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Expanding drug targets for 112 chronic
diseases using a machine learning-assisted
genetic priority score

Robert Chen1,2,3, Áine Duffy 1,2, Ben O. Petrazzini 1,2,4, Ha My Vy1,2,4,
David Stein 1,2, Matthew Mort5, Joshua K. Park1,2,3, Avner Schlessinger 6,
Yuval Itan 1,2,7, David N. Cooper 5, Daniel M. Jordan1,2,4,
Ghislain Rocheleau 1,2,4 & Ron Do 1,2,4

Identifying genetic drivers of chronic diseases is necessary for drug discovery.
Here, we develop amachine learning-assisted genetic priority score, which we
call ML-GPS, that incorporates genetic associations with predicted disease
phenotypes to enhance target discovery. First, we construct gradient boosting
models to predict 112 chronic disease phecodes in the UKBiobank and analyze
associations of predicted and observed phenotypes with common, rare, and
ultra-rare variants to model the allelic series. We integrate these associations
with existing evidence using gradient boosting with continuous feature
encoding to construct ML-GPS, training it to predict drug indications in Open
Targets and externally testing it in SIDER. We then generate ML-GPS predic-
tions for 2,362,636 gene-phecode pairs. We find that the use of predicted
phenotypes, which identify substantially more genetic associations than
observed phenotypes across the allele frequency spectrum, significantly
improves the performance of ML-GPS. ML-GPS increases coverage of drug
targets, with the top 1% of all scores providing support for 15,077 gene-
phecode pairs that previously had no support. ML-GPS can also identify well-
known target-disease relationships, promising targets without indicated
drugs, and targets for several drugs in clinical trials, including LRRK2 inhibitors
for Parkinson’s disease and olpasiran for cardiovascular disease.

While chronic non-communicable diseases are major causes of global
morbidity andmortality1,many lackeffective treatments, in partdue to
limitations of preclinical models and high clinical trial failure rates of
drugs without target evidence2. Since the first genome-wide associa-
tion study in 20053, thousands of genetic association studies using
large-scale biobank data have uncovered disease-associated variants
and, in conjunction with clinical genetics from databases like ClinVar

and OMIM, have provided valuable insight for drug discovery and
precision medicine2,4. Indeed, 63% of new drugs approved by the FDA
between 2013-2022 were supported by genetic evidence5, and
genetics-supported drug mechanisms are 2.6 times more likely to
succeed compared to those without support6. Our recent Genetic
Priority Score (GPS) framework further demonstrated the efficacy of
combining clinical variants with genetic associations, including rare
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coding variants and common variants, to prioritize drug targets7. We
showed that the top 0.28% of the GPS conferred a 9.9-fold increased
effect of having a drug indication and an 8.8-fold increased likelihood
of advancing from phase I to phase IV.

However, prevalent genetic association studies are limited by
their reliance on binary case/control labels, which not only are subject
to underdiagnosis and misdiagnosis but also fail to stratify individuals
by disease risk and severity, contributing to reduced statistical power.
Addressing this, recent studies have used machine learning to gen-
erate continuous representations of cardiovascular, pulmonary, and
psychiatric diseases8–14, which subsequently identified additional
disease-associated variants. Increasing the identification of these var-
iants, particularly those representing distinct disease mechanisms,
may facilitate the development of more effective drugs.

In this work, we introduce a machine learning-assisted version of
the GPS (ML-GPS) applied to 112 chronic disease phecodes. Our
approach employs machine learning in two key stages: initially to
improve phenotyping via continuous disease representations and
subsequently to predict drug indications using genetic associations
with these continuous phenotypes. In the second stage, we use
machine learning to combine 13 complementary sources of genetic
evidence to assign each gene-phecode pair a probability of having an
indicated drug, allowing researchers to select high-scoring genes for
further screening.

ML-GPS incorporates fourmajor advances aimed at improving the
accuracy and coverage of the original GPS7. First, we developed gra-
dient boosting models that use comprehensive phenotypic data from
the UK Biobank to predict the presence of phecode diagnoses; used
them to re-phenotype all participants, assigning them probabilities
ranging from zero to one to represent continuous disease repre-
sentations for each phecode; identified common, rare, and ultra-rare
variant associations to model the allelic series; and incorporated them
intoML-GPS. An allelic series, whichwedefined as a series of variants in
a gene that independently exhibit graded impact on disease, provides
evidence for dose-response relationships between target functionality
and phenotype2,15. Second, whereas the original GPS used binary
encoding of features, ML-GPS uses a continuous encoding that reflects
either the magnitude of statistical significance of each target-disease
genetic association or the number of clinical variants. Third, we con-
structed ML-GPS using gradient boosting instead of logistic regres-
sion, allowing it to capture nonlinear relationships between features
and drug indications. Fourth,ML-GPS uses child codes fromphecodeX
compared to parent codes from phecode v1.2 for the original GPS16,
improving phenotyping and increasing disease granularity.

To optimize ML-GPS, we compare the performance of models
constructed using different sets of architectures and feature inputs.
We demonstrate that the inclusion of machine learning-discovered
genetic associations and the use of continuous encoding not only
increase the accuracy of ML-GPS predictions but also expand its cov-
erage of drug targets. We use ML-GPS to generate predictions for
26,035 distinct genes and 112 phecodes for a total of 2,362,636 gene-
phecode pairs and corroborate drug targets prioritized by ML-GPS
using both known target-disease associations and manual screening.
Finally, we highlight drug targets and disease pathways that are sup-
ported by ML-GPS and not by existing methods.

Results
Construction of machine learning models to predict phecode
diagnoses
We screened 3612 phecodes included in phecodeX to identify 336
phecodes corresponding to non-communicable chronic disease pro-
cesses across 11 phecode categories (Supplementary Data 1). To
identify phecodes associated with chronic physiologic changes, we
used LightGBM to construct preliminary gradient boosting models
using only age, sex, and 72 laboratory and vitalmeasurements. Models

for 112 of 336 phecodes achieved mean areas under the receiver
operating characteristic curve (AUROCs) ≥0.70 and areas under the
precision-recall curve (AUPRCs) ≥ the prevalence of the phecode
(Supplementary Fig. 1a; Supplementary Data 2). Model performance
wasunequally distributed across different phecode categories;models
in the endocrine/metabolic, blood/immune, and cardiovascular cate-
gories had the highest mean AUROCs, whereas models in the muscu-
loskeletal, dermatological, and sense organ categories had the lowest
mean AUROCs.

For the 112 phecodes with model performance above our
thresholds, we constructed final models that incorporated 165 addi-
tional features, including lifestyle factors, medication usage, and
diagnostic history (Fig. 1). LightGBM models were robust to feature
selection (Supplementary Data 3), and either outperformed or were
comparable to XGBoost and random forest models (Supplementary
Data 4). Finalmodels hadhighdiscrimination,with amedianAUROCof
0.85 [interquartile range (IQR) 0.08] (Fig. 2a), and high calibration,
with a median Brier score of 0.01 [IQR 0.02] (Supplementary Data 2).

Compared to preliminary models, these models had median
increases in AUROCs and AUPRCs of 0.08 [IQR 0.06] and 0.06 [IQR
0.08], respectively. Further, for 13 phecodes partially definable using a
single laboratory or vital biomarker (e.g., hypertension:systolic blood
pressure, type 2 diabetes:hemoglobin A1c, and obesity:body mass
index), both preliminary and final models outperformed the bio-
marker in both AUROC and AUPRC for phecode diagnosis (Supple-
mentary Fig. 1b; Supplementary Data 5). Finally, across all phecodes,
each quintile increase in predicted phecode probability corresponded
to a median odds ratio (OR) of 3.24 for observed phecode presence,
whereas participants in the highest quintile had a median OR of 45.97
for observed phecode presence compared to those in the lowest
quintile (Supplementary Data 6).

There was diverse feature usage across models: for 70 of the 112
phecodes, three or more feature categories (i.e., demographics, mea-
surements, lifestyle factors, medication usage, and diagnostic history)
were represented among the top 10 model features (Supplementary
Data 7). Important model features were generally consistent with
known characteristics of each phecode, such as erythrocyte distribu-
tion width and hemoglobin for iron deficiency anemia (BI_160.1) and
urate and antigout preparation (M04A) usage for gout (MS_703.1). For
eight phecodes, the top 10model featureswere all based ondiagnostic
history; this is consistent with our prior report demonstrating that the
presence of some diagnoses can inform the presence of other
diagnoses17.

Many chronic diseases increase mortality risk1, and 93 of the 112
phecodes were significantly associated with all-cause mortality in the
UK Biobank (Supplementary Data 8). The maximum hazard ratio
across phecodes was 7.98 (95% CI 7.37–8.64) for CV_420 (cardiac
arrest). We also observed that increased quintile of predicted prob-
ability was positively associated with all-cause mortality for 110 of the
112 phecodes [all but CM_751.4 (congenital glaucoma) and MS_722.4
(palmar fascial fibromatosis)]. This association was present separately
among cases and controls for 68 and 110 of the 112 phecodes,
respectively, suggesting that predicted probabilities are associated
with increased disease severity and identify probable disease under-
diagnosis. Together, these results demonstrate that predicted prob-
abilities are associated with disease risk, severity, progression and
underdiagnosis.

