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Abstract: The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon
emissions, urban energy consumption, and the building sector, and is useful for theoretical research
and evaluation. The approach is especially beneficial for combating climate change and encouraging
energy transitions. During the method’s development, there are opportunities to develop advanced
formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully
explored through experimentation. This study reviews previous research on the LMDI method
in the context of building carbon emissions, offering a comprehensive overview of its application.
It summarizes the technical foundations, applications, and evaluations of the LMDI method and
analyzes the major research trends and common calculation methods used in the past 25 years in the
LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy,
and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method
(GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural
Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages
of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by
highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other
models for more comprehensive analysis. However, in current research, there is still a lack of an
extensive study of the driving factors in low-carbon city development. The previous related studies
often focused on single factors or specific domains without an interdisciplinary understanding of
the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI,
face challenges in handling large-scale data and highly depend on data quality. Together with the
estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes
these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon
emissions. Integrating machine learning and big data technologies can enhance data-processing
capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for
low-carbon city development. Through particular case studies, this paper indicates the effectiveness
of these approaches and proposes measures that include optimizing building design, enhancing
energy efficiency, and refining energy-management procedures. These efforts aim to promote smart
cities and achieve sustainable development goals.

Keywords: LMDI (Log Mean Divisia Index); carbon emissions; energy efficiency; sustainable
development; urban energy consumption; environmental impact assessment

1. Introduction

The elevation in energy usage and carbon emissions has a profound effect on global
climate change and environmental sustainability. Therefore, scientifically analyzing their
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driving factors has become a key focus for researchers and policymakers [1,2]. They seek
to uncover the deeper underlying factors that influence greenhouse gas emissions. The
level of greenhouse gas emissions is determined by various factors, including a country’s
technological level, wealth, energy structure, economic structure, and demographic compo-
sition. The theory of the Divisia index was formerly proposed by François Divisia in 1926 to
analyze the indexes for continuous-time data on prices and quantities of goods exchanged.
With a high potential for its contribution to the digitalization of energy consumption data,
the earliest research on the decomposition index in energy economics and environmental
science aspects was based on the energy intensity of industrial sectors. This study aims to
achieve a higher accuracy in energy-related field simulation by breaking down data with
path independence.

Structural decomposition analysis (SDA) and index decomposition analysis (IDA)
are the two main analysis methods that have been introduced that determine the factors
related to energy consumption and carbon dioxide (CO2) emissions. SDA is based on the
input–output model for a long-term evaluation. Meanwhile, IDA, which is known for its
short-term applications, with the need for periodic stimulation that adapts to changing
times, receives significant attention and research in the relevant fields. The Laspeyres
exponential decomposition method and the LMDI decomposition method are the two
advancement methods of IDA that are most commonly used, and they have led to the
development of various related theories and methods.

The LMDI method, as an important improvement of the IDA approach, features a user-
friendly formula that can accurately handle zero and negative values, providing easy-to-use
calculations. It not only overcomes many limitations of traditional decomposition methods
but also offers more precise and flexible analysis tools. Due to its unique advantages, the
LMDI has gradually become a mainstream tool for decomposition analysis. By applying
identified factors influencing the target variable and the collected relevant data in the LMDI
formula, the methods allow the decomposition of changes into contributions from each
factor and interpretation of the results to understand which factors have the most impact.
It provides precise insights into the factors driving changes in energy use and emissions,
helping actors to develop targeted strategies for improving energy efficiency and reducing
carbon emissions for a variety of aspects, including researchers, policymakers, businesses,
and urban planners. It aids in smart city development by analyzing energy usage and
carbon emissions in transportation, buildings, and power systems, providing a scientific
foundation for optimizing energy efficiency and formulating low-carbon policies [3,4].

To address the lack of studies that support and demonstrate which methodology
is more credible, researchers have dedicated the past 50 years to studying energy usage
and carbon emissions. The continuous advancement of stimulation factors has gradually
enhanced the credibility of these studies in related fields. This is particularly evident in
academia, where critical attention to the lack of variance consideration in the Divisia index
method has significantly improved the accuracy of related methodologies.

In the last 25 years, Ang conducted the first decomposition analysis in the energy
sector, emphasizing two popular decomposition techniques: the Divisia index, which
compares changes logarithmically, and the Laspeyres index, which is based on percentage
change. He concluded that the Divisia index method is better and provided practical
guidance on this method, giving essential guidance and support to future relevant stud-
ies [5,6]. In collaboration with Liu, their research extended the Divisia index decomposition
method by providing analytical solutions to handle negative and zero values in the dataset,
thereby offering greater potential for related studies [7]. Later, scholars further integrated
IDA, widely used in energy and emission studies, into eight LMDI decomposition models
and created summaries and comparisons [8]. In recent years, Ang’s extensive research in
the LMDI field has led to its widespread application in low-carbon and energy efficiency
research [9–11]. The LMDI has been used in various research fields in later studies. Reviews
such as summaries of Carbon Peak and Carbon Neutrality (CPCN), models for calculat-
ing and predicting building carbon emissions, theoretical underpinnings, methods and
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assessments of decomposition analysis, and thorough analyses of methods for assessing
carbon emissions, including a description of the benefits and features of each method, have
also been widely proposed by researchers. These evaluations provide more comprehensive
and reliable references and explanations for future studies [12,13]. Zhao, Li, and Ma also
conducted an IDA decomposition analysis on Residential Energy Consumption (REC) and
highlighted that a high-quality and cleaner energy structure is crucial to achieving energy
efficiency [14]. Moreover, Shen, Wu, and others studied the four stages of carbon emissions
in Beijing’s Low Carbon City policy [15].

However, in current research, there is still a lack of an extensive study of the driv-
ing factors in low-carbon city development. The previous related studies often focused
on single factors or specific domains without an interdisciplinary understanding of the
interactions between factors. Moreover, traditional decomposition methods, such as the
LMDI, face challenges in handling large-scale data and highly depend on data quality. To-
gether with the estimation of kernel density and spatial correlation analysis, the enhanced
LMDI method overcomes these drawbacks by offering a more comprehensive review of
the drivers of energy usage and carbon emissions. Integrating machine learning and big
data technologies can enhance data-processing capabilities and analytical accuracy, offering
scientific policy recommendations and practical tools for low-carbon city development [16].
Through particular case studies, this paper indicates the effectiveness of these approaches
and proposes measures that include optimizing building design, enhancing energy effi-
ciency, and refining energy-management procedures. These efforts aim to promote smart
cities and achieve sustainable development goals.

This paper gathers and summarizes studies performed in the last 25 years on the
LMDI, low-carbon development, and energy efficiency, including an overview of the
LMDI analysis on building materials and urban energy and an analysis of the technical
concepts related to the LMDI decomposition. It also further categorizes and analyzes
building types, which are civil architecture, public architecture, and residential architecture.
Additionally, the application of related methods within the building sector, such as the
Impact, Population, Behaviour, Affluence, and Technology (I-PBAT) model, Life Cycle
Assessment, and carbon emission analysis, are summarized.

