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V. Summary  

1. Epidemic disease outbreaks pose a significant risk to the stability and survival of 

many populations on earth. Current methods to understand how epidemic diseases 

transmit are often confounded by heterogeneity in infection rates amongst host 

populations. Endemic parasites, which are often less severe compared to epidemic 

diseases, may contribute to that variation by impacting on host biology and therefore 

altering the transmission of epidemic diseases.  

 

2. The effects of an endemic, gastrointestinal infection on host fitness and host 

interactions with an epidemic parasite were explored in a novel invertebrate system 

developed for this study. The chosen host was the German cockroach, Blattella 

germanica, which was infected with an endemic protozoan parasite, Gregarina 

blattarum alone or in co-infection with an entomopathogenic nematode, Steinernema 

carpocapsae, which causes epidemic outbreaks in host populations.  

 

3. There was evidence of density dependent regulation by the endemic parasite. 

Reductions in both host survival and fecundity during endemic infection both 

contributed to this regulation. The endemic parasite also had fitness costs for 

offspring from infected parents, who took longer to reach adulthood and were less 

likely to survive. Protozoan infected host populations had lower densities and 

showed less variance in population fluctuation compared to parasite free populations 

and the endemic parasite was generally found at high prevalence within the infected 

groups. When hosts infected with G. blattarum were exposed to S. carpocapsae, the 

resulting co-infection led to reduced host survival but also reduced emergence of 

nematode transmission stages. Hosts infected with G. blattarum also had differential 

immune responses to macro and microparasites which could alter host susceptibility 

to different types of infections. 

 

4. Infection with an endemic parasite caused substantial changes in the biology of the 

host, which may have important effects on host population ecology. Endemic 

parasites can also have considerable consequences for the transmission potential of 

more a virulent pathogen. These findings demonstrate the important of endemic 
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infections which should be given greater consideration in future host-parasite 

studies.  
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1. General Introduction 

The term “parasite” is defined as any organism that is dependent on a host for 

resources (i.e. habitat, food, protection), and which does so to the detriment of the 

host (Anderson & May 1978). A wide variety of organisms can therefore be 

considered parasitic, from single celled microbes and viruses, to multicellular 

helminths, arthropods and even vertebrates (Viney & Cable 2011). Consequently, 

parasites are considered to be the most abundant form of life on earth (Hudson 

2005), and few non-parasitic organisms are likely to evade infections or interactions 

with parasites during their lifespan. Parasites therefore feature strongly within all 

ecosystems, impacting on host abundance (Hudson, Dobson, & Newborn 1992; 

Albon et al. 2002), biodiversity (Hudson, Dobson & Lafferty 2006) and community 

structure (Mouritsen & Poulin 2002).  

Host populations, both human and animal, are occasionally threatened by severe 

outbreaks of disease and there are several examples demonstrating that parasites can 

drive entire populations to extinction (Cunningham & Daszak 1998; Daszak, 

Cunningham & Hyatt 2000; Stuart et al. 2004; Schloegel et al. 2006; Pounds et al. 

2006; Hawkins et al. 2006; Smith, Sax & Lafferty 2006; Skerratt et al. 2007; 

McCallum et al. 2009). Identifying how diseases will transmit through populations 

during an outbreak is essential for infection control strategies (Ferguson, Donnelly, 

& Anderson 2001). Yet disease transmission patterns may be confounded by several 

factors including heterogeneity in the susceptibility of hosts to infection (Dwyer, 

Elkinton, & Buonaccorsi 2007). Understanding the causes of heterogeneity in 

infection rates will improve the ability to monitor and predict disease transmission 

(Schleihauf, Watkins & Plant 2009).   

Heterogeneity in host susceptibility to infection is intrinsically linked to host 

immune function, which can vary with host sex (Schmid-Hempel 2005), age (Stear 

et al. 2000) and environmental conditions (Krist et al. 2000; Ostfeld et al. 2006). 

