
Verifiable Querying Framework for
Multi-Blockchain Applications

Stanly Wilson∗‡, Kwabena Adu-Duodu∗, Yinhao Li∗, Ringo Sham∗, Ellis Solaiman∗, Omer Rana†, Rajiv Ranjan∗
∗Newcastle University, UK
†Cardiff University, UK

‡St. Vincent Pallotti College of Engineering & Technology, Nagpur, India

Abstract—Efficient and secure data retrieval from multiple
blockchain networks at the same time remains a critical chal-
lenge. We propose a novel framework that supports authenticated
data retrieval, ensuring integrity of the data to support both
users and regulatory bodies. Our framework provides a scalable
approach for information verification across diverse blockchain
systems, enabling metadata from various systems to be combined
to enable parallel querying across multiple blockchains.

Index Terms—Blockchain, Metadata, Query

I. INTRODUCTION

Blockchain is a distributed ledger technology (DLT) that
is immutable, tamper-resistant and provides a decentralised
store of chronologically recorded data. Unlike a traditional
database, blockchain does not support all the CRUD operations
(Create, Read, Update, Delete) due to its immutability. Hence,
the update is just another insertion, and the delete operation
is unavailable.

The transparent and immutable nature of a blockchain en-
sures that every transaction recorded is visible to all authorised
participants. Retrieving information from multiple blockchains
can be challenging due to the diverse nature of blockchain
platforms and the widespread use of private blockchains.
Interoperability issues arise as different platforms often use
distinct data structures and consensus mechanisms, making it
difficult to retrieve data seamlessly. The absence of standard-
ized query interfaces and varying smart contract languages
further complicates the process. Traditional blockchains only
store data on a single topic, and there are no requirements for
join operations. This is not the case while querying on multiple
blockchains where a common field is required to perform the
join operations [1]. The authors [2] had proposed a taxonomy
for data management on the blockchain and this work uses
concepts and ideas from it. This paper provides the following
contributions: (i) a framework to verify information from
multiple blockchains and which can scale to accommodate
more entities; (ii) enabling users/ regulatory bodies to gather
raw data using authenticated data structures (ADS) and execute
authenticated range queries; (iii) enable data verification from
multiple blockchains and perform authentication processes.
The rest of the paper is set as follows. Section II discusses a
few related works. Section III details the design of the frame-
work. Section IV analyses the query process and integrity

features. Section V provides framework evaluation. Section VI
concludes the work.

II. RELATED WORKS

The paper [1] surveys query processing in blockchain-
based systems and provides an overview of existing methods.
The paper [3] examines querying mechanisms from three
critical perspectives: efficiency, verifiability and security. For
each of these perspectives, the paper further categorizes and
explains the strengths and weaknesses of each approach.
Additionally, it provides several use cases to illustrate the
challenges that blockchain queries must overcome. The paper
[4] compares searching or querying data in the blockchain.
Existing platforms only allow queries with block hash or
transaction hash. Extending querying that decouples the data
available on each transaction, storing them on a secondary
database (MongoDB), and queries them using traditional SQL
is described. The framework (EtherQL) used the data from
the Ethereum mainnet – claiming to be the first to make
this querying possible. The paper [5] proposes FalconDB –
based on the blockchain and uses ADS as a way to store
and query data with multiple parties or nodes. It aimed to
provide a collaborative platform where the nodes could work
and share data without worrying about the presence of any
malicious nodes. It uses ADS to store the data, and the digest
generated from it is stored on the blockchain. The features of
ADS coupled with blockchain enables moving storage to the
server, and lightweight clients storing hashes. FalconDB could
execute various queries and can provide provenance. Though
FalconDB requires more storage on the server-side (to capture
historical data), the overall performance is improved.

The paper [6] emphasises the role of ADS as an efficient
way to store data but points out that the gas expenses for
such operations are high. They propose a framework called
Gas Efficient Merkle Merge Tree (GEM2 Tree) that optimises
the gas expenses by making bulk transactions rather than
individual insertions at the cost of more computations required.
The paper [7] identifies that blockchain has weak semantics
and insufficient operations to support authentic queries. Hence
they propose a model that combines on-chain and off-chain
data for queries. They add relational semantic features to the
data and provide an interface for executing these queries – the
framework includes general information on-chain while the



private/sensitive information is off-chain. The on-chain data,
based on the content, use indices for faster querying. SQL-like
commands are used to create new tables, insert transactions
and query the data using select commands. All these works are
based on a single blockchain under consideration, and our use
case must deal with multiple blockchains and organisations.