Figure 1 provides a comprehensive framework, offering a conceptual statement of the
overall review.

• The LMDI method has four advantages and two disadvantages, leading to four direc-
tions for future development.

• The LMDI is applied to examine the driving variances of urban REC, carbon emissions,
and CO2 emissions in China.

• The analysis of buildings using the LMDI covers three main categories: civil buildings,
public buildings, and residential buildings. Public buildings are further subdivided
into four categories. The analysis is conducted through the combination of the LMDI
and other methods.

• The analysis of different aspects of building using various LMDI models and other
methods.

• The LMDI method, combined with dynamic material flow analysis and index decom-
position analysis, determines Domestic Material Consumption (DMC) and material
footprint (MF) under the influence of material and residential intensity effects. This
reflects the demand and consumption of materials in a country or region at different
stages of development.
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2. Methodology

This systematic review follows the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines to ensure a comprehensive and transparent review
process. As shown in Figure 2, the process was conducted across multiple databases
like CNKI, ScienceDirect, MDPI, ResearchGate, etc. to identify relevant studies. A total
of 1116 records were initially retrieved through database searches, of which 465 records
were repeated and later removed. Of the remaining 651 records, 462 records of studies
that did not focus on urban energy planning or building design were excluded, leaving
189 records for screening, which assessed their relevance. Within the 189 records, 64 articles
achieved the eligibility categories under the categories of Q1 and Q2 journals. From the
final remaining records, 2 of the articles were determined to be qualitative research, while
the other 64 articles were determined to be quantitative research.
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3. Analysis of Related Technical Theories of LMDI Decomposition

The theoretical basis of the LMDI method is mainly based on the index number
theory. Scholars have proposed four criteria for evaluating decomposition methods, namely,
theoretical foundation, adaptability, user-friendliness, and clarity of results. The LMDI
approach performs well on these four criteria. Firstly, the robustness of the theoretical
basis of the LMDI method is proved through the tests on time reversal, factor reversal,
proportion, and polymerization. Secondly, the LMDI method can process data containing
zero and negative values, which is very effective for analyzing time series and cross-section
data. In addition, the calculation formula of the LMDI method is simple and easy for
users to operate. The calculation process is relatively simple and does not require complex
mathematical operations, so users can easily master and apply the method. Finally, the
results of the LMDI method are highly interpretable, and the decomposition results are
clear and direct. With the LMDI approach, researchers can clearly identify and quantify the
contribution of individual drivers to the total change, thus providing a reliable basis for
policy formulation.

Based on the concept of the logarithmic mean weight, the LMDI avoids the residual
problem of traditional decomposition methods and has the property of complete decompo-
sition. Its basic formula is shown below:

∆Y = ∑∆Yi

where ∆Y represents the total change, and ∆Yi represents the change in each driving
factor [11].

The LMDI approach has been widely applied as research advances. By combining
spatial correlation analysis and kernel density estimation, the method’s potential for inte-
grating spatial and temporal aspects has increased, leading to a more comprehensive and
accurate study [11]. The LMDI, regarding energy usage and carbon emission decomposition
analysis, is highly reliable and effective. It breaks down the total energy usage into various
factors, allowing for the identification and quantification of each factor’s contribution to
changes in energy usage [12]. Additionally, compared to traditional Divisia decomposition
methods, the LMDI offers several advantages. Firstly, the decomposition results are not
influenced by the decomposition path, ensuring consistency and reliability. Secondly, the
LMDI method effectively handles zero values in the data, avoiding decomposition biases
caused by zero values [13].
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4. Summary of LMDI Analysis of Urban Energy

This part of the study provides a detailed examination of key areas influencing carbon
emissions and energy consumption. The analysis focuses on carbon emissions, driving
factors on carbon emissions, and driving factors in energy consumption. Table 1 presents a
summary of high quality academic researches related to urban energy.

Table 1. The statistical analysis of LMDI-related literature on urban energy.

Source Year Major Focus Methodology

Zhao, X.L.; Li, N.; et al. [14] 2012 Factors Influencing REC LMDI

Liu, Z.G.; Wang, S.S.; et al. [15] 2015

Factors Influencing Carbon
Emissions in Urban Civil

Architecture in China from
1997 to 2007

LMDI

Shen, L.Y.; Wu, Y.; et al. [17] 2018 EKC Analysis of Carbon
Emissions in Beijing EKC + LMDI

Gu, S.; Fu, B.Y.; et al. [18] 2019

Factors Influencing CO2
Emissions in Shanghai from
1995 to 2016 and Forecast of

the Decarbonization Potential
from 2016 to 2030

LMDI + SD

Huang, Y.Z.; Matsumoto, K. [19] 2021
Influence of Urbanization on
CO2 Outputs in 30 of China’s
Provinces from 1990 to 2016

LMDI

Li, H.M., Qiu, P.; et al. [20] 2021

Estimation of CO2 Emissions
for Provincial-Level Building

Industries and Different
Building Types

LMDI

Zhang, Y.; Zhang, Y.X.; et al. [21] 2022

Research on Urban Carbon
Footprint Drivers and LMDI

Decomposition and
Forecasting with Three

Scenarios

LMDI

Gao, G.Y.; Jia, Q.; et al. [22] 2024

LMDI Decomposition of CO2
Emission Factors, Tapio

Decoupling Model Analysis,
and LEAP Model Forecasting

LMDI

4.1. Analysis of Carbon Emissions

Global warming due to carbon emissions is a severe global issue, threatening both
natural ecosystems and human development. Despite efforts by governments worldwide
to reduce emissions over the years, carbon emissions have continued to rise. According to
reports in 2011, global carbon emissions have experienced a 40 percent increase since 1750.
This highlights the critical necessity for global action to regulate carbon emissions with a
comprehensive and systematic method [17].

In the evaluation of carbon emission, the LMDI study is currently still limited at the
regional level [17]. However, related research has been widely applied in many regions,
especially China, the largest carbon emission country that is targeting achieving a low-
carbon city. Using the LMDI, a related study mentioned that the decomposition and
analysis of urban nonindustrial building carbon emissions involve factors including POP,
PCA, BS, EI, and EF, of which POP and PCA are the key variances [15].
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4.2. Analysis of Driving Factors on Carbon Emissions

In studying carbon emissions, CO2 is used as the primary metric since it is the most
important greenhouse emissions released by human activities [15]. A study analyzed CO2
emissions in different regions and each region’s statistical data, identifying six key factors
driving CO2 emissions, including CI, EI, RC, CS, PU, and POP [19]. Using those data
and the LMDI method, the correlation between urbanization and CO2 emissions can be
evaluated.

