter ratio (ltdc) and the maximum daughter-daughter branching angle (max θdd) signifi-

cantly affect most output metrics. Mean, minimum, and maximum branching angles are sensi-

tive to the bifurcation exponent kc and global distribution penalty weight cf1. Interestingly,

variations in input maximum θpd and minimum θdd seem to have no apparent impact on out-

put metrics.

As displayed in Fig 8, every input parameter is significant since μ*> 0 for all parameters,

and all exhibit a σ/μ ratio >1, indicating non-linear behavior, or interaction effects with other

parameters, or a combination of both. In Fig 8, we have highlighted highly influential parame-

ters obtained by maximising μ* and minimising σ (Eq 18). The findings presented align with

the heatmap from Fig 7, emphasizing the crucial role of the cf1 for all output metrics, and of

the cf2 and the maximum θdd for most output metrics. The mean number of arterial branching

generations and Strahler branching ratios are also impacted by the minimum θpd, while kc
impacts the mean daughter-to-mother diameter ratio and the mean path length. Interestingly,

the standard deviation of the umbilical artery diameter, maximum θpd and minimum θdd

Fig 7. Heatmap results from the global sensitivity analysis for the generation of chorionic vessels. Mean (μ*) values of the elementary effects (EE)

associated with different output metrics were obtained for an input space with 70 samples per input parameter (input settings from Table 1. μ* are

normalised for direct comparison between EEs, and higher μ* values are associated with increased influence of a certain input over a certain output. Key:

ud, umbilical artery diameter; kc, chorionic Murray’s Law bifurcation exponent; θpd, parent-daughter branching angle; ltdc, chorionic length-to-diameter

ratio; θdd, daughter-to-daughter branching angle; cf1, cf2, global distribution penalty weights.

https://doi.org/10.1371/journal.pcbi.1012470.g007
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Fig 8. Elementary effects (EE) results for chorionic vessel generation employing the input parameter ranges fromTable 1. Input parameters are listed

and color-coded at the end of the Figure. Each subplot corresponds to one output metric indicated by subplot titles. For each output metric, the standard

deviation (σ) associated with the EE of a certain input parameter is plotted in function of the respective mean (μ*). The σ/μ ratio is shown by dotted lines in

all plots. Clusters of highly influential input parameters, as determined by Eq 18, are circled in black. Key: ud, umbilical artery diameter; kc, chorionic

Murray’s Law bifurcation exponent; θpd, parent-daughter branching angle; ltdc, chorionic length-to-diameter ratio; θdd, daughter-to-daughter branching

angle; cf1, cf2, global distribution penalty weights.

https://doi.org/10.1371/journal.pcbi.1012470.g008
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appear to have minimal influence on most output metrics. These results suggest that chorionic

vessel generation is mainly influenced by maximum daughter-daughter branching angles,

while the standard deviation of the umbilical artery diameter may not be essential in future

algorithm setups.

Placentone. In Fig 9, we observe that the majority of input parameters have a moderate

impact on the output metrics. The mean villous length-to-diameter ratio (ltdv) appears to

stand out as the most influential parameter, associated with the highest normalised EE mean,

followed by the mean stem diameter (ds). However, parameters related to the placentone’s

shape (e.g. placental volume—V—and thickness—2thalf) do not seem to significantly affect vil-

lous vessel topology. Additionally, it appears that only the standard deviation of the parent-

daughter branching angle (θpd) influences the Strahler branching ratio.

Our results from Fig 10 once again demonstrate non-linear behavior and parameter inter-

actions, as indicated by σ/μ ratios>1. Despite the mean villous length-to-diameter ratio (ltdv)
standing out as the most influential parameter in Fig 9, its consistently high σ across all output

parameters, as depicted in Fig 10, hinders its classification as a highly influential parameter

based on the ranking from Eq 18. Notably, the mean stem diameter (ds) remains as a highly

influential parameter, impacting all output metrics. The mean, minimum and maximum

branching angles are influenced by the bifurcation exponent (kv), mean parent-daughter

branching angle (θpd), minimum daughter-to-daughter branching angle (θdd) and global dis-

tribution penalty weights (cf1, cf2). The bifurcation exponent also dictates other output metrics

such as the Strahler branching ratio, the mean diameter of terminal arterial segments and

mean vascular density. Various output metrics show low sensitivity to different input

Fig 9. Heatmap results from the global sensitivity analysis for the generation of villous vessels within a placentone. Mean (μ*) values of the elementary

effects (EE) associated with different output metrics were obtained for an input space with 100 samples per input parameter (input settings from Table 1).

μ* are normalised for direct comparison between EEs, and higher μ* values are associated with increased influence of a certain input over a certain output.

Key: V, placental volume; 2thalf, placental thickness; ds, stem diameter; ltdv, villous length-to-diameter ratio; kv, villous Murray’s Law bifurcation exponent;

θpd, parent-daughter branching angle; θdd, daughter-to-daughter branching angle; CCr, central cavity radius; CCh, central cavity height; cf1, cf2, global

distribution penalty weights.

https://doi.org/10.1371/journal.pcbi.1012470.g009
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Fig 10. Elementary effects (EE) results for the generation of villous vessels within a placentone employing the input parameter ranges from Table 1.

Input parameters are listed and color-coded at the end of the Figure. Each subplot corresponds to one output metric indicated by subplot titles. For each

output metric, the standard deviation (σ) associated with the EE of a certain input parameter is plotted in function of the respective mean (μ*). The σ/μ ratio

is shown by dotted lines in all plots. Clusters of highly influential input parameters, as determined by Eq 18, are circled in black. Key: V, placental volume;

2thalf, placental thickness; ds, stem diameter; ltdv, villous length-to-diameter ratio; kv, villous Murray’s Law bifurcation exponent; θpd, parent-daughter

branching angle; θdd, daughter-to-daughter branching angle; CCr, central cavity radius; CCh, central cavity height; cf1, cf2, global distribution penalty

weights.

https://doi.org/10.1371/journal.pcbi.1012470.g010
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parameters. For instance, the standard deviation of ltdv has minimal impact on most outputs,

suggesting its limited importance in villous tree generation. Parameters related to placentome

shape (e.g., V, 2thalf, CCr, CCh) do not significantly affect global branching angles, branching

ratios, or average path lengths. These inputs mainly influence vessel distribution within a vol-

ume (e.g. mean vascular density) and may lead to localized changes in topological statistics

without exerting widespread global effects.