The rate at which hosts acquire infection is also dependent on the contact rate 

between hosts (Clay et al. 2009), host density (Anderson & May 1978) and exposure 

risk (Woolhouse et al. 1997). Variation in infection rate is therefore related to 

patterns of host behaviour (Lafferty & Morris 1996) and heterogeneity in immune 

responses (Carius, Little & Ebert), as well as environmental stressors (Lafferty & 
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Kuris 2005). An important form of environmental stress that hosts frequently 

encounter is infection with endemic parasites. Recent studies have shown that co-

infections, where the host is simultaneously infected with more than one parasite 

(Graham et al. 2008), can alter host responses to parasites (Graham 2008) and 

change the pattern of the infection dynamics (Fenton 2008). As outbreaks of 

epidemic disease often occur in the context of endemic parasite co-infections (Petney 

& Andrews 1998), understanding the effects of endemic infection on host fitness 

may improve the current methods in which to analyse disease transmission.  

1.1 Endemic parasites and host fitness 

In epidemiology, diseases are defined as endemic when they are maintained 

continuously within a population without the introduction of the disease from an 

external source (Guégan, Morand & Poulin 2005). In contrast, an epidemic occurs 

through the introduction of a novel agent or adaption of an existing disease which 

leads to the number of new cases exceeding those that would normally be expected 

in the population (Green et al. 2002). Some of the most common endemic diseases 

amongst host populations are gastrointestinal worms, such as cestodes, nematodes 

and trematodes (e.g. de Silva et al. 2003), which remain endemic due to the 

production of environmental transmission stages such as eggs and cysts which 

increases the circulation of the disease in the host population. It is estimated that a 

quarter of the global human population are infected with gastrointestinal nematodes 

including roundworm, tapeworm and pinworms, which can lead to malnutrition (e.g. 

Stephenson, Latham & Ottesen 2000), iron deficiency (e.g. Stoltzfus et al. 1996) and 

poor growth in children (Crompton & Neisheim 2002). Gastrointestinal infections 

are also highly significant in other host species, with nematodes such as 

Haemonchus sp., Teladorsagia sp. and Trichostrongylus sp. responsible for an 

estimated £1000 million cost to the livestock industry annually through loss of yield 

(Newton & Munn 1999). In wild animal populations, gastrointestinal infections can 

also change the dynamics of host population (Hudson, Dobson & Newborn 1992; 

Albon et al. 2002). Endemic gastrointestinal infections are therefore a considerable 

burden to human and animal populations around the world, and understanding the 

effects on the infections on host fitness is essential to improving disease control.  
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Gastrointestinal infections can bring about important consequences for host fitness, 

by altering the nutritional levels of the host in a variety of ways. A common 

consequence of gastrointestinal infection is host malaise and loss of appetite (e.g. 

Horbury, Mercer & Chappell 1995; Jones, Anderson & Pilkington 2006; Laurenson, 

Bishop & Kyriazakis 2011), which leads to decreased food intake and subsequent 

reductions in host fat and protein levels (e.g. Coop & Holmes 1996; Stephenson, 

Latham & Ottesen 2000; Sykes & Greer 2003). In the gut, the infection may also 

disrupt host digestion and absorption so that there is a decrease in the nutrient levels 

that are obtained from the consumed food (Fox 1997). Host nutritional levels are also 

influenced by the removal of nutrients from the gut or host tissue (Sykes & Greer 

2003), by damage at the infection site, which can lead to loss of blood and iron 

deficiencies (Stoltzfus et al. 1996), as well as by the increased metabolism required 

to mount an immune response (Sheldon & Verhulst 1996).   

As gastrointestinal infections can impact on the host energy budget, the resources 

available for life history processes such as growth, fecundity and survivorship, may 

also be impaired by the parasite. Farmed animals can have an increase in the rate of 

miscarriage when gastrointestinal parasites are present, which can have important 

economic costs for the livestock industry (Liu, Masters & Adams 2003). 

Gastrointestinal infections can also increase host mortalities, particularly in 

environmental extremes (Albon et al. 2002; Craig, Pilkington & Pemberton 2006). 

Given that both birth and death rates of host populations are important determinants 

of the dynamics of host populations (Anderson & May 1978), gastrointestinal 

infections, through indirect costs to host resources and life history, can also impact 

on the host at the population level.  

