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 Abstract—The flexible power distribution devices, represented 

by soft open points (SOPs), can facilitate power exchange among 

regional distribution networks. However, given the substantial 

investment in SOPs, there exists an urgent need for their 

reasonable configuration and fair allocation among multi-

stakeholders. Promisingly, the peer-to-peer (P2P) electricity 

trading based on SOPs can not only effectively reduce 

operational cost, but also impart revenue-generating abilities to 

SOP investment. Aiming at the optimal SOP configuration under 

multi-stakeholder investment, this paper proposes an asymmetric 

bargaining-based planning method for SOPs considering P2P 

trading. First, a planning-operation two-layer coupling 

framework of SOPs is established under multi-stakeholder 

games. In the planning layer, analyzing the game behaviors 

among multiple distribution companies (DISCOs), an 

asymmetric bargaining-based planning model is formulated to 

obtain the configuration and investment schemes of SOPs. In the 

operational layer, the P2P trading and the profitability of 

multiple DISCOs are driven by price incentives. Then, a two-

layer coupling model is built and efficiently solved using the 

generalized Benders decomposition algorithm. Finally, the 

effectiveness of the proposed method is validated on a practical 

distribution network. The proposed method incentivizes 

investment in SOPs by balancing the interests of multiple 

DISCOs, while efficiently improving the operational performance 

of distribution networks. 

 
Index Terms—Distribution networks (DNs), soft open points 

(SOPs), asymmetric bargaining-based planning, peer-to-peer 

(P2P) electricity trading 

NOMENCLATURE 

Sets  

Ω𝑘
N, Ω𝑘

Line Set of all nodes/lines at area 𝑘 

ΩR Set of all areas 

ΩSOP Set of all SOPs to be planned 

Ω𝑘
SOP, Ω𝑘

SOP,Line
 Set of SOPs/tie-lines planned at area 𝑘 

Ω𝑚
AC Set of converters planned for 𝑚-th SOP 

Indexes  

𝑖, 𝑗 Indexes of nodes 

𝑖𝑗 Index of lines 

𝑡 Index of time periods 

𝑘 Index of areas 
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𝜔 Index of scenarios 

𝑚 Index of SOPs 

𝑛 Index of constraints 

Variables  

𝐶𝑚
SOP, 𝐶𝑚

SOP,O
 

Annual investment/maintenance cost of 𝑚-

th SOP 

𝑅𝑘
P 

Annual cooperative surplus shared for 

DISCO 𝑘 

𝐶𝑘
I , 𝐶𝑘

Line 
Annual SOP/tie-line investment cost of 

DISCO 𝑘 

𝐶𝑘
O, 𝐶𝑘

S 
Annual maintenance/land expropriation cost 

of DISCO 𝑘 

𝐶𝑘
G, 𝐶𝑘

P2P 
Annual trading cost with upper grid/P2P 

paid by DISCO 𝑘 

𝐶𝑘
U Annual voltage deviation cost of DISCO 𝑘 

𝜋𝜔,𝑘,𝑡
P , 𝜋𝜔,𝑘,𝑡

Q
 

P2P trading price of active/reactive power at 

area 𝑘 in period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑖,𝑡
SOP, 𝑄𝜔,𝑖,𝑡

SOP  
Active/reactive power injected by SOP at 

node 𝑖 in period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑚,𝑘,𝑡
SOP , 𝑄𝜔,𝑚,𝑘,𝑡

SOP  
Active/reactive power injected by 𝑚-th SOP 

at area 𝑘 in period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑘,𝑡
B,g

, 𝑃𝜔,𝑘,𝑡
S,g

 
Active power purchased/sold with upper 

grid of area 𝑘 in period 𝑡 during scenario 𝜔 

𝑉𝜔,𝑖,𝑡
dev  

Indicator of voltage deviation at node 𝑖  in 

period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑖,𝑡
LD , 𝑄𝜔,𝑖,𝑡

LD  
Active/reactive power consumption at node 

𝑖 in period 𝑡 during scenario 𝜔 

𝜛𝜔,𝑘,𝑡 
Power supply to demand ratio of area 𝑘 in 

period 𝑡 during scenario 𝜔 

𝜇𝑚,𝑘 Investment ratio for 𝑚-th SOP of DISCO 𝑘 

𝑝𝜔 Probability of scenario 𝜔 

𝑃𝜔,𝑖𝑗,𝑡 , 𝑄𝜔,𝑖𝑗,𝑡 
Active/reactive power flow of line 𝑖𝑗  in 

period 𝑡 during scenario 𝜔 

𝑆𝑚,𝑖
SOP Capacity of 𝑚-th SOP connected to node 𝑖 

𝐸𝑘
B, 𝐸𝑘

S 
Total active power purchased/sold by 

DISCO 𝑘 in P2P trading 

𝑃𝜔,𝑚,𝑖,𝑡
SOP , 𝑄𝜔,𝑚,𝑖,𝑡

SOP  
Active/reactive power injected by 𝑚-th SOP 

at node 𝑖 in period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑚,𝑖,𝑡
SOP,L

 
Active power loss of 𝑚-th SOP connected 

to node 𝑖 in period 𝑡 during scenario 𝜔 

𝑃𝜔,𝑖,𝑡
DG , 𝑄𝜔,𝑖,𝑡

DG  
Active/reactive power injected by renewable 

DG at node 𝑖 in period 𝑡 during scenario 𝜔 

𝑆𝜔,𝑚,𝑘,𝑡
SOP  

Capacity usage of 𝑚-th SOP connected to 

area 𝑘 in period 𝑡 during scenario 𝜔 

𝑆𝑘,𝑚
SOP Capacity of 𝑚-th SOP planned by DISCO 𝑘 

Parameters  

𝑁TS, 𝑁T Number of typical scenarios/time periods 
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𝑁𝑚
R  Number of areas connected to 𝑚-th SOP 

𝑐AC, 𝑐L Per unit cost of converter/tie-line 

Γ𝜔,𝑡
U  

Penalty price of voltage deviation in period 

𝑡 during scenario 𝜔 

𝜋𝑡
G,buy

, 𝜋𝑡
G,sell

 
Price of electricity purchased and sold to the 

upper grid in period 𝑡 

𝜋𝑡
P2P,max

 Upper limit of P2P pricing in period 𝑡 

ΛU, ΛL Upper/lower boundary of master-problem 

𝑉̅, 𝑉 Upper/lower limit of square voltage 

𝑟𝑖𝑗 , 𝑥𝑖𝑗  Resistance/reactance of line 𝑖𝑗 

𝑉𝑖
∗ Rated value of square voltage at node 𝑖 

𝐴AC Loss coefficient of converter 

I. INTRODUCTION 

HE large-scale integration of distributed energy 

resources and charging loads poses significant 

challenges to the balance between power supply and 

demand in distribution networks (DNs) [1]. Limited by the 

acting frequency of the primary regulation equipment [2], 

conventional adjustment means have difficulties in responding 

to rapid fluctuations in power flows. This mismatch in time-

scale has led to an increasing demand for flexible resources 

[3], which are highly effective in grid regulation [4]. 

Meanwhile, the novel power distribution devices based on 

power electronic technologies, represented by soft open points 

(SOPs), provide the fundamentals for the feasibility of flexible 

regulation [5]. By integrating the complementary benefits of 

multi-type resources in spatial and temporal aspects, the SOP 

is able to optimize power flows in real-time and improve the 

operation performance [6]. Thus, its role as an important 

flexible resource has been increasingly emphasized. 

In recent years, the emergence of the local energy market 

[7] has driven a rise in peer-to-peer (P2P) electricity trading 

[8], creating a new demand for the application of SOPs [9]. To 

support the execution of P2P trading [10], it is required to 

integrate the complementary benefits of distributed sources 

[11] and loads [12]. Moreover, the introduction of a P2P 

market manager has been found in [13], [14] to be effective in 

privacy protection and social welfare improvement. With the 

ability to match the sources and loads for P2P trading, SOPs 

are well-suited for the organization and monitoring of trading 

activities among multi-stakeholders. The authors in [15] 

focused on flexible electricity trading and verified that P2P 

trading led by SOPs effectively reduced total operational 

costs. A game-based P2P trading method was further designed 

in [16] that enabled SOPs to generate self-revenue. However, 

given the substantial investment in SOPs, there is an urgent 

need for a sensible configuration of SOPs to help fully exploit 

their potential in the P2P market. 

Previous studies focused on the optimal configuration of 

SOPs with the involvement of a single stakeholder [17], 

verifying the high return on investment of SOPs [18]. 

However, with the participation of new stakeholders in the 

local energy market, planning cannot be driven solely by the 

interests of a single stakeholder. The interests of different 

stakeholders may lead to operational results that differ from 

those planned, raising a need to investigate the effect of SOP 

planning with multi-stakeholder participation. A coordinated 

planning method for renewable distributed generators (DGs) 

and SOPs under multi-stakeholder participation was presented 

in [19], which also helped the distribution company (DISCO) 

achieve higher returns by investing in SOPs. 

Nevertheless, existing approaches mainly concern a single 

DISCO’s investment in SOPs, ignoring the self-revenue of 

SOPs from P2P trading, which is attractive to all stakeholders. 

