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Abstract: We adapt the classical mixed Poisson process models for investigation of consumer be-
haviour in a situation where after a random time we can no longer identify a customer despite
the customer remaining in the panel and continuing to perform buying actions. We derive explicit
expressions for the distribution of the number of purchases by a random customer observed at a
random subinterval for a given interval. For the estimation of parameters in the gamma–Poisson
scheme, we use the estimator minimizing the Hellinger distance between the sampling and model
distributions, and demonstrate that this method is almost as efficient as the maximum likelihood
being much simpler. The results can be used for modelling internet user behaviour where cookies
and other user identifiers naturally expire after a random time.
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1. Introduction

In the classical mixed Poisson process (MPP) model for consumer behaviour [1,2], a
population of distinct individuals is considered, where each individual generates purchase
events through a Poisson process, characterized by a unique arrival rate reflecting the
purchasing frequency of this individual. The frequencies of the individual Poisson processes
are random and follow a certain mixture distribution. If this mixture distribution is the
gamma distribution, then the resulting distribution for the number of events in a given time
period is the negative binomial distribution (NBD) and the model is often called the NBD
process model [3]. This NBD process model is the main MPP model for consumer behaviour,
which is actively promoted by the Ehrenberg–Bass Institute for Marketing Science. In the
present paper, we concentrate exclusively on an adaptation of this MPP model.

Digital marketing has emerged over the last two decades with the adoption of the
internet and has offered new ways for brands to work with their customers [4]. Today,
websites are able to capture the buying habits of their clients in a great amount of detail.
Though the quantity of data has increased, the quality of the analysis has been limited by
the mechanisms of tracking users [5,6]. Up until recently, third party cookies, a piece of
text stored on user’s device, was one of key ways of identifying users online. During the
last ten years, this method has become less and less reliable, as internet browsers started to
delete cookies automatically as well as the ability for end users to opt out. As a result, the
lifespan of cookies reduced to a couple of weeks and marketers are not able to distinguish
between new customers and repeat customers. This problem of the market analysis has
significant consequences for businesses. Many decisions in marketing are made based on
calculating the customer lifetime value, which is the value of customers, which incorporates
profits from all purchases they made [7,8]. Deleting cookies means that brands are only
able to attribute a small amount of purchases to repeat buyers, thus undervaluing repeat
buyers and overvaluing new buyers. In turn, the efficiency of new customer acquisition is
overinflated and attracts more investment into marketing activities that are less efficient
than stated.
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The MPP model is known to be a good tool for describing repeat purchases and has
widely been applied in so-called offline studies, where information was collected directly
from customers. When applying the MPP model to online customers, we noticed that
the predictive power of such a model deteriorated due to the reliance on cookies. Thus,
we approach this issue by incorporating information about the cookie decay process into
the repeat purchase behaviour model. In particular, it is clear that the use of the NBD for
estimation of the parameters of the mixture distribution in the framework of the classical
MPP model is poor in the case where dropout occurs. As shown in [9], dropout is observable
in real-life user data. To resolve the estimation problem for the MPP model with dropout,
we derive the novel distributions for the number of events (purchases, clicks, and visits)
generated by users.

The present paper is organized as follows. In Section 2, we state the main problem,
which is derivation of the distribution for the number of events that random consumers
create in a given time interval when they make dropout. The fundamental theoretical result
is the explicit expressions of the pmf, where dropout is assumed to have a constant density,
a linear density, or an exponential density.

In Section 3, we describe several estimators and perform a large numerical study in
which we argue that one of the most reliable methods of parameter estimation is the method
based on the minimization of the Hellinger distance between the observed frequencies and
the probability mass function (pmf), using the truncated NBD as an example.

In Section 3.4, we demonstrate that this method is significantly more accurate than the
method based on the minimizing the total variation between the empirical and theoretical
distributions and almost as efficient as the maximum likelihood method being much
simpler (in terms of the geometrical interpretation) than the latter.

In Section 3.5, we apply the Hellinger distance and the explicit form of the pmf
from Section 2 to estimate the mixture parameters of the MPP model with dropout. We
demonstrate that the estimators are unbiased and have an admissible standard deviation,
which is comparable to the case of the truncated NBD. Conclusions are given in Section 4.