Taking the Kaya Identity into account, CO2 emissions are decomposed as follows:

CARBi =
CARBi
ENEi

× ENEi
GRPi

× GRPi
POPi

× POPi

where CARB refers to CO2 emissions, ENE refers to the total energy usage, GRP refers to
the Gross Regional Product, and POP refers to population, with i referring to the number
of provinces [19].

4.3. Analysis of Driving Factors in Energy Consumption

Scientific measurements of energy usage have been widely researched in relevant field
studies. The factors influencing energy consumption included EF, ES, EI, UC, AL, MCE,
and M. EI is a key factor of carbon reduction, followed by ME.

The data on energy usage can be decomposed into six transportation sectors: agricul-
ture, industry, buildings, commercial, residential, and urban. Buildings are the key focus of
this paper. Decomposing each sector in depth, the carbon emission can be standardized
and classified into direct sources, such as burning fossil fuel, and indirect sources, such as
electricity and heat.

With a more comprehensive dataset, the extended form of the LMDI method can be
applied to explore the drivers of the growth of urban REC. This approach can examine
the full structure of its energy usage, and its formula is commonly divided into four main
categories, which are private transportation, household appliances, central heating, and
other energy-use activities, alongside 17 energy-use products [14].

A relevant study suggests integrating the System Dynamics (SD) model, a tool for
simulating complex system behaviors and feedback using mathematical modeling, with the
LMDI method for carbon emission calculations. This simulation incorporates factors such
as personal automobile ownership, urban transportation alternatives, and mean income
levels into the traditional drivers of CO2 emissions. Socio-economic scale effects, driven by
PCGDP and P, emerged as the primary positive drivers of CO2 growth [18].

Some studies have combined Kaya Identity and the LMDI model to decompose urban
carbon emission driving variances. It is one of the carbon emission factorization models,
and it includes economic growth, population, policy, and other variables with carbon
emissions in the research. The driving factors of carbon outputs integrated into the model
include P, PCGDP, IS, EI, and ES. In the research, based on a thorough evaluation of the
factorization results of urban carbon emissions, P and PCGDP contribute the most to urban
carbon emissions, while EI and CI inhibit carbon emissions significantly in most years [21].
On the other hand, using IDA to expand the Kaya Identity resulted in minor variations. E
may rise as the key driving factor of CO2 emission, and EI is the primary factor constraining
the emission [22].

5. LMDI Analysis of Building

The application of the LMDI method has become a significant tool for understanding
the factors driving energy consumption and carbon emissions in various building types.
In the context of civil, public, educational, commercial, and residential architecture, the
LMDI approach allows for a detailed decomposition of energy use drivers, offering insights
into sector-specific challenges and opportunities. This section focuses on how LMDI has
been applied to different architectural sectors, analyzing its effectiveness in identifying key
factors influencing energy use and carbon emissions.
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5.1. LDMI Analysis of Civil Architecture

Civil architecture plays a crucial role in shaping urban energy consumption, with its
broad range of building types contributing significantly to overall carbon emissions. The
application of the LMDI method in this area provides a detailed analysis of energy use
drivers, offering a pathway toward improving energy efficiency. This section summarizes
the key studies that have applied LMDI to civil buildings, identifying the most impactful
factors and proposing relevant policies. Table 2 highlights the statistical analysis of LMDI-
related literature on civil architecture.

Table 2. The statistical analysis of LMDI-related literature on civil architecture.

Source Year Major Focus Methodology

Ma, M.; Shen, L.Y.; et al. [23] 2017
LMDI-I Decomposition of Carbon

Emissions from Public Buildings in China
and STIRPAT Drivers Model

STIRPAT + LMDI

Yang, S.H.; Liu, J.; et al. [24] 2021
Study on the Drivers of Carbon

Emissions from Residential Buildings in
Four Regions of China

LMDI

Ma, M.D.; Yan, R.; et al. [25] 2018

Contribution to Drivers of Energy
Consumption in Public Buildings and
Energy Usage Assessment During the

10th Five-Year Plan Period

LMDI

The LMDI model can study the drivers of civil buildings’ carbon outputs in China. By
comparing the carbon emissions of the regions, the key effects causing carbon emissions are
revealed. Relevant policy proposals are presented to meet the carbon-reduction goal [24].

A method based on the LMDI method and Stochastic Impacts by Regression on
Population, Affluence, and Technology (STIRPAT) model, which is an advanced version
of the Impact, Population, Affluence, and Technology (IPAT) model that examines how
population, affluence, and technology influence environmental impact, is proposed to
calculate the current civil buildings’ energy efficiency in China from 2001 to 2015. China’s
energy usage has significantly reduced with the accelerated development of building
energy conservation [25].

Enhancing building operational efficiency, improving energy efficiency, and promoting
energy-saving lifestyles can significantly reduce energy usage in a building’s operation.
Reducing energy intensity is strongly negatively correlated with increased carbon produc-
tivity, indicating that energy-saving measures can also enhance carbon productivity [26,27].
This requires consideration throughout the building scheme life cycle, from planning to
demolition and recycling [28]. For instance, energy reduction can be achieved by utilizing
clean energy associated with the manufacturing, processing, and delivering of building
materials [27]. Promoting green building technology and materials and implementing
carbon-reduction strategies, such as applying low-carbon design in new buildings and
low-carbon retrofitting on existing buildings, are also crucial [29,30]. The government is
obligated to develop carbon-reduction technologies, such as optimizing the energy system
using innovative scientific and technological approaches and boosting the usage of clean
energy. The proportion of the expenditure on green research and development should
also be increased [31]. In addition, different regions should develop corresponding energy-
saving measures according to their specific energy needs. Relevant departments should
formulate differentiated emission-reduction targets and policies for different regions to
balance fairness and efficiency in green development [32,33], control the expansion of
high-energy-consumption industries, and gradually phase out the obsolete capacity to
reduce carbon emissions. To reduce total carbon emissions, governments should strictly
regulate the expansion of industries that significantly contribute to energy usage and carbon
emissions [34].
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5.2. LMDI Analysis of Public Architecture
5.2.1. LMDI Analysis of Public Buildings

Public buildings, often characterized by their large size and high energy demands,
represent a critical sector for carbon reduction efforts. Through the LMDI model, studies
have effectively decomposed the drivers of energy use and carbon emissions in this sector,
offering a comprehensive understanding of factors such as population growth, economic
activity, and technological development. This analysis provides valuable insights into
how public buildings can achieve greater energy efficiency. Table 3 presents the statistical
analysis of LMDI-related literature on public buildings.

Table 3. A statistical analysis of the LMDI-related literature on public buildings.