In a monopoly investment, the investor invests in a planning 

scheme that is best for him and ignores the claims of others. 

Such investments fall short of fully exploiting the mutual 

benefits of SOP integration. Besides, without considering the 

power fluctuation caused by P2P trading, the applicability of 

SOP planning may be affected. To fully benefit from the 

flexible resources [20] and alleviate the insufficient 

investment budget of some DISCOs [21], all stakeholders are 

allowed to invest jointly in SOPs driven by P2P trading. 

With the development of power markets [22], different 

stakeholders emerge in DNs [23]. When multi-stakeholders 

are involved in the planning and investment of SOPs, conflicts 

arise because of the competition for resource allocation [24]. 

The varying interests of stakeholders drive the different 

planning and investment desires of SOPs. In competitive 

environments, game theory is effective in balancing the 

interests of multi-stakeholders [25]. Especially, cooperative 

games are often formed to maximize mutual benefits and 

generate higher returns for each stakeholder [26]. Besides, the 

inevitability of cooperation under joint investment has 

motivated the study of cooperative game planning for SOPs. 

Focusing on the algorithms for solving cooperative game 

problems, two types have been identified, namely the 

centralized solution algorithm and the distributed solution 

algorithm [27]. Implementing a centralized solution algorithm 

requires a substantial amount of sensitive information from 

stakeholders, which is a challenge to obtain in practice. In 

contrast, the distributed solution algorithm, represented by 

ADMM [28], has been proved in [29] to be more applicable in 

resolving multi-stakeholder game problems. By minimizing 

variable interactions in ADMM, the sensitive privacy of multi-

stakeholders can be effectively protected. 

According to the forming mechanism of cooperation, 

cooperative games can be divided into coalition and Nash 

bargaining games [30]. For coalition games, the detection of 

stable coalitions requires the evaluation of all coalitions and 

their values, which significantly increases the computational 

complexity. By contrast, a Nash bargaining game model is 

more feasible when more stakeholders are involved [31]. 

In the standard bargaining game models, stakeholders are 

assumed to share the same benefits without differentiating 

their varying contributions, which may lead to conflicts in fair 

allocations. Such conflicts have created a market for the 

deployment of asymmetric bargaining games [32], which 

facilitate fair allocation by drawing on the created values of 

stakeholders [33]. Note that the desires of different 

stakeholders to invest and trade in the P2P market may differ, 

T 
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Strategy:
➢Trading power/price

SOP Planning Results

P2P Profits Allocation

Trading Settlements

Trading 
power 

Revise

Settlement
Activities
Trading 

contribution

Normalization

Maximize: 
Mutual benefits

ADMM

SOPs
Cooperative 

surplus

DNs
1.Operational cost
2.Profit income

PricePower

Minimize:
Daily operating-cost

DISCO-1 DISCO-2

DISCO-3 DISCO-nGame

Strategy:
➢SOPs  investment ratio

ADMM

Minimize:
DISCO s annual total cost

P2P Platform

Fig. 1. Asymmetric bargaining-based planning framework for SOPs. 

failing to consider these contributions together can result in an 

uneven resource allocation and affect cooperation. Therefore, 

driven by P2P electricity trading, an incentive-based allocation 

mechanism is required to encourage multi-stakeholder 

participation in game planning. 

Aiming at the optimal SOP configuration under joint 

investment, an asymmetric bargaining-based planning method 

is proposed for SOPs considering P2P trading. By properly 

configuring the different capacities at multiple converters in 

SOP, the regulatory potential of SOP is fully explored and 

further increases the profits of stakeholders. 

The major contributions are summarized as follows: 

1) A planning-operation two-layer coupling framework is 

proposed under multi-stakeholder games. In the planning 

layer, the SOP planning scheme and its fair allocation 

among multi-stakeholders are determined based on the 

asymmetric bargaining. In the operational layer, the P2P 

trading and the profitability of multi-stakeholders are 

driven by price incentives. 

2) An incentive-based allocation mechanism for the 

cooperative surplus is constructed by valuing each 

stakeholder’s investment desire in SOPs and their 

corresponding contribution to P2P trading. The fair 

allocation encourages the joining of multi-stakeholders. 

3) A three-step decomposition method is designed to solve 

the two-layer coupling model by combining the 

alternating direction multiplier method (ADMM) and 

generalized Benders decomposition (GBD) algorithm. 

To improve solution efficiency and accuracy, ADMM is 

modified with an update accelerated iteration strategy. 

The remainder of this paper is organized as follows. Section 

II builds a planning-operation two-layer coupling framework 

of SOPs under multi-stakeholder games. In Section Ⅲ, a game 

planning model for SOPs is established based on the 

asymmetric bargaining. The P2P energy trading-driven 

operational model of SOPs is given in Section IV. Section V 

describes the two-layer coupling model and the solution 

procedure. The case studies based on a practical case are given 

in Section Ⅵ and the conclusions are stated in Section VII. 

II. PLANNING-OPERATION TWO-LAYER COUPLING 

FRAMEWORK OF SOPS UNDER MULTI-STAKEHOLDER GAMES 

In this study, it is assumed that each regional DN belongs to 

a different DISCO, with each DISCO considered as a 

stakeholder. By involving stakeholders in the joint investment 

and planning of SOPs, a game relation for resource allocation 

is considered among DISCOs. In addition, a planning-

operation two-layer coupling framework of SOPs is designed, 

as shown in Fig. 1. 

In the game-based planning layer, a fair profit-allocation 

mechanism is employed to encourage SOP investment among 

multiple DISCOs. Based on asymmetric bargaining, the game 

process among multiple DISCOs is decomposed into two 

stages that can be sequentially solved by ADMM. During the 

first stage, each DISCO pursues its interests and determines 

the planning scheme of SOPs and tie-lines. In the second 

stage, multiple DISCOs compete for a cooperative surplus by 

utilizing their bargaining power (BP). During competition at 

this stage, the ratio of each stakeholder in the SOP investment 

is determined. To fully motivate the joining of DISCOs, the 

BP is decided by considering each DISCO’s investment desire 

in SOPs and their corresponding contribution to P2P trading. 

In the operational layer, a non-profit SOP operator is 

introduced to facilitate P2P trading among multiple DISCOs 

and prevent them from gathering sensitive operating data from 

each other. In the P2P trading, the SOP operator sets P2P 

prices based on the ratio of power supply to demand reported 

by each area. Driven by price incentives, DISCOs participate 

in P2P trading to increase profits. During this process, the 

heavily loaded DISCOs urgently require power injections to 

alleviate the power shortage, thereby accepting the high P2P 

prices. While DISCOs with high renewable DG penetration 

are willing to provide power at a lower pricing to reduce DG 

shedding. The cost differences that arise from P2P trading 

with different areas are collected by the SOP operator and then 

shared among DISCOs as a cooperative surplus. During the 

P2P process, the SOP operator does not benefit from the 

organization of trading, making it a non-profit SOP operator. 
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Due to the dual-layer structure of the framework, it is 

difficult to be solved directly. Besides, it is required to protect 

the sensitive scheduling information of different DISCOs in 

the competition. Thus, the GBD algorithm is applied to realize 

parameter transfer between the two layers. The planning 

strategies act as preconditions for the operational layer. 

Meanwhile, trading results in the lower layer provide 

information to facilitate decision-making in the planning layer. 

III. GAME PLANNING MODEL OF SOPS WITH MULTI-

STAKEHOLDER JOINT INVESTMENT 

In this section, game behavior analysis is conducted based 

on the interests of multi-stakeholders. Subsequently, an SOP 

bargaining-based planning model is established, which is 

decomposed into two stages, the optimal planning and the 

investment ratio bargaining of SOPs. To improve solution 

efficiency and accuracy, the ADMM algorithm is modified 

with an update accelerated iteration strategy. 

A. Analysis on Game Behavior of Multi-Stakeholders 

Aiming to minimize its annual total costs, each DISCO 

determines the planning schemes and investment strategies of 

SOPs independently. Areas that operate with heavy loads or 

highly penetrated DGs would invest in large-capacity SOPs to 

transfer electricity. Conversely, areas with a better balance 

between power demand and supply may not be willing to 

support the planning and investment of large-capacity SOPs. 

Given the varying power demands of different stakeholders, 

there arise conflicts in the planning and investment of SOPs. 

Therefore, it is evident that different DISCOs influence 

each other when formulating planning and investment 

strategies, and forming a game problem, as shown in Fig. 2. 

Given the mutual benefits of DISCOs, it is crucial to establish 

a cooperative game model with a fair allocation mechanism. 

SOP

DN 2

DN n

DN 1

DN 3

Game planning strategy P2P trading strategy

Non-profit SOP operator

DISCO-3 DISCO-n

DISCO-1 DISCO-2

 
Fig. 2. Stakeholders of SOP planning and operation in DNs. 

As can be observed from Fig. 2, the planning and 

investment strategies of SOPs are exchanged among DISCOs 

during the bargaining process. Besides, the P2P trading 

strategies need to be exchanged between the SOP operator and 

DISCOs. During the P2P trading, the SOP operator provides 

P2P prices, while DISCOs must respond with the active and 

reactive power that is expected to be traded. 