2. Main Results

Suppose that we observe a consumer with a purchase rate λl at an interval [0, T].
Assume that this consumer is observable from time 0 and further makes a dropout at time
ζ, where ζ is a random variable with density g(t). Then, the number of purchases for this
consumer is a value of the Poisson process with rate λl at time min(ζ, T).

Let XT be the number of purchases for a random consumer for the time interval [0, T].
We note that XT has the marginal distribution of the MPP at time min(ζ, T). Using the rule
of conditional probability on a certain time of dropout, the pmf of XT can be written as

qT
x = P(XT = x) =

∫ ∞

0
px(min(T, t))g(t)dt =

∫ T

0
px(t)g(t)dt + (1 − cT)px(T), (1)

where x = 0, 1, . . . , cT =
∫ T

0 g(t)dt and px(t) is the pmf of the MPP at time t, which is the
pmf of the NBD with shape parameter k and the mean parameter akt. If T is large enough,
such that cT ≈ 1, then the number of purchases for a random consumer has approximately
the distribution with pmf ∫ ∞

0
px(t)g(t)dt.

2.1. The Piecewise-Constant Density for Dropout

Assume that the time to dropout has a uniform distribution on the interval [0, τ]. For
the time interval [0, T] with T > τ, the number of purchases for a random consumer has
the distribution with pmf

qxU = qxU(τ) =
1
τ

∫ τ

0
px(t)dt =

1
τ

Γ(k + x)
x!Γ(k)

∫ τ

0

(at)x

(1 + at)x+k dt.
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Using Maple [10] we derive

qxU =
1

τa(k − 1)

(
1 − 2F1

(
k − 1, x + k; k;− 1

τa

) Γ(x + k)
x!Γ(k)τk−1ak−1

)
,

where 2F1(·) is the hypergeometric function. Note that the mean of this distribution is

∞

∑
x=0

x qxU =
1
τ

∫ τ

0
aktdt = akτ/2.

Assume that the time to dropout has the piecewise-constant distribution with density
p(t) = ∑n

j=1 β j1[0,τj ]
(t). For the time interval [0, T] with T > maxj τj, the number of

purchases for a random consumer has the distribution with pmf

n

∑
j=1

β jqxU(τj).

In Figure 1, we depict the theoretical pmf qxU for various τ and mixture parameters.
We can see that the pmf is moving right as τ, k, a becomes larger and shows the mean akτ/2.
The R code with the computation of the pmf qxU is given in Appendix A.
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Figure 1. The theoretical pmf qxU of the number of purchases of a random consumer for the constant
density of dropout with various τ and various mixture parameters k and a.

2.2. The Linear Density for Dropout

Assume that the time to dropout has a distribution with a linear density (1 − t/τ)2/τ
at an interval [0, τ]. For the time interval [0, T] with T > τ, the number of purchases for a
random consumer has the distribution with pmf

qxL =
2
τ

∫ τ

0
px(t)(1 − t/τ)dt =

2
τ

Γ(k + x)
x!Γ(k)

∫ τ

0

(at)x

(1 + at)x+k (1 − t/τ)dt.

Using Maple [10] we obtain

qxL = 2F1

(
k − 2, x + k; k − 1;− 1

τa

) 2Γ(x + k)
x!(k − 2)Γ(k)τkak

− 2F1

(
k − 1, x + k; k;− 1

τa

) 2Γ(x + k)
x!(k − 1)Γ(k)τkak + 2

τa(k − 2)− x − 1
(k − 1)(k − 2)τ2a2 ,
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where 2F1(·) is the hypergeometric function. Note that the mean of this distribution is

∞

∑
x=0

x qxL =
2
τ

∫ τ

0
akt(1 − t/τ)dt = akτ/3.

In Figure 2, we depict the theoretical pmf qxL for various τ and mixture parameters.
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Figure 2. The theoretical pmf qxL of the number of purchases of a random consumer for the linear
density of dropout with various τ and various mixture parameters k and a.

2.3. The Exponential Density for Dropout

Assume that the time to dropout has the exponential distribution with mean µ. As
argued in [9], this model for the time-life for the user identifiability, when used for mod-
elling internet user behaviour, is the most natural when one restricts it to a particular type
of browser.