Analysis of stochastic effects

Variability in output metrics from multiple algorithm runs. Key output metrics evalu-

ated for variability between algorithm runs include vessel path lengths, branching angles, ter-

minal diameters and lengths, length-to-diameter ratio and branching generations. This

variability is statistically represented in Fig 11 using boxplots of KL divergence results. KL
divergences obtained for healthy chorionic and villous vessels are represented in Fig 11A and

11B, while Fig 11C and 11D focus on the differences in KL divergence linked to healthy and

dysfunctional placentone fetal trees. Additional output metrics are included in the Supporting

information (S1 Fig).

The generative algorithm yields vascular structures which are stochastic in nature. We can

observe high variability in output metrics between algorithm runs: the median KL divergence

fluctuates between 0 and 0.46 for different output metrics in Fig 11A and 11B, with the upper

quartile peaking at 1.19 in the case of chorionic vessels. Maximum boxplot scores (excluding

outliers) range from 2 to 2.65. We observe a high KL divergence dispersion and the presence

of outliers (KL> 3) for most of the metrics associated with chorionic vessel structures (Fig

11A). While a series of outliers remains for the metrics associated with villous tree structures

(Fig 11B), the highest KL divergence dispersion is observed for the path length.

We can observe that the stochastic KL divergence for the output metrics associated with

FGR fetal trees (Fig 11C) is higher in comparison with that depicted in Fig 11B) for healthy

fetal trees. This is especially true for the mean path length output metric, where the KL diver-

gence upper quartile exceeds 2, whereas for the healthy fetal tree it is below 1 (as shown in Fig

11B). This suggests that it is not possible to generate a dysfunctional vascular structure when

using input parameters associated with a healthy one. (Fig 11D) displays even higher KL diver-

gences for output metrics from paired healthy and FGR fetal trees. For instance, the KL diver-

gence lower quartiles associated with mean path length, mean diameter of terminal segments

and mean terminal length exceeds 6, while the upper quartile is beyond 20 for mean path

length. These results further emphasize the topological differences between healthy and dys-

functional fetal vasculatures.

Variability in vascular density: A two-case assessment. Two feto-placental vasculatures

generated with input parameter settings from Section Generating healthy and dysfunctional

feto-placental vasculatures and with different umbilical cord insertion locations were assessed

for differences in vascular spatial variability, vascular density and supply asymmetry.

As displayed in Fig 12A and 12B, the feto-placental chorionic vasculatures generated

include dichotomous and monopodial branching patterns. The percentage of monopodial

branches in the non-central and centralised umbilical insertion vascular structures showcased

here is 21% and 25%, respectively. This demonstrates that there is no preference for either

branching mode with varying umbilical insertions. There is, however, asymmetry in the vascu-

lar volumes supplied by each umbilical artery, which is higher in the case of a non-central cord

insertion (Fig 12A). For this structure, the arterial volume is distributed in a 0.37:0.63 ratio,

while the vascular structure with a centralised cord insertion (Fig 12B) has a ratio of 0.48:0.52.

In addition to this asymmetry in blood supply, these vascular structures have different mean
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Fig 11. Boxplots displaying KL divergence results, indicating variability of key topological metrics obtained after multiple algorithm runs for

the generation of chorionic vessels (A) and villous vessels (B-D). Each output metric is modeled as a Gaussian distribution, and Eq 24 calculates

the KL divergence between pairs of Gaussians from the output space. With 50 algorithm runs, this results in 1225 Gaussian combinations and KL
divergence values per output metric, represented for (A) chorionic vessels, (B) healthy villous vessels, and (C) FGR-associated villous vessels. (D) A

similar analysis using 50 healthy and 50 FGR fetal trees was conducted, focusing on healthy-dysfunctional output metric pairs to derive the KL
divergence.

https://doi.org/10.1371/journal.pcbi.1012470.g011
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vascular densities (non-central: 0.75±0.32%; centralised: 0.89±0.38%); however, other key

topological metrics for the whole feto-placental vascular structure remain mainly unaffected

(Fig 12C).

Regarding the chorionic vasculature exclusively, additional topological metrics can demon-

strate structural differences between centralised and non-central umbilical insertions. A cen-

tralised insertion is associated with 3.85±1.71 mean branching generations, spanning 3–5

generations to reach the placental periphery. On the other hand, a non-central insertion is

associated with 4.27±2.04 mean branching generations, requiring 4–7 generations to reach the

placental periphery. This difference in branching generations is also reflected in the entire

pathway from the umbilical cord to terminal vessels, which is higher in the case of non-central

insertion (125.09±28.84 mm) when compared to centralised insertion (121.17±14.15 mm).

This is associated with increased variability in vessel pathways for a non-central insertion vas-

culature, as indicated by the increased standard deviation. Moreover, the vasculature with cen-

tralised insertion has a higher spread of chorionic vessels throughout the chorionic plate when

compared to the one with non-central insertion (66.9 versus 58.4, respectively).

Fig 13 shows the spatial distribution of feto-placental vessels for each vascular structure,

including (a) isosurface maps of nodal density and (b) mean vascular density maps averaged in

the z-direction. No spatially consistent difference in villous vessel density can be observed

within the placental volume, with both structures having a marked degree of heterogeneity.

This is demonstrated by comparable coefficients of variation in vascular density for both struc-

tures (81.3% vs 82.1%). Both vasculatures are also characterised by reduced vascular density in

the placental periphery, with higher vessel density inward.

Placentone fetal trees

Key topological metrics for the three placentones created using input parameters from Section

Generating healthy and dysfunctional feto-placental vasculatures are presented in Fig 14.