Fluctuations in animal abundance can occur through density dependent feedbacks, 

where the maximum population density is limited by a decrease in host reproduction 

or an increase in host mortality (May 1981). Parasites can therefore impact on host 

density by affecting one or more of the host life history processes. For example, the 

parasitic nematode Trichostrongylus tenuis in the red grouse can lead to increased 

costs to host fecundity which can drive population cycles in the host density over 

time (Hudson, Dobson & Newborn 1992). Gastrointestinal infections in Arctic 

reindeer have also been shown to cause increased losses of offspring over the winter, 
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which may lead to seasonal dynamics in the host population (Albon et al. 2002). Yet 

with the exception of these two studies, there have been very few attempts to study 

the impact of gastrointestinal infections on host population dynamics. An increase in 

population level studies would therefore broaden our understanding of how parasites 

may regulate populations in other ecosystems, as well as how those dynamics might 

impact on the host interaction with other parasites.  

The fitness costs to hosts from endemic gastrointestinal infections can also have 

implications for the host when epidemic outbreaks occur. Whilst very few studies 

have examined the effects of gastrointestinal infections on the infection rate of 

epidemic disease, it is known from co-infection surveys in the wild, that hosts with 

greater parasite diversity have more reduced energy levels (Lello et al. 2005), 

reduced fecundity (Lello et al. 2005) and an increased mortality rates (Jolles et al. 

2008) compared to those hosts with single infections. Co-infections can also lead to 

an increase in the transmission rates of disease as hosts are more vulnerable to 

invasion by epidemic diseases, something that has been widely demonstrated in 

HIV-malarial co-infections (Ter Kuile et al. 2004; Gallagher et al. 2005; Abu-

Raddad et al. 2006; Trott et al. 2011).  

Yet the outcomes of the co-infection are not always negative for the host. Indeed, 

some parasites can increase the host immune function against invading parasite 

species (Bazzone et al. 2008). In a meta-analysis of different co-infections in mice, it 

was demonstrated that such variation in outcomes was dependent on the type of co-

infection (Graham 2008). When gastrointestinal helminths which caused anaemia 

were present, microparasites that required red blood cells to replicate had reduced 

density, whereas helminths which supressed host inflammatory responses yielded 

higher numbers of microparasites during the co-infection (Graham 2008). The 

effects of helminth-microparasite co-infections are starting to be considered in 

theoretical models (Fenton, Lamb & Graham 2008; Fenton 2008). However, so far 

there have been few attempts to determine whether the differences in immunological 

or pathological effects during gastrointestinal infections will impact on the 

epidemiology of a parasite population, i.e. whether gastrointestinal infections 

increase or decrease the transmission rate of an epidemic in the host population. To 

date, this has been restricted by a lack of suitable empirical systems with which to 
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explore parasite transmission. Accordingly, there is an urgent need to find novel 

systems in which to explore the effect of endemic infection on epidemic outbreaks, 

in order to improve treatment programmes for infectious disease.   

1.2 Host-parasite model system 

The host-parasite system that was used throughout this study comprised the German 

cockroach host Blattella germanica (Fig. 1.1a) infected with two parasite species, an 

endemic parasite, the gastrointestinal protozoan parasite Gregarina blattarum (Fig. 

1.1b) and an epidemic species, the entomopathogenic nematode Steinernema 

carpocapsae (Fig. 1.1c).  

 

 

 

 

 
 

 

 

 

 

Figure 1.1: Model host-parasite co-infection system: (a) the German cockroach host, 

Blattella germanica (female with ootheca), (b) the gastrointestinal protozoan 

parasite, Gregarina blattarum (trophozoite), and (c) the entomopathogenic nematode 

Steinernema carpocapsae (infective juveniles). 

The German cockroach, B. germanica, is a widespread pest species which mostly 

occur in close proximity to human and animal buildings (Rivault 1989). The close 

association with humans can lead to problems for human health including the onset 

of asthma in children (de Blay et al. 1997) and the distribution of diseases of clinical 

importance (Fotedar, Shriniwas & Verma 1991). As a result, the German cockroach 

has been widely used in scientific studies particularly with respect to control agents 

used to restrict cockroach lifespan and fecundity (e.g. Durier & Rivault 2000). A 

more detailed description of the German cockroach life cycle is presented in Chapter 

Three (p43). Briefly, adults emerge from final nymph instars and reach sexual 

maturity within three days of moulting. After mating, the female packages the eggs 

into an ootheca (egg case) which remains attached to the female until the nymphs are 

ready to hatch. Females continue to produce oothecae every 30 days for the duration 

of their lifespan (~240 days). The hatched offspring develop over a period of 

0.5 mm 0.5 mm 

a) b) c) 

10 mm 
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approximately 60 days, and require six to seven moults to reach adulthood (Roth 

1968).  