Analysis of genetic associations
We modeled the allelic series of each gene-phecode pair (Fig. 1). We
performed genome-wide association testing of common variants
[minor allele frequency (MAF) ≥0.01], exome-wide association testing
of single rare coding variants (0.0001 ≤MAF<0.01) that were mis-
sense or loss-of-function (LOF), and gene-level testing of ultra-rare
coding variants (MAF <0.0001) that were deleteriousmissense or LOF
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for three different phenotypes: observed phecode case/control status
(P), binarized model probabilities (B), and continuous model prob-
abilities (C).

For rare variant analyses, median inflation factors (λ) were 1.04
(P), 1.04 (B), and 1.03 (C). For common variant analyses, median λs

were 1.03 (P), 1.06 (B), and 1.34 (C), whereas for ultra-rare variant
analyses, median λs were 0.76 (P), 0.89 (B), and 1.03 (C). The
increased λ for C in common variant analyses may be attributable
to increased identification of causal variants under polygenic
inheritance18, whereas the decreased λs for P and B in ultra-rare

Comprehensive phenotypic data

• Age and sex
• Laboratory and vital measurements
• Lifestyle factors
• Medications
• Inpatient diagnostic history

Observed case/control
(P)

Continuous model probabilities
(C)

Predicted case/control
(B)

Phecode diagnosis prediction model 
using machine learning

Allelic series model (common, rare, and ultra-rare variant association analyses)

Existing genetic evidence

• EVA-ClinVar
• HGMD
• OMIM
• Locus-to-gene (L2G)

Open Targets (training, holdout testing)

SIDER (external testing)

Repeat for 112 chronic 
disease phecodes

396,605 UK Biobank participants

Predict 2,362,636 gene-phecode pairs

ML-GPS GPS
Genetic analyses Predicted and observed phenotypes Observed phenotypes
Feature encoding Continuous [-log

10

(p-values), number of variants, raw scores] Binary (yes or no)
GPS architecture Gradient boosting model (captures non-linear effects) Logistic regression model
Phecode definitions Child phecodes from phecodeX Top-level phecodes from phecode 1.2

Advancements of ML-GPS over GPS

Construction of ML-GPS

ML-GPS model (gradient boosting model with 13 features)

Encode as -log
10

(p-values) from 
genetic association results

Encode as number of distinct 
variants (EVA, HGMD, OMIM) 

or raw score (L2G)

9 allelic series features:
• Common P, rare P, ultra-rare P (observed case/control)
• Common B, rare B, ultra-rare B (predicted case/control)
• Common C, rare C, ultra-rare C (continuous model probabilities)

4 existing evidence features:
• EVA-ClinVar
• HGMD
• OMIM
• Locus-to-gene (L2G)

Fig. 1 | Workflow for constructing ML-GPS.Workflow for constructing ML-GPS, including machine learning models to predict phecode diagnoses across 112 phecodes,
genetic association analyses using both observed and predicted phenotypes, and integration of genetic associations with existing genetic evidence.
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variant analyses may be attributable to our inclusion of only dele-
terious missense and LOF variants.

Across all phecodes, C identified substantially more genes with
significant variants/tests than B, which identified more genes than P
(Fig. 2b). Specifically, P, B, and C identified at least one gene for 64, 75,
and 111 phecodes for common variant analyses; 40, 46, and 108 phe-
codes for rare variant analyses; and 53, 61, and 109 phecodes for ultra-
rare variant analyses, respectively (Supplementary Data 9). For com-
mon variant analyses, B and C identified a median of 30% [IQR 70%]
and 34% [IQR 77%] of genes identified by P, respectively, demonstrat-
ing the overlap between predicted and observed phenotypes. The
percentage of genes identified by P that were also identified by C was
significantly associated with the AUROC of the model (β = 3.79, 95% CI
1.72–5.87, p = 5.4 × 10−4) (Supplemental Table 1), suggesting that
models with higher discrimination better represent the observed

phenotype. Additionally, for common, rare, and ultra-rare variant
analyses, C identified only 71% [IQR 50%], 50% [IQR 100%], and 80%
[IQR 50%] of genes identified by B, respectively, despite B being a
binarization of probabilities used for C. Finally, for each of P, B, and C,
median absolute effect sizes per gene were higher for rare and ultra-
rare compared to common variant analyses, including in pairwise
comparisons of the same genes (Supplemental Table 2).

Association of genetic features with drug indications
Genetic analyses with predicted phenotypes increased the identifica-
tion of drug indications at the phecode level, with B and C identifying
one, two, or more than two genes with drug indications for a greater
number of phecodes compared to P (Supplementary Fig. 2a,b). For
common variant analyses, C identified a greater number of genes with
drug indications than P for 25 phecodes, and for 16 of these phecodes,

Fig. 2 | Generation of and genetic association analyses with predicted pheno-
types. a Mean AUROCs (blue) of final models for 112 of 386 phecodes meeting
performance thresholds (AUROC ≥0.70, AUPRC ≥ phecode prevalence). Numbers
at the top of the graph indicate the number of phecodes in each phecode category;
each phecode is represented as a grey dot in the background. AUROCs were cal-
culated among 183,021 UK Biobank participants with GP records (see “Study sam-
ple” in the Methods section). b Number of genes identified by P (blue), B (orange),
and C (green) in common, rare, and ultra-rare variant analyses across 112 phecodes.
For common and rare variant analysis, “gene” refers to any gene with a significant
variant, whereas for ultra-rare variant analyses, “gene” refers to any gene with a
significant test. cOdds ratios for drug indications in Open Targets with 13 variables
included in ML-GPS. Note that these odds ratios are for binary encoded variables,

whereas ML-GPS uses continuous encoded variables as features (see “Genetic
priority scores” in theMethods section).dOdds ratios for drug indications inOpen
Targets with B-P and C-P; these represent genes identified by B and C not identified
by P, respectively. Note that B-P and C-P are not ML-GPS features and are included
solely for comparison. Plots c,d represent logistic regression analyses of 112,274
gene-phecode pairs in Open Targets, of which 4116 had a drug indication. Plots a,
c and d show means with 95% confidence intervals. Source data are provided as a
Source Data file. Abbreviations: AUROC (area under the receiver operating char-
acteristic curve); AUPRC (area under the precision-recall curve); P (observed case/
control); B (binarized model probabilities/predicted case-control); C (continuous
model probabilities).
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P did not identify any such genes. This was also true of 9 and 8 phe-
codes for rare variant analyses and 10 and 9 phecodes for common
variant analyses, respectively.

Consistentwith our prior report7, gene-phecode pairs with existing
evidence from EVA-ClinVar, HGMD, OMIM, and L2G were significantly
associated with drug indication, with ORs in Open Targets of 6.61 (95%
CI 4.50–9.70), 4.87 (95% CI 4.13–5.76), 13.20 (95% CI 7.58–22.99), and
6.68 (95% CI 5.20–8.58), respectively (Fig. 2d; Supplemental Table 3).

For common variant analyses, P, B and C had ORs of 7.56 (95%
CI 5.08–11.26), 6.28 (95% CI 4.55–8.68), and 3.19 (95% CI
2.53–4.03), respectively (Fig. 2d; Supplemental Table 3). There
were no significant differences in ORs between P, B, and C for rare
or ultra-rare variant analyses. For rare variant analyses, P, B, and C
corresponded to ORs of 16.46 (95% CI 5.95–45.59), 15.62 (95% CI
7.16–34.06), and 8.75 (95% CI 5.17–14.80), respectively, whereas
for ultra-rare variant analyses, P, B, and C corresponded to ORs of
6.87 (95% CI 1.95–24.21), 8.66 (95% CI 4.03–18.59), and 4.02 (95% CI
2.35–6.88), respectively. Further, even after subtracting genes
identified by P from B and C (i.e., B-P and C-P), we found that these
two features were still significantly associated with drug indica-
tion, with ORs of 5.21 (95% CI 3.44–7.90) and 2.62 (95% CI
2.01–3.41) for common, 15.25 (95% CI 5.71–40.90) and 7.49 (95% CI
4.18–13.40) for rare, and 10.86 (95% CI 4.49–26.26) and 3.96 (95%
CI 2.24–6.99) for ultra-rare variants, respectively (Fig. 2e). Thus, B
and C increase the coverage of genes with drug indications.

Construction of ML-GPS
We constructed machine learning models to predict whether each
distinct gene-phecode pair had an indicated drug. Of 112,274 pairs in

Open Targets and 58,674 pairs in SIDER, 4116 and 1883 had indicated
drugs, respectively. We included up to 13 features, including three
features representing clinical evidence (EVA-ClinVar, HGMD, OMIM),
one representing L2G, and nine features incorporating additional evi-
dence from P, B and C common, rare, and ultra-rare variant analyses.