Strahler diameter and length ratios remained relatively unaltered across placentones, with the

FGR case yielding a higher maximum Strahler order and a smaller Strahler branching ratio in

comparison with other placentones (2.24 vs 2.43 and 2.47), associated with more symmetric

branching. Mean path lengths from stem trunks to terminal endpoints, also showcases in the

first row of Fig 15, were similar for healthy and mega jet cases (26.80±1.87 and 26.40±2.18

mm). The presence of a SA mega jet leads to a spatial redistribution of villous vessels where the

Fig 12. Feto-placental vasculatures with non-central (A) and centralised (B) umbilical artery insertion. Red (left vasculature) and black (right

vasculature) represent vessels fed by each umbilical artery. A comparison of mean key vessel topological metrics is also displayed (C).

https://doi.org/10.1371/journal.pcbi.1012470.g012
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central region of the placentone is vessel-free. This is also observed in the second row of Fig

15, where the central region does not have associated nodal density. Moreover, vessels appear

to spread less across the whole placentone. These features are associated with a smaller mean

vascular density in comparison with the healthy tree (0.74±0.36 vs 0.84±0.32%). As expected,

the FGR placentone yields lower mean path lengths (18.55±1.27 mm), lower terminal vessel

diameters (0.018±0.006 mm vs 0.026±0.005 mm) and lower mean vascular density (0.20±0.09

vs>0.70±0.30%) when compared to the first two cases. This is also evident in Fig 15, where

the FGR tree exhibits significantly reduced dimensions, associated with growth within a con-

centrated area of the placentone and a poorly perfused placentone periphery.

Discussion

A new generative model for controlled synthetic feto-placental vasculature

creation

In this paper, we present a novel generative algorithm of feto-placental vasculature morphol-

ogy. We create a pipeline characterised by: (1) its flexibility, allowing for the automated and

user-controlled generation of tailored geometrical models of the full feto-placental vasculature

or of its individual components; (2) the application of directly imposed morphological param-

eters (either obtained via medical imaging or determined by the user) which guide feto-

Fig 13. Vascular density computed for feto-placental vasculatures at an isotropic voxel size of 116.5 μm. Isosurface maps of nodal density

and mean vascular maps are displayed for non-central (A,B) and centralised (C,D) umbilical cord insertion, respectively.

https://doi.org/10.1371/journal.pcbi.1012470.g013
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placental vasculature growth; (3) the dependence of generated vascular structural metrics on

key parameters such as branching angles and length-to-diameter ratios, as determined by the

global sensitivity analysis performed; (4) the stochastic nature of outputted structures, as evi-

denced by varying topological metrics between runs with the same input parameters; (5) the

heterogeneity in spatial vascular density for generated feto-placental vasculatures.

Whilst we suggest appropriate parameter distributions for healthy and dysfunctional pla-

centas at 35 gestational weeks, we do not claim that these are precise. However, they are rea-

sonable estimates according to the current literature. We anticipate that parameters will be

updated as new morphometric evidence emerges, or adjusted according to gestation or pathol-

ogy. With the suggested parameter ranges, morphological and topological properties of the

placental shape and feto-placental vascular structures generated with our model are compara-

ble to in vivo and ex vivomeasured properties, as well as in silico computational geometries

(see Assessment of general topological properties and comparison with literature). We empha-

size that these, particularly the in silico estimates, should not be considered absolute gold stan-

dards for validation but are provided simply for comparison. These structures are inherently

stochastic, as generative parameters are controlled by Gaussian and uniform distributions

resulting in parameters which vary at each branching generation and variability in topological

metrics between algorithm runs.

As per the sensitivity analysis performed, the chorionic and villous vascular structures

obtained and associated spatial distribution critically depend on the global distribution penalty

Fig 14. Comparison of key mean topological metrics for three distinct placentones. Metrics obtained for a healthy fetal

tree, a fetal tree obtained with spiral artery mega jet and a fetal tree associated with fetal growth restriction are represented.

https://doi.org/10.1371/journal.pcbi.1012470.g014
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weights (cf1, cf2). This highlights how important these penalty weights are in promoting appro-

priate spatial distribution of vascular structures: a decrease in cf1 (and therefore higher cf2)

yields vasculatures with less spatial dispersion and more oriented towards the basal plate, while

higher cf1 values allow for a greater maximisation of the distance between branches, associated

with greater spread. The Supporting information also includes examples of placentone fetal

trees (S2 Fig) and key topological metrics obtained for chorionic (S2 Table) and villous vessels

(S5 Table) generated with different penalty weights. Branching properties and spread of chori-

onic and villous vessels are also highly dependent on the optimisation of branching angles. On

the other hand, the mean stem diameter influences all topological metrics of generated villous

trees. Both chorionic vessels and villous tree structures appear strongly asymmetric in branch-

ing, as given by Strahler branching ratios beyond 2.3. These computational results are similar

to those obtained by a previous in silico study [20].

The structure of complete feto-placental vasculatures is affected by input parameter distri-

butions and the location of umbilical cord insertion; however, branching statistics remain

mainly unaffected, similarly to previous computational geometries imposing heterogeneous

regional vascular densities [21]. Mean vascular densities varied between structures with non-

central and centralised umbilical cord insertion, still within the ranges reported by Aughwane

et al. for voxel size� 116.5 μm (0.5 ± 0.5%, range 0.3–1%). Higher vascular density was also

observed in the inner regions of the placenta. This agrees with the results obtained by

Fig 15. Placentone fetal trees of up to 15 branching generations, created for three distinct topological cases. Top row: path length (mm) for a healthy

fetal tree, a tree in the presence of a spiral artery mega jet, and a tree in the presence of fetal growth restriction. Bottom row: axial slices of nodal density for

all three fetal trees.

https://doi.org/10.1371/journal.pcbi.1012470.g015
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Aughwane et al., which show a downward trend of vessel density towards the periphery [27].

According to Byrne et al.’s ex vivo analysis of feto-placental vascular architecture, a non-central

umbilical insertion is associated with a more unequal arterial supply (0.34:0.66 ratio) when

compared to a centralised insertion (0.55:0.45 ratio) [21]. Our results showcase a similar trend

(non-central insertion: 0.37:0.63 ratio; centralised insertion: 0.48:0.52 ratio). Moreover, Byrne

et al. noted that vascular structures with a non-central insertion tend to exhibit greater vari-

ability in regional vascularisation compared to a centralised insertion, often presenting larger

areas of lower density vasculature [21]. This is reflected by a higher coefficient of variation in

vascular density (86.1 vs 76.9%). While our two feto-placental vasculatures showcase variability

in regional vascularisation, this remains consistent regardless of whether the umbilical inser-

tion is non-central or centralised, as showcased by similar coefficients of variation in vascular

density (81.3 vs 82.1%). Thus, to further investigate the structural disparities among vascular

configurations with different umbilical insertions, it would be necessary to generate a larger

dataset of feto-placental vascular structures and assess their regional vascular density.