Gregarines are gastrointestinal protozoan parasites which are endemic to many 

invertebrate species including annelids, arachnids, crustacean and insects (Clopton & 

Gold 1996). The gregarine species G. blattarum is a natural parasite of the German 

cockroach (Tsai & Cahill 1970). In a study conducted by Clopton & Gold (1996), it 

was shown that the parasite was also highly host specific, incapable of infecting four 

other species of cockroaches tested. There is no evidence (literature or personal 

observations) that G. blattarum is infective to juveniles, and the mechanism for this 

is currently unknown. As a result, all infected hosts described in this study refer to 

adult cockroaches only. The life cycle of the parasite is direct, with hosts becoming 

infected after the accidental ingestion of oocysts from contaminated faeces and food. 

Within the host intestinal tract, sporozoites contained within the oocyst emerge and 

migrate to the mid-gut of the host. The sporozoites attach to the intestinal epithelium 

between micro-villi and develop into trophozoites. When the trophozoites are fully 

developed, they detach from the mid-gut and pair up to form reproductive units 

(gametocysts). The gametocysts are passed out into the environment with cockroach 

faeces, where gametogeny and fertilisation occurs, eventually producing oocytes 

which are ingested by hosts to complete the cycle. To date, there has been little 

attempt to determine the effect of G. blattarum on the German cockroach host, with 

the main exception being a study by Lopes & Alves (2005) who found gregarines 

caused increased mortality of the German cockroach. As a gastrointestinal infection, 

there is the potential that this parasite will have important effects on the energy 

levels, life history and population dynamics of the host.  

The entomopathogenic nematode S. carpocapsae is a highly virulent parasite with a 

broad host spectrum, which has led to its use as a biocontrol agent against a variety 

of important pests including corn borers (Ben-Yakir et al. 1998), leaf miners (Sher, 

Parella & Kaya 2000) and root weevil larvae (Booth, Tanigoshi & Shanks 2002), as 

well as the German cockroach (Koehler, Patterson & Martin 1992; Appel et al. 

1993). The nematode life cycle is direct, whereby parasites are transmitted as non-

feeding infective juveniles, which invade the host through natural openings such as 

host spiracles, mouth and anus (Adams & Nguyen 2001). Once inside the host 



 

7 

 

haemocoel, symbiotic bacteria (Xenorhabdus nematophila) are regurgitated by the 

nematodes, which cause septicaemia and host death within 72 hours (Adams & 

Nguyen 2001). Infective juveniles develop into feeding third stage juveniles, then 

fourth stage juveniles, and finally adult males and females (Grewel et al. 1997). The 

adults mate and produce eggs that hatch into first stage juveniles, and moult into 

second, third and fourth stages before emerging as second generation adults (Adams 

& Nguyen 2001). After two to three reproductive cycles, or when resources are 

limited, development ceases at the third juvenile stage, whereupon the juveniles re-

ingest the bacteria and exit the host (Grewel et al. 1997). The induction of high host 

mortality and ability to cause serious and rapid depletions of invertebrate populations 

are important qualities for use of this parasite as an epidemic disease in 

epidemiological work.  

1.3 Research aims  

The objective of this thesis was to determine how endemic parasite infection can 

alter host fitness and whether those changes affect the interaction of the host with a 

more virulent disease.  

Chapter Two: Host population dynamics 

Parasite infections can regulate host population dynamics and previous studies have 

shown that gastrointestinal helminths can destabilise host populations. It is unknown 

whether endemic protozoan parasites can regulate host population dynamics, or 

whether endemic infections can regulate the dynamics of invertebrate populations. 

The aims of this chapter were to test the hypothesis that G. blattarum alters the 

regulatory processes of the German cockroach host population. German cockroach 

populations were monitored continuously for almost two years, and a series of host-

parasite models were compared to the observed time series to assess density 

dependent regulation in the host population dynamics.  

Chapter Three: Host life history 

Host population dynamics are regulated by density dependence acting on the host 

birth or death rates. Further, these density dependent effects may be delayed, for 

example they may be mediated by fitness cost to offspring due to having infected 
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parents. Gregarina blattarum is known to reduce host survival, but it is unclear 

whether host survivorship changes with the age of the host, or what effects the 

parasite has on host fecundity and offspring fitness. The chapter tested the 

hypotheses that G. blattarum reduces German cockroach survival and fecundity, and 

increases the developmental rate of offspring.  