We first tested five different model architectures for all 13 fea-
tures: ElasticNet logistic regression (LR), gradient boosting (GB), GB
with continuous feature encoding [GB (CE)], GB (CE) with sample
weights based on the number of indicated drugs [GB (CE, number
weights)], and GB (CE) with sample weights based on the maximum
phase of indicated drugs [GB (CE, phase weights)]. In both Open Tar-
gets andSIDER, theGBmodel significantly outperformed the LRmodel
in AUPRC based on permutation testing (Fig. 3a; Supplemental
Table 4), and all three GBmodels with CE outperformed the GBmodel
without CE. Although there was no significant difference in AUPRC
between the three GB models with CE, scores from the GB (CE, phase
weights)model resulted in significantly higher ORs formain indication
among all drugs and separately among phase IV drugs compared to
scores from all other models (Fig. 3b–d). As a sensitivity analysis, we
also compared the LightGBM-based GB (CE phaseweights)model with
XGBoost and random forest models; LightGBM outperformed the
latter two models in AUPRC in both Open Targets and SIDER (Sup-
plementary Fig. 3; Supplemental Table 4).

For the GB (CE, phase weights) model architecture, we next
compared the relative contributions of different features by con-
structing models with L2G, clinical evidence (Clinical), L2G + Clinical,
L2G + Clinical + P, or L2G + Clinical + PBC. With each additional set
of features, there were significant increases in AUPRC in both
Open Targets and SIDER based on permutation testing (Fig. 4a;

Fig. 3 | Performance of genetic priority scores with different architectures.
a AUPRC for drug indication in Open Targets (holdout testing) and SIDER (external
testing). Grey dotted lines show the proportion of gene-phecode pairs with indi-
cations in each dataset. b Odds ratios per standard deviation increase in score for
any drug indication and separately for drug indications in specific clinical trial
phases in Open Targets. Brackets denote the number of gene-phecode pairs with
drug indications in each phase. c,d Odds ratios of drug indications for gene-
phecode pairs in the top X score percentiles compared to pairs in the 0-50

percentiles in Open Targets (c) and SIDER (d). Plots a–c represent analyses of
112,274 gene-phecode pairs in Open Targets, of which 4116 had a drug indication.
Plots a and d represent analyses of 58,674 gene-phecode pairs in SIDER, of which
1883 had a drug indication. All plots show means with 95% confidence intervals.
Source data are provided as a Source Data file. Abbreviations: AUPRC (area under
the precision-recall curve); LR (logistic regression); GB (gradient boosting); CE
(continuous encoding); L2G (locus-to-gene); P (observed case/control); B (binarized
model probabilities/predicted case control); C (continuous model probabilities).
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Supplemental Table 4), with 47.5% and 70.7% increases between the
L2G and L2G + Clinical + PBC models in these two datasets, respec-
tively. In Open Targets, each standard deviation in score from the
model incorporating evidence from C and B (L2G + Clinical + PBC)
corresponded to ORs of 1.26 (95%CI 1.24–1.28) for any drug indication
and 1.41 (95%CI 1.37–1.44) for phase IV drug indications (Fig. 4b); these
ORswere significantly higher than for scores fromall othermodels and
represented 11.6% and 16.9% increases from ORs for the L2G model.
Additionally, gene-phecode pairs in the 99–100 compared to 0–50
percentiles for this model had ORs of 6.49 (95% CI 5.60–7.53) and 7.38
(95% CI 6.02–9.03) for drug indication in Open Targets and SIDER,
respectively (Fig. 4c,d).

We performed a Shapley Additive exPlanations (SHAP) analysis of
L2G + Clinical + PBC model predictions in Open Targets to further
assess the contributions of each feature to model predictions. The
most important features were B (rare variant), C (rare variant), and B
(ultra-rare variant); conversely, the OMIM feature had no contribution
to final predictions, likely because of redundancy with the HGMD and
EVA-ClinVar features (Supplementary Fig. 4). We also analyzed rela-
tionships between feature values and SHAP values. For both EVA-
ClinVar and HGMD, genes with one clinical variant had higher SHAP
values compared to those with none, but additional clinical variants
beyond the first did not further increase SHAP values (Supplementary
Fig. 5). For L2G, higher scores resulted in higher SHAP values, but in a
discrete rather thancontinuousmanner. For P, B, andC features, genes
with -log10(p-values) above standard significance thresholds generally
had positive SHAP values; however, some genes with -log10(p-values)
below these thresholds also had positive SHAP values, demonstrating
the utility of continuous encoding of these features.

Based on these results, we use scores from the L2G + Clinical +
PBC model under the GB (CE, phase weights) model architecture as
ML-GPS. Although optimal thresholds for ML-GPS will depend on the
user’s goal (e.g., maximizing target coverage for high-throughput
screening versus prioritizing a few high-scoring targets for manual
screening), we provide precision and recall metrics for different
thresholds in Open Targets and SIDER (Supplementary Fig. 6a,b).
Precision reflects the proportion of identified gene-phecode pairs with
drug indications, whereas recall reflects the proportion of pairs with
drug indications that are identified. For example, a ML-GPS threshold
of 0.212 (equivalent to 99th percentile on the full dataset of 2,362,626
pairs) balances precision and recall, yielding precision = 0.116 and
recall = 0.076 inOpen Targets, and precision =0.137 and recall = 0.094
in SIDER. To prioritize precision, a higher ML-GPS threshold of 0.540
yields precision = 0.400 and recall = 0.014 in Open Targets, and pre-
cision = 0.424 and recall = 0.015 in SIDER.

Finally, although we could not directly compare ML-GPS with the
original GPS due to different phecode definitions7, we compared ML-
GPS with a logistic regression model including L2G + Clinical + P fea-
tures, which approximates GPS. First, there were increases in AUPRC
from 0.049 (95% CI 0.045–0.054) to 0.063 (95% CI 0.058–0.069) in
Open Targets and from 0.050 (95% CI 0.043–0.056) to 0.066 (95% CI
0.057–0.074) in SIDER (Supplementary Fig. 7a); these represent
increases of 28.6% and 32.0%, respectively. Second, ORs per standard
deviation increase in score increased from 1.18 (95% CI 1.16–1.20) to
1.26 (95% CI 1.24–1.28) for all drug indications and from 1.27 (95% CI
1.24–1.30) to 1.41 (95% CI 1.37–1.44) for phase IV drug indications
(Supplementary Fig. 7b). Third, for the 75-85, 85-95, and 95-98 per-
centiles of scores in both Open Targets and SIDER, only scores from

Fig. 4 | Performance of genetic priority scores with different features. a AUPRC
for drug indication in Open Targets (holdout testing) and SIDER (external testing).
Grey dotted lines show the proportion of gene-phecode pairs with indications in
each dataset. b Odds ratios per standard deviation increase in score for any drug
indication and separately for drug indications in specific clinical trial phases in
Open Targets. Brackets denote the number of gene-phecode pairs with drug indi-
cations in eachphase. c,dOdds ratios ofdrug indications for gene-phecode pairs in
the top X score percentiles compared to pairs in the 0-50 percentiles in Open

Targets (c) and SIDER (d). Plots a–c represent analyses of 112,274 gene-phecode
pairs in Open Targets, of which 4116 had a drug indication. Plots a and d represent
analyses of 58,674 gene-phecode pairs in SIDER, of which 1883 had a drug indica-
tion. All plots showmeans with 95% confidence intervals. Source data are provided
as a Source Data file. Abbreviations: AUPRC (area under the precision-recall curve);
LR (logistic regression); GB (gradient boosting); CE (continuous encoding); L2G
(locus-to-gene); P (observed case/control); B (binarized model probabilities/pre-
dicted case control); C (continuous model probabilities).
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ML-GPS hadORs greater than one for drug indication (Supplementary
Fig. 7c,d), demonstrating the increased coverage of ML-GPS.

Construction of ML-GPS with direction of effect (ML-GPS DOE)
WeextendedML-GPS to predict directionof effect (DOE) in addition to
drug indication. ML-GPS DOE is a one-versus-rest classifier that assigns
each gene-phecode pair three different probabilities summing to one:
probability of no drug indication, probability of an activator drug
indication, and probability of an inhibitor drug indication. This differs
from our prior implementation of GPS DOE7, which outputs a single
positive or negative score based on whether the genetic features are
primarily loss- or gain-of-function.

In both datasets, thereweremore inhibitor compared to activator
drug indications, with 3019 and 890 in Open Targets and 1288 and 364
in SIDER, respectively. Despite weighting activator drug indications
twice as heavily as inhibitor drug indications during training, we still
observedhigherAUPRCs andORs for predicting inhibitor compared to
activator drug indications.Nevertheless,we similarly observed that the
L2G+Clinical + PBCmodel significantlyoutperformedall othermodels
for predicting both activator and inhibitor drug indications (Supple-
mental Table 4).