Source Year Major Focus Methodology

Ma, M.D.; Yan, R.; et al. [25] 2018

Analysis of Impact Factors on Public
Building Energy Consumption and ESPB

Evaluation during the 10th–12th
Five-Year Plan Periods

LMDI

Gan, L.; Liu, Y.; et al. [26] 2022
Inequality Analysis of Carbon Output

Intensity and Drivers in Public Buildings
in China from 2010 to 2019

LMDI

Zhang, J.J.; Yan, Z.F.; et al. [27] 2023

Analysis of Factors Influencing Carbon
Emissions in Public Buildings and the
Impact of Economic Growth Level on
Operational-Stage Carbon Emissions

LMDI

Zou, Q.; Zeng, G.P.; et al. [29] 2024 Major Drivers of Carbon Emissions in
Public Buildings in Changsha

STIRPAT Model + Network
Analysis + Spatial Durbin

Model

The first model of the LMDI (LMDI-I) decomposition method and STIRPAT model
were used in China to establish the driving factor equation for Carbon Emissions in Public
Buildings (CPBCE) and evaluate carbon reduction (CERCPB) [35]. The technical approach
involves using the STIRPAT model to determine the different drivers affecting carbon
emissions and applying the LMDI-I decomposition analysis method.

The research methods include using the STIRPAT model to determine the decoupling
of population, wealth, technology, and environmental pressure, as well as using the LMDI-I
decomposition analysis to break down explanatory variables into a set of driving factors
and quantify their contributions. Carbon-reduction amounts are calculated using the
formula, treating CPBCE intensity as a result of public building energy efficiency and
service levels.

This study reveals an extensive reduction in carbon outputs in the public building
sector. The findings suggest that from 2001 to 2015, there was a negative effect of equivalent
CPBCE intensity, and the carbon reduction increased significantly. The CERCPB values
were 69.29 million tons of CO2 for 2001–2005, 158.53 million tons for 2006-2010, and 277.86
million tons for 2011–2015. The actual CERCPB values exceeded the official targets, indicat-
ing significant achievements in public building energy efficiency during this period [36].
Therefore, implementing energy-efficient policies and goals for public buildings is crucial
for achieving carbon reduction.

China’s public buildings exhibit substantial regional disparities in the intensity of
carbon outputs. Due to their advanced economic growth and high building density, the
carbon emissions intensity of the coastal regions in the east is higher than the central and
western parts of the country. Additionally, factors such as the economic growth level,
energy structure, and climate conditions notably affect carbon emission intensity. It is
suggested to formulate decarbonization policies tailored to the local context, encourage the
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development of the central and western regions, improve energy efficiency, optimize the
energy structure, and achieve a balanced carbon emission reduction across the country.

The researchers used the STIRPAT and Long-range Energy Alternatives Planning
System (LEAP) models to audit and predict the carbon emissions of public buildings in
Xi’an. In their studies, various scenarios were evaluated, including baseline, energy-saving
retrofit, renewable energy substitution, and comprehensive scenarios. This study pro-
posed specific energy-saving and emission-reduction policy recommendations, including
enhanced policy support, boosted investment in technology research and advancement,
and the promotion of energy-efficient and renewable energy applications.

In another case in Changsha, the carbon emission paths of public buildings were
monitored during their operational phase using the LEAP model for the prediction and
scenario analysis from 2021 to 2035. The study focused on the key factors influencing
public building carbon emissions and set up a baseline and green scenarios for energy
usage scenarios [37].

5.2.2. LMDI Analysis of Educational Buildings

Educational buildings, including schools and universities, offer unique challenges
and opportunities in energy management due to their operational patterns and diverse
energy needs. Applying LMDI to this sector has revealed key drivers of energy use, such
as occupancy rates and technological upgrades, offering insights into how educational
institutions can improve energy efficiency. Table 4 presents a statistical analysis of LMDI-
related literature on educational buildings.

Table 4. A statistical analysis of the LMDI-related literature on educational buildings.

Source Year Major Focus Methodology

Zhou, X.; Xu, Z.X.; et al. [30] 2023
Analysis of Drivers of Carbon Emissions
in Educational Buildings and Definition

of Three Typical Scenarios
Scenario Analysis + LMDI

Laporte, J.P.; Román-Collado,
R.; et al. [38] 2024

Assessment of Energy Consumption
Changes in Chilean Universities from

2017 to 2022
STIRPAT

Educational buildings have complex and diverse factors influencing urban carbon
emissions. A systematic analysis of these factors provides scientific evidence and specific
policy recommendations for carbon neutrality in educational buildings.

The technical approach involves several steps. Collecting and organizing energy usage
and carbon emissions-related data is the initial step for educational buildings. The second
step is applying the LMDI method to decompose the drivers of carbon emissions, followed
by scenario analysis to estimate the changes in carbon outputs under different policy
scenarios. The last step involves proposing corresponding carbon-reduction strategies and
policy recommendations [39,40].

The LMDI method is utilized to decompose the drivers of carbon emissions, such
as EI, EA, P, and TL. Scenario analysis is used to predict carbon emission changes under
different policy scenarios by setting baselines, policies, and intensified scenarios to evaluate
the effectiveness and feasibility of various policy measures. By decomposing time series
data on energy use, the effects of different factors, such as adjusted EI, IR, CL, and SEN, on
energy usage are analyzed. Data sources include consumption figures for electricity, diesel,
natural gas, and liquefied gas, as well as building area and student enrollment numbers.

The LMDI research provides a scientific foundation for developing reasonable carbon-
reduction policies and emphasizes the importance of multi-sectoral collaboration. The
recommendations include encouraging energy-saving technologies, optimizing energy use,
and improving energy efficiency management. Furthermore, the research emphasizes the
importance of considering climate impacts and energy management in higher education in-



Buildings 2024, 14, 2820 11 of 23

stitutions. Suggested measures include behavior-change programs, energy audits, building
management systems, and upgrades to Heating, Ventilation, and Air Conditioning (HVAC)
systems to achieve energy efficiency.

5.2.3. LMDI Analysis of Commercial Building

The commercial building sector, driven by economic growth and urban development,
has seen rapid increases in energy consumption. The LMDI model has been instrumental in
analyzing the contributing factors behind this trend, revealing opportunities for enhancing
energy efficiency through technological innovation and policy intervention. Table 5 presents
a statistical analysis of LMDI-related literature on commercial buildings.

Table 5. A statistical analysis of the LMDI-related literature on commercial buildings.