 Chapter Four: Epidemic transmission potential 

Endemic parasites may compete with other parasites for host resources, which could 

potentially alter the transmission rate of epidemic parasites within the host 

population. One important component of parasite transmission is the reproduction of 

infective stages within the host. Host energy resources (lipid levels) were explored in 

hosts infected with G. blattarum, and the resource change was then used to 

determine whether resource costs imposed by the endemic infection altered the 

number of nematode transmission stages that emerged from cockroach hosts.  

Chapter Five: Host immune responses 

Heterogeneity in immune responses between individual hosts can alter the 

probability of infection within the host population. Such variation in immune 

response may be the result of parasite infections already present in the host. 

Gastrointestinal infections may alter host immune responses to parasites, which 

could impact on host susceptibility to more virulent diseases. Host immune 

responses to micro- and macroparasites were assessed in parasite free and G. 

blattarum infected hosts to test the hypothesis that gregarines alter host immune 

function.  
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2. Do endemic infections in the German cockroach regulate host 

population dynamics? 

2.1 Abstract  

Endemic infections are costly to the host and can regulate host population dynamics. 

To date, this understanding is based on work conducted in mammalian and avian 

systems, whereas invertebrate populations may also be regulated by endemic parasite 

infections. The aims of this study were to determine whether endemic parasites are 

important influences on the regulatory processes in an invertebrate host population. 

Laboratory populations of the German cockroach, Blattella germanica, which either 

contained the gastrointestinal protozoan parasite Gregarina blattarum or were 

parasite-free controls, were monitored bi-monthly for almost two years by capture-

mark-recapture. At each sampling time-point a sub-sample of the captured 

individuals was dissected to estimate the parasite load in infected groups. A series of 

host-parasite models were compared using a model fitting procedure. Infected 

colonies had lower mean densities and reduced variation around the mean compared 

to uninfected hosts, but there was no correlation between parasite infection levels 

and host density. Host populations in the absence of parasites were regulated by 

linear density dependence acting on death rate, and by a Poisson probability 

distribution, indicative of demographic stochasticity. Infected host population 

dynamics were described by several regulatory processes, including parasite-only 

host regulation, regulation from density dependence acting on births and density 

dependence acting on host death rate. The random error in the infected group also 

varied between environmental (Gaussian) and demographic (Poisson) stochasticity. 

These findings clearly demonstrate that endemic parasites affect the regulatory 

structure of the invertebrate host population, despite the fact that the dynamics of the 

parasites themselves are not correlated with host population density. The variability 

in the models that best fitted infected host colonies suggests that multiple regulatory 

processes may be occurring in this host-parasite system. Further work is needed to 

determine whether the regulation by the parasite is stabilising, and to differentiate 

the different levels of stochasticity that may influence the host dynamics. 
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2.2 Introduction 

Animal population densities fluctuate in the environment. One of the most important 

factors governing such fluctuations are a result of density dependent regulation on 

population density (May 1981). Several density dependent factors have been 

proposed, which can lead to changes in host population regulation, including 

competition, predation and parasitism (Hudson, Dobson & Newborn 1992). 

Parasitism is particularly important because it can give rise to density dependent 

regulatory processes in the absence of predation or intra-specific competition 

(Anderson & May 1978; May & Anderson 1978). Yet in comparison to competition 

and predation studies, there are still relatively few empirical demonstrations of 

parasitic regulation of host populations.    

Many studies to date have focused on the effect that acute microparasitic diseases 

can have on host population dynamics (Anderson & May 1981; Grosholz 1992; Sait, 

Begon & Thompson 1994; Bjornstad et al. 1998; Van Bressem, Van Waerebeek & 

Raga Esteve 1999; Boots & Norman 2000; Bonsall & Benmayor 2005; Kuenzi et al. 