When predicting activator drug indications, the L2G + Clinical +
PBC model achieved AUPRCs of 0.018 (95% CI 0.014–0.021) in Open
Targets and 0.022 (95% CI 0.014–0.032) in SIDER, respectively
(Fig. 5a). In Open Targets, each standard deviation increase in score
was associated with an OR of 1.17 (95% CI 1.15–1.20) for any activator
drug indication (Fig. 5b), and gene-phecode pairs in the 99-100

compared to 0–50 percentiles had ORs of 6.93 (95% CI 5.28–9.09) in
Open Targets and 7.26 (95% CI 4.86–10.86) in SIDER, respectively
(Fig. 5c,d). When predicting inhibitor drug indications, the L2G +
Clinical + PBCmodel achieved AUPRCs of 0.052 (95% CI 0.047–0.058)
inOpenTargets and0.056 (95%CI0.046–0.065) inSIDER, respectively
(Fig. 6a). In Open Targets, each standard deviation increase in score
was associated with an OR of 1.24 (95% CI 1.22–1.26) for any inhibitor
drug indication (Fig. 6b), and gene-phecode pairs in the 99-100 com-
pared to 0–50 percentiles had ORs of 6.21 (95% CI 5.24–7.37) in Open
Targets and 7.87 (95% CI 6.22–9.94) for inhibitor drug indications in
SIDER, respectively (Fig. 6c,d). Given these results, we similarly use
scores from the L2G + Clinical + PBC model as ML-GPS DOE.

As with ML-GPS, we provide precision and recall for different
thresholds in Open Targets and SIDER for ML-GPS DOE (Supplemen-
tary Fig. 8a–d). For example, for activator drug indications, a prob-
ability threshold of 0.084 yields precision =0.060 and recall = 0.044 in
Open Targets, and precision = 0.058 and recall = 0.049 in SIDER. For
inhibitor drug indications, a probability threshold of 0.204 yields
precision = 0.250 and recall = 0.022 in Open Targets, and precision =
0.280 and recall = 0.035 in SIDER.

Analysis of targets and pathways prioritized by ML-GPS
We generated ML-GPS and ML-GPS DOE predictions for all 2,362,636
gene-phecode pairs for which at least one of the 13 features was non-
zero. These pairs represented 26,035 distinct genes, of which 18,247
were protein-coding. We directly compared scores from ML-GPS with
those from the L2G+Clinical + Pmodel for 127,258of thesepairswhere

Fig. 5 | Performance of direction-of-effect (DOE) genetic priority scores with
different features for activator drug indications. a AUPRC for activator drug
indications in Open Targets (holdout testing) and SIDER (external testing). Grey
dotted lines show the proportion of gene-phecode pairs with indications in each
dataset. Inhibitor drug indications were set to 0 (no drug indication).bOdds ratios
per standard deviation increase in score for any activator drug indication and
separately for drug indications in specific clinical trial phases in Open Targets.
Brackets denote the number of gene-phecode pairs with drug indications in each
phase. c,dOdds ratios for activator drug indications for gene-phecode pairs in the

top X score percentiles compared to pairs in the 0–50 percentiles in Open Targets
(c) and SIDER (d). Plots a–c represent analyses of 112,274 gene-phecode pairs in
Open Targets, of which 890 had an activator drug indication. Plots a and
d represent analyses of 58,674 gene-phecode pairs in SIDER, of which 364 had an
activator drug indication. All plots show means with 95% confidence intervals.
Source data are provided as a Source Data file. Abbreviations: AUPRC (area under
the precision-recall curve); L2G (locus-to-gene); P (observed case/control); B
(binarized model probabilities/predicted case control); C (continuous model
probabilities).
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the gene was targeted by any drug in Open Targets or SIDER: among
the 5008 pairs with an indicated drug, ML-GPS had higher scores for
55.91% of pairs (Fig. 7a), whereas among the 122,250 pairs without an
indicated drug, ML-GPS had lower scores for 58.37% of pairs (Fig. 7b).
Similarly, ML-GPS scores ≥ 99th percentile (score > 0.212) had a greater
proportion andnumber ofdrug indications compared to L2G+Clinical
+ P scores ≥ 99th percentile (Fig. 7c). These results demonstrate
improved identification of drug indications when including C and B as
features.

As evidence of the increased coverage of drug targets offered by
ML-GPS, our approximation of the original GPS had non-zero scores
for only 9576 of the 2,362,636 gene-phecode pairs [0.4%] (Fig. 7d),
representing 5353 distinct genes, 107 phecodes, and 303 drug indica-
tions. In contrast, the 23,626 pairswithML-GPS scores ≥ 99th percentile
(score > 0.212) represented 9916 distinct genes, all 112 phecodes, and
696 drug indications; 409 of these indications had no support from
the original GPS.

The top 23,626 ML-GPS gene-phecode pairs were unequally dis-
tributed across phecodes, with EM_239.2 (hyperglyceridemia) having
the most pairs (n = 1708) and CV_438.2 (aneurysm of iliac or artery of
lower extremity) having the least (n = 26).ML-GPS DOE predicted 2779
of the pairs as more likely to have activator drug indications and
20,847 asmore likely to have inhibitor drug indications. AlthoughML-
GPS does not include tractability information as features, many of the
prioritized targets appear amenable to drug development: of 9916
distinct genes represented among the top 23,626 pairs, 2589 [26.1%]
have either membrane or secreted products, 5014 [50.6%] have

favorable tissue specificity, 1458 [14.7%] bind ligands, 1851 [18.7%] bind
small molecules, and 618 [6.2%] have predicted pockets (Supplemen-
tary Table 5).

For 120,728 of all 2,362,636 gene-phecode pairs, there was a large
(>30%) increase in score forML-GPS compared to the L2G +Clinical + P
model; these pairs represent targets prioritized only with evidence
from the C and B machine learning analyses. We used direct and
indirect target-disease associations fromOpen Targets to examine the
evidence supporting these pairs beyond drug indications; these asso-
ciations include evidence from the published literature and databases
not used to constructML-GPS. A greater proportion of pairs with <10%
increase in score had both direct and indirect associations compared
to pairs with > 10% increase in score, likely because these pairs have
corroborating support from clinical variants, L2G, or P (Fig. 7e,f).
However, in the 0.2–0.4, 0.4–0.6, and ≥ 0.6 score bins, 36.6%, 70.6%,
and 100% of pairs with 10-20% increase in score and 28.6%, 74.2%, and
100% of pairs with 20-30% increase in score had direct associations,
respectively. Further, we manually examined the 50 highest-scoring
pairs without drug indications or target-disease associations and
found that 33of thesepairs [66%] had supporting genetic, clinical, and/
or mechanistic evidence (Supplementary Data 10). These pairs inclu-
ded GBA for NS_324.1 (parkinsonism), USP40 for EM_252.3 (disorders
of bilirubin excretion), NAA25 for EM_200.6 (atrophy of thyroid),
MMAA for EM_256.3 (mixed disorder of acid-base balance), and PVR for
EM_239.1 (hypercholesterolemia).

Many of these large score increase pairs represent well-known
target-disease relationships, including PCSK9 for EM_239.2

Fig. 6 | Performance of direction-of-effect (DOE) genetic priority scores with
different features for inhibitor drug indications. a AUPRC for inhibitor drug
indications in Open Targets (holdout testing) and SIDER (external testing). Grey
dotted lines show the proportion of gene-phecode pairs with indications in each
dataset. Activator drug indications were set to 0 (no drug indication).bOdds ratios
per standard deviation increase in score for any inhibitor drug indication and
separately for drug indications in specific clinical trial phases in Open Targets.
Brackets denote the number of gene-phecode pairs with drug indications in each
phase. c,d Odds ratios for inhibitor drug indications for gene-phecode pairs in the

top X score percentiles compared to pairs in the 0-50 percentiles in Open Targets
(c) and SIDER (d). Plots a–c represent analyses of 112,274 gene-phecode pairs in
Open Targets, of which 3019 had an inhibitor drug indication. Plots a and
d represent analyses of 58,674 gene-phecode pairs in SIDER, of which 1288 had an
inhibitor drug indication. All plots show means with 95% confidence intervals.
Source data are provided as a Source Data file. Abbreviations: AUPRC (area under
the precision-recall curve); L2G (locus-to-gene); P (observed case/control); B
(binarized model probabilities/predicted case control); C (continuous model
probabilities).
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(hyperglyceridemia; score increase from 0.46 to 0.79), ACE for
GU_582.2 (chronic kidney disease; score increase from 0.39 to 0.79),
GUCY1A1 for CV_401.2 (hypertensive heart disease; score increase from
0.22 to 0.76), NPC1L1 for EM_239.2 (hyperglyceridemia; score increase

from 0.11 to 0.65), and ADRB1 for GU_582.2 (chronic kidney disease;
score increase from 0.19 to 0.60) (Supplementary Data 11). These are
targeted by PCSK9 inhibitors, ACE inhibitors, vericiguat, ezetimibe,
and beta blockers, respectively, and ML-GPS DOE correctly predicted