Our algorithm also supports dichotomous and monopodial branching in the generation of

chorionic vessels, although there is no preference for either branching mode in feto-placental

vasculatures with different umbilical artery insertions. It has been previously shown that a

non-central umbilical insertion is associated with a higher number of monopodial chorionic

branches, while a centralised umbilical insertion yields a chorionic architecture which is

mostly dichotomous [51]. The implementation of preferential branching patterns associated

with specific umbilical cord insertions remains an aspect to be improved in future code release

versions.

We do not directly model vascular architectures that mimic specific clinical phenotypes;

instead, topological changes on vascular structures are induced by modified morphological

inputted parameters, such as in the case of the placentone fetal tree associated with FGR (see

Section Placentone fetal trees). Previous research using micro-CT and corrosion casting tech-

niques to quantify feto-placental vasculature established a connection between FGR and

poorly vascularised villi associated with impaired vascular branching and density, typically

leading to hypovascular regions in the placenta [21, 72]. Our results for modelled FGR show-

case these altered vascular density patterns, with a higher number of branches in the inward

placentone volume and a poorly perfused peripheral region.

Comparison with other state-of-the-art methodologies

Recent frameworks for the generation of feto-placental vasculatures at a multi-scale level focus

on area- or volume-filling approaches, which intend to “fill” a certain area or volume based on

a heuristic generation of the feto-placental vasculature [20, 21, 32]. While these can generate

feto-placental vasculatures ready for anatomically based modelling of the placenta, they lack

the flexibility to directly control key morphological parameters. Our generative algorithm, on

the other hand, is flexible, enabling the direct control of a range of morphological parameters

and allowing us to generate a section of the feto-placental vasculature or the complete

structure.

Like previous computational studies [20, 21, 32], feto-placental vessels are simplified in

shape and assumed to be cylindrical tubes. Despite yielding topological and morphological

metrics comparable to those reported in the literature, this feature will neglect the develop-

ment of asymmetric blood flow profiles usually present in tortuous vasculatures [73]. Three-

dimensional realistic geometries have been used in the simulation of blood flow [74] and/or

solute transport [23] in the placenta; however, due to computational restrictions, these are typ-

ically limited to components of the vasculature, not accounting for the entire structure. We
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also adopted a cuboid placentone definition as opposed to ellipsoidal or cylinder, following on

the definition employed by Saghian et al. in a previous computational study [3]. This choice

simplifies mesh surface generation and the mathematical definition of a central cavity in com-

parison with a more complex placentone shape. Moreover, it helps reduce computational costs

associated with fetal tree generation and iterative branch-to-mesh intersection checks.

The feto-placental vascular structures generated follow statistical distributions guided by

data from the literature (when possible), with algorithm stochasticity emerging from these.

This means that the same set of inputted parameters can yield different network structures,

guaranteeing a variable distribution of vessels within the placental volume compared to that

obtained when using deterministic algorithms which impose this heterogeneity as a direct con-

straint [21]. This provides capability not available with previous computational algorithms for

the feto-placental vasculature, underpinning future computational experiments on how initial

settings affect the generated structures. Whilst stochastic, our algorithm can reproduce the

same structure given the same set of user-defined parameters by fixing the random seed in

MATLAB with its rng function, not comprisiming reproducibility of vascular structures. Simi-

larly to other computational approaches [20, 21, 32], we do not directly model the fundamental

mechanical and chemical processes which drive feto-placental vascularisation throughout

pregnancy. However, many of our algorithm choices mimic these processes indirectly. A

computational model directly incorporating these would require additional data for validation,

including transient data obtained from the quantification of feto-placental vasculatures

throughout pregnancy, as well as a range of functional properties such as oxygen gradients in

the IVS. Given the complexity of the feto-placental vascularisation throughout pregnancy, this

remains an open challenge for the development of future computational models applied to the

placenta.

In addition, whilst we do not directly model the venous vasculature, we account for the

space to be occupied by it via branching generation constraints (see Section Computational

implementation: Branch intersection checks). This represents an enhancement compared to

prior volume-filling methods, where venous vessels are assumed to occupy the same three-

dimensional space as arterial vessels, with double the radius. While such an approach produces

vascular structures with appropriate topological and branching characteristics, it yields inaccu-

rate vascular densities if not guided by medical imaging.

Potential applications and future perspectives

Our computational pipeline is versatile. When combined with a blood flow model implemen-

tation (e.g. [20, 21, 32, 75, 76]), it enables the assessment of functional metrics associated with

different feto-placental vascular structures. Our objective is to provide full flexibility in select-

ing input parameters, which will be better informed as imaging methods and as imaging data

analyses improve, and by allowing the incorporation of morphometric data across spatial

scales (e.g. ex vivo synchrotron computed tomography [77]). In fact, future quantitative assess-

ments of the placenta will provide carefully drawn feto-placental vascular structures and asso-

ciated sets of key morphological parameters. This will provide a biological counterpart for

additional structural validation of the vasculatures generated with our algorithm. Incorporat-

ing additional morphometric data on vessel geometry (e.g. vessel cross-section) and potentially

subdividing vessel segments to yield more complex structural shapes will enable pipeline

refinement in upcoming iterations. Moreover, all feto-placental vascular structures presented

and analysed in this paper are based upon an idealised placental shape. Upcoming iterations to

the pipeline include the direct use of patient-specific placental surfaces obtained from medical

imaging.
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By using a range of input morphological parameters, different gestational ages and patho-

logical conditions can be generated, offering valuable insights into both morphological and

functional changes [6, 9, 10, 68, 78]. On the other hand, there is a range of clinical phenotypes

of interest which are associated with alterations to the feto-placental vasculature. For example,

poor maternal flow into the IVS yields reduced oxygen delivery to the villi, which leads to

hyper-branching patterns as an adaptive response to increase fetal uptake [79, 80]. Whilst we

do not model these patterns directly, we acknowledge that this is a desirable feature in future

code releases (e.g. including additional user options to control branching patterns by decreas-

ing/increasing the number of branching nodes in a vascular network).