B. Game Planning Model of SOPs 

In the SOP planning process, the DISCOs pursue their own 

goals and make decisions independently. Thus, the benefits 

and costs model for each DISCO is established separately to 

construct an SOP bargaining-based planning model. 

1) Benefits and costs of regional DISCO 

The objective of each DISCO is to minimize the annual 

total cost 𝐹𝑘
DN, as illustrated in (1). 

𝐹𝑘
DN = min(−𝑅𝑘

P + 𝐶𝑘
I + 𝐶𝑘

Line + 𝐶𝑘
S +

𝐶𝑘
O + 𝐶𝑘

G + 𝐶𝑘
P2P + 𝐶𝑘

U)  
(1) 

 Annual sharing of cooperative surplus 

Based on price incentives, the SOP operator acquires 

electricity at a low payment and then sends it to areas with 

demand at a high price. This process creates a cooperative 

surplus by collecting cost differences, as indicated in (2.a) and 

(2.b). Then, according to the investment ratios of each DISCO, 

the cooperative surplus is allocated, as given in (2.c). 

𝑅𝑚
P = 365 ∑ ∑ 𝑓𝜔,𝑚,𝑡

P 𝑝𝜔
𝑁T

𝑡=1
𝑁TS

𝜔=1   (2.a) 

𝑓𝜔,𝑚,𝑡
P = ∑ (𝜋𝜔,𝑘,𝑡

P 𝑃𝜔,𝑚,𝑘,𝑡
SOP + 𝜋𝜔,𝑘,𝑡

Q
𝑄𝜔,𝑚,𝑘,𝑡

SOP )𝑘∈ΩR   (2.b) 

𝑅𝑘
P = ∑ 𝜇𝑚,𝑘𝑅𝑚

P
𝑚∈Ω𝑘

SOP   (2.c) 

where 𝑓𝜔,𝑚,𝑡
P  is the cooperative surplus from the 𝑚-th SOP in 

period 𝑡 during scenario 𝜔. 

 Annual investment cost in SOPs 

Considering the discount rate 𝑑 and device lifetime 𝑦, the 

SOP investment cost of DISCO 𝑘 is shown as follows. 

𝐶𝑘
I = ∑ 𝜇𝑚,𝑘𝐶𝑚

SOP
𝑚∈Ω𝑘

SOP   (3.a) 

𝐶𝑚
SOP = ∑

𝑑(1+𝑑)𝑦

(1+𝑑)𝑦−1
𝑐AC𝑆𝑚,𝑖

SOP
𝑖ϵΩ𝑚

AC   (3.b) 

 Annual investment cost of tie-lines 

The investment of tie-lines is completed by the DISCO 

directly connected to it, resulting in the follows. 

𝐶𝑘
Line = ∑

𝑑(1+𝑑)𝑦

(1+𝑑)𝑦−1
𝛹𝑐L𝑙𝑖𝑗𝑖𝑗∈Ω𝑘

SOP,Line   (4) 

where 𝑙𝑖𝑗  denotes the length of the planned line 𝑖𝑗 . 𝛹  is the 

terrain correction coefficient. 

 Annual investment cost of land expropriation 

Considering the land expropriation price 𝑐𝑚
site , the annual 

investment cost of land is given in (5). 

𝐶𝑘
S = ∑

𝑑(1+𝑑)𝑦

(1+𝑑)𝑦−1
𝜇𝑚,𝑘𝑐𝑚

site
𝑚∈Ω𝑘

SOP   (5) 

 Annual cost of SOP maintaining 

Introducing the factor of maintaining 𝜂 , the annual 

maintenance cost of SOPs can be calculated as follows. 

𝐶𝑘
O = ∑ 𝜇𝑚,𝑘𝐶𝑚

SOP,O
𝑚∈ΩSOP   (6.a) 

𝐶𝑚
SOP,O = 𝜂 ∑ 𝑐AC𝑆𝑚,𝑖

SOP
𝑖ϵΩ𝑚

AC   (6.b) 

 Annual purchase cost from upper grid 

As each area trades only as a buyer or seller with the upper 

grid, only one of 𝑃𝜔,𝑘,𝑡
S,g

 or 𝑃𝜔,𝑘,𝑡
B,g

 can exist. To better model the 

actual operation of DNs, a distinction is made between the 

prices of electricity purchased and sold to the upper grid, as 

given in (7). 

𝐶𝑘
G = 365 ∑ ∑ 𝑓𝜔,𝑘,𝑡

G 𝑝𝜔
𝑁T

𝑡=1
𝑁TS

𝜔=1   (7.a) 

𝑓𝜔,𝑘,𝑡
G = 𝜋𝑡

G,buy𝑃𝜔,𝑘,𝑡
B,g

− 𝜋𝑡
G,sell𝑃𝜔,𝑘,𝑡

S,g
  (7.b) 
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where 𝑓𝜔,𝑘,𝑡
G  presents the purchase cost from the upper grid of 

area 𝑘 in period 𝑡 during scenario 𝜔. 

 Annual purchase cost in P2P trading 

The annual payment cost incurred by DISCO 𝑘 in the P2P 

market is depicted in (8). 

𝐶𝑘
P2P = 365 ∑ ∑ 𝑓𝜔,𝑘,𝑡

P2P 𝑝𝜔
𝑁T

𝑡=1
𝑁TS

𝜔=1   (8.a) 

𝑓𝜔,𝑘,𝑡
P2P = ∑ (𝜋𝜔,𝑘,𝑡

P 𝑃𝜔,𝑖,𝑡
SOP + 𝜋𝜔,𝑘,𝑡

Q
𝑄𝜔,𝑖,𝑡

SOP )𝑖∈Ω𝑘
SOP   (8.b) 

 Annual cost of voltage deviation 

Based on the voltage deviation ratio and the cost of non-

serve energy in extreme situations, the voltage deviation term 

is formulated in (9). 

𝐶𝑘
U = 365 ∑ ∑ 𝑓𝜔,𝑘,𝑡

U 𝑝𝜔
𝑁T

𝑡=1
𝑁TS

𝜔=1   (9.a) 

𝑓𝜔,𝑘,𝑡
U = ∑ Γ𝜔,𝑡

U 𝑃ω,𝑖,𝑡
LD 𝑉𝜔,𝑖,𝑡

dev
𝑖∈Ω𝑘

N   (9.b) 

where 𝑓𝜔,𝑘,𝑡
U  is the voltage deviation cost of area 𝑘 in period 𝑡 

during scenario 𝜔. 

To improve solving efficiency, the indicator of voltage 

deviation is linearized in segments and then relaxed in (10). 

Besides, the linearization result of the voltage deviation term 

is presented in Fig. 3. 

𝑉𝜔,𝑖,𝑡
dev ≥

𝑉thr−𝑉ω,𝑖,𝑡

𝑉thr−𝑉
, 𝑖 ∈ Ω𝑘

N  (10.a) 

𝑉𝜔,𝑖,𝑡
dev ≥ 0, 𝑖 ∈ Ω𝑘

N  (10.b) 

𝑉𝜔,𝑖,𝑡
dev ≥

𝑉ω,𝑖,𝑡−𝑉thr

𝑉−𝑉thr
, 𝑖 ∈ Ω𝑘

N  (10.c) 

where 𝑉thr and 𝑉thr are the lower and upper limits of desired 

voltage interval, respectively. 

1

Desired 

voltage 

interval

Statutory voltage interval

VthrVthrVV0

Out of 

limit

Out of 

limit

thr

thr

V

V V−

dev

, ,i tV

 
Fig. 3. Linearization result of voltage deviation term. 

Additionally, the SOP investment ratio among multiple 

DISCOs must satisfy the following constraints. 

∑ 𝜇𝑚,𝑘𝑘∈ΩR = 1, 𝑚 ∈ ΩSOP  (11) 

When the 𝑚-th SOP is not physically connected to area 𝑘, 

DISCO 𝑘 is precluded from investing in that SOP, as indicated 

by 𝜇𝑚,𝑘 being set to zero. 

2) Asymmetric bargaining-based planning for SOPs 

To facilitate fair allocation, the BP of DISCOs, denoted as 

𝜏𝑘 , is introduced to construct an asymmetric bargaining 

model, as built in (12). Unlike the standard bargaining model 

where the BP is ignored, an asymmetric BP in (12) is designed 

to show the importance of each stakeholder in cooperation. 

𝐹 = max ∏ [𝐹𝑘
DN,0 − 𝐹𝑘

DN]
𝜏𝑘

𝑘∈ΩR   (12.a) 

s. t.  {
(10), (11)

𝐹𝑘
DN ≤ 𝐹𝑘

DN,0, 𝑘 ∈ ΩR  (12.b) 

where 𝐹𝑘
DN,0

 denotes the total cost of DISCO 𝑘  during the 

independent operations. 

Model (12) is non-convex and nonlinear, which makes it 

difficult to solve directly. Consequently, the original problem 

is transformed into a two-stage problem as follows. 