ML-GPS ≥ 99th percentile
10,497 pairs

280 [2.7%] indicated

13,130 pairs

416 [3.2%] indicated

ML-GPS < 99th percentile
2,328,512 pairs

4,225 [0.2%] indicated

10,497 pairs

87 [0.8%] indicated

L2G + Clinical + P 
< 99th percentile

L2G + Clinical + P 
≥ 99th percentile

ML-GPS ≥ 99th percentile
15,077 pairs

409 [2.7%] indicated

8,550 pairs

287 [3.4%] indicated

ML-GPS < 99th percentile
2,337,983 pairs

4296 [0.2%] indicated

1,026 pairs

16 [1.6%] indicated

Original GPS = 0 Original GPS > 0

a e

f

c g

d

b

Fig. 7 | Analysis of targetsprioritizedbyML-GPS. a,bDirect comparison between
scores for ML-GPS versus L2G + Clinical + P models for gene-phecode pairs with a
drug indication (a) or without a drug indication (b) in eitherOpenTargets or SIDER.
c Number of gene-phecode pairs and the proportion of these pairs with drug
indications among ML-GPS and L2G + Clinical + P scores <99th percentile versus ≥
99th percentile. d Number of gene-phecode pairs and the proportion of these pairs
with drug indications among ML-GPS scores <99th percentile versus ≥ 99th

percentile and approximated original GPS scores = 0 versus > 0. e,f Proportion of
gene-phecode pairs in each score bin with the specified score increase (from L2G +
Clinical + P to ML-GPS) with direct (e) or indirect (f) target-disease associations in
Open Targets. g Gene set-phecode combinations with the highest normalized
enrichment score for ML-GPS. Source data are provided as a Source Data file.
Abbreviations: L2G (locus-to-gene); P (observed case control).

Article https://doi.org/10.1038/s41467-024-53333-y

Nature Communications |         (2024) 15:8891 9

www.nature.com/naturecommunications


the effect direction of all these drugs. However, ML-GPS also identifies
viable targets without drug indications, such as LDLR for EM_239.2
(hyperglyceridemia; score increase from 0.17 to 0.73), which ML-GPS
DOE predicts as having an activator drug indication. LDLR LOF muta-
tions are associated with elevated plasma triglyceride levels19,20, and
LDLR activators are under preclinical investigation for atherosclerosis
prevention21. Another is WNT16 for MS_745.9 (pathological fracture;
score increase from 0.32 to 0.44), which ML-GPS DOE also predicts as
having an activator drug indication; several preclinical studies suggest
WNT16 activation may be useful for treating osteoporosis22,23. ML-GPS
results could also aid drug development for conditions opposite to the
disease phenotype. For example, it identifies TMPRSS6 for BI_160.1
(Iron deficiency anemia; score increase from 0.34 to 0.62): TMPRSS6
mutations cause iron deficiency anemia via elevated hepcidin24, and
inhibitors of TMPRSS6 are under investigation for hemochromatosis
(iron overload)25. Finally, in cases where ML-GPS targets cannot be
directlymodulated, indirect modulation or substrate deliverymay still
be possible: for example, ML-GPS identifies NOS3 (endothelial nitric
oxide synthase) for CV_401.2 (hypertensive heart disease; score
increase from0.22 to 0.67), and organic nitrates are commonly used in
hypertension and heart disease.

Examining the highest scoring ML-GPS gene-phecode pairs over-
all, we identified additional gene-phecode pairs without drug indica-
tions but which had supporting preclinical evidence (Supplementary
Data 12). One example is ALOX15 for RE_471.5 (Nasal polyps; score
0.82);ALOX15 ismechanistically linkedwith airway inflammation26, and
ALOX15 inhibitors that reduce nitric oxide production and lipid per-
oxidation have recently been synthesized27. Another is BMPR2 for
CV_406.1 (pulmonary hypertension; score 0.74); although sotatercept,
which targets the BMPR-II pathway downstream of BMPR2, demon-
strated success in a 2023 phase III trial for pulmonary arterial
hypertension28,29, there are no drugs that target BMPR2 directly. ML-
GPS alsoprovides supporting evidence for targets currently in phase II/
III clinical trials, many of which are first-in-class. One example is LRRK2
for NS_324.1 (parkinsonism; score 0.85); phase I trials of BIIB122 for
Parkinson’s disease were recently completed, and a phase III trial is
ongoing30,31. Another is LPA for both CV_404.1 (myocardial infarction;
score 0.81) and CV_404.2 (coronary atherosclerosis; score 0.58); a
phase II trial of olpasiran for cardiovascular disease recently demon-
strated efficacy in reducing lipoprotein(a) and a phase III trial is
ongoing32. A third example that highlights drug repurposing is CFB for
SO_374.5 (macular degeneration; score 0.73); a phase II trial of ipta-
copan, originally indicated for paroxysmal nocturnal hemoglobinuria,
is ongoing for age-relatedmacular degeneration33. A fourth example is
MYH7 for CV_414.2 (dilated cardiomyopathy; score 0.69); a phase II
trial of danicamtiv is ongoing for primary dilated cardiomyopathy
following demonstration of efficacy in rodent models34,35.

Finally, we examined the enrichment of the 50 MSigDB hallmark
gene sets with increasingML-GPS scores across the 112 phecodes using
single-sample gene set enrichment analysis. For 50 × 112 = 5600 gene
set-phecode combinations, there were higher normalized enrichment
scores (NES) withML-GPS compared to L2G +Clinical + Pmodel scores
for 3441 combinations [61.4%], and 899 combinations were enriched
only with ML-GPS scores. The gene sets with the highest NES for ML-
GPS scoreswere consistentwith knowndiseasemechanisms, including
PANCREAS_BETA_CELLS for type 2 diabetes (top gene GCK),
NOTCH_SIGNALING for coronary atherosclerosis (top gene
TCF7L2)36,37, REACTIVE_OXYGEN_SPECIES_PATHWAY for nasal polyps
(top gene GPX4)38,39, and MYOGENESIS for hypertrophic cardiomyo-
pathy (top gene TNNT2) (Fig. 7g; Supplementary Data 13). However,
ML-GPS identified disease-relevant pathways with high NES that the
L2G + Clinical + P model did not; these included UNFOLDED_PRO-
TEIN_RESPONSE for congenital heart disease (top gene CCL2)40,
ANGIOGENESIS for coronary atherosclerosis (top gene LPL)41, REAC-
TIVE_OXYGEN_SPECIES_PATHWAY for essential hypertension (top

gene FES)42, andHEME_METABOLISM for disorders of ironmetabolism
(top gene SLC4A1) (Supplementary Data 14). These results further
support the biological relevance and potential clinical utility of
ML-GPS.

Discussion
In this study, we introduced ML-GPS, a machine learning-assisted
version of the Genetic Priority Score framework that enhances the
identification of drug targets for 112 chronic diseases via four major
advances. First, ML-GPS incorporates genetic associations with
machine learning-predicted disease phenotypes, which mitigate
chronic disease underdiagnosis and stratify participants by disease
probability and severity. These genetic associations identify drug tar-
gets that are missed when performing standard case-control studies.
Second, we include all genetic associations, regardless of significance,
as features in ML-GPS and encode them in a continuous manner using
-log10(p-values); this permits the model to determine optimal sig-
nificance thresholds for each feature rather than relying on pre-
determined thresholds. Similarly, we represented clinical evidence
using the number of distinct variants for each gene and L2G using raw
scores. Third, we constructed ML-GPS using gradient boosting, which
captured non-linear relationships between features and drug indica-
tions, as evidenced by our SHAP analysis, and enabled continuous
encoding of features. Fourth, we used a newer version of phecode
terminology (phecodeX versus phecode v1.2) with more robust and
granular phenotype representation. We demonstrate that these
advances significantly improve the ability of ML-GPS to identify
disease-associated genes that are targeted by existing drugs, that ML-
GPS prioritizes thousands of additional drug targets that are sup-
ported by external evidence and represent distinct pathways, and that
ML-GPS provides support for several first-in-class drugs that are cur-
rently in clinical trials.

Our study also assesses the ability of machine learning models to
predict disease presence and compares genetic associations of pre-
dicted versus observed phenotypes across a large, diverse set of dis-
eases. Although models primarily using laboratory and vital
measurements achieved good classification performance (AUROC>
0.70) for many phecodes, there was consistently a significant perfor-
mance gain when incorporating additional features such as diagnostic
history and medication usage. Consistent with this, whereas 13 phe-
codes in our analyses were definable using single biomarkers, our
models outperformed the biomarkers in AUROC for all these phe-
codes. These results may reflect the unreliability of objective mea-
surements from a single timepoint; for example, an elevated blood
pressure from a single measurement is insufficient for diagnosing
hypertension43. Additionally, many chronic diseases are characterized
by cycles of remission and relapse, such that a participant with normal
measurements may still have disease. We also observed that at stan-
dard significance thresholds, predicted phenotypes significantly
increased the identification of common, rare, and ultra-rare variants;
however, associations with predicted phenotypes failed to capture
many variants associated with observed phenotypes. Thus, predicted
phenotypes are complementary to rather than a replacement for
observed phenotypes, and we included associations with both in
ML-GPS.