Source Year Major Focus Methodology

Zhang, M.; Yan, S.; et al. [27] 2015

Study on Factors Influencing Energy
Consumption in Commercial Buildings

and Decoupling Relationship with
Economic Development

LMDI

Ma, M.D.; Cai, W.; et al. [33] 2018 Measurement of Decarbonization of
Commercial Buildings in China LMDI

Ma, M.D.; Cai, W.G. [34] 2018

Kaya Identity Drivers Decomposition
of Carbon Footprint in Commercial

Buildings in China and Evaluation of
CMCCB Values from 2001 to 2015

LMDI

Xiang, X.W.; Ma, M.D.; et al. [35] 2022
Assessment of Decarbonization

Progress in Commercial Buildings
Across 16 Countries

LMDI

Ma, M.D.; Feng, W.; et al. [41] 2022
Estimation of Decarbonization Levels
in Commercial Buildings of China’s

Five Major Urban Centers
GDI method

The economic growth in China has led to a remarkable elevation in the energy usage
of commercial buildings. Studies on the variables impacting the energy consumption of
commercial buildings and the gap between building energy usage and the growth of the
commercial industry’s economy reveal that EI in the commercial sector decreased from
61.78 percent in 1991 to 36.70 percent in 2011, representing a 40.59 percent reduction. As of
2003, electricity has emerged as the dominant energy source, overtaking coal products [42].

By analyzing the energy usage and carbon emission data on commercial buildings
from multiple countries, a study revealed that global decarbonization trends are driven by
various factors, including policies, technology, and economics [32]. Following the reform
and opening-up policy in 1978, the mean annual rate of China’s economy has increased
by about 10 percent, with rapid growth in GDP in the commercial industry. Concurrently,
commercial buildings’ energy use has increased significantly, representing a substantial
portion of the overall energy usage in China [43].

The research methods are presented as follows:
A: LMDI Method
This decomposition technique is applied to analyze the drivers in the commercial

building sector.
B: Data Collection
The statistics on the commercial building industry in China have been collected,

including P, GDP, EC, and CE [43].
C: Model Construction
The decomposition model for carbon emission drivers is established by using the

extended Kaya Identity [43].
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D: Empirical Analysis
The LMDI method on carbon decomposition quantifies the driving factor contribution

to carbon emissions [43].
E: Case Analysis
This section examines multiple countries and regions, gaining detailed insights into the

carbon-reduction measures and outcomes in the commercial building industry. The analysis
involves collecting energy usage and carbon emission data for commercial buildings from
major global economies, drawing from government reports, academic studies, and data
established by the International Energy Agency [44].

F: Decarbonization Path Analysis
Through the analysis of carbon emission data from various countries during different

periods, the primary decarbonization paths and drivers have been identified.
The rise in carbon emissions in China’s commercial building industry is mainly driven

by the growth of POP and EA. By enhancing energy efficiency and regulating the energy
mix, carbon emissions can be significantly reduced. Worldwide, commercial building
management experienced significant decarbonization in the early 21st century, primarily
due to policy initiatives, technological advancements, and economic development. De-
carbonization paths and outcomes vary across countries and regions; the United States
and the European Union have seen significant reductions in commercial building carbon
emissions while developing countries like China and India still face considerable pressure
to reduce emissions [44,45].

5.2.4. LMDI Analysis of Hotel Building

Hotel buildings, due to their high energy consumption and specific operational re-
quirements, represent a significant area for energy-saving measures. This section aims to
uncover the primary drivers of energy use in this sector, including occupancy rates and
operational efficiency, suggesting strategies for improving energy performance. Table 6
presents a summary of the major focus and methodology of LMDI-related literature on
hotel buildings from the past year.

Table 6. A statistical analysis of the LMDI-related literature on hotel buildings.

Source Year Major Focus Methodology

Du, Z.J.; Jiang, X.Y.; et al. [36] 2019 Assessment of Energy Consumption in Business
Hotel Buildings STIRPAT + LMDI

This section explores methods for assessing the energy usage of hotel buildings and
aims to provide scientific evidence for formulating energy-saving policies. Due to their
unique operational modes and high-energy-usage characteristics, hotel buildings have a
high potential for achieving energy conservation and emission reduction [46]. Initially,
energy consumption data for hotel buildings, including electricity, gas, and water usage,
were collected and organized. Subsequently, statistical analysis tools were used to examine
the relationships between energy consumption data, building characteristics, climatic
conditions, and operational modes. Finally, energy consumption models were developed
to predict variations under different conditions and propose corresponding energy-saving
measures.

According to this study, business hotels’ energy usage is influenced by various factors,
including the building area, number of guest rooms, occupancy rates, and air conditioning
usage. By optimizing building design, improving operational management, and adopting
energy-efficient technologies, significant reductions in energy usage can be achieved. This
article proposes energy-saving recommendations, such as improving air conditioning
systems, enhancing insulation, and promoting energy-efficient lighting. These measures
are crucial for enhancing the energy utilization efficiency of hotels.



Buildings 2024, 14, 2820 13 of 23

5.3. LMDI Analysis of Residential Architecture

Residential buildings, both urban and rural, have a profound impact on energy con-
sumption patterns due to their scale and diversity. The LMDI method has been effectively
applied to explore the key factors driving energy use in residential architecture, from
building design to household behaviors. This analysis offers a foundation for develop-
ing targeted policies to reduce carbon emissions in residential areas. Table 7 presents a
statistical analysis of LMDI-related literature on residential architecture.

Table 7. A statistical analysis of the LMDI-related literature on residential architecture.

Source Year Major Focus Methodology

Lin, B.Q.; Liu, H.X. [37] 2015

Identification of Factors Influencing
REC and Tapio Decoupling Method for
Describing the Decoupling Correlation
between REC and Residential Income

3D LMDI model

Zhang, M.; Bai, C.Y. [39] 2018

Decomposition Analysis of CO2
Intensity Factors and Assessment of

Energy Service Demand for Residential
Buildings in China Based on

Household Size

LMDI

Ma, M.D.; Ma, X.; et al. [40] 2019 Drivers of CO2 Emissions Under IDA LMDI

Balezentis, T. [42] 2020
Decoupling Relationships between
Drivers of Carbon Footprints in 30

Provinces of China from 2000 to 2015
LMDI

Huo, T.F.; Ma, Y.L.; et al. [47] 2021
Bottom-Up Analysis of Identifying the
Contribution of Energy-Saving Policies

to Mesoscale Change
LMDI

Reuter, M. Narula, K.; et al. [43] 2021

Exploration of the Spatiotemporal
Rhythm and Driving Mechanisms of
Urban Residential Building Carbon
Footprints in 30 Provinces of China

from 2000 to 2019

LMDI

Chen, H.D.; Du, Q.X.; et al. [44] 2023

Evaluation of Decarbonization in
Residential Buildings in Henan from
2010 to 2020 and Forecast of Carbon

Emission Trends and Peak Timing from
2020 to 2050

LMDI

Yang, X.; Sima, Y.F.; et al. [45] 2023

Research on the Peaks of Carbon
Footprints and Decarbonization Path

for Residential Buildings in Fujian
Province

Kaya-LMDI

Lin, C.X.; Li, X.J. [46] 2024
Comprehensive Assessment Model for
CPSIAM and Evaluation of Provincial

Total Carbon Emission Peaks
Kaya-LMDI

Huo, T.F.; Du, Q.X.; et al. [48] 2024
Comprehensive Assessment of Carbon
Emissions from Lighting and Electrical