For the time interval [0, T], the number of purchases for a random consumer has the
distribution with pmf

qT
x =

∫ T

0
px(t)

1
µ

e−t/µdt + (1 − cT)px(T),

where cT =
∫ T

0
1
µ e−t/µdt. If e−T/µ is very small, then qT

x ≈ qxE, where

qxE =
∫ ∞

0
px(t)

1
µ

e−t/µdt =
Γ(k + x)
x!µΓ(k)

∫ ∞

0

(at)x

(1 + at)x+k e−t/µdt.

Using Maple [10] we obtain

qxE =
e1/(µa)Γ(k + x)
x!µk+xak+xΓ(k)

x

∑
j=0

(−1)x−jΓ
(
− k − x + j + 1, 1/(µa)

)( j
x

)
µjaj,

where Γ(k, z) is the incomplete Gamma function.
Let the random variable X be the number of purchases for a random consumer on the

interval [0, ∞). Then, the mean of X is

EX =
∞

∑
x=0

xqxE =
∫ ∞

0

∞

∑
x=0

xpx(t)
1
µ

e−t/µdt =
∫ ∞

0
EYt

1
µ

e−t/µdt,

where Yt is a random variable following the NBD with mean kat. Consequently, we obtain

EX =
∫ ∞

0
kat

1
µ

e−t/µdt = kaµ.
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Similarly, we derive

EX2 =
∞

∑
x=0

x2qxE =
∫ ∞

0
EY2

t
1
µ

e−t/µdt

=
∫ ∞

0
kat(kat + ta + 1)

1
µ

e−t/µdt = kaµ(2kaµ + 2aµ + 1).

Therefore, we obtain

Var(X) = kaµ(2kaµ + 2aµ + 1)− (kaµ)2 = kaµ(kaµ + 2aµ + 1).

In Figure 3, we depict the theoretical pmf qxE for various µ and mixture parameters.
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Figure 3. The theoretical pmf qxE of the number of purchases of a random consumer for the exponen-
tial density of dropout with various µ and various mixture parameters k and a.

3. Estimation

In the present section, we describe three estimators and perform a simulation study
on the estimation of the mixture parameters of the MPP model. Specifically, we present the
maximum likelihood estimator in Section 3.1, the minimum Hellinger distance estimator in
Section 3.2, and the minimum total variance distance estimator in Section 3.3. We compare
the accuracy of estimators for the case of the classical MPP model in Section 3.4 and apply
the minimum Hellinger distance estimator for the case of the MPP model with dropout in
Section 3.5.

3.1. The ML Estimator

Let x1, . . . , xN be a sample from a distribution with parameter θ and pmf px(θ). The
log-likelihood of the parameters for the sample is given by

L(θ) = ln

(
N

∏
i=1

pxi (θ)

)
=

N

∑
i=1

ln pxi (θ).

We note that the expression of the log-likelihood is quite complex for distributions like
qxU , qx,L, qxE and their truncated versions. Even if a sample is taken from the NBD with
parameters k and m, the log-likelihood of the parameters can be written as

L(k, m) =
N

∑
i=1

(
ln Γ(k + xi)− ln(xi!) + xi ln

( m
m + k

))
− N ln

(
Γ(k)(1 + m/k)k).
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The ML estimator for the parameter m is given by the sample mean

m̂ = x̄ =
1
N

N

∑
i=1

xi,

however, there is no explicit expression for the ML estimator of the parameter k, which
should be numerically obtained as a solution of the equation

ln
(

1 +
x̄
k

)
=

∞

∑
i=1

ni
N

i−1

∑
j=0

1
k + j

, (2)

where nx is the observed frequency of x = 0, 1, 2, . . . within the sample. However, if a
sample is taken from a truncated NBD, the ML estimator of both parameters should be
computed numerically by maximizing the log-likelihood as a function of two variables.

The ML estimator for the parameter k in the negative binomial distribution is powerful,
but it relies on access to the frequencies ni of how often each number of purchases occurs.
In market research, obtaining this raw data can be challenging due to collection difficulties
or data ownership restrictions. Usually, market research companies often have easier
access to summary statistics associated with consumer purchases. This is where moment-
based estimators become a valuable alternative. They can leverage these readily available
statistics, making them a practical choice for estimating NBD parameters in such scenarios;
see, for example, refs. [11–13].