In addition, our generative algorithm complements in silico techniques for the simulation

of MRI signals (e.g. [81, 82]), linking observed changes in MRI signals to specific placental per-

turbations. For example, FGR, characterised by smaller placental shapes and geometric alter-

ations in the feto-placental vasculature, has been associated with reduced placental MRI T∗
2

[83, 84] and diffusivity [84, 85].

Conclusion

In this study, we introduce a novel generative algorithm for creating in silico placentas. This

flexible algorithm allows for user-controlled parameters, enabling automated generation of tai-

lored geometrical models of feto-placental vasculatures, both as individual components (pla-

cental shape, chorionic vessels, unique fetal tree in a placentone) and as a complete structure.

We demonstrate the versatility of this framework through clinically-relevant examples and

assess the morphological and topological properties of the generated vasculatures against in
vivo and ex vivomeasurements and in silico predictions. We highlight the importance of vessel

length variations and branching angles in shaping placental vasculatures generated with our

algorithm. Further, the pipeline generates spatially varying vascular structures typical of the

placenta, crucial for reflecting the complexity of real placental vasculature. It could be used in

future studies to study of the impact of various morphological parameters on feto-placental

vasculature function, not only enabling investigations into regional variability in perfusion

and vascular resistance but also facilitating the representation of pathological conditions with

significant clinical implications.

While our current focus is on generating arterial networks, we acknowledge the challenges

associated with modelling downstream vessels. We propose future developments, including an

appropriate representation of venous placental circulation and capillary pathways. The flexibil-

ity of the algorithm and control over key morphological parameters offer exciting possibilities

for more in-depth investigations into the structural and functional characteristics of placental

vascular networks and their role in pregnancy-related complications.

Methods

Computational implementation: Algorithms

Algorithms 1 and 2 describe the generation of chorionic and villous vessels in detail.
Algorithm 1 Generation of chorionic vessels
while i � bgc & number of segments � bnc do

⊳ Loop through undetermined segments
Obtain list of current terminal nodes
for terminal nodes ct 2 list do
Assess branch termination
if branch is not terminated then obtain parent node Ci−1

⊳ Generation of daughters B1, B2
while B1 = [ ] and B2 = [ ] do
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Use Eq 7 and defined kc to obtain desired daughter branch diame-
ters di

1
, di

2
Obtain desired parent-daughter branching angles y

i
pd1
, y

i
pd2

Use Eq 27 to obtain desired ltdi
c and derive daughter branch

lengths li
1
, li

2

for all candidate nodes n 2 chorionic plate mesh do
Use Eq 12 to compute lf and θf

⊳ In the case of daughter B1
Compute branching angle and Euclidean distance between cur-

rent node 2 ct and candidate node 2 n
if branching angle 2 θf & Euclidean distance 2 lf then
Add candidate node to saved nodes δ and store loss function

value in L (Eq 21)
end if

⊳ In the case of daughter B2
Compute branching angles between (1) current node 2 ct and

candidate node 2 n and between (2) B1 and candidate node
Compute Euclidean distance between current node 2 ct and can-

didate node 2 n
if branching angle (1) 2 θf & Euclidean distance 2 lf &

branching angle (2) 2 [θdd(min), θdd(max)] then
Add candidate node to saved nodes δ and store loss function

value in L (Eq 21)
end if
for all saved nodes 2 δ do
if candidate branch intersects other tree segments then test

next node
else if list of saved nodes = [ ] then break
else B1,2 = node 2 δ
end if

end for
end for

end while
end if
Add nodes to Tree

end for
i = i+1

end for
Algorithm 2 Generation of villous trees

while i � bgv do
⊳ Loop through undetermined segments

Obtain list of current terminal nodes
for terminal nodes ct 2 list do
Assess branch termination
if branch is not terminated then obtain parent node Cg−1 and parent-

parent node Cg−2
Calculate nV using Eq 14

⊳ Generation of daughters B1, B2
while B1 = [ ] and B2 = [ ] do
Use Eq 7 and defined kv to obtain desired daughter branch diame-

ters di
1
;di

2

Obtain desired parent-daughter branching angles y
i
pd1
; y

i
pd2

Obtain desired ltdi
v and derive daughter branch lengths li

1
;li

2

Define spherical surfaces Si
1
;Si

2
of radius li

1
;li

2
) of uniformly

sampled nodes and split nodes using nV
⊳ In the case of daughter B1

for all candidate nodes n 2 Si
1
do

use Eq 12 to compute θf
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Compute branching angle between current node 2 ct and candi-
date node 2 n

if branching angle 2 θf then
Add candidate node to saved nodes δ and store loss function

value in L (Eq 23)
end if

end for
⊳ In the case of daughter B2

for all candidate nodes n 2 Si
2

use Eq 12 to compute θf
Compute branching angles between (1) current node 2 ct and

candidate node 2 n and between (2) B1 and candidate node
if branching angle (1) 2 θf & branching angle (2) > θdd(min)

then
Add candidate node to saved nodes δ and store loss function

value in L (Eq 23)
end if

end for
for all saved nodes δ do
if candidate branch intersects other segments or outer domain

then test next node
else if list of saved nodes = [ ] then break
else B1,2 = node2 δ
end if

end for
end while

end if
Add nodes to Tree

end for
i = i+1

end while

Computational implementation: Fine-tuning spatial distribution of feto-

placental vasculature

Our algorithm incorporates global branch distribution penalties encoding tree properties that

are used to influence the spatial distribution of segments in both the chorionic plate and the

IVS. For both cases, these metrics are utilised to calculate a score for each candidate daughter

node in the list. Nodes on the list are then assigned a rank, indicating the preferred nodes for

selection. These scores are inspired by the vessel space-filling forces reported in Yang et al.,
which aim to provide a realistic spatial distribution of vascular structures [86].

Chorionic vessels. The global penalty for each candidate daughter node is determined by

two distances: its distance to other vascular nodes (D1), which is maximised, and its distance to

the chorionic plate centroid (D2), which is minimised.