Stage 1: Maximizing mutual benefits 

For multi-stakeholders, solving the problem of maximizing 

mutual benefits is equivalent to minimizing costs. Briefly, the 

model for Stage 1 can be described as follows: 

𝐹S1 = min(∑ 𝐹𝑘
DN

𝑘∈ΩR )  (13.a) 

s. t.  {
(10), (11)

𝐹𝑘
DN ≤ 𝐹𝑘

DN,0, 𝑘 ∈ ΩR  (13.b) 

Stage 2: Bargaining of SOP investment ratios 

To make a fair allocation of cooperative surplus among 

DISCOs, it is crucial to quantify the BP of each stakeholder. 

Firstly, based on the amount of P2P power, an exponential 

model is applied to quantify trading contribution 𝑔𝑚,𝑘 in (14). 

𝐸𝑚,𝑘
B = ∑ ∑ 𝐸𝜔,𝑚,𝑘,𝑡

SOP𝑇
𝑡=1 𝑝𝜔

𝑁TS

𝜔=1 , 𝑃𝜔,𝑚,𝑘,𝑡
SOP ≥ 0  (14.a) 

𝐸𝑚,𝑘
S = ∑ ∑ 𝐸𝜔,𝑚,𝑘,𝑡

SOP𝑇
𝑡=1 𝑝𝜔

𝑁TS

𝜔=1 , 𝑃𝜔,𝑚,𝑘,𝑡
SOP < 0  (14.b) 

𝐸𝜔,𝑚,𝑘,𝑡
SOP = √(𝑃𝜔,𝑚,𝑘,𝑡

SOP )
2

+ (𝑄𝜔,𝑚,𝑘,𝑡
SOP )

2
  (14.c) 

𝑔𝑚,𝑘 = 𝑒

𝐸𝑚,𝑘
S

max(𝐸𝑚,1
S ,…,𝐸𝑚,𝑘

S ) − 𝑒

−𝐸𝑚,𝑘
B

max(𝐸𝑚,1
B ,…,𝐸𝑚,𝑘

B )  
(14.d) 

where 𝐸𝜔,𝑚,𝑘,𝑡
SOP  is the capacity usage of 𝑚-th SOP by DISCO 𝑘 

in period 𝑡 during scenario 𝜔. 

Given the high cost of SOP losses, the BP should be revised 

to encourage investment, which results in the calculation of 

the revision factor 𝜓𝑚,𝑘 as follows. 

𝐸𝑚,𝑘
L = ∑ ∑ ∑ max(𝑖∈Ω𝑘

SOP 𝑃𝜔,𝑚,𝑖,𝑡
SOP,L , 0)𝑁T

𝑡=1 𝑝𝜔
𝑁TS

𝜔=1   (15.a) 

𝜓𝑚,𝑘 = 𝑒

𝐸𝑚,𝑘
L

max(𝐸𝑚,1
S ,…,𝐸𝑚,𝑘

S ) − 𝑒
−

𝐸𝑚,𝑘
L

max(𝐸𝑚,1
B ,…,𝐸𝑚,𝑘

B )  
(15.b) 

Furthermore, the P2P trading contributions of each DISCO 

are normalized in (16). 

𝐷𝑚,𝑘 =
(𝑔𝑚,𝑘−𝜓𝑚,𝑘)

∑ (𝑔𝑚,𝑟−𝜓𝑚,𝑟)𝑟∈ΩR
  (16) 

Finally, based on the investment ratios of multiple DISCOs, 

the BP can be determined in (17). 

𝜏𝑘 = ∑ 𝜏𝑚,𝑘𝑚∈Ω𝑘
SOP = ∑

(𝐷𝑚,𝑘+𝜇𝑚,𝑘)

2𝑚∈Ω𝑘
SOP   (17) 

where 𝜏𝑚,𝑘 corresponds to the BP of DISCO 𝑘 when investing 

in the 𝑚-th SOP. 

By converting model (12) into logarithmic form and 

incorporating (14)-(17), the complete model for Stage 2 is 

then illustrated as follows. 

𝐹S2 = max(∑ 𝜏𝑘 ln(𝐹𝑘
DN,0 − 𝑓𝑘

DN)𝑘∈ΩR )  (18.a) 

s. t.  {
(14) − (17)

𝑓𝑘
DN ≤ 𝐹𝑘

DN,0, 𝑘 ∈ ΩR  (18.b) 

In particular, 𝑓𝑘
DN in Stage 2 is shown as follows. 

𝑓𝑘
DN = −𝑅𝑘

P + 𝐶𝑘
I + 𝐶𝑘

Line,∗ + 𝐶𝑘
S + 𝐶𝑘

O +

𝐶𝑘
G,∗ + 𝐶𝑘

P2P,∗ + 𝐶𝑘
U,∗

  
(19) 
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where the variable marked with “*” denotes the optimal 

solution of Stage 1, and similarly in the rest. 

C. Solving Method Based on ADMM 

Given the requirements for both fast and precise solutions to 

large-scale problems, the ADMM is adopted to design 

bargaining strategies in the planning layer. Simultaneously, by 

minimizing variable interactions in ADMM, the private 

dispatch information of multiple DISCOs is protected. 

1) Solution for optimal siting and sizing of SOPs 

Firstly, to determine the optimal SOP planning scheme, the 

auxiliary variable 𝑆̂𝑘,𝑚
SOP is introduced. 

𝑆̂𝑘,𝑚
SOP =

1

𝑁𝑚
𝑅 −1

∑ 𝑆𝑟,𝑚
SOP

𝑟ϵΩ𝑚
R ,𝑟≠𝑘 , 𝑚 ∈ Ω𝑘

SOP, 𝑘 ∈ ΩR  (20) 

When 𝑆𝑘,𝑚
SOP = 𝑆̂𝑘,𝑚

SOP, 𝑚 ∈ Ω𝑘
SOP , 𝑘 ∈ ΩR  is satisfied, it 

indicates that a consensus on SOP planning has been reached. 

Subsequently, the Lagrangian multiplier 𝜆𝑘,𝑚
CAP  with the 

penalty parameter 𝜌  is introduced to form the augmented 

Lagrangian function (21). 

𝐿S1 = min (𝐹S1 + ∑ ∑ (𝜆𝑘,𝑚
CAP(𝑆𝑘,𝑚

SOP −𝑚∈Ω𝑘
SOP𝑘ϵΩR

𝑆̂𝑘,𝑚
SOP) +

𝜌

2
‖𝑆𝑘,𝑚

SOP − 𝑆̂𝑘,𝑚
SOP‖

2

2
))  

(21) 

As shown in (22), (21) is decomposed into the ADMM 

jointly-based distributed optimization problems. Note that 

only 𝑆𝑘,𝑚
SOP  needs to be exchanged among DISCOs, which 

enables the protection of sensitive scheduling information. 

The planning objective function for each DISCO is 

expressed as follows. 

𝐿𝑘
S1 = min (𝐹𝑘

DN + ∑ (𝜆𝑘,𝑚
CAP(𝑆𝑘,𝑚

SOP − 𝑆̂𝑘,𝑚
SOP) +𝑚∈Ω𝑘

SOP

𝜌

2
‖𝑆𝑘,𝑚

SOP − 𝑆̂𝑘,𝑚
SOP‖

2

2
))  

(22) 

Additionally, at iteration 𝑍, the Lagrangian multipliers for 

𝑚-th SOP of Stage 1 are updated according to (23). 

𝜆𝑘,𝑚
CAP(𝑍 + 1) = 𝜆𝑘,𝑚

CAP(𝑍) + 𝜌 (𝑆𝑘,𝑚
SOP(𝑍) − 𝑆̂𝑘,𝑚

SOP(𝑍))  (23) 

Finally, the details of the ADMM-based distributed solution 

process are expressed in Appendix A. 

2) Solution for investment ratio bargaining of SOPs 

To determine the optimal investment ratios of DISCOs, the 

auxiliary variable 𝜇̂𝑚,𝑘 is introduced in (24). 

𝜇̂𝑚,𝑘 = 1 − ∑ 𝜇𝑚,𝑟𝑟∈ΩR,𝑟≠𝑘 , 𝑚 ∈ Ω𝑘
SOP, 𝑘 ∈ ΩR  (24) 

By adding the Lagrangian multiplier 𝜆𝑚,𝑘
DN , the augmented 

Lagrangian function for Stage 2 is established in (25). 

𝐿S2 = min (−𝐹S2 + ∑ (∑ 𝜏𝑚,𝑘𝜆𝑚,𝑘
DN (𝜇𝑚,𝑘 −𝑚∈Ω𝑘

SOP𝑘∈ΩR

𝜇̂𝑚,𝑘)) +
𝜌

2
∑ ∑ ‖𝜇𝑚,𝑘 − 𝜇̂𝑚,𝑘‖

2

2

𝑚∈Ω𝑘
SOP𝑘∈ΩR )  

(25) 

Moreover, to determine the optimal investment ratio among 

𝑁R  DISCOs, (25) is decomposed into multiple independent 

investment payment objective functions, as given in (26). 