III. VERIFIABLE QUERY FRAMEWORK

Blockchain technology promises transparency and security,
but accessing and querying distributed data is complex. Each
blockchain operates as an independent entity with unique
data structures, making it challenging to execute coherent
queries across multiple platforms. Private blockchains restrict
access to a defined set of participants, which complicates the
querying process. These limitations hinder the free flow of
information and demand innovative solutions for secure and
authenticated data retrieval. There is a need for a verifiable
querying framework, e.g. to allow regulatory bodies and users
to execute authenticated queries. This will help in building
trust and scalability in blockchain systems.

Consider a scenario with several organisations, with each
organisation containing several entities: data owners, validators
(blockchain is part of it), cloud ADS (CADS), query verifiers,
query miners and query layer – as illustrated in Figure 1.

Fig. 1. System Architecture

Data Owners: decide what data should be made available
through blockchain. They communicate directly and only to
validators. In our scenario, data owners are the pharmaceutical,
logistics and retail pharmacy companies who want to make
some of their data available for public access.
Validators: are the entities that receive data from data owners
and then push it to the blockchain. In our case, validators
use the proof of authority (PoA) consensus algorithm, ini-
tially part of permissioned Ethereum. PoA requires fewer
message exchanges leading to increased scalability. PoA is
a reputation-based consensus protocol which can tolerate up
to 50% malicious nodes. Proof of Work (PoW) consensus
stakes its computational power, and Proof of Stake (PoS)

consensus stakes coins in the consensus process. In contrast,
PoA stakes its reputation, i.e. PoA consensus accepts node
identity as a means to secure its blockchain. In PoA, a few
validators are arbitrarily selected as trustworthy entities to
verify a transaction. Since PoA relies on a few validators for
consensus, the process is highly scalable [8]. Upon receiving
the data d, the validators generate hash h(d) and store it on
the blockchain. After storing the data it would retrieve the
following information from the blockchain: transaction data
(TD), transaction hash (TH), block height (BN) and block
hash (BH). The actual data d, and h(d) are stored in the local
database of the validator.
Cloud ADS (CADS): ADS have been used to improve the
efficiency of an application by reducing the data retrieval
process on the source of data [9]. ADS has been used on
blockchain [6], [7], [10] and [5] provides a detailed description
of the construction of ADS for a collaborative database plat-
form. By its design, ADS supports clients to query and verify
data (stored in the database) and provides proof of the data’s
correctness. Clients can check data integrity by retrieving its
proof from the source (in our case, the blockchain). CADS
can also return results for a collection of queries Q performed
on its database D. CADS stores information sent only by
the validators, and only verifiers can retrieve that information
from the CADS. The authentication function and the security
features of the CADS will be discussed in section IV.
Query Verifiers: do not store data but can query data from
CADS and retrieve its proof from the blockchain. Upon
receiving a query, the verifiers sends the request to CADS,
which returns the results, transaction details and blockchain
proofs (if requested).
Query Miners: Validators write data to the blockchain and not
retrieve it during the query process. Query miners read trans-
action details from the blockchain during the query process.
Hence, query verifiers send transaction details from CADS
to query miners, who retrieve verification objects from the
blockchain and return them to query verifiers. Query miners
would communicate only with the query verifiers.
Query Layer: is responsible for collecting and processing
query requests. Every organisation must send its metadata
and query structure to the query layer, which has a metadata
engine instructing where to search for data. The metadata
engine helps the query layer to execute parallel searches across
multiple systems, optimises the query process and aggregates
the results. In some situations, organisations can change their
schema; they can update the metadata with the query layer,
ensuring that the query process returns the requested details.
The metadata engine plays a crucial role in making the
query layer scalable – i.e. to add additional organisations
dynamically and manages the changes in schema from these
organisations. Before updating the metadata, it validates the
data to avoid errors. Figure 2 shows the query layer process.