Remembering Eq 17 and assuming a list of candidate daughter nodes defined by δi = (Xi,
Yi, Zi), we define

D1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

ðdi � CiÞ
2

s

and D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

ðdi � GiÞ
2

s

ð20Þ

where Gi is the chorionic plate centroid. By normalising D1 and D� 1
2

, we can then define scores

L for all nodes in δ:

LðdiÞ ¼ cf1 � D1i þ cf2 � D2i; ð21Þ
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where cf1 and cf2 are weights. L is then sorted in descending order to define the overall ranking

of candidate daughter nodes.

Villous vessels. Two main distances control the generation of new villi in the IVS, specifi-

cally the distance between the candidate daughter node and: (1) the plane characterised by

normal nV (Eq 14) (D1), which provides a spatial division between daughter segments and is

maximised; (2) the basal plate (D2), which is minimised.

Assuming the same notation for a tree and candidate daughter nodes as in subsection Cho-

rionic vessels, and defining each parent-parent node as Cg−2 = (Cg−2,1, Cg−2,2, Cg−2,3) we state

D1 ¼
jdi � Aþ di � Bþ di � C þ Ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2 þ C2
p and D2 ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

ðdi � mbiÞ
2

s !

; ð22Þ

where I = −(A � Cg−2,1 + B � Cg−2,2 + C � Cg−2,3) andmbi are the basal plate mesh nodes. By nor-

malising D1 and D� 1
2

, we can then define scores L for all nodes in δ:

LðdiÞ ¼ cf1 � D1i þ cf2 � D2i; ð23Þ

where cf1 and cf2 are weights. L is then sorted in descending order to define the overall ranking

of candidate daughter nodes.

Computational implementation: Branch intersection checks

During the generation process of chorionic and villous vessels, intersection checks are con-

ducted. Villous vessels are assessed for intersections with the outer domain mesh and other

segments, while chorionic vessels are only evaluated for intersections with other segments.

The evaluation and resolution process involves the following steps: (1) Checking intersections

between segments and the placental mesh; (2) Defining a region of interest (ROI) for branch-

to-branch intersection checks; (3) Performing a preliminary test for branch-to-branch inter-

sections assuming infinite cylinders; (4) Conducting a complete test for branch-to-branch

intersections assuming finite cylinders.

1. Branch-to-mesh intersection

All candidate daughter nodes are tested on whether they are inside or outside a certain

closed triangulated mesh (either the placentone geometry or the placental surface). This is

done via a MATLAB pipeline which employs a mesh voxelisation algorithm to convert the

triangulated mesh into a voxelised image. A ray intersection method is then used to deter-

mine the intersection points of rays and occupied cells in the image [87].

2. Definition of region of interest

To detect branch-to-branch intersections within appropriate computational cost, only the

branches in closest proximity to the candidate daughter branch are considered for branch-

to-branch intersection tests. For each candidate daughter branch of length li, a spherical

ROI of radius (3/5)li is centered at the branch midpoint. This particular radius was deter-

mined through heuristic exploration of various scaling factors and visual inspection of the

generated vascular structure. A scaling factor of (3/5) (equivalent to a ROI diameter of 1.2li)
ensures that the ROI fully encapsulates the candidate daughter branch. This is mathemati-

cally sufficient to determine whether any branch-to-branch intersections occur, while keep-

ing a suitable computational cost (a larger spherical ROI would encompass additional

branches unnecessarily, resulting in increased computational times). Any vascular branches

with start/end nodes inside the ROI are stored and tested for intersections with the candi-

date daughter branch (steps 3 and 4).
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3. Infinite cylinder testing

A preliminary branch-to-branch test assuming the segments as infinite cylinders is per-

formed by computing the line-to-line minimum distance, DLij. For two segments Bi and Bj
defined by start and end nodes (Si, Ei) and (Sj, Ej), diameters di and dj, and direction vectors

ui and uj, DLij is calculated as

DLij ¼

ðui � ujÞ � SiSj
jui � ujj

�
�
�
�
�

�
�
�
�
�
; if jui � ujj 6¼ 0

jui � SiSjj
juij

� �

; otherwise:

8
>>>>><

>>>>>:

ð24Þ

The minimum DLij required to prevent branch-to-branch intersection is equal to or above

di
2
þ

dj
2

� �
, which includes branches in contact [81]. To account for empty space to be occu-

pied by venous vessels, we adapt this threshold by including two venous branches with radii

of 3

2
�
di
2

and 3

2
�
dj
2
, respectively [59], as stated in Model section Morphological metrics com-

puted. The new threshold for all branches becomes:

DLij �
di
2
þ
dj
2

� �

þ
3

2
�
di
2
þ

3

2
�
dj
2
¼ 5 � ðdi þ djÞ ð25Þ

Since we want to avoid branch-to-branch contact and allow sufficient space for additional

vessels, we assume

DLij > 7 � ðdi þ djÞ ð26Þ

If Eq 26 is respected, the candidate daughter branch is accepted; otherwise, the algorithm

proceeds to step 4.

4. Finite cylinder testing

The point coordinates and radius defining both segments are used to create 3D parametric

surface cylinders. These are used as input to generate triangulated mesh surfaces using pre-

defined MATLAB functions [54]. The surface meshes are then converted to convex meshes

(i.e. meshes with all internal angles < 180˚), since these are easier to represent and process

in MATLAB for collision detection. These convex meshes are then tested for collision using

a built-in function from the Robotics System Toolbox based on the Gilbert–Johnson–

Keerthi (GJK) distance algorithm [88]. This algorithm computes the Euclidean distance

between two convex shapes to detect if they intersect or collide. It starts with an initial sim-

plex (the smallest shape containing the origin) which is iteratively updated by calculating

the farthest points along the surfaces of the shapes in the direction of the vector between

their respective centers. This process refines the approximation of the closest points

between the shapes until convergence or until reaching a maximum number of iterations.

At each iteration, the algorithm checks if the origin lies within the convex hull formed by

the simplex: if it does, this indicates an intersection between the shapes, prompting algo-

rithm termination.