2007; Yoshida et al. 2007). Classic theoretical studies have demonstrated that 

endemic parasites can also have important regulatory effects on host populations 

(Anderson & May 1978; May & Anderson 1978). In general, endemic parasites can 

stabilise host population sizes when three conditions are met: high parasite 

aggregation amongst hosts; parasite-induced host mortalities; and density-dependent 

constraints on parasite reproduction (Anderson & May 1978). Under a different set 

of conditions, endemic parasites can lead to destabilising effects in the host 

population, through parasite-induced reduction in host fecundity, random or low 

levels of parasite aggregation among hosts and time delays between parasite 

reproduction and transmission (May and Anderson 1978). Hudson, Dobson & 

Newborn (1992) provided empirical support for the destabilising effects of host-

parasite interactions in an avian host, the red grouse. After further analysis (Dobson 

and Hudson 1992) it was shown that the biological processes that led to the cycling 

dynamics in the host densities, were host fecundity costs of the parasite, low parasite 

aggregation and time delays in parasite transmission, providing clear evidence for 

the destabilising processes outlined by May & Anderson (1978). More recently, 

gastrointestinal nematode infections in the Artic Svalbard reindeer, a population with 
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no competitive herbivores or predators in the environment, has also been shown to 

cause cycling host population dynamics (Albon et al. 2002) due to parasite-induced 

fecundity costs.  

Our understanding of how parasites regulate host population dynamics is extremely 

limited due to very few empirical studies. Further, to my knowledge, there have been 

no attempts to monitor endemic, gastrointestinal parasite regulatory processes in 

invertebrate populations. Several noticeable studies have considered the effects of 

parasitoids (Hassell, Comins & May 1991; Jones et al. 1993; Bonsall & Hassell 

1998) and microparasite infections in invertebrate host populations (Anderson & 

May 1981; Boots & Norman 2000; Bonsall 2004; Bonsall & Benmayor 2005), 

demonstrating the potential for density dependent regulation in these host organisms. 

As endemic infections can cause substantial fecundity and mortality reductions in 

invertebrate hosts (e.g. Lafferty 1993; Jaenike, Benway & Stevens 1995), which may 

act to regulate host populations (Anderson & May 1978), it is important that the 

imbalance is addressed in entomological research.  

Host-parasite dynamics have been previously described using a range of different 

models, including differential equations (Anderson & May 1978; May & Anderson 

1978; Anderson & May 1981; Briggs & Godfray 1995; Milner & Patton 1999; Gaff 

& Gross 2007). These models can demonstrate a range of different processes for 

example the stage of the host life cycle (if any) when density dependence applies. 

Density dependence may consist of linear or non-linear negative feedbacks on the 

population density through either host birth or death rates (Bellows 1981). The 

density dependence is therefore vital in understanding population regulation (May 

1981). There are also important density-independent processes which can cause 

populations to fluctuate. Ecological datasets are generally noisy, and the noise can 

occur due to random variation (stochasticity) in host numbers. This stochasticity may 

be a result of demographic variation in host birth and death rates or be due to 

variation in the environment (May 1973). Gaussian probability distributions are good 

representations of environmental stochasticity, whereas Poisson or negative binomial 

distributions generally give rise to demographic error (Melbourne & Hastings 2008). 

A maximum likelihood fitting approach can be a useful method with which to 

determine the most appropriate model structure, by finding the best fit between 
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empirical time series and population models (Bonsall & Hastings 2004; Bonsall & 

Benmayor 2005; Bateman, Coulson, & Clutton-Brock 2011; Smallegange, van der 

Meer & Fiedler 2011; Strevens & Bonsall 2011). This approach requires selection of 

a series of candidate models, followed by an estimation of the stochastic error, a 

likelihood fitting procedure and finally a goodness of fit test between the model 

predictions and observed data (Bonsall & Hastings 2004). For example, Bonsall & 

Benmayer (2005) used this approach to show that regulatory processes in the Indian 

meal moth,  changed during different levels of parasitism. This approach may 

therefore provide an important first step in exploring the host and endemic parasite 

population dynamics and be particularly useful when there is stochasticity in the 

population dynamics.  