The negative binomial distribution models the number of successes (e.g., consumer
purchases) occurring in a sequence of independent trials before a fixed number of failures
(e.g., stopping after a certain time). However, in practical applications, we might encounter
situations where the data only reflects non-negative counts. This can happen if the observa-
tion process starts at a specific point, excluding observations with zero or fewer successes
(left truncation) and/or the data collection terminates after a fixed number of successes,
censoring observations with higher counts (right truncation).

3.2. The MHD Estimator

The Hellinger distance, denoted by dH(P, Q), is a measure of similarity between two
probability distributions, P and Q, defined on the same discrete space. It is given by

dH(P, Q) =

√
1
2 ∑

x∈X

(√
px −

√
qx

)2
,

where px and qx represent the probabilities of outcome x under distributions P and Q,
respectively, and X denotes the set of all possible outcomes. The Hellinger distance has the
following properties: (i) non-negativity: dH(P, Q) ≥ 0 for all probability distributions P and
Q, (ii) symmetry: dH(P, Q) = dH(Q, P), (iii) triangle inequality: dH(P, R) ≤ dH(P, Q) +
dH(Q, R) for any three probability distributions P, Q, and R.

The Hellinger distance is related to the Kullback–Leibler (KL) divergence, another
measure of distributional discrepancy, through the inequality d2

H(P, Q) ≤ KL(P||Q).
Minimum Hellinger distance (MHD) estimators, introduced by [14], belong to a

broader class of efficient estimators with desirable second-order properties, as shown in [15].
MHD estimators are particularly attractive due to their robustness. They demonstrate
resilience to outliers and model misspecification [14,16]. In fact, Ref. [16] demonstrated
a stronger result, showing that all minimum distance estimators are inherently robust to
variations in the estimated quantity. This combination of efficiency and robustness makes
MHD estimators a practical choice. Additionally, the appeal of the Hellinger distance lies
in its unitless nature. For a comparison of MHD estimators with maximum likelihood
estimators (MLEs) and a discussion on the trade-off between robustness and efficiency,
refer to [15].
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3.3. The MTVD Estimator

The total variation distance, denoted by dTV(P, Q), is a measure of similarity between
two probability distributions, P and Q. For general distributions, it represents the maximum
absolute difference between the cumulative distribution functions (CDFs) of P and Q. The
total variation distance for discrete distributions is given by

dTV(P, Q) =
1
2 ∑

x∈X
|px − qx|,

where px and qx represent the probabilities of outcome x under distributions P and Q,
respectively, and X denotes the set of all possible outcomes.

The total variation distance has the following properties: (i) non-negativity: dTV(P, Q) ≥
0 for all probability distributions P and Q, (ii) symmetry: dTV(P, Q) = dTV(Q, P), (iii) metric
property: the total variation distance satisfies the metric axioms, making it a formal measure
of distance between probability distributions.

Note that for any two real numbers a and b, we have that |a− b| ≤ 1
2(a− b)2 + 1

2(b− a)2.
Therefore, there is a link between the total variation distance and the Hellinger distance

d2
H(P, Q) ≤ dTV(P, Q) ≤

√
2dH(P, Q).

While Kullback–Leibler (KL) divergence is a stronger measure of the distributional
difference than the Hellinger distance; the Hellinger distance offers advantages in statistical
inference. Convergence in KL divergence implies convergence in the Hellinger distance,
which further implies convergence in the total variation distance. However, unlike KL
divergence, the Hellinger distance remains bounded (between 0 and 1), even for distribu-
tions with different supports, and shares a closer connection to the total variation distance,
which is crucial for statistical inference, as KL divergence lacks a useful lower bound for it.
These properties position the Hellinger distance as a valuable middle ground between KL
divergence and the total variation distance. It captures meaningful relationships for infer-
ence while avoiding the limitations of unboundedness seen in KL divergence, especially
for distributions defined on the real line.

3.4. Comparison of the Estimators

Let us consider samples of size 10,000 from the z+TNBD distribution, which is ob-
tained from the NBD by left truncation at a value z.