If no collisions are detected during checks 1–4, the candidate daughter branch is accepted.
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Computer specifications and algorithm performance

All computations and analysis related to chorionic vessels and placentone fetal trees were per-

formed on a personal laptop with a processor Intel Core i7–10870H CPU @ 2.20GHz, 64 GB

RAM memory and NVIDIA GeForce RTX 3080 Laptop GPU with 16 GB RAM. Computations

related to complete feto-placental vasculatures were performed using super-computing facili-

ties (Computer Science High Performance Computing Cluster, University College London),

using 1 core with 64 GB RAM for each model run. The computational cost for generating vas-

cular structures varied by type and input parameters. Creating placentone fetal trees (up to 15

branching generations, with 9,950 to 17,684 branches) took 2–4 minutes. For the chorionic

vessels (up to 6 branching generations), the computational time was 8–12 minutes. The com-

plete feto-placental vasculatures, with 929,157 and 849,085 branches for centralised and non-

central insertion structures, respectively, took *2.5–3.5 days due to the increased structural

complexity and numerous intersection checks. While execution times for previous fetoplacen-

tal vasculature generation algorithms are not currently available, our computational perfor-

mance shows improvement compared to earlier published algorithms for cerebrovascular

generation (e.g. *76 minutes for 4,565 branches) [89] and adaptive constrained constructive

optimization methods for the synthetic vascularization of complex anatomies (e.g. *23 hours

for 8,000 terminal branches) [90]. However, there is still room for improvement in future algo-

rithm releases to reach computational times similar to the accelerated constrained constructive

optimisation techniques aimed at enhancing algorithm performance (e.g. *39 seconds for

16,000 branches) [91].

Tunable parameter definitions and suggested ranges

We consult the literature to estimate plausible statistical distributions for each parameter and

sample parameters from these distributions to generate placental structures stochastically. We

emphasise that our intention is that these parameter choices are flexible, and should be

adjusted based on the desired morphometric statistics and user-dependent choices. This

enables generation of healthy or dysfunctional placentas at different stages of gestation,

depending on the input provided.

Tables 6–9 show all tuneable input parameters and assumptions for their definition, given

our literature-based estimates, and provide plausible ranges for healthy and dysfunctional

scenarios.

Placental size/shape and cord insertion. Table 6 outlines our assumptions and plausible

ranges for the parameters that control placental size, shape and cord insertion.

Table 6. Tuneable algorithm input parameters for the generation of placental size and shape and cord insertion with suggested literature-based estimates.

Placental size/shape and cord insertion

Parameter Assumptions Input: healthy Input: dysfunction

V Uniform distribution [6] * Unif(400, 500) cm3 within last ten weeks of

gestation [39, 48, 64, 66]

# 20–45% [6, 38, 39]

rmaj Normal distribution [37, 49] � N ð9:07; 0:181Þ cm post-delivery [37] mean value # 0.5–4%

[92]

E Normal distribution [36] � N ð0:49; 0:17Þ [36] mean value " 0–8% [36]

CCI Normal distribution [36] � N ð0:36; 0:21Þ [36] mean value # 0–11 or "

0–8% [36]

mt Relaxingmt enables generation of placentas with marginal cord insertion

(adverse fetal/maternal outcomes) ([68])

20 mm [68] < 20 mm [68]

https://doi.org/10.1371/journal.pcbi.1012470.t006

PLOS COMPUTATIONAL BIOLOGY A flexible generative algorithm for growing in silico placentas

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012470 October 7, 2024 37 / 45

https://doi.org/10.1371/journal.pcbi.1012470.t006
https://doi.org/10.1371/journal.pcbi.1012470


Chorionic vessel generation. Table 7 outlines our assumptions and plausible ranges for

the parameters that control the generation of umbilical and chorionic vessels. The chorionic

length-to-diameter ratio ltdc varies over branching generations. Control placenta data col-

lected as part of the National Children’s Study [32] has been used to derive a polynomial fit

representing the length-to-diameter ratio (ltd) as a function of the branching generation (g):

ltdcðgÞ ¼ ag3 þ bg2 þ cg þ d; ð27Þ

where a is 0.02629, b is -0.655, c is 5.176 and d is -0.7898.

Placentone domain generation. Table 8 outlines our assumptions and plausible ranges

for the parameters that control placentone size and shape, as well as central cavity dimensions.

Villous vessels generation. Table 9 outlines our assumptions and plausible ranges for the

parameters that control the generation of villous vessels. Post-delivery microscopic analysis of

terminal villi [10] and image-based computational models of villous trees [21] show great vari-

ability in vessel branching angles. These range from 40 to 70˚ in terminal vessels [10] and are

reported as a normal distribution in computationally generated villous trees [20, 21]. Normal

distribution branching angle estimates from Clark et al. and Byrne et al. indicate elevated stan-

dard deviation (e.g. N ð46:16; 30:20Þ
�
). As such, we assume that parent-daughter branching

angles can be characterised by a normal distribution, as showcased in Table 9.

Similarly to the chorionic vasculature, we expect the villous length-to-diameter ratio ltdv to

vary over branching generations. Previous computational models of the placenta represent the

overall placental ltd as a normal distribution with elevated standard deviations (e.g.

Table 7. Tuneable algorithm input parameters for chorionic vessel generation with suggested literature-based estimates.

Chorionic vessel generation

Parameter Assumptions Input: healthy Input: dysfunction

ud Normal distribution [62] � N ð4:6; 0:9Þ mm at 35 weeks of

gestation [62]

mean value # 20% [66]

ltdc Normal distribution [20, 21] � N ðltdcðgÞ; 1Þ, see Eq 27 " 5–10% [32]

kc Relaxing kc enables changes in the relationship between vessel

diameter and branching generations

3.2 at 35 weeks of gestation, inferred from

data from [32]

increasing or decreasing kc yields larger or

smaller vessel diameters

θdd Uniform distribution [51] * Unif(70, 100)˚ [51] # 0–8% [93]

θpd Uniform distribution inferred from θdd * Unif(35, 50)˚ # 0–8%

a Normal distribution [86] � N ð1; 0:05Þ [86] sigma value > 0.05 ("a)

bgc - 6–8 [43, 51, 52] -

bnc - 60–100 [43, 51, 52] # 45% [44]

cf1 - 0.3–0.7 -

cf2 - 0.3–0.7 -

https://doi.org/10.1371/journal.pcbi.1012470.t007

Table 8. Tuneable algorithm input parameters for placentone domain generation with suggested literature-based estimates.