Appliances in Residential Buildings
LMDI + TD + LEAP

Li, X.J.; Lin, C.X.; et al. [16] 2024
Quantification of Factors Influencing

Residential Carbon Emissions in
Yunnan Province, China

LMDI + LEAP

Li, W.Y.; Li, Q.Y.; et al. [49] 2024

Identification of Factors Influencing
REC and Tapio Decoupling Method for
Describing the Decoupling Correlation
Between REC and Residential Income

LMDI



Buildings 2024, 14, 2820 14 of 23

Between 2000 and 2020, CO2 emission data for commercial and residential architecture
in China indicate an overall upward trend in CO2 emissions, particularly in first-tier cities,
where increased economic activities and accelerated urbanization have significantly raised
building energy usage and associated emissions. There are substantial regional disparities
in emissions, with coastal developed areas in the east exhibiting much higher emissions
compared to central and western regions, reflecting regional economic development levels
and energy structures. Major sources of emissions during building operation include heat-
ing, air conditioning, lighting, and the use of electrical appliances, with heating in northern
regions being a significant carbon emission source, especially in winter. Additionally,
the manufacturing and delivery of building materials, particularly cement and steel, are
significant indirect emission sources [48].

The LMDI method is used in the research on the energy usage of residential urban and
rural areas of Shandong to explore the drivers of energy usage. To explore the relationship
between the REC and residential income, the Tapio decoupling index was employed,
focusing specifically on the decoupling aspect. This study found that the REC of both
areas has risen rapidly, following the residential income. The total REC in Shandong
has shown an upward trend, but the gap in energy usage between urban and rural areas
has narrowed. Since 2000, the decoupling index for both areas’ residents has constantly
decreased, indicating a reduced dependency of income on REC [16].

By comparing different building types and energy usage patterns, improvement
measures have been proposed, such as selecting more environmentally friendly building
materials, optimizing building design, and implementing energy-management systems.
The goal is to provide feasible decarbonization strategies for the residential building sector
to deal with global climate change. LCA and energy usage simulation can quantitatively
assess the energy usage and carbon outputs of residential projects throughout their life cycle,
focusing on selecting building materials that impact the carbon footprint and reducing the
energy usage with technological innovation and design optimization [49].

In the extended Kaya Identity in the LMDI model, the carbon intensity of residential
areas has been decomposed into four key elements, including EF, SEN, PCI, and P. From
2000 to 2015, there was an improvement in the decoupling state of CI and PCI in most of
China’s provinces, especially in the shift from weak to strong decoupling [50]. The data can
be utilized by policymakers to develop focused energy-conservation and decarbonization
programs in order to balance the management of the PCI and EF. Energy-saving policies
have a direct influence on carbon intensity. For example, assessments of policies adopted
in Germany and Switzerland in 2000 indicate that the energy efficiency metrics and policy
evaluation methods used in both countries have led to significant reductions in energy
usage [28].

6. Analysis of LMDI and Other Methods in Building Sector

The analysis of LMDI in the building sector reveals significant insights into the factors
influencing energy usage and carbon emissions. Referring to Table 8, the analyse highlights
key studies related to the application of LMDI in the building sector, emphasizing the
impact of factors such as building area expansion and technological advancements.

Table 8. A statistical analysis of the LMDI-related literature in the building sector.

Source Year Major Focus Methodology

Gong, Y.Y.; Song, D.Y. [50] 2015
Calculation of Full-Life Energy Usage

and Carbon Footprints in the
Construction Industry of Wuhan City

LCA + LMDI

Lu, Y.J.; Cui, P.; et al. [51] 2016

Decomposition Analysis of Incremental
Emission Changes and Evaluation of
Building Carbon Footprints in China

from 1994 to 2012

LMDI
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Table 8. Cont.

Source Year Major Focus Methodology

Hu, X.C.; Liu, C.L. [52] 2016

Factors Influencing Carbon
Productivity and a Carbon Productivity

Survey of the Australian Building
Industry

LMDI

Ma, M.D.; Yan, R.; et al. [53] 2017
Evaluation of Energy Consumption per
Unit Area and Building Energy Savings

in China
IPAT-LMDI

Lu, Y.J.; Cui, P.; et al. [28] 2018
Three-Dimensional Decomposition of

the Total Energy Consumption
Changes in the Building Industry

LMDI

Wang, M.; Feng, C. [31] 2018
Exploration of the Drivers of

Energy-Related CO2 Emissions in the
Building Industry

LMDI

Du, Q.; Lu, X.R.; et al. [54] 2018
Analysis of the Industrial Carbon

Emissions Characteristics in 30
Provinces of China

LMDI

Chen, X.; Shuai, C.Y.; et al. [55] 2020

Forecasting Peak Emissions and
Investigating the Driving Factors of
Carbon Footprints in the Industrial,

Building, Transportation, and
Agricultural Sectors

CKC + LMDI

Li, D.Z.; Huang, G.Y.; et al. [56] 2020
Exploring the Factors Influencing Total

Carbon Emissions in the Building
Industry at the Provincial Level

LMDI

He, J.H.; Yue, Q.; et al. [57] 2020
Analysis of the Factors Influencing

Carbon Emissions in Three Types of
Buildings in China from 2000 to 2005

Factor decomposition
analysis + LMDI

Zhong, X.Y.; Hu, M.M.; et al. [58] 2021

Analysis of the Evolution of Building
Energy Consumption Intensity from

1971 to 2014 and Correlation with
Economic Growth and the Future

Impact of Energy Conservation in 21
Global Territories by 2060

LMDI + IAM

Yan, S.H.; Chen, W.G. [59] 2022

Decoupling Status and Factors
Influencing the Decomposition of CO2
Emissions under the Construction of

the LMDI Model

LMDI

Sun, Z.H.; Ma, Z.L.; et al. [60] 2022 Literature Review on Building Carbon
Peaks and Carbon Neutrality Bibliometric Methods

Jiang, B.Y.; Sun, L.; et al. [61] 2023

Introduction of Technological Factors in
the Building Sector and and

Reconstruction of Impact Variables for
CO2 Emission Fluctuations in Jiangsu

Province from 2011 to 2019

LMDI

Huo, T.F.; Cong, X.B.; et al. [62] 2023 Establishment of an Integrated
DEMATEL-ISM Model DEMATEL-ISM

Shi, Q.W.; Liang, Q.Q.; et al. [63] 2023

Simulation of CE Trends Under
Economic Dynamics and Building

Demand Perspectives, and Exploration
of CO2 Influencing Factors for the

Overall and Provincial Building Sector
in China

LMDI
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Table 8. Cont.