Let us compare the MHD estimator and the MLE of the NBD parameters using data
from the 1+TNBD. We show scatterplots of MHD and MLE estimators for samples from
the 1+TNBD with k = 2 and m = 1.5 in Figure 4, with k = 2 and m = 3.5 in Figure 5 and
the 2+TNBD with k = 2 and m = 1.5 in Figure 6. We can see that the MHD estimator is
very close to the MLE estimator and all estimators are almost unbiased. This behaviour
of estimators was observed for other values of parameters, but we will not report more
figures here for the sake of brevity. The computational costs for three estimators are similar
to each other and take seconds. We note that the Hellinger distance and the total variance
distance provide the intuitive values on a quality of the estimators for the pmf fitting to a
given sample.
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Figure 4. The scatterplots of the MLE, MHD, and MTVD estimators of parameters k and m for
samples with a size of 10,000 from the 1+TNBD with k = 2 and m = 1.5.
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Figure 5. The scatterplots of the MLE, MHD, and MTVD estimators of parameters k and m for
samples with a size of 10,000 from the 1+TNBD with k = 2 and m = 3.5.
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Figure 6. The scatterplots of the MLE, MHD, and MTVD estimators of parameters k and m for
samples of a size of 10,000 from the 2+TNBD with k = 2 and m = 1.5.

3.5. Estimation of Mixture Parameters for MPP with Dropout

Let us simulate the MPP model with the specified density of dropout on the time
interval [0, T]. Specifically, we consider 10,000 consumers and simulate purchases rates λl
from the gamma density with parameters k and a. Note that m = ka is the average number
of purchases per a random consumer without dropout on any time interval with a length
of 1. Then, we simulate purchases times from the Poisson process with parameter λl for the
l-th consumer. Then, we independently simulate dropout times for all consumers. Finally,
we record the number of purchases made by each consumer who had at least one purchase.
Therefore, the recorded sample of observations has the truncated distribution of (1), and
the MHD estimator with the explicit form of the pmf (1) can be used for efficient estimation
of mixture parameters. The R code with simulation of the MPP model with the exponential
density of the cookie lifetime is given in Appendix A.

In Figures 7–9, we show the MHD estimators of mixture parameters for various
densities of dropout. We can see the mixture parameters can be well estimated in all cases
where the classical NBD process is not observed. Indeed, the shape of the pmf for the
number of purchases with dropout is similar to the pmf of the TNBD. We can see that the
values of the bias of estimators for the case with dropout are very close to zero and similar
to values of the bias of the estimators for the TNBD. We also observe that the values of the
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standard deviation of estimators for the case with dropout are comparable with the values
of the standard deviation of estimators for TNBD.
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Figure 7. The scatterplots of the MHD estimators of parameters k and m for samples with a size of
10,000 from the MPP with a constant dropout g(t) = 1/τ1[0,τ](t), T = 10, k = 1.5 and m = 1 for
various τ.
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Figure 8. The scatterplots of the MHD estimators of parameters k and m for samples with a size of
10,000 from the MPP with linear dropout g(t)=(1 − t/τ)2/τ1[0,τ](t), T = 10, k = 1.5 and m = 1 for
various τ.
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Figure 9. The scatterplots of the MHD estimators of parameters k and m for samples with a size
of 10,000 from the MPP with exponential dropout g(t) = 1

µ e−t/µ, T = 10, k = 1.5 and m = 1 for
various µ.

4. Conclusions

In this paper, we adapted the classical mixed Poisson process model for modelling
consumer buying behaviour to the situation where a customer loses identifiability after
a random time, despite this customer continuing to perform buying actions. The results
can be used for modelling internet user behaviour where cookies and other user identifiers
naturally expire after a random time. One particular area of applications where modelling
internet user behaviour may be of significant interest is the area of internet advertisement
where assessing the propensity of a user for making purchase occasions is of the paramount
importance, see [6].
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Appendix A

The R code with computing the pmf qx for the constant density of dropout is given below.

getTruePdfCon=funct ion ( x , k , a , tau )
{

taua = tau * a
den = f a c t o r i a l ( x ) * taua ^(k −1)*gamma( k )
f = gamma( k+x )/den
dd = ( k −1)* taua
r es = (1 − Gauss2F1 ( k−1 , x+k , k , −1/taua ) * f )/dd
r es [ i s . na ( r es ) ] = 0
names ( re s ) = x
return ( r es )

}
x = c ( 0 : 9 )
qx = getTruePdfCon ( x , k=2 , a = 0 . 1 , tau =10)
p l o t ( x , qx )

The R code with computing the pmf qx for the linear density of dropout is given below.