IV. QUERY PROCESS AND INTEGRITY ANALYSIS

Metadata guides and orchestrates the query process by
mapping attributes to their corresponding locations. The Meta-



Fig. 2. Query Layer Process

data engine manages dynamic metadata changes and directs
the query process to send requests to the correct locations.
Upon receiving the metadata, it checks whether the received
metadata has the correct structure. A query can either be a
simple verification or a blockchain verification. Although the
data retrieval process does not change the blockchain state, it
still requires a gas fee to incentivize miners. Hence, separating
the blockchain verification from simple verification (which
returns results completely from CADS) allows the users to
get the information from the systems without paying the gas
fee. Figure 3 shows the sequence diagram illustrating how
the query gets executed and retrieves information in a single
system/ organisation.

Fig. 3. Verification Process

The verification process uses features of CADS in providing
fast data access and verifiability. In this process, a request from
the user (a.1) reaches the query layer, which uses the metadata
engine to send the query to the respective system(s) (a.2).
The first entry point is to the query verifier, which diverts the
query to CADS and gets its results (a.3). The query verifier
then returns the results to the query layer (a.4) and then to the
user (a.5). In the blockchain verification process, the request
from the user (b.1) reaches the query layer, which, using the
metadata engine to send the query to the respective system(s)
(b.2), which diverts the query to CADS (b.3). The query
verifier sends the verification object to the query miner (b.4),
which retrieves the corresponding verification object from the
blockchain (b.5) and returns it to the query verifier (b.6). The
query verifier then compares and aggregates the results and
sends them to the query layer (b.7). Finally, the query layer
provides the results to the user (b.8). The initial processes
in both simple and blockchain verification are the same. To

reduce the complexity of the overall process, a flag is set
to distinguish between the two processes. Depending on the
condition, the system process query differently.

During the query process, verifiers obtain information from
CADS, and it is important to ensure its integrity. By design,
only read and write operations are permitted on CADS. The
write permissions are only with validators and since the
validators are trustworthy, the data they write on CADS will be
reliable. The verifier nodes can only read the data from CADS
and no other operations are possible for them. In practical
deployment, there can be multiple CADS that are distributed
to reduce latency and improve load balancing. The aspect of
immutability is brought into CADS by removing the update
or delete operations.

V. FRAMEWORK EVALUATION

We evalue the effectiveness of our prototype framework
in this section. We have used a pharmaceutical supply chain
scenario with 4 organizations: a manufacturing company, a
logistic company and two pharmaceutical retail chains. Each
entity manages its ADS, blockchains, validators and verifiers.
Users can connect to the query layer to retrieve data, e.g.
the complete product history. One of the assumptions is that
the organizations have standardised naming conventions for
their databases and provide the correct schema to the metadata
engine. Every entity in the prototype currently implements
asymmetric key cryptography and assumes that the keys are
shared between the entities in a safe manner. The prototype
uses 4 servers symbolizing 4 different organizations. Each
server is hosted on an Intel Xeon E3-1220, having 16GB
RAM running Ubuntu 18.04. Each organization manages their
blockchain built on Ethereum and the ADS is developed
using the MongoDB database. The prototype uses a pub-
sub mechanism to communicate between the entities using
symmetric and asymmetric key cryptography.

A. Performance Evaluation

We consider requesting several records from 4 organisations
varying between 10,000 to 40,000 and assessing their latency.
The evaluation is performed for both simple verification and
blockchain verification. Experimental results were taken mul-
tiple times, and the averaged values are considered. In the case
of simple verification, the requests returns the desired results
within 0 to 3 seconds. Here, the records are returned only
from ADS, not involving the blockchain. As the number of
organisations increases from 1 to 4, the latency increases. This
occurs due to the processing time taken to receive and process
the information from multiple entities. Though the increase in
the number of records does not affect latency significantly, the
increase in the number of organisations increases latency as
seen in figure 4.