Longitudinal studies of host density, parasite levels and distribution are also 

important in determining host population regulatory processes (Anderson & May 

1978; May & Anderson 1978). Parasite infection dynamics are described by 

fluctuations in abundance (number of parasites per host), intensity (number of 

parasites per infected host) or prevalence (percentage of infected hosts). These levels 

may be synchronised or lag behind host densities if the host-parasite dynamics are 

linked by parasite regulation of host density (Dobson & Hudson 1992). The 

distribution of parasites can be estimated using Taylor’s aggregation parameter b, 

which describes the slope of the regression of the log mean (x+1) parasite abundance 

on the log variance (Taylor 1970) and allows comparisons of different aggregations 

which are independent of the mean (Boag et al. 2001). Parasites are considered 

aggregated when b > 1, with most parasite distributions in wild host populations 

having b values close to 1.55 (Shaw & Dobson 1995). Dobson & Taylor (1992) 

demonstrated that low levels of aggregation can led to destabilisation of the host 

dynamics. As parasite levels and distribution amongst hosts are important in 

determining host density regulation, measurements of parasite levels and distribution 

may also be important in understanding the regulation of invertebrate host 

populations.  

The aim of this work was to determine the effect of endemic parasites on host 

population regulatory processes. To this end, a time series dataset was collected 

using laboratory colonies of the German cockroaches (Blattella germanica) in 
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addition to the infection dynamics of its gastrointestinal parasite Gregarina 

blattarum. These data were explored using a model fitting procedure to determine 

the effect of the parasite on host density dependent and density independent 

processes. It was predicted that G. blattarum would cause regular cycles in the 

cockroach population through altered density dependent feedback. Further, the 

parasite dynamics were expected to be correlated (with or without time lag) with the 

host densities.  

2.3 Materials and Methods 

Host Culture  

German cockroaches (ca. 100 individuals) were originally obtained from a 

laboratory supply company (Blades Biologicals Ltd.) in 2007 and were reared in 19 

litre plastic boxes (Really Useful Box Co.) lined with Fluon® (Blades Biologicals 

Ltd.) to prevent cockroach escape. Boxes contained cardboard egg-box refugia (4 x 

sheets of 20cm
2
), and colonies were provided with food (ground dog biscuits in the 

base of a 90 mm dia. Petri dish) and dechlorinated water (in 50 ml falcon tubes with 

a cotton wool bung). All cockroaches were maintained at 25 ± 1°C, 30 ± 2% relative 

humidity, with a 12:12 h LD photoperiod. A sub-sample of these cultures were 

dissected and found to contain G. blattarum, a pathogen specific to this cockroach 

species (Clopton & Gold 1996). As G. blattarum oocysts (transmission stages) are 

only transmitted horizontally, parasite free cultures were founded by collecting 

oothecae from gravid infected females, and rinsing with 10% ETOH and sterile 

distilled water to wash away any external oocysts  (in accordance with Müller-Graf 

et al. 2001). The parasite free oothecae were then incubated on damp filter paper 

within 90 mm dia. Petri dishes until the offspring had hatched, upon which they were 

transferred to parasite-free containers and reared as above.  

Population Sampling 

The population sizes of uninfected and G. blattarum infected colonies of B. 

germanica were estimated using the mark-recapture technique. This method also 

allows for the removal of a sub-sample at each census point to determine the parasite 

load. Five colonies of G. blattarum infected (1-5) and five uninfected controls (A-E) 

were chosen randomly from the stock colonies and reared under standard laboratory 
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conditions as outlined above. Colonies were sampled fortnightly for up to 40 time-

points (21 months) in all colonies except for two uninfected colonies (E and F), 

which were only sampled for 24 time-points (12 months) due to  a gregarine 

contamination. Samples were collected by shaking the egg-box refugia over Fluon® 

lined plastic pots for 60 s. The sampling pots were then stored on ice (for up to 20 

min) to allow individuals to be counted and marked. The adults were separated from 

any juveniles, sexed, and any previous marks noted. All adults within the sample 

were marked using a small dot of enamel paint (Revell®) on the pronotum, applied 

with an entomological pin. A different paint colour was used for each sampling 

occasion. A sub-sample of males and females (20% of each sex) at each time point 

was randomly collected and each host was dissected to determine the total gut-

parasite content (or disposed of if from the uninfected colonies). The remaining 

adults were retained in recovery arenas with food, water and shelter for 24 h, and 

then released back into their respective colonies. The estimations of host population 

size were then derived from the stochastic model by Jolly (1965; see Appendix 7.1). 

Parasite Sampling 

At each sampling time-point, the sub-samples of cockroaches collected were 

anaesthetised with CO2 and stored on ice for up to 30 minutes prior to dissection. 