Placentone domain generation

Parameter Assumptions Input: healthy Input: dysfunction

V Uniform distribution [6] * Unif(400, 500) cm3 within last ten weeks of gestation [39, 48, 64, 66] # 20–45% [6, 38, 39]

2thalf - 24 mm at 35 weeks of gestation [3, 6] # 25% [44]

np - 60–100 at 35 weeks of gestation [3, 6, 43, 52] # 45% [44]

CCr - 1.88 at 35 weeks of gestation [3] no change [3]

CCh - 5.6 at 35 weeks of gestation [3] " 100–300% [3]

https://doi.org/10.1371/journal.pcbi.1012470.t008
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N ð15:87; 8:21Þ mm) [20, 21]; This may be explained by the fact that these estimates represent

the entire feto-placental vasculature, and therefore such a large standard deviation may not be

appropriate for the generation of villous trees.

Supporting information

S1 Fig. Boxplots showcasing variability of additional key topological metrics obtained

after 50 algorithm runs for the generation of a) chorionic vessels and b) villous vessels.

(TIF)

S2 Fig. Placentone fetal trees generated with different global branch distribution penalty

weights while keeping other input parameters fixed. a) Fetal tree generated with cf1 = 0.4

and cf2 = 0.6. b) Fetal tree generated with cf1 = 0.8 and cf2 = 0.2.

(TIF)

S1 Table. Key topological metrics obtained for chorionic vessels generated with different

seed numbers. The original chorionic plate surface mesh (1251 seeds) yields chorionic vascu-

lar structures with hindered topological metrics (e.g. lower number of chorionic vessels and

less branching generations), while the mesh with sub-triangulated elements (4951 seeds) gives

rise to better vascular structures (e.g. higher number of chorionic vessels with increased

spread).

(PDF)

S2 Table. Key topological metrics obtained for chorionic vessels generated with different

global distribution penalty weights (cf1, cf2). Higher cf2 values result in fewer chorionic ves-

sels, along with reduced spread and smaller mean path lengths. This is the result of vessels

being generated towards the centroid of the chorionic plate. Higher cf1 values, on the other

hand, promote greater vessel distribution across the chorionic plate, with an increased number

of vessels and longer mean path lengths, though this can cause vessels to bypass the inner

region of the chorionic plate. To achieve a balanced distribution of vessels while maintaining

appropriate topological characteristics, a middle range of values is recommended (e.g. cf1 =

0.3–0.7; cf2 = 0.3–0.7).

(PDF)

S3 Table. Key topological metrics obtained for chorionic vessels generated up to 8 branch-

ing generations with different tolerances in branch lengths (toll). While smaller toll values

Table 9. Tuneable algorithm input parameters for villous vessels generation with suggested literature-based estimates.

Villous vessels generation

Parameter Assumptions Input: healthy Input: dysfunction

ds Normal distribution � N ð0:7; 0:03Þ mm at 35 weeks of

gestation [43]

# 20% [66]

ltdv Normal distribution [20, 21] � N ð10:5; 1Þ -

kv Relaxing kv enables changes in the relationship between vessel

diameter and branching generations

3 at 35 weeks of gestation [43] increasing or decreasing kv yields larger or

smaller vessel diameters

a Normal distribution [86] � N ð1; 0:05Þ [86] sigma value > 0.05 (" a)

θpd Uniform distribution [20, 21] � N ð45; 20Þ
�

[10, 20, 21] mean value " 10–45% [10]

θdd - 25˚ no change

cf1 - 0.5–0.7 -

cf2 - 0.3–0.5 -

bgv - 13–15 [20, 21, 43] no change [44]

https://doi.org/10.1371/journal.pcbi.1012470.t009
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are associated with lower computational times, they hinder vessel generation as highlighted by

a smaller number of vessels and mean branching generations. In contrast, increasing toll values

lead to appropriate topological metrics, but at a much higher computational cost. Therefore, a

middle range toll (e.g. 1.5 mm, equivalent to 8–13% of chorionic vessel lengths) offers a bal-

anced compromise between optimal topological metrics and computational efficiency.

(PDF)

S4 Table. Key topological metrics obtained for chorionic vessels generated up to 8 branch-

ing generations with different tolerances in parent-daughter branching angles (tolθ). While

smaller tolθ values are associated with lower computational times, they hinder vessel genera-

tion as highlighted by a smaller number of vessels. In contrast, increasing toll values lead to a

greater number of generated vessels, but at a much higher computational cost. Therefore, a

middle range tolθ (e.g. 0.2182 radians, equivalent to 25–35% of chorionic vessel parent-daugh-

ter branching angles) offers a balanced compromise between optimal topological metrics and

computational efficiency.

(PDF)

S5 Table. Key topological metrics obtained for villous vessels generated with different

global distribution penalty weights (cf1, cf2). cf1 and cf2 greatly affect the spatial distribution

of vascular branches, as quantified by distances between vascular nodes and the basal plate

(Distance 1) or between different vascular nodes (Distance 2). To obtain fetal trees with appro-

priate spatial dispersion, a middle range of values is recommended (e.g. cf1 = 0.5–0.7; cf2 = 0.3–

0.5).

(PDF)

S6 Table. Key topological metrics obtained for villous vessels with different tolerances in

parent-daughter branching angles (tolθ). While smaller tolθ values are associated with lower

computational times, they hinder vessel generation as highlighted by fewer branching genera-

tions and lower vascular density. This is also quantified by distances between vascular nodes

and the basal plate (Distance 1) or between different vascular nodes (Distance 2). Increasing

toll values results in more branching generations, higher vascular density, and greater vessel

spatial distribution, though at a higher computational cost. Therefore, a middle range tolθ (e.g.

0.1178 radians, equivalent to 15% of villous vessel parent-daughter branching angles) offers a

balanced compromise between optimal topological metrics and computational efficiency.

(PDF)

S7 Table. List of abbreviations and parameters.

(PDF)

S8 Table. List of key parameter symbols used throughout the manuscript. The general form

is defined here, with some parameters being applicable to different scenarios (e.g. k can be
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