Source Year Major Focus Methodology

Zhang, S.X.; Wang, M.P.; et al. [64] 2024

Development of a Dynamic
Comprehensive Building Carbon
Footprint Forecasting Model and

Prediction of Building Sector Carbon
Emission Trajectories and Probability
Distributions for Shandong Province

from 2020 to 2050

LMDI + SD Model

Zheng, S.M.; He, X.R.; et al. [65] 2024

Decoupling Model Study of the
Correlation between Building Sector

Carbon Emissions and Economic
Growth in the Core Economic Region of

East China

LMDI

Zhao, Q.F.; Wang, T.; et al. [66] 2024
Framework Development, Carbon

Intensity Methods, and Exploration of
CEMP

CPSIAM

6.1. Analysis of LMDI in Building Sector
6.1.1. Application of I-PBAT Model

A As one of the IDA methods, the LMDI is applied to examine the drivers. The
extended I-PBAT model was adopted to analyze the driving factors. B was added based on
the IPAT model to more fully consider the variances driving building energy usage and
carbon emissions [27,67].

6.1.2. Key Drivers of Carbon Emissions in Building Sector

This study employed the LMDI method to determine the long-term effects of seven
key variances by quantifying the gradual contributions of each major driving element to
the alterations in carbon footprints. According to the research, MC contributes 63 percent of
total carbon emissions, while SEN contributes 54 percent of the total carbon reduction [51].
Decomposition analyses also reveal that an increase in building area is the main factor
influencing rising energy usage and carbon emissions, with human behavior factors fol-
lowing closely behind. In particular, the primary cause of the energy usage and carbon
emissions growth is the expansion of BA. B is the second largest contributor. There is a
direct correlation between rising living standards and rising energy use. The growth of
the population and urbanization have also caused an increase in building energy usage to
some degree [27]. Technological innovation substantially enhances carbon productivity,
whereas regional adjustments have a minimal effect. Additionally, there has been no notable
change in the structural adjustments within the building sector across different regions [52].
Building-related carbon emissions are predominantly influenced by two factors: EO and
SEN. To effectively mitigate carbon emissions in the building industry, policymakers should
emphasize these factors and develop strategies to adjust economic structures and reduce
reliance on the construction industry [33,53].

6.2. Analysis of Other Methods in Building Sector

In exploring other analytical methods, this section covers a range of approaches
including the Tapio decoupling model, bibliometric methods, system dynamics models,
and dynamic integrated forecasting models, providing a comprehensive look at how
different methodologies contribute to the understanding and management of emissions in
the building industry. Table 9 presents a statistical summary of literature related to these
methods, offering insights into their applications and findings in the context of building
sector carbon emissions and energy use.
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Table 9. A statistical analysis of the literature related to other methods in the building sector.

Source Year Major Focus Methodology

Huo, T.F.; Du, Q.X.; et al. [68] 2023

STIRPAT-PLS Model Framework
Construction and Analysis of Key

Factors Affecting Cross-Sector Building
Carbon Emissions

STIRPAT-PLS

Li, Y.; Wang, J.F.; et al. [69] 2023
Exploration of Emission Influencing
Factors and Future Peak Emission

Predictions for China and Its Provinces

GDIM + scenario analysis +
Monte Carlo simulation

Xu, F.; Li, X.D.; et al. [70] 2024

2011–2020 Building Sector Emissions
Calculation and Innovative Factor

Analysis Model Development for 29
Chinese Provinces

LMDI

6.2.1. Analysis of Tapio Decoupling Model

By employing the Tapio decoupling model, this study analyzes the decoupling re-
lationship between economic growth and CO2 outputs within the building sector. This
study finds that, in most provinces, the development of the industry is highly related to
CO2 emissions, and Beijing and Jiangsu have achieved a strong decoupling status. EO is
identified as the main factor driving both CO2 emissions and decoupling [30].

6.2.2. Bibliometric Method

The bibliometric method is useful in providing a comprehensive overview of studies
related to current conditions and future trends in the development of carbon reduction. It
is also good at revealing the research gaps in the field of building sectors [60].

6.2.3. Analysis of System Dynamics Model and Scenario

This study uses the SD model and scenario analysis to forecast the future trajectory
of carbon footprints in Shandong Province’s construction industry from 2020 to 2050. It
includes three scenarios: baseline, low-carbon, and high-carbon. Monte Carlo simulation
is employed to examine the uncertainty effects of various variances on the future carbon
emission peak and its timing [64].

6.2.4. Dynamic Integrated Building Carbon Emission-Forecasting Model

The SD model is designed to forecast carbon footprints in the building industry. The
model can handle complex nonlinear systems and thoroughly accounts for multiple factors
influencing carbon emissions. In the model, the variances of carbon emissions are analyzed
in three dimensions: P, SEN, and SA.

The connection between macro and micro variances of carbon emissions can be ex-
plored through such an approach [64].

6.2.5. Assessment of Synergistic Emission-Reduction Potential

Carbon emissions from the building-materialization process are assessed using a
fundamental framework incorporating the SD model and carbon intensity methods. The
construction industry’s potential to reduce emissions through synergy is also predicted.
This study forecasts that with collaborative efforts, carbon outputs in the building sector
could be reduced to 23 percent by 2060; however, achieving carbon neutrality still presents
significant challenges [66].

7. LMDI Analysis of Building Materials

This section delves into the application of the LMDI method in studying building
materials. Referring to Table 10 which provides a statistical overview of past studies,
the analysis offers insights into how factors such as material intensity and economic



Buildings 2024, 14, 2820 18 of 23

output influence building material demand and how regional characteristics affect material
selection.

Table 10. A statistical analysis of the LMDI-related literature on building materials.

Source Year Major Focus Methodology

He, H.; Myers, R.J. [71] 2021 Building Materials’ Demand
Decomposition LMDI

Karakaya, E.; Sarı, E.; et al. [72] 2021 Identification of the Primary Factors
Influencing the Alterations in DMC and MF LMDI

When using the LMDI method to study building material, dynamic material flow anal-
ysis concepts and IDA are integration methods commonly used to examine the influencing
variances of physical flow. To digitalize the data, the building material demand can be
defined into six effects, including MI, FAS, RT, RI, and EO [71]. By combining IPAT and
LMDI methods, the driving factors of building material demand can be analyzed [71,72].

In the analysis of the LMDI method and dynamic material flow analysis concepts,
integrating the physical and monetary flows, MI—a measure of the quantity of material uti-
lized per unit of economic or production output, which refers to the amount of material that
is employed, stocked, and flowed through the social–economic system at various levels—is
marked as the key parameter to be included. This combination aids in understanding how
social, economic, and technological factors drive changes in resource demand, thereby
enhancing the ability to perform reliable, quantitative modeling of material use in the built
environment [71].

However, in another case study, research revealed that, in European Union countries,
the key building material demand is I, followed by P. DMC and MF were employed by
researchers and policymakers in the measurements. These indicators reflect the demand for
and consumption of materials in a country or region at different stages of development [72].