Gauss2F1 <− funct ion ( a , b , c , x ) {
i f ( x>=−1 & x <1) {

hyperg_2F1 ( a , b , c , x )
} e l s e {

hyperg_2F1 ( a , c−b , c , 1−1/(1−x ))/(1 − x )^ a
}

}
getTruePdfLin = funct ion ( x , k , a , tau ) {

taua = tau * a
den = f a c t o r i a l ( x ) * taua ^(k ) *gamma( k )
f = 2*gamma( k+x )/den
dd = ( k − 1 ) * ( k −2)* taua^2
r es = Gauss2F1 ( k−2 , x+k , k−1 , −1/taua ) * f /(k−2)−

Gauss2F1 ( k−1 , x+k , k , −1/taua ) * f /(k−1)+
2 * ( taua * ( k−2)−x −1)/dd

r es [ i s . na ( r es ) ] = 0
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names ( re s ) = x
return ( r es )

}
x = c ( 0 : 9 )
qx = getTruePdfLin ( x , k=2 , a = 0 . 1 , tau =10)
p l o t ( x , qx )

The R code with computing the pmf qx for the exponential density of dropout and
small e−T/µ is given below.

getTruePdfExp = funct ion ( x , k , a , mu) {
mua = mu* a
r es = rep ( 0 , length ( x ) )
f o r ( j in c ( 1 : length ( x ) ) ) {

x j = x [ j ]
den = f a c t o r i a l ( x j ) *mua^(k+ x j ) *gamma( k )
rx = 0 : x j
ss = gamma_inc( −k− x j +rx +1 ,1/mua) *

choose ( x j , rx ) *mua^rx * ( −1)^( x j −rx )
re s [ j ] = exp (1/mua) *gamma( k+ x j ) * sum( ss )/den

}
names ( re s ) = x
return ( r es )

}
x = c ( 0 : 9 )
qx = getTruePdfExp ( x , k=2 , a = 0 . 1 , mu=5)
p l o t ( x , qx )

The R code with simulation of the MPP model with the exponential density of the
cookie lifetime is given below.

l i b r a r y ( J u l i a C a l l )
j u l i a <− j u l i a _ s e t u p (JULIA_HOME= ’ ’C:/ Programs/ J u l i a −1 .10 .0/ bin / ’ ’ )
j u l i a _ l i b r a r y ( ‘ ‘ Random ’ ’ )
j u l i a _ l i b r a r y ( ‘ ‘ D i s t r i b u t i o n s ’ ’ )
#########################################
# Generating MPP model with exponential − l i f e t i m e cookies
#########################################
# input :
# N: number of customers
# T : the duration of the time i n t e r v a l
# k , a : parameters of the mixture d i s t r i b u t i o n
# mu: parameter of the exponent ia l dens i ty of cookie l i f e t i m e
# output :
# f i r s t column : the id of a customer
# second column : the time of a event
# t h i r d column : the cookie id of a customer
julia_command ( ‘ ‘
func t ion get_MPP_data (N, T , k , a , mu)
N = I n t (N)
id = zeros ( 0 )
event_time = zeros ( 0 )
cookie_id = zeros ( 0 )
f o r i in 1 :N

lam = 1 / rand (Gamma( k , a ) , 1 ) [ 1 ]
i n c r = rand ( Exponential ( lam ) , 1 ) [ 1 ]
t = zeros ( 0 )
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nt = 0
i f ( incr <T )

append ! ( t , i n c r )
nt = 1
i n c r = rand ( Exponential ( lam ) , 1 ) [ 1 ]
while ( t [ nt ]+ incr <T )

append ! ( t , t [ nt ]+ i n c r )
nt = nt +1
i n c r = rand ( Exponential ( lam ) , 1 ) [ 1 ]

end
cid = zeros ( nt )
wt = rand ( Exponential (mu) , 1 ) [ 1 ]
curr id = 1
f o r j in 1 : nt

while t [ j ] >wt
wt = wt+rand ( Exponential (mu) , 1 ) [ 1 ]
curr id = curr id +1

end
cid [ j ] = curr id

end
append ! ( id , repeat ( [ i ] , nt ) )
append ! ( event_time , t )
append ! ( cookie_id , c id )

end
end
Output=hcat ( id , event_time , cookie_id )
Output
end ’ ’ )
N=5000; T=17; p = 0 . 9 5 ; k =2; mu=5; a=(1−p)/p
data = j u l i a _ c a l l ( ‘ ‘ get_MPP_data ’ ’ , N, T , k , a , mu)
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