𝐿𝑘
S2 = min (−𝜏𝑘 ln(𝐹𝑘

DN,0 − 𝑓𝑘
DN) +

∑ (𝜏𝑚,𝑘𝜆𝑚,𝑘
DN (𝜇𝑚,𝑘 − 𝜇̂𝑚,𝑘) +

𝜌

2
‖𝜇𝑚,𝑘 − 𝜇̂𝑚,𝑘‖

2

2
)𝑚∈Ω𝑘

SOP )  
(26) 

Finally, an expatriation of the ADMM-based distributed 

solution process is utilized to solve (26). On this basis, details 

are shown as provided in Appendix A, and the Lagrangian 

multipliers of Stage 2 are updated according to (27). 

𝜆𝑚,𝑘
DN (𝑍 + 1) = 𝜆𝑚,𝑘

DN (𝑍) + 𝜌 (𝜇𝑚,𝑘(𝑍) − 𝜇̂𝑚,𝑘(𝑍))  (27) 

IV. P2P TRADING-DRIVEN OPERATIONAL MODEL OF SOPS 

To further improve the operational status of DNs, the P2P 

trading is introduced as an auxiliary trading form that can 

complement the trading with upper grid. The demand for P2P 

trading is driven by power imbalances between different areas. 

Therefore, it is necessary to quantify the power demand of 

each area to determine the dispatch price. 

Firstly, a predicted ratio of renewable DG output to load 

demand is supplied by each DISCO, as given in (28.a). Next, 

based on the power supply to demand ratio offered by 

DISCOs, the SOP operator determines the active P2P prices 

[34] as indicated in (28.b). Additionally, the prices for reactive 

auxiliary services [35] are shown in (28.c). 

𝜛𝜔,𝑘,𝑡 =
∑ 𝑃𝜔,𝑖,𝑡

DG
𝑖∈Ω𝑘

N

∑ 𝑃𝜔,𝑖,𝑡𝑖∈Ω𝑘
N

  (28.a) 

𝜋𝜔,𝑘,𝑡
P = max{

𝜋𝑡
G,sell𝜋𝑡

G,buy

(𝜋𝑡
G,buy

−𝜋𝑡
G,sell)𝜛𝜔,𝑘,𝑡+𝜋𝑡

G,sell , 𝜋𝑡
G,sell}  (28.b) 

𝜋𝜔,𝑘,𝑡
𝑄

= 0.2𝜋𝜔,𝑘,𝑡
P   (28.c) 

As can be seen from (28.b), the prices for P2P active power 

are maintained within the range of purchasing and selling 

prices with the upper grid. This results in greater profitability 

for DISCOs to actively participate in P2P trading. Besides, the 

trading activities should satisfy the following constraints. 

∑ (𝜋𝜔,𝑘,𝑡
P 𝑃𝜔,𝑚,𝑘,𝑡

SOP )𝑘∈Ω𝑚
AC ≥ 0, 𝑚 ∈ ΩSOP  (29.a) 

∑ (𝜋𝜔,𝑘,𝑡
Q

𝑄𝜔,𝑚,𝑘,𝑡
SOP )𝑘∈Ω𝑚

AC ≥ 0, 𝑚 ∈ ΩSOP  (29.b) 

To enhance mutual benefits, an objective function in the 

operational layer is established by the SOP operator. 

Specifically, the daily operating costs of each DISCO are 

integrated, as expressed in (30). 

𝑓𝜔,𝑡
OP = min(∑ (𝑓𝜔,𝑘,𝑡

G + 𝑓𝜔,𝑘,𝑡
P2P + 𝑓𝜔,𝑘,𝑡

U )𝑘∈ΩR )  (30) 

The operational constraints of 𝑚-th SOP are shown in (31). 

∑ 𝑃𝜔,𝑚,𝑖,𝑡
SOP

𝑖∈Ω𝑚
AC − ∑ 𝑃𝜔,𝑚,𝑖,𝑡

SOP,L
𝑖∈Ω𝑚

AC = 0  (31.a) 

𝑃𝜔,𝑚,𝑖,𝑡
SOP,L = 𝐴AC√(𝑃𝜔,𝑚,𝑖,𝑡

SOP )2 + (𝑄𝜔,𝑚,𝑖,𝑡
SOP )2  (31.b) 

√(𝑃𝜔,𝑚,𝑖,𝑡
SOP )2 + (𝑄𝜔,𝑚,𝑖,𝑡

SOP )2 ≤ 𝑆𝑚,𝑖
SOP  (31.c) 

The operational constraints of DN are illustrated as follows. 

∑ (𝑃𝜔,𝑘𝑖,𝑡 − 𝑟𝑘𝑖𝐼𝜔,𝑘𝑖,𝑡)𝑘𝑖∈Ω𝑘
L + 𝑃𝜔,𝑖,𝑡 = ∑ 𝑃𝜔,𝑖𝑗,𝑡𝑖𝑗∈Ω𝑘

L   (32.a) 

∑ (𝑄𝜔,𝑘𝑖,𝑡𝑘𝑖∈Ω𝑘
L − 𝑥𝑘𝑖𝐼𝜔,𝑘𝑖,𝑡) + 𝑄𝜔,𝑖,𝑡 = ∑ 𝑄𝜔,𝑖𝑗,𝑡𝑖𝑗∈Ω𝑘

L   (32.b) 

𝑃𝜔,𝑖,𝑡 = 𝑃𝜔,𝑖,𝑡
DG + 𝑃𝜔,𝑖,𝑡

SOP − 𝑃𝜔,𝑖,𝑡
LD , 𝑖 ∈ Ω𝑘

N  (32.c) 

𝑄𝜔,𝑖,𝑡 = 𝑄𝜔,𝑖,𝑡
DG + 𝑄𝜔,𝑖,𝑡

SOP − 𝑄𝜔,𝑖,𝑡
LD , 𝑖 ∈ Ω𝑘

N  (32.d) 

𝑉𝜔,𝑖,𝑡 − 𝑉𝜔,𝑗,𝑡 + (𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2 )𝐼𝜔,𝑖𝑗,𝑡 = 2(𝑟𝑖𝑗𝑃𝜔,𝑖𝑗,𝑡 + 𝑥𝑖𝑗𝑄𝜔,𝑖𝑗,𝑡)  (32.e) 

𝐼𝜔,𝑖𝑗,𝑡𝑉𝜔,𝑖,𝑡 = 𝑃𝜔,𝑖𝑗,𝑡
2 + 𝑄𝜔,𝑖𝑗,𝑡

2   (32.f) 

Eqs. (32.a) and (32.b) include the nodal active and reactive 

power injection constraints, respectively. Eq. (32.e) expresses 
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the voltage drop of line 𝑖𝑗 . Besides, the details of the 

operational layer are addressed as [5]. 

V. PLANNING-OPERATION TWO-LAYER COUPLING 

MODEL OF SOPS 

In this section, a planning-operation two-layer coupling 

model of SOPs is developed. To realize parameter transfer 

between the two layers and protect the sensitive dispatching 

information, the GBD algorithm is introduced. Subsequently, 

by combining the ADMM and GBD algorithms, a complete 

solution procedure for the two-layer model is established. 

A. Two-Layer Model Based on GBD 

The two-layer coupling model based on the asymmetric 

bargaining is summarized in (33). 

max 𝐹  (33.a) 

s. t.  {
(10), (11), (14) − (17), (28), (29), (31), (32)

𝐹𝑘
DN ≤ 𝐹𝑘

DN,0, 𝑘 ∈ ΩR   (33.b) 

To determine SOP planning schemes in the planning layer, 

it is essential to collect operational information such as P2P 

results from lower layer. Thus, the GBD algorithm is adopted 

in this study. By adding Benders cuts to the master-problem 

(MP), parameters can be transferred between the two layers 

without revealing any sensitive dispatching data of DNs. 

Firstly, by considering the operational layer, the model of 

the first stage can be reformed in (34). It is then divided into 

an MP and multiple independent scenario-based operational 

sub-problems (SPs). 

min 𝐹S1  (34.a) 

s. t.  {
(10), (11), (28), (29), (31), (32)

𝐹𝑘
DN ≤ 𝐹𝑘

DN,0, 𝑘 ∈ ΩR   (34.b) 

a) The aim of MP is to decide the planning scheme of SOPs 

and tie-lines, which is expressed as follows: 

min 𝐹MP = 𝑎T𝑥 + ∑ Λ𝜔𝑝𝜔
𝑁TS

𝜔=1 = ∑ (𝐶𝑘
I + 𝐶𝑘

Line +𝑘∈ΩR

𝐶𝑘
S + 𝐶𝑘

O) + ∑ Λ𝜔𝑝𝜔
𝑁TS

𝜔=1   
(35.a) 

s. t.  𝑥 ≤ 𝑆SOP,max  (35.b) 

where 𝑎  corresponds to the coefficient vectors in function 

∑ (𝐶𝑘
I + 𝐶𝑘

Line + 𝐶𝑘
S + 𝐶𝑘

O)𝑘∈ΩR . [ ]T  represents the transposed 

form of the matrix [ ]. 𝑥 denotes the set of decision variables 

for MP, including planning schemes of SOPs and tie-lines. Λ𝜔 

means an auxiliary variable that indicates lower bounds of the 

objective function in SP during scenario 𝜔 . 𝑆SOP,max  is the 

upper installation limit of SOP capacity. 

b) The objective of SP is to achieve optimal operation 

during each scenario, which is formulated in (36). 

min 𝐹𝜔
SP = ∑ 𝑓𝜔,𝑡

OP
𝑡∈𝑁T   (36.a) 

s. t.  ‖𝐷𝜔,𝑛𝑦𝜔‖ ≤ 𝑗𝜔,𝑛𝑦𝜔 + 𝑔𝜔,𝑛𝑥̂: (𝜎𝜔,𝑛, 𝜏𝜔,𝑛) 

, 𝑛 = 1, … , 𝑁1  
(36.b) 

‖𝑊𝜔,𝑛𝑦𝜔‖ = 𝑤𝜔,𝑛𝑦𝜔: 𝜊𝜔,𝑛 , 𝑛 = 1, … , 𝑁2  (36.c) 

𝐻𝜔,𝑛𝑦𝜔 ≤ ℎ𝜔,𝑛: 𝜁𝜔,𝑛 , 𝑛 = 1, … , 𝑁3  (36.d) 

where 𝑥̂  is the decision variables translated from MP. 𝑦𝜔  is 

the set of decision variables for the SP during scenario 𝜔 , 

including renewable DG output, P2P prices, and power flows. 