This study has several limitations. First, we performed genetic
analyses only in the UK Biobank due to the completeness of its phe-
notypic data, and of the UK Biobank participants, we analyzed only
those of European ancestry to reduce computational complexity.
While the resulting reduction of identified disease-associated variants
is partiallymitigated by the inclusion of clinical variants and L2G inML-
GPS, which include genetic evidence from outside the UK Biobank and
from more diverse participants, there remains a need for biobanks
with complete phenotypic data encompassing diverse ancestries.
Second, this study does not comprehensively cover all chronic
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diseases. Our phecode selection process included a semi-subjective
manual screening where valid phecodes may have been erroneously
removed. Further, we excluded many chronic disease phecodes,
especially those in the musculoskeletal and sense organ categories,
because they could not be accurately predicted using available phe-
notypic data. The latter issue also emphasizes the importance of
complete phenotypic data, with the majority of UK Biobank lacking
imaging, audiometric, and ophthalmic data. Third, because we use
similar datasets and methods as our earlier implementation of GPS,
many of the limitations still apply, including discrepancies in drug data
ascertainment between the Open Targets and SIDER datasets, poten-
tial misclassifications due to the use of ICD-10 and phecode termi-
nology, the non-equivalence of the absence of a genetic feature to
evidence against a drug target, relianceonLoGoFunc inference for LOF
and GOF predictions, and the greater prevalence of inhibitor com-
pared to activator drug indicationpredictions. However, we addressed
the discrepancy between Open Targets and SIDER by placing larger
sample weights on targets indicated by drugs in advanced phases,
observing similar metrics for the two datasets as a result. We also
weighed activatormore than inhibitor drug indications duringML-GPS
DOE training to avoid biases towards the latter.

In conclusion, the development and implementation of ML-GPS
advance the identification of drug targets for chronic diseases, lever-
aging machine learning-assisted genetic associations and continuous
feature encoding to improve prediction performance and drug target
coverage. ML-GPS also corroborates the viability of using predicted
disease phenotypes to identify disease pathways and drug targets.
Future directions for ML-GPS include expanding its application to
additional biobank datasets, particularly those representing non-
European ancestries, to address genetic diversity and enhance gen-
eralizability. Extending our framework to encompass additional dis-
eases, including those unable to be accurately predicted in the UK
Biobank, and refining machine learning models to construct more
accurate disease probability scores will strengthen its utility in preci-
sion medicine and drug discovery.

Methods
In brief, we selected chronic disease phenotypes (represented by
phecodes) from the UK Biobank, trained machine learning models to
predict diagnoses of these phecodes using comprehensive phenotypic
data, performed genetic association analyses using both observed
case/control status and predicted phecode probabilities, and inte-
grated this genetic evidence with existing evidence to construct ML-
GPS (Fig. 1).

Ethical compliance
The UK Biobank study was approved by the North West Centre for
Research Ethics Committee (11/NW/0382). Participants voluntarily
enrolled and gave informed electronic consent. We accessed partici-
pant data with UK Biobank approval under application ID 16218. The
design and conduct of this study compliedwith all relevant regulations
regarding the use of human study participants and was conducted in
accordance with the criteria set by the Declaration of Helsinki.

Selecting chronic disease phecodes
We directly mapped UK Biobank ICD-9 inpatient diagnoses (field
41271), ICD-9 causes of death (field 40002), ICD-10 inpatient diagnoses
(field 41270), and ICD-10 causes of death (field 40001) to phecodes
using ICD-9 and ICD-10 to phecodeX maps16. For general practitioner
(GP) records (field 42040), we first converted Read v2 and Read v3
codes to ICD-10 codes using default conversion tables (resource 592)
and then converted them to phecodes using the ICD-10 to
phecodeX map.

Of 3612 phecodes included in phecodeX, we removed phecodes
from seven categories: Neonatal and Pregnancy as they are acute and/

or restricted to specific populations; Infectious and Neoplasms as they
are acute and/or caused by external agents (albeit susceptibility may
be influenced by host genetics); Mental as they are unlikely to be
predictable using phenotypic data available in the UK Biobank;
Symptoms as they are non-specific; and Genetic as they consist of
monogenic diseases. We next selected all level 1 phecodes, as well as
level 0 phecodes without level 1 child phecodes, with > 0.001 pre-
valence among 228,879 participants with GP records. This filtering
yielded 650 phecodes (Supplementary Data 1).

We subsequently manually reviewed these 650 phecodes to
remove ones that were acute (lasting for fewer than three months),
infectious, environmental (caused primarily by trauma, diet, or other
environmental exposures), or non-specific (e.g., is a symptom that
couldbe associatedwithmany different diseases or is a diseasewith an
unclear orwidely variablephenotype). However,we retained five acute
phecodes that represent chronic disease processes: four of them
[myocardial infarction (CV_404.1), cardiac arrest (CV_420), stroke
(CV_431.1), arterial embolism and thrombosis (CV_438.4)] that reflect
atherosclerosis, and one [arterial dissection (CV_438.4)] that reflects
vasa vasorum dysfunction44. This filtering yielded 386 phecodes.

Study sample
We performed machine learning and genetic analyses using UK Bio-
bank data45. Of 426,844 participants of European ancestry as defined
by the Pan-UK Biobank project (return 2442)46, we removed 1366
participants listed as chromosomal sex discordant with self-reported
sex (fields 22001 and 31, respectively), presence of sex chromosome
aneuploidy (field 22019); outliers for heterozygosity or missing rate
(field 22027), and/or presence of ten or more third-degree relatives
(field 22021). We further removed 28,873 participants who did not
have at least 75%of 72 laboratory and vitalmeasurements used to train
machine learning models. This yielded 396,605 participants for whom
we generated machine-learning scores and performed all genetic
analyses. These participants had a median age of 58.8 [IQR 12.8], and
182,520 (46.0%) self-reported as male.

For all participants, we used phenotypic data obtained at the
baseline visit for consistency. For participants with missing laboratory
and vital measurements, we imputed missing values using the Iter-
ativeImputer multivariate feature imputation function from scikit-
learn (version 1.4.1) with a default tolerance of 0.001. 44 measure-
ments had missingness rates below 1% and all had missingness rates
below 10% except for direct bilirubin (15.1%) and lipoprotein A (20.8%)
(Supplementary Data 15).

Of the 396,605 participants, only 183,021 had linked GP records.
Many chronic diseases are primarily diagnosed in outpatient settings,
and for 70of the 112 phecodes [62.5%] included inourfinal analysis, the
proportion of observed cases was significantly higher among those
with GP records compared to those without after Bonferroni correc-
tion (Supplementary Data 16). Thus, we trained models only on the
183,021 participants with GP records, using both GP and inpatient
records for these participants to assign case/control status. We then
used trainedmodels to generate predictions for the remaining 213,584
participants without GP records. For consistency between those with
and without GP records, we only used inpatient diagnoses, which were
available for all participants, as features for the machine learning
model. There was no significant difference in the values of 123 of 189
features [65.1%] included in our models between those with primary
care records compared to those without after Bonferroni correction
(Supplementary Data 17).

Machine learning models to predict phecode diagnoses
We constructed machine learning models using LightGBM (version
4.0.0) but compared its performancewith XGBoost (version 2.1.0) and
the RandomForestClassifier function from scikit-learn as sensitivity
analyses. We trained LightGBM models to minimize log loss when
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predicting phecode diagnosis (encoded as zero or one) using the fol-
lowing parameters: {‘boosting_type’: ‘goss’, ‘num_iterations’: 1000,
‘learning_rate’: 0.01, ‘num_leaves’: 80, ‘min_data_in_leaf’: 100, ‘ear-
ly_stopping_round’: 10}. We tuned ‘boosting_type’ (options ‘gbdt,’
‘goss,’ and ‘dart’) and ‘num_leaves’ (increments of 10 from 10 to 100) to
optimize AUROC using the GridSearchCV function from scikit-learn
and selected the other three parameters based on LightGBM
recommendations47.

As an initial filter for evaluating machine learning model perfor-
mance, we constructed preliminary models using age, sex, and 72
laboratory and vital measurements for the 386 chronic disease phe-
codes identified earlier. We retained 112 phecodes for which the area
under the receiver operating characteristic curve (AUROC) was ≥ 0.70
and the area under the precision-recall curve (AUPRC) exceeded the
phecode’s prevalence. This step was also intended to select phecodes
associated with chronic physiological changes. Since many disease
diagnoses occur several yearsbeforeor after a participant’s enrollment
in the UK Biobank (when measurements are recorded), diseases not
associated with chronic changes would likely not be accurately pre-
dicted by the model.