By incorporating the LMDI method in the research, these studies consistently high-
lighted that the selection and utilization of building materials are highly influenced by
regional characteristics and development. The integration of the LMDI method provides a
macro-level view of building demand trends while also enabling micro-level analyses of
influencing factors. This approach has significant potential to enhance future development.

8. Conclusions and Discussion

This study systematically reviews the technical and theoretical basis, applications, and
evaluations of the LMDI (Log Mean Divisia Index) decomposition analysis method. By
thoroughly exploring the theoretical background, application cases, and advantages and
limitations of the LMDI method, this review aims to provide comprehensive and detailed
reference materials for researchers in related fields and offer scientific decision-making
support for policymakers.

Because the LMDI method can handle zero and negative values and provides path-
independent decomposition results, researchers have widely used it in the decomposition
analysis of energy consumption and carbon emissions. This study reviews the application
of LMDI decomposition in public buildings, residential buildings, and building materials,
systematically summarizing the development status of the LMDI in building industry
analysis. Additionally, this study introduces other related methods, such as the Generalized
Divisia Index Method (GDIM), an extension of the traditional Divisia index, which is used
for decomposing changes in an aggregate indicator into contributions from various factors;
the Decision Making Trial and Evaluation Laboratory (DEMATEL) method for analyzing
and modeling causal relationships among complex factors; and Interpretive Structural
Modeling (ISM), which is a technique for identifying and visualizing relationships among
specific elements to create a hierarchical model. In the research, these methods are mainly
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discussed regarding their advantages and disadvantages compared to the LMDI and their
respective applications in the building industry.

Despite the significant advantages of the LMDI method in building carbon emission
analysis, it still needs work in handling large-scale data. Furthermore, it is highly dependent
on data quality. Integrating spatial autocorrelation analysis and kernel density estimation
methods can compensate for the limitations of traditional LMDI methods, providing a more
comprehensive analysis of energy consumption and carbon emission drivers. Moreover,
applying machine learning and big data technologies enhances data-processing capabilities
and analysis accuracy, offering scientific policy recommendations and practical tools for
low-carbon city construction (Table 11).

Table 11. Pros and cons of LMDI application and evaluation.

Application and Evaluation Pros Cons

Analyzes urban energy use and carbon
emissions trends.

Handles zero and negative values,
provides path-independent results.

Requires high-quality data, can be
complex to implement at large scales.

Analyzes regional emissions, policy
effectiveness, and energy-saving
measures.

Identifies key drivers of emissions, useful
for policy formulation.

Limited by data quality, may not capture
all local factors.

Evaluates emission reductions, efficiency
improvements, and regional disparities.

Provides detailed emission reduction
insights, supports targeted policy
recommendations.

May require extensive data for accurate
modeling, regional differences can
complicate analysis.

Analyzes energy use impacts, policy
effectiveness, and technological
advancements.

Helps in developing specific policies,
emphasizes multi-sectoral collaboration.

May oversimplify complex interactions,
relies on quality data for accurate
predictions.

Analyzes global and regional
carbon-reduction measures, energy usage
patterns.

Highlights key factors in emission
reductions, supports global and regional
comparisons.

Different regions and countries have
varying decarbonization paths, making
comparisons challenging.

Evaluates factors influencing energy use,
suggests efficiency improvements.

Provides specific recommendations for
energy-saving measures, useful for
operational improvements.

Limited to specific building types, may
not account for all operational variations.

Evaluates impacts of material selection,
regional characteristics, and
development levels.

Integrates physical and monetary flows,
enhances understanding of material
demand drivers.

Regional variations can affect analysis,
data integration can be complex.

Evaluates decoupling status and
effectiveness of policies.

Useful for understanding decoupling
trends, supports policy evaluation.

May not capture all drivers of emissions,
focused on economic growth vs.
emissions only.

Provides an overview of current research,
identifies gaps.

Offers comprehensive literature analysis,
helps identify future research directions.

Limited to existing literature, may miss
emerging trends.

Projects emissions under various
scenarios, assesses impacts of different
policies.

Accounts for complex interactions, useful
for scenario planning.

Can be complex to implement, requires
detailed data and modeling expertise.

Forecasts emissions considering various
drivers, provides detailed insights.

Handles complex systems, integrates
multiple factors influencing emissions.

High computational demands, data
quality issues can affect results.

Forecasts emission reduction potential
through collaborative efforts.

Identifies potential for significant
emission reductions, supports
collaborative approaches.

Achieving carbon neutrality remains
challenging, forecasts may be uncertain.

Referring to the pros and cons of the past articles aiming for a more comprehensive
and advanced simulation, this review contributes to advancing the LMDI method by
critically examining the driving factors in various aspects of architecture. For example,
while some studies highlight the strength of the LMDI method in handling zero values
and negative growth, there is a need to reexamine its mathematical treatment of zero
values and improve its ability to handle more complex simulations. By comparing the
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LMDI with other methods such as IPAT, this review identifies strengths from multiple
studies, offering insights into improving the LMDI’s computational capabilities to handle
complexity in energy consumption analysis, thereby contributing to green and energy-
efficient development and also improving decision-making in sustainable architecture and
urban planning in order to combat climate change.

Future research can further combine emerging computational methods, such as ar-
tificial intelligence, to improve the usability of the LMDI model and address its high
dependence on data quality and computational complexity. As global attention to sustain-
able development continues to increase, a deeper understanding and application of the
LMDI decomposition analysis method will help better address energy and environmental
challenges, promoting the achievement of global carbon-reduction goals and sustainable
development strategies.
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Abbreviations

AL automation level by area
B behavioral
BA building area
BS building structure
CERCPB carbon reduction
CI carbon intensity
CL climate
CO2 carbon dioxide
CPBCE Carbon Emissions in Public Buildings
CS consumption suppression
DEMATEL Decision Making Trial and Evaluation Laboratory
DMC Domestic Material Consumption
E economic
EA economic activity
EC energy consumption
EF carbon emission
EI energy intensity
EO economic output
ES energy structure
FAR floor area shape
GDIM Generalized Divisia Index Method
I income
IDA index decomposition analysis
IPAT Impact, Population, Affluence, and Technology
I-PBAT Impact, Population, Behaviour, Affluence, and Technology
IR infrastructure ratio
IS industrial structure
ISM Interpretive Structural Modeling
LEAP Long-range Energy Alternatives Planning System
LMDI Logarithmic Mean Divisia Index
M building material
MC building material consumption
MCE machinery efficiency
ME building material efficiency
MF material footprint
MI building material intensity
POP population
PCA per capita area
PCI per capita income
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PCGDP per capita GDP
PU population urbanization
RC residential consumption
REC residential energy consumption
RT residential type
RI residential intensity
SA social affluence
SD System Dynamics
SDA structural decomposition analysis
SEN student enrollment numbers

STIRPAT
Stochastic Impacts by Regression on Population, Affluence, and
Technology

TL technological level
UC unit cost
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