When 𝑥̂ is considered in the SP, the first constraint in (36) 

is formed to represent (31.c). In (36.b), 𝐷𝜔,𝑛  represents the 

coefficient matrix, 𝑗𝜔,𝑛  and 𝑔𝜔,𝑛  correspond to the constant 

vectors, 𝜎𝜔,𝑛  and 𝜏𝜔,𝑛  are the dual multiplier vectors. 𝑁1 

denotes the number of constraints contained in (36.b). 

Without considering 𝑥̂ , the following constraints are 

obtained. In (36), the second constraint consists of (31.b), 

(32.e) and (32.f), while the last stands for (10), (28), (31.a) and 

(32.a)-(32.d). In (36.c), 𝜊𝜔,𝑛  represents the dual multiplier 

vector, 𝑊𝜔,𝑛 and 𝑤𝜔,𝑛 are the coefficient matrix and constant 

vector, respectively. In (36.d), 𝜁𝜔,𝑛  is the dual multiplier 

vector, 𝐻𝜔,𝑛  and ℎ𝜔,𝑛  denote the coefficient matrix and 

constant vector, respectively. 𝑁2  and 𝑁3  are the number of 

constraints contained in (36.c) and (36.d), respectively. 

Finally, the planning scheme of different DISCOs can be 

determined by sequentially solving the MP and SPs, and the 

iterations are illustrated in Appendix B. 

B. Solution Procedure 

A method for solving the two-layer coupling model is 

proposed by combining ADMM and GBD algorithms. The 

solution procedure is described as follows: 

As can be observed in Fig.4, after initialization, the
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Fig. 4. Three-step decomposition method for the two-layer coupling model. 
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bargaining process of Stage 1 starts. At the 𝑍th iteration, with 

the objective of reducing the annual total costs, DISCO 𝑘 

adjusts its planning scheme based on the latest decisions of the 

other DISCOs. To determine the optimal planning scheme of 

SOPs and tie-lines, the GBD is employed to acquire P2P 

information in the planning layer. Then, the planning scheme 

of DISCO 𝑘  is sent to the other DISCOs, and the other 

DISCOs determine their planning scheme following the same 

process. Finally, judge whether the game is in equilibrium at 

the 𝑍th iteration. If not, move on to the next iteration. 

If none of the DISCOs is able to increase profits through 

strategy adjustment, the game is balanced, as detailed in (37). 

𝑀𝑘
D̃ = argmax 𝐹𝑘

G(𝑀𝑘
D, 𝑀𝑟

D̃), 𝑟ϵΩR, 𝑟 ≠ 𝑘  (37) 

where 𝑀𝑘
D is the game strategy of DISCO 𝑘. 𝐹𝑘

G  denotes the 

objective functions of DISCO 𝑘. 𝑀𝑘
D̃ is the optimal response 

of DISCO 𝑘 when the strategy is given by the other DISCOs. 

Once the planning scheme of SOPs has been determined, 

the bargaining process of Stage 2 begins. In Stage 2, the 

optimal investment ratios of each DISCO are decided in turn. 

The bargaining process of Stage 2 is similar to that of Stage 1 

and the details have not been repeated here. When the game of 

Stage 2 is equilibrated, the optimal configuration of SOPs and 

their fair allocation among DISCOs are obtained. Besides, the 

proof of the optimality property is given in Appendix C. 

In summary, the two-layer coupling model can be 

effectively solved by using available optimization packages. 

Ⅵ. CASE STUDIES AND ANALYSIS 

In this section, the effectiveness of the proposed asymmetric 

bargaining-based planning method is verified on a modified 

practical distribution network in China. The proposed method 

is implemented in MATLAB R2016a. Numerical experiments 

are performed using CPLEX 12.8 solver in YALMIP on an 

Intel Core i7 @ 2.90GHz PC with 24GB RAM. 

A. Practical Distribution Networks 

As demonstrated in Fig. 5, the system consists of two 

commercial areas and one residential area, of which the rated 

voltage level is 10.50 kV. The residential area has heavy 

loads, while commercial areas are opposite. The total active 

and reactive power demands are 20.744 MW and 6.587 

MVAr, respectively. 
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Fig. 5. Structure of the modified practical DNs in China. 

For commercial areas, the active power of the renewable 

DG output reaches almost 100% of peak demand. In the 

residential area, the renewable DG penetration rate is close to 

50%. The power factor of renewable DGs is assumed to be 0.9 

and the parameters are listed in TABLE I. There are six nodes 

connected to tie-switches, and these are marked as red points 

in Fig. 5. The minimum and maximum statutory voltages are 

set to 0.90 p.u. and 1.10 p.u., respectively [3]. The upper and 

lower limits of desired voltage interval are set as [0.99, 1.01]. 

The time-of-use power price set by the upper grid is given in 

Fig. 6, and the trading period is set to 24 hours [13]. The 

voltage deviation penalty parameter Γ𝜔,𝑡
U  is set as 𝜋𝑡

G . The 

variation of SOP planning parameters is given in Table Ⅱ [19]. 

TABLE I 

INSTALLATION PARAMETERS OF RENEWABLE DGS 

Location Capacity (kVA) Type Location Capacity (kVA) Type 

6 2000 WT 28 2000 WT 

8 1500 WT 211 1000 PV 

12 1000 PV 39 1500 WT 

13 1500 WT 313 1000 PV 

25 2000 WT 314 1000 PV 

26 2000 WT - - - 

TABLE Ⅱ 

BASIC PLANNING PARAMETERS OF SOPS 

Parameters Value Parameters Value 

AC-DC converter price 𝑐AC 

(CNY/kVA) 
1000 

Device lifetime  

𝑦 (Year) 
20 

Line constructing price  

𝑐L (CNY/km) 
104 

Discount rate  

𝑑 
0.08 

Land expropriation price 

𝑐𝑚
site (CNY/Converter) 

106 
SOP maintaining factor  

𝜂 
0.01 

By clustering the renewable DG output curve and load 

curve in a year, four typical scenarios in Fig. 7 are obtained, 

including the changes of loads, PV, and WT output in one day 

[36]. The probability values of the four typical scenarios are 

{0.2438, 0.2027, 0.3480, 0.2055}. 

 
Fig. 6. Time-of-use electricity price. 

 
Fig. 7. Typical daily operational curves. 
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B. Economic Analysis of Planning Results 

Two cases are adopted to analyze the performance of the 

asymmetric bargaining-based planning method for SOPs. 

Case I: Without SOP planning, each area trades only with 

the upper grid, and the initial operational state is obtained. 

Case Ⅱ: The SOP planning is implemented by adopting the 

proposed asymmetric bargaining-based planning method. 

Each area joins in P2P trading under the coordination of SOPs. 

DISCO-1 is balanced in power supply and demand, while 

DISCO-2 has needs for DG consumption and DISCO-3 

operates with heavy loads. Thus, as demonstrated in Fig. 8, 

DISCO-1 and DISCO-2 jointly supply power to DISCO-3 

with a flexible configuration under Case Ⅱ. The results show 

that a three-terminal SOP1 is planned among node 12, node 

18, and node 32, whose capacity is 0.45, 0.65, and 1.10 MVA, 

respectively. A tie-line connected to node 38 is constructed 

and marked as a red line. SOP2 with a capacity of 0.40 MVA 

per terminal is planned between node 24 and node 35. The 

different capacities of multiple converters in SOP facilitate 

DISCOs to optimize their investments and get more benefits. 
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Fig. 8. Asymmetric bargaining-based planning results of SOPs under Case Ⅱ. 

TABLE Ⅲ 

INITIAL INVESTMENT COSTS UNDER CASE Ⅱ 

Stakeholder 

Cost (103 CNY) DISCO-1 DISCO-2 DISCO-3 

SOP investment 785.62 1020.94 1193.44 

Tie-line construction 0 0 550.00 

Land expropriation 1071.30 1827.10 2101.60 

Total 1856.92 2848.04 3845.04 

Table Ⅲ presents the initial investment costs of each 

stakeholder, which are calculated as follows. 