For each of these 112 phecodes, we constructed final machine
learning models consisting of 239 features. These features included
age, sex, 72 laboratory and vitalmeasurements, 14 lifestyle factors, 101
three-character Anatomical Therapeutic Chemical (ATC) medication
classes with ≥ 0.1% prevalence, and 50 embedded features reflecting
diagnostic history. We did not perform pre-training feature selection
because LightGBM performs internal feature selection during tree
construction; supporting this, models including only important fea-
tures did not have substantially different performance from models
with all features (Supplementary Data 3). We included medication
usage following a prior UKBiobank study demonstrating that genome-
wide association results using medication usage recapitulate results
using the indicated diseases48, and we used their conversions between
medication codes and ATC codes. Medication usage may also explain
variations in laboratory measurements49. For diagnostic history, we
used previously published 50-dimensional embeddings of ICD-10
diagnostic codes as distinct features to represent each participant’s
full inpatient diagnostic history50. Because different ICD-10 codes
representing similar conditions have similar embeddings, this
approach reduces model complexity and the impact of administrative
misencoding. Specifically, for each participant, we first removed all
ICD-10 codes used todefine thephecode aswell as duplicate codes.We
then converted each of the remaining codes to a 50-dimensional
vector using the embeddings, and then averaged all vectors across
eachdimension.Weused null values during training andprediction for
participants without any inpatient diagnostic history (n = 50,604 of
396,605).

Genetic analyses
Weperformed three genetic analyses with non-overlapping variants to
model the allelic series of a gene on a given phecode: genome-wide
association for variants with MAF ≥0.01 (common); exome-wide
association for variants with MAF between 0.0001 and 0.01 (rare);
and gene-level tests for variants with MAF below 0.0001 (ultra-rare).
Weperformed eachanalysis with three different phenotypes among all
396,605 participants: observed phecode case/control status (P),
binarized model probabilities (B), and continuous model probabilities
(C). We defined observed case/control status using both GP records
and inpatient diagnoses. To binarize model probabilities for each
phecode, we selected the probability threshold yielding themaximum
F1 score (Supplementary Data 18), which is the harmonic mean of
precision and recall. We beta-regressedmachine learning probabilities
for all participants on age, sex and 10 principal components of geno-
type data and transformed the resulting residuals using rank-based
inverse normal transformation.

We followed standard steps to perform association testing using
regenie (version 3.2.2). For all three analyses, we used genotype data
to generate ridge regression predictions (step 1 of regenie) on blocks
of 2000 single nucleotide variants (SNVs). We filtered genotype data
for variants with minor allele count (MAC) > 100, minor allele fre-
quency > 0.01, genotyping rate > 0.9, and Hardy-Weinberg exact test
p-value < 1 × 10−15 using PLINK 2.0 (release 2023-11-23).

For genome-wide common variant associations, we performed the
final association test (step 2 of regenie) on blocks of 500 SNVs from
Haplotype Reference Consortium-imputed genotype data. We filtered
this data for variants with INFO score > 0.8, MAC> 100, MAF ≥0.01,
genotyping rate > 0.9, and Hardy-Weinberg exact test p value < 1 × 10−15.
To determine independent loci that were genome-wide significant, we
performed linkage disequilibrium (LD)-based clumping with a primary
significance threshold of 5 × 10−8, distance threshold of 250kb, and r2

threshold of 0.01 using PLINK 2.0. To determine independent loci
regardless of significance, we repeated LD-based clumping with a pri-
mary significance threshold of 0.05, distance threshold of 250kb, and r2

threshold of 0.01. Adapting the closest gene approach for gene
prioritization51,52, we then used expression quantitative trait loci (eQTL)
data from the GTEx project to map each independent locus to the
closest gene demonstrating a significant expression correlation (eQTL
gene). Mapping to eQTL data was also required to infer the direction of
effects of common variant associations, which we used to construct the
directional version of the genetic priority score [see “Genetic priority
scores (directional)”]. Across all phecodes, we mapped 61% of inde-
pendent loci to an eQTL gene, and 42% of eQTL genes were also the
closest overall gene (Supplementary Data 19).

For exome-wide rare single variant coding associations, we per-
formed the final association test (step 2 of regenie) on blocks of 500
SNVs from exome sequencing data. We filtered these data to identify
233,982 missense and protein-truncating variants (nonsense, indel
frameshift, canonical splice site variants) with MAC> 5, 0.0001 ≤
MAF<0.01, genotyping rate > 0.9, and Hardy-Weinberg exact test
p-value < 1×10−15. We used Ensembl variant effect predictor (VEP) tool
(version 111) to identify missense and protein truncating variants. For
analyseswhereweexaminedonly significant variants, wedefined these
variants using a threshold of p < 4.3×10−7 following the approach of
Sveinbjornsson et al.53 we then re-ran thefinal association test for these
variants conditioned on the genome-wide significant independent loci
identified from the common variant analysis for the same phecode to
account for rare variant association signals that may be attributed to
LD with common variants54,55. For analyses where we examined all
variants irrespective of significance, we did not perform conditional
analyses due to computational limitations.

For gene-level tests of ultra-rare coding variants, we considered
only ultra-rare variants withMAF <0.0001 that were either deleterious
missense or protein truncating variants. There were 1,767,642 such
variants mapped to 18,544 genes. We defined deleterious missense
variants as those predicted to be deleterious or protein intolerant by
each of PolyPhen-2 HumVAR, PolyPhen-2 HumDIV, sorting intolerant
from tolerant, likelihood ratio test, andMutationTaster. We generated
these annotations using Ensembl VEP. We then performed standard
burden tests, sequence kernel association tests, optimal unified SKAT,
and aggregated Cauchy association tests for each gene using regenie
and used the association result from the test with the strongest
p-value. We used a Bonferroni-corrected p-value threshold (0.05/
number of genes tested, or 0.05/18,544) to define significant gene-
level associations. As with rare variants, for analyses where we exam-
ined only significant associations, we re-ran tests for genes with sig-
nificant associations conditioned on the genome-wide significant
independent loci identified from the common variant analysis for the
same phecode. For analyses where we examined all associations
regardlessof significance,wedidnotperformconditional analyses due
to computational limitations.
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Drug data
Wecollected andprocessed drug data from theOpenTargets Platform
(version 23.12) and the SIDER database (version 4.1)56,57. For Open
Targets, gene target, drug indication, and drug mechanism of action
data were available for each drug. For SIDER, we separately identified
gene targets using the mechanism of action data from Drugbank
(release 5.1.10) and ChEMBL (release 33). We removed drugs with ATC
code J (Anti-infectives for systemic use) from both databases as their
targets are primarily non-human genes. From Open Targets, we iden-
tified 4930 drugs, 1538 genes and 29,239 drug indications, whereas
from SIDER, we identified 886 drugs, 762 genes, and 11,702 drug
indications. We then aggregated drug data in Open Targets and SIDER
by gene and phecode (gene-phecode pairs) and retained the highest
clinical trial phase of all drugs targeting each gene-phecode pair for
follow-up analyses.

In Open Targets and SIDER, 73 and 77 of the 112 included phe-
codes had at least one drug indication, respectively. To create training
and external testing datasets, we repeated all unique genes for each of
the phecodes with at least one indication in Open Targets and SIDER,
respectively, resulting in final datasets with 1538 × 73 = 112,274 and
762 × 77 = 58,674 unique gene-phecode pairs.

Existing genetic evidence
We collected and filtered existing genetic evidence from four sources
similar to our prior approach7: EVA-ClinVar (sourced from Open Tar-
gets Platform version 23.12)58, OMIM (accessed December 18, 2023)58,
HGMD Professional (version 2023.3)59, and Locus-to-gene (L2G;
sourced fromOpen Targets Platform version 23.12)60. For each source,
we mapped different disease ontologies (e.g., MONDO, OMIM, UMLS)
first to ICD-10 codes using Disease/Phenotype annotations provided
by Open Targets as well as the UMLSMetathesaurus (release 2023AB).
We then mapped ICD-10 codes to phecodes using the ICD-10 to phe-
codeX map61. Additionally, we directly mapped HPO codes, including
those present inHGMD, to phecodes using the StrongEvidenceSpecific
HPO to phecodeX map62. From EVA-ClinVar, we identified 10,564 var-
iants from 584 genes for 68 phecodes. From OMIM, we identified 1182
variants from 250 genes for 59 phecodes. From HGMD, we identified
54,169 variants for 3624 genes for 59 phecodes. From L2G, we identi-
fied 5324 genes for 68 phecodes; after filtering variants using the
recommended score threshold of 0.5, we identified 1704 genes for 59
phecodes.

Genetic priority scores
We constructed ElasticNet logistic regression and LightGBM binary
classification models to predict whether each gene-phecode pair has
an indicated drug and used continuous prediction probabilities from
these models as genetic priority scores. These scores are non-
directional as they do not predict whether a drug with an activator
or inhibitormechanism is required.We trainedmodels using the larger
Open Targets dataset (112,274 pairs) and externally tested them in the
smaller SIDER dataset (58,674 pairs). Models included up to 13 fea-
tures: four of these features represented existing genetic evidence
(EVA-ClinVar, HGMD, OMIM, L2G). The other nine features repre-
sented genes identified from the common, rare, and ultra-rare variant
analyses for P, B, and C phenotypes. Feature weights and importances
were not pre-defined and were determined automatically by
each model.