When similar evaluations for blockchain verification are
performed, the latency increases significantly. As discussed
earlier, this process involves gathering information from ADS
and the underlying blockchain. Blockchain processes con-
tribute most significantly to the data retrieval process. As seen



Fig. 4. Simple Verification Latency

in the figure 5, the majority of the total time required to
retrieve information comes from the retrieval processes in the
blockchain. It can also be noticed that the time required for
retrieving information from the blockchain remains constant
and is not affected by the increasing number of organisations.

Fig. 5. Blockchain Verification Latency

B. Security and Privacy Evaluation

The framework we propose incorporates strong security
and privacy measures by utilising a hybrid encryption model
that combines the benefits of both asymmetric and symmetric
encryption methods. Communication between each entity uses
an asymmetric mechanism. Each time the information is sent, a
randomly generated symmetric key is used to encrypt the data
and is shared with the end user using the asymmetric key.
Symmetric encryption is a fast and efficient way to encrypt
and decrypt large amounts of data. It works by creating a
new key for each transmission, which means that if a key
is compromised, only the data that was encrypted with that
specific key is at risk. This greatly reduces the amount of data
that can be exposed in a security breach. The use of asymmet-
ric encryption allows for the safe transfer of symmetric keys
between parties and the end user. This approach guarantees
that only the intended recipient, who has the appropriate pri-
vate key, can decode the symmetric key that accompanies the

encrypted data. This encryption layer effectively addresses the
issue of key distribution that is present in symmetric systems,
creating a secure means for exchanging keys without the risk
of interception. This approach with two layers ensures that the
information exchanged between entities is kept confidential
and preserves privacy.

VI. CONCLUSION

A novel framework capable of retrieving information from
multiple blockchains is proposed. The framework makes use
of a robust metadata processing engine with secure querying
methods. Robust data retrieval mechanisms are crucial as
blockchain technology advances. Our work supports users
and regulatory bodies by developing a resilient and adaptable
blockchain ecosystem. Our metadata-based framework enables
scalability, accommodating a broader range of entities and
ensuring relevance in the evolving blockchain landscape. In
the future, we plan to deploy our framework for real-world
applications, evaluate different economic models, and imple-
ment a similar methodology in multilayer blockchains.

VII. ACKNOWLEDGEMENTS

Supported in part by the Engineering and Physical Sci-
ences Research Council “Digital Economy” programme:
EP/V042521/1 and EP/V042017/1.

REFERENCES

[1] D. Przytarski, C. Stach, C. Gritti, and B. Mitschang, “Query processing
in blockchain systems: Current state and future challenges,” Future
Internet, vol. 14, no. 1, 2021.

[2] S. Wilson, K. Adu-Duodu, Y. Li, E. Solaiman, O. Rana, S. Dustdar,
and R. Ranjan, “Data management challenges in blockchain-based
applications,” IEEE Internet Computing, vol. 28, no. 1, pp. 70–80, 2024.

[3] Q. Zhang, Y. He, R. Lai, Z. Hou, and G. Zhao, “A survey on the
efficiency, reliability, and security of data query in blockchain systems,”
Future Generation Computer Systems, vol. 145, pp. 303–320, 2023.

[4] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, EtherQL: A Query Layer
for Blockchain System, ser. Lecture Notes in Computer Science. Cham:
Springer, 2017, vol. 10178, pp. 556–567.

[5] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Falcondb: Blockchain-
based collaborative database,” in In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. ACM,
2020, pp. 637–652.

[6] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gem2̂-tree: A gas-
efficient structure for authenticated range queries in blockchain,” in IEEE
35th International Conference on Data Engineering (ICDE), 2019, pp.
842–853.

[7] Y. Zhu, Z. Zhang, C. Jin, A. Zhou, and Y. Yan, “Sebdb: Semantics em-
powered blockchain database,” in IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 2019, pp. 1820–1831.

[8] P. B. Honnavalli, A. S. Cholin, A. Pai, A. D. Anekal, and A. D. Anekal,
“A study on recent trends of consensus algorithms for private blockchain
network,” in Blockchain and Applications. Cham: Springer, 2020, pp.
31–41.

[9] R. Tamassia, Authenticated Data Structures. Berlin, Heidelberg:
Springer, 2003, vol. 2832, pp. 2–5.

[10] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao, “Vql: Efficient
and verifiable cloud query services for blockchain systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp.
1393–1406, 2022.