𝐶COST,SOP = ∑ ∑ 𝑐AC𝑆𝑚,𝑖
SOP

𝑖ϵΩ𝑚
AC𝑚∈ΩSOP   (38.a) 

𝐶COST,Line = ∑ ∑ 𝛹𝑐L𝑙𝑖𝑗𝑖𝑗∈Ω𝑘
SOP,Line𝑘∈ΩR   (38.b) 

𝐶COST,S = ∑ ∑ 𝑐𝑚
site

𝑚∈Ω𝑘
SOP𝑘∈ΩR   (38.c) 

As can be seen in Tables Ⅲ and Ⅳ, DISCO-3 exhibits the 

strongest investment desire among all DISCOs. This 

heightened interest is driven by P2P trading, which allows 

DISCO-3 to acquire electricity from areas with a surplus, 

leading to a sizable reduction in annual total costs. The 

substantial reduction in total cost facilitates the investment of 

multiple DISCOs. 

TABLE Ⅳ 

INVESTMENT RATIO BARGAINING UNDER CASE Ⅱ 

Stakeholder 

Device 
DISCO-1 DISCO-2 DISCO-3 

SOP1 0.3571 0.2901 0.3528 

SOP2 - 0.4784 0.5216 

To analyze the economic improvements of DNs under Case 

Ⅱ, each cost of DISCOs under Cases Ⅰ and Ⅱ are presented in 

Table Ⅴ. It is evident that the proposed method is effective in 

reducing the annual total cost of each DISCO. For DISCO-3, 

there has been a significant reduction in the cost of purchasing 

power from the upper grid, along with an improvement in 

voltage quality. 

For both DISCO-1 and DISCO-2, participation in P2P 

trading is effective in facilitating renewable DG consumption, 

thereby leading to an improvement in voltage profile. 

Furthermore, DISCO-1 and DISCO-2 can make revenue by 

selling electricity in the P2P market. This profitability from 

the SOP installation drives the participation of all DISCOs. 

TABLE Ⅴ 

EACH COST OF DISCOS UNDER CASES Ⅰ AND Ⅱ 

Case Category Annual cost (103 CNY) DISCO-1 DISCO-2 DISCO-3 

Ⅰ 
Operation 

Trading with upper grid 4909.14 4998.63 14749.07 

Voltage deviation 0.26 126.14 6114.36 

Total 4909.40 5124.77 20863.43 

Ⅱ 

Operation 

Trading with upper grid 5393.78 6202.40 12208.90 

P2P trading -670.94 -1429.81 2834.25 

Voltage deviation 0.23 21.46 1360.97 

Cooperative surplus -204.91 -242.86 -285.73 

SOP maintaining 7.86 10.21 11.93 

Investment 

SOP investment 80.02 103.98 121.55 

Tie-line construction 0 0 56.02 

Land expropriation 109.11 186.09 214.05 

Total 4715.15 4851.47 16521.94 

Cost decrease ratio 3.96% 5.33% 20.81% 

Fig. 9 reveals an attractive return on investment for DISCOs 

under Case Ⅱ, the more the DISCO invests, the more it wins. 

Note that the payback period is less than 5 years for each 

DISCO, which also means DISCOs are profitable for at least 

75% of the time over the SOP lifetime. Thus, all DISCOs are 

keen to invest in the local energy market under Case Ⅱ. 

 
Fig. 9. Investment on return of DISCOs under Case Ⅱ. 

To illustrate the voltage improvement of DISCOs, the 

voltage profiles comparison at 10:00 am during scenario 3 

under Cases Ⅰ and Ⅱ is given in Fig. 10. After the trading 

adjustments under Case II, the nodal voltage of the 
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distribution networks is basically within the desired voltage 

interval. The significant improvement in voltage quality of 

DISCO-3 is attributed to the active and reactive power 

injection facilitated by P2P electricity trading. 

 
Fig. 10. Voltage profiles at 10:00 am during scenario 3 under Cases Ⅰ and Ⅱ. 

C. Comparison with Existing Studies 

To further verify the effectiveness of the proposed planning 

method for SOPs, Case Ⅲ is introduced for comparison. 

Case Ⅲ: Without game theory, an alliance is formed by all 

DISCOs. SOPs are planned to minimize the sum cost of the 

alliance, and no P2P payment among DISCOs [37]. 

In terms of economic comparison, the cost comparison 

under different cases is listed in Table Ⅵ. The results of Table 

Ⅵ show that the planning of SOPs under Case Ⅲ reduces the 

total cost of DISCO-3 compared to Cases Ⅰ and Ⅱ. However, 

the increased total costs of DISCO-1 and DISCO-2 have 

caused a negative cost reduction ratio, which is unacceptable 

when each DISCO is regarded as an individual stakeholder. 

Moreover, without adopting game theory, the investment costs 

of SOPs and tie-lines are evenly shared by all DISCOs under 

Case Ⅲ, which ignores the interests of different DISCOs. 

Comparatively, the implementation of game planning and P2P 

trading under Case Ⅱ prevents DISCO-1 and DISCO-2 from 

unprofitable situations. Driven by profits from P2P payment, 

DISCOs flexibly invest in SOPs that are more beneficial to 

them when participating in the bargaining under Case Ⅱ. 

In terms of convergence comparison, the iterative process 

of ADMM under Case Ⅱ is given in Fig. 11. The bargaining of 

the SOP planning scheme satisfies the stopping criterion after 

4 iterations. During each round of the bargaining process, 

DISCOs consistently adjust their SOP planning schemes in 

response to the decisions made by the others involved. Besides, 

Fig. 12 presents the changes in the Lagrangian multiplier 𝜆𝑘,𝑚
CAP 

when planning SOP terminal connected to Node 18 during the 

bargaining process. As can be seen from Fig. 12, with an 

increasing number of iterations, the changes in 𝜆𝑘,𝑚
CAP tends to 

flatten out. This also indicates that the bargaining is 

approaching equilibrium. 

 
Fig. 11. Game process when planning SOP terminal connected to Node 18. 

 
Fig. 12. Changes in 𝜆 when planning SOP terminal connected to Node 18. 

Furthermore, Fig. 13 illustrates the variation of the upper 

and lower bounds during the iterations by applying the GBD 

algorithm. During the iterations, note that 6 Benders cuts are 

generated as new constraints for the master problem, with an 

increase in the lower bound. As the number of iterations 

increases, the upper bound of the master-problem presents a 

decreasing trend, while the lower bound gradually converges 

to the upper bound. Finally, the difference between the upper 

and lower bounds converges to zero at the 18th iteration, 

which means the successful convergence of GBD algorithm. 

 
Fig. 13. Changes in 𝜆 when planning SOP terminal connected to Node 18. 

In terms of computational time comparison, Table Ⅶ 

shows the computational time of different cases. Different 

from the real-time control, the operational state and the 

payback time of devices need to be measured in the planning, 

TABLE Ⅵ 

COST COMPARISON UNDER DIFFERENT CASES 

Case SOP location (MVA) 

Annual total costs of DISCOs (103 CNY) 

DISCO-1 DISCO-2 DISCO-3 

Investment Operation 
Cost decrease  

ratio 
Investment Operation 

Cost decrease  

ratio 
Investment Operation 

Cost decrease  

ratio 

I - - 4909.40 - - 5124.77 - - 20863.43 - 

Ⅱ 
12 (0.45)-18 (0.65)-38 (1.1); 

24 (0.4)-35 (0.4) 
189.13 4526.02 3.96% 290.07 4561.40 5.33% 391.62 16130.32 20.81% 

Ⅲ 12 (2.1)-18 (2.1)-35 (2.1) 327.63 9421.17 -98.57% 327.63 6970.87 -42.42% 327.63 7727.79 61.39% 
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resulting in a consideration of long timescales for the planning 

model. Besides, note that the daily operating costs and the 

investment costs are usually converted into an annual total 

cost to analyze the return on investment in planning. 

Therefore, the computational time of the proposed method is 

sufficient to meet the planning demands. 

TABLE Ⅶ 

COMPUTATIONAL TIME UNDER DIFFERENT CASES 
Case Computational time (s) 

Ⅰ 73.20 

Ⅱ 39615.23 

Ⅲ 2251.59 

D. Scalability Analysis 

To verify the scalability of the proposed method, Cases Ⅰ 

and Ⅱ are adopted in a modified practical DN [37] for 

analysis. The system contains six areas with a rated voltage 

level of 11.40 kV. The residential areas are managed by three 

stakeholders, DISCO-2, DISCO-4 and DISCO-6. And the 

remaining three commercial areas are operated by DISCO-1, 

DISCO-3 and DISCO-5, respectively. The total active and 

reactive power demands are 15.99 MW and 11.67 Mvar, 

respectively. Capacities of PV and WT arrays are 600 kVA 

and 800 kVA, respectively. There are ten nodes connected to 

tie-switches, which are marked by red points in Fig. 14. 
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Fig. 14. Structure of the modified practical DNs with six areas. 
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Fig. 15. Planning results in six-area DNs. 