Both ElasticNet and LightGBM can handle the multicollinearity
present in our datasets: ElasticNet due to regularization63, and
LightGBM because it will only use one of multiple highly correlated
features. We implemented ElasticNet using the SGDClassifier function
from scikit-learn with the following parameters: {loss = ‘log_loss’,
penalty = ‘elasticnet’, alpha = 5e-5, l1_ratio = 0.3}. We implemented
LightGBM with the following parameters: {‘boosting_type’:
‘goss’, ‘num_iterations’: 500, ‘learning_rate’: 0.01, ‘num_leaves’: 30,

‘min_data_in_leaf’: 50, ‘early_stopping_round’: 10}. We selected para-
meters for bothmodels again usingGridSearchCV fromscikit-learn but
using AUPRC instead of AUROC as the optimization metric due to the
rarity of drug indications.

As a baseline, we used binary encoding, where we assigned all
features a value of zero or one (i.e., absence or presence of evidence);
for L2G, we included only geneswith a score > 0.5; and for the P, B, and
C features, we only included genes with a significant variant or test.We
compared this with continuous encoding as follows: for EVA-ClinVar,
HGMD, and OMIM, we assigned each gene the number of distinct
variants for that gene; for L2G, we assigned each gene the highest L2G
score of all variants for that gene; and for the P, B, and C features, we
assigned each gene the highest -log10(p-value) from the genetic asso-
ciation results of all variants or tests for the gene.

To prioritize gene-phecode pairs with greater pharmaceutical
evidence, we tested sample weighting based on either the number of
distinct drugs or the maximum clinical trial phase. In both cases, we
assigned all samples a base weight of 1. For number-based weighting,
we assigned gene-phecode pairs targeted by two, three, four, or five or
more drugs weights of 1.5, 2.0, 2.5, and 3.0, respectively. For phase-
basedweighting, we assigned gene-phecode pairs targeted by drugs in
phase II, III, or IV weights of 1/0.63, 1/(0.63 × 0.31), and 1/(0.63 × 0.31 ×
0.58), respectively, based on the success rates of drugs in these phases
between 2006 and 201564.

We trained ElasticNet models using a five-fold cross-validation
approach, where in each of five folds, we trained an ElasticNet model
on 80% of the Open Targets dataset and used the resulting coefficients
to generate predictions for the remaining 20% of the Open Targets
dataset (holdout testing) aswell as the SIDERdataset (external testing).
For ElasticNetmodels,we includedphecode categories and the ratioof
observed/expected LOF variants (gnomAD v4.0) as covariates during
model training, but did not use coefficients for these covariates when
generating predictions, consistent with the original implementation of
GPS. ElasticNet regression coefficients are available in Supplementary
Table 6. We trained LightGBM models using a nested cross-validation
approach with five outer folds and five inner folds due to the
requirement of separate training, validation, and holdout sets. For
each outer fold, we used 80% of the Open Targets dataset for training
and validation and 20% of the Open Targets dataset for holdout test-
ing; we further split the former 80% into five inner folds, using 80% for
training and 20% for validation. We used each inner fold model to
generate predictions for the outer fold holdout dataset, the SIDER
dataset, as well as all other gene-phecode pairs where at least one of
the features was not zero. For both ElasticNet and LightGBM models,
to avoid data leakage, we removed gene-phecode pairs from the SIDER
dataset that were also present in either the training or validation
datasets in each iteration of model training.

Genetic priority scores with direction of effect
We generated directional genetic priority scores by constructing
LightGBM multi-class one-versus-all classifiers. For each phecode,
these classifiers predictedwhether each genewas targeted by no drug,
a drug with an activator mechanism (activator drug indication), or a
drug with an inhibitor mechanism (inhibitor drug indication), with the
probabilities for each class summing to one. Using mechanism of
action data from ChEMBL (release 33)7, we classified gene-phecode
pairs targeted by drugs with allosteric antagonist, antagonist, anti-
sense inhibitor, blocker, degrader, inhibitor, inverse agonist, negative
allosteric modulator, negative modulator, and releasing agent
mechanisms as having inhibitor mechanisms and those targeted by
drugs with activator, agonist, opener, partial agonist, positive allos-
teric modulator, and positive modulator mechanisms as having acti-
vatormechanisms. In our dataset, we did not observe conflicting labels
where a genewas targeted by both an activator and inhibitor drug for a
given phecode. For the EVA-ClinVar, HGMD, OMIM, and rare variant
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features, we separated each feature into three sub-features based on
the effects of variants for each gene: LOF, GOF, or neutral. To deter-
mine variant effect, we used Ensembl VEP (version 111) to predict
whether variants were missense or LOF. We then used LoGoFunc
(release 2023-01-23) to predict whether missense variants were GOF,
LOF, or neutral65. We similarly separated each of the L2G and common
variant features into two sub-features: one including variants where
genome-wide association and eQTL effect estimates had opposite
signs, and another including variants with matching sign estimates.
Finally, we kept ultra-rare variant features unchanged as we primarily
tested LOF variants. Because there were substantially more inhibitor
compared to activator drug indications in both Open Targets and
SIDER, weweighed gene-phecode pairs with activator drug indications
twice as much as those with inhibitor drug indications during model
training to decrease biases towards inhibitor drug indications.

Data and statistical analyses
We performed all analyses in Python (version 3.11). We cleaned
downloaded data using pandas (version 2.1.3). We performed all sta-
tistical tests using scipy (version 1.12.0), including Fisher’s exact tests
to test for differences in proportions, Wilcoxon rank-sum tests to test
for differences in feature values, and both Wilcoxon rank-sum and
signed-rank tests to test for differences in variant effect sizes. All tests
were two-sided. We generated confidence intervals for machine
learning performance metrics using bias-corrected and accelerated
bootstraps with 1000 resamples. We compared machine learning
models using permutation tests with 1000 permutations, with each
permutation entailing random shuffling of predictions for each gene-
phecode pair from two different models66. We performed Cox
regressions to calculate hazard ratios for all-cause mortality using
lifelines (version 0.27.8), adjusting for age and self-reported sex. We
performed linear and logistic regressions using statsmodels (version
0.14.1); for logistic regressions to calculate odds ratios for drug indi-
cations, we adjusted for phecode categories and the ratio of observed/
expected LOF variants (gnomAD v4.0). We performed single-sample
gene set enrichment analysis using GSEApy (version 1.1.1)67.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All ML-GPS features and predictions as well as summary statistics for
genetic association analyses have been deposited in Zenodo (https://
doi.org/10.5281/zenodo.10939110). A subset of this data is also avail-
able in the Supplementary Information, Supplementary Data, and
Source Data files. UK Biobank data are available upon application to
the AccessManagement System. Gene-phecode pairs in the top 10% of
ML-GPS scores can be accessed interactively via a web application
(https://rstudio-connect.hpc.mssm.edu/mlgps/). Source data are pro-
vided with this paper. Other resources used to construct ML-GPS can
be accessed as follows: Drug, gene target, drug indication, and drug
mechanism of action data from Open Targets (version 23.12), https://
platform.opentargets.org/downloads/. Drug indication data from
SIDER (version 4.1), http://sideeffects.embl.de/download/. Gene target
and drug mechanism of action data from Drugbank (release 5.1.10),
https://go.drugbank.com/releases/latest/. Gene target and drug
mechanismof action data fromChEMBL (release 33), https://ftp.ebi.ac.
uk/pub/databases/chembl/ChEMBLdb/releases/chembl_33/. Variant
effect predictions from Ensembl VEP (release 111), http://ftp.ensembl.
org/pub/release-111/gtf/homo_sapiens/. Clinical variants from OMIM
(accessed November 1, 2023), https://www.omim.org/downloads.
Clinical variants from HGMD Professional (version 2023.3), https://
www.hgmd.cf.ac.uk/ac/index.php. Quantitative trait locus data from
GTEx Analysis V8, https://www.gtexportal.org/home/downloads/

adult-gtex/qtl/. phecodeX definitions and ICD-10 mappings (accessed
November 1, 2023), https://phewascatalog.org/phecode_x. Ratio
of observed/expected LOF variants from gnomAD v4
(accessed November 1, 2023), https://storage.googleapis.com/gcp-
public-data--gnomad/release/4.0/constraint/. Terminology conver-
sions from UMLS Metathesaurus (release 2023AB), https://www.nlm.
nih.gov/research/umls/licensedcontent/umlsknowledgesources.html
HPO to phecodeX map (accessed November 1, 2023), https://github.
com/emcarthur/phecode-HPO-map/ Source data are provided with
this paper.

Code availability
Analytic code to train phecode diagnosis prediction models, clean
datasets used for ML-GPS, and train ML-GPS are available at Zenodo
(https://doi.org/10.5281/zenodo.10939110) in Jupyter Notebook
format.
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