TABLE Ⅷ 

COST COMPARISON OF DISCOS UNDER CASES Ⅰ AND Ⅱ 

Case 
SOP location 

(MVA) 

Annual total cost of DISCOs (103 CNY) 

DISCO-1 DISCO-2 DISCO-3 DISCO-4 DISCO-5 DISCO-6 

Ⅰ - 8050.50 1884.36 3898.21 3197.57 1395.36 8148.55 

Ⅱ 

6(0.4)-14(0.6)-
37(0.6)-43(0.6); 

16(0.4)-21(1.0)-

56(1.4) 

7504.44 1588.02 3808.83 3052.73 1235.85 7687.14 

Cost decrease ratio 546.06 296.34 89.38 144.84 159.51 461.41 

As illustrated in Fig. 15, two SOPs are planned to realize 

the connection of six regional DNs. Table Ⅷ presents the 

annual total cost of the six DISCOs under Cases Ⅰ and Ⅱ. As 

can be observed from Table Ⅷ, DISCOs can reduce the total 

costs by investing flexibly in SOPs. The implementation of 

P2P trading allows DISCOs to benefit from power exchanges. 

With the expansion of DNs, the proposed method remains 

applicable, ensuring the scalability for large-scale systems. 

The above analysis shows that driven by the benefits of P2P 

trading, DISCOs are incentivized to assist each other in 

improving voltage quality. By applying the asymmetric 

bargaining method to deal with the planning and investment 

conflicts among multi-stakeholders, a mutually beneficial 

situation is achieved among DISCOs. 

Ⅶ. CONCLUSIONS 

To address the optimal SOP configuration under multi-

stakeholder investment, this paper proposes an asymmetric 

bargaining-based planning method for SOPs considering P2P 

trading. In this method, a two-layer coupling framework is 

established that integrates the planning, operation, and trading 

processes of multiple DISCOs. In the planning layer, the 

planning and investment scheme of SOPs is determined based 

on asymmetric bargaining. In the operational layer, P2P 

electricity trading is applied to facilitate economic operation 

of multiple DISCOs. The results show that the proposed 

method can effectively promote multi-stakeholders to invest in 

SOPs by balancing the interests of different stakeholders. 

Additionally, driven by P2P trading, the operational costs of 

DISCOs have been significantly reduced and the potential of 

SOPs in the local energy market has been well explored. 

For the future, there are several notable directions to be 

explored. To avoid the investment reset and to increase the 

device utilization, future studies could focus on the 

optimization of installation time in the SOP planning. Besides, 

the game theory could be introduced into both the planning 

and operational layers to better describe the behaviour of 

multi-stakeholders. 

APPENDIX 

A. ADMM-based distributed algorithm 

Algorithm 1 ADMM-Based Distributed Algorithm 

1: 
Initialize: The decision variables 𝑀 , the auxiliary 

variable 𝑀̂, the penalty parameter 𝜌. 

2: 

Initial step: Set the maximum number of iterations 

𝑍max = 300 , the predefined accuracy 𝜉 = 5 ∗ 10−3 , 

the iteration index 𝑍 = 0, the Lagrangian multiplier 

𝜆 = 0. 

3: While max(𝑀(𝑍) − 𝑀̂(𝑍)) ≤ 𝜉 or 𝑍 ≤ 𝑍max do 

4: 

Based on the 𝑀  made by DISCOs from the last 

iteration, update the set of decision strategies at 

fixed intervals; 

5: 
Each DISCO: According to the 𝑀̂(𝑍)  obtained, 

determine its 𝑀(𝑍); 

6: 𝑍 = 𝑍 + 1; 

7: Update 𝜆(𝑍 + 1) of each stakeholder; 

8: end 
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In particular, to improve the calculation efficiency and 

accuracy of ADMM, the set of strategies is updated at fixed 

intervals during each iteration. 

B. GBD-based distributed algorithm 

Algorithm 2 GBD-Based Distributed Algorithm 

1: 

Initialize the iteration index 𝑍2 = 1, the maximum 

number of iterations 𝑍2
max = 100. ΛU and ΛL are set 

to +∞ and −∞, respectively. 

2: While ΛU − ΛL < 𝜉2 or 𝑍2 ≤ 𝑍2
max do 

3: 
MP: obtain the optimal solution 𝐹MP by (34), and 

update ΛL = max(ΛL, 𝐹M); 

4: 
SPs: Obtain the optimal solution 𝐹𝜔

SP by solving 

the SP during each scenario; 

5: If 𝐹𝜔
SP > Λ𝜔 , 𝜔 ∈ 𝑁TS 

6: 1) Generate the Benders cuts as shown in (B1.1); 

7: 2) Add the Benders cuts (B1.1) to (35); 

8: else 

9: Break; 

10: end 

11: Update ΛU according to (B1.2); 

12: Set 𝑍2 = 𝑍2 + 1; 

13: end 

The Benders cuts are built in (B1.1), and ΛU  is updated 

according to (B1.2). 

Λ𝜔 ≥ 𝐹𝜔
SP + ∑ 𝜏𝜔,𝑛

T 𝑔𝜔,𝑛(𝑥 − 𝑥̂)
𝑁1
𝑛=1   (B1.1) 

ΛU = min{ΛU, 𝑎T𝑥̂ + ∑ (𝑁TS

𝜔=1 ∑ 𝜏𝜔,𝑛
T 𝑔𝜔,𝑛𝑥̂𝑛

𝑁1
𝑛=1 +

∑ 𝜊𝜔,𝑛
T 𝑤𝜔,𝑛

𝑁2
𝑛=1 + ∑ 𝜁𝜔,𝑛

T ℎ𝜔,𝑛
𝑁3
𝑛=1 )𝑝𝜔}  

(B1.2) 

C. Proof of the solution results 

The optimality of the solution is proved by contradiction. 

For notational simplicity, assume that 𝐶𝑘 = 𝐶𝑘
I + 𝐶𝑘

Line +

𝐶𝑘
S + 𝐶𝑘

O + 𝐶𝑘
G + 𝐶𝑘

U and 𝜋𝑘 = −𝑅𝑘
P + 𝐶𝑘

P2P. 

Firstly, let {𝐶′𝑘, 𝜋′𝑘 , 𝑘 ∈ ΩR} be obtained from the solution. 

Suppose that the obtained solution 𝐹′𝑘
DN, 𝑘 ∈ ΩR  is not the 

optimal solution and there exists 𝐹′′𝑘
DN, 𝑘 ∈ ΩR  such that 

∑ 𝐹′′𝑘
DN

𝑘∈ΩR < ∑ 𝐹′𝑘
DN

𝑘∈ΩR . Let Δ𝐹𝑘
DN = 𝐹′′𝑘

DN − 𝐹′𝑘
DN , it is 

easy to infer the inequality as shown in (C1). 

∑ Δ𝐹𝑘
DN

𝑘∈ΩR < 0  (C1) 

Thereby, it can be considered 𝐶𝑘 = 𝐶′𝑘 + Δ𝐹𝑘
DN  for 𝑘 =

1, … , 𝑁  and 𝜋′𝑘 = 𝜋𝑘 − Δ𝐹𝑘
DN  for 𝑘 = 1, … , (𝑁 − 1)  and 

𝜋′𝑁 = 𝜋𝑁 − Δ𝐹𝑁
DN + 𝜀. Then, plugging in 𝐶𝑘  and 𝜋𝑘 , as can 

be shown in (C2). 

∏ [𝑓𝑘
DN,0 − (𝐶𝑘 + 𝜋𝑘)]

𝜏𝑘𝑁
𝑘=1 =  

[𝑓𝑁
DN,0 − (𝐶′

𝑁 + Δ𝐹𝑁
DN + 𝜋′

𝑁 − Δ𝐹𝑁
DN + 𝜀)]

𝜏𝑁
∗ 

∏ [𝑓𝑘
DN,0 − (𝐶′𝑘 + Δ𝐹𝑘

DN + 𝜋′𝑘 − Δ𝐹𝑘
DN)]

𝜏𝑘𝑁−1
𝑘=1   

= [𝑓𝑁
DN,0 − (𝐶′𝑁 + 𝜋′𝑁 + 𝜀)]

𝜏𝑁
∏ [𝑓𝑘

DN,0 −𝑁−1
𝑘=1

(𝐶′𝑘 + 𝜋′𝑘)]
𝜏𝑘

  

(C2) 

From (14.a) and (C1), it can be conducted that 𝜀 =

∑ Δ𝐹𝑘
DN

𝑘∈ΩR < 0. Thus, (C3) can be obtained. 

∏ [𝑓𝑘
DN,0 − (𝐶𝑘 + 𝜋𝑘)]

𝜏𝑘𝑁
𝑘=1 > ∏ [𝑓𝑘

DN,0 −𝑁
𝑘=1

(𝐶′𝑘 + 𝜋′𝑘)]
𝜏𝑘

  
(C3) 

This contradicts that 𝐶′𝑘  and 𝜋′𝑘  maximize the planning 

model. Therefore, the obtained solution 𝐶′𝑘  and 𝜋′𝑘  is the 

optimal solution and the proof is complete. 
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