Individuals were collected and wings, legs, head and oothecae removed and the 

cadaver transferred to a Petri dish (90 mm dia.) lined with black beeswax (Lassco®; 

to enable the cadaver to be fixed with entomological pins), and half-filled with 0.005 

M phosphate buffered saline (PBS). Using a stereo-microscope (GX Optical XLT-

101), the thorax was cut open and the mid-gut located which was pinned to the Petri 

dish. Parasites were subsequently counted by gently squeezing the gut with soft 

forceps to remove trophozoite parasite stages. Three measurements of parasite levels 

were then calculated from the parasite counts: abundance, the number of 

trophozoites per host, including uninfected hosts; intensity, the number of 

trophozoites per infected host; and prevalence, calculated as the percentage of 

infected hosts in each sample.  
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Statistical analysis 

All statistical analyses were conducted within R version 2.13.2 (R Development 

Core Team 2011). The effect of G. blattarum on host population density was 

assessed using the bootstrapped mean density and coefficient of variation (10,000 

resamples with replacement) and using these values in a subsequent two-sample T-

test to compare between uninfected and infected host populations. Patterns of 

frequency in the dynamics of the uninfected and parasitized-host populations were 

compared visually using spectral analysis plots.  

Parasite abundance, intensity and prevalence, normalised using a logarithmic 

transformation prior to the analysis, were compared between each of the five 

colonies using a General Linear Model. The aggregation levels of G. blattarum 

amongst hosts were assessed using Taylor’s power law index of aggregation b 

(Taylor 1970), which describes the linear relationship between log  mean and log 

variance of parasite counts, using the equation:  

log variance = a + b log mean 

where a is the sampling coefficient (Boag, Neilson & Brown 1992). A bootstrapping 

technique was used to calculate the log mean and log variance, by random sampling 

(with replacement) of parasite counts within each time-point (n = 37). The sampling 

process was repeated 10000 times, and a linear model was used to calculate the value 

of Taylor’s b for each sub-sample. The change in parasite aggregation over time, 

between colonies and between adult sexual stages (males, females or females with 

oothecae) was conducted using a general linear model. The relationship between 

parasite aggregation and the three measures of parasite number (prevalence, 

abundance, intensity) was determined using simple linear regression analysis. 

Correlations between log host and log parasite data were assessed using Pearson’s 

correlation test and any time lags in the correlation were assessed using a cross-

correlation plot.  

Model Selection 

A series of host and host-parasite candidate models was chosen based on derivations 

of the well-established host-parasite model devised by Anderson & May (1978), 
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adapted with different descriptions of host density dependence, parasite distribution 

and stochastic error using functions described by Bellow (1981) and previously used 

in host-parasite analysis by Bonsall & Benmayor (2005) (Table 2.1). These models 

only represent adult host populations, as G. blattarum does not infect juveniles in the 

German cockroach population (see Chapter 1, page 6).  

Table 2.1: Candidate model list for German cockroach host (N1) and Gregarina 

blattarum parasite (N2) populations. Terms or equations in italics are exclusive to 

host-parasite models and are absent from host only (parasite-free) equations. The two 

parasite models (A and B) were each paired with the host models for host-parasite 

analyses (1-5). Other terms in the models are given as follows: t = time (days); r = 

instantaneous host birth rate; d = parasite independent host death rate; K = host 

population carrying capacity; θ = linearity of density dependence (where θ = 1 is 

linear); D = density dependent host death rate; a & v = associated density dependent 

functions; b = parasite population growth rate; e = parasite dependent host death rate; 

g = parasite loss as a factor of host immune function; d = host independent parasite 

death rate; X = aggregation parameter.  
†
DD = density dependence 

 

Host Models Uninfected populations Description 

1 dN1/dt = rN1 – dN1 – e*N1*N2 Exponential growth  

2 dN1/dt = rN1*(1-(N1/K)) - dN1 – e*N1*N2 Linear DD
†
 on births 

3 dN1/dt = rN1*(1-N1/K)
θ
 - dN1 – e*N1*N2 Non-linear DD on births 

4 dN1/dt = rN1 – (d+(D*log(N1)))*N1 – e*N1*N2 Linear DD on deaths 

5 dN1/dt = rN1 – (d+(log(1+(a*N1)
v
)))*N1 – e*N1*N2 Non-linear DD on deaths 

Parasite Models   

A dN2/dt = b*N2*N1 – (e+g+d)*N2 – (e*N2
2
/N1) Random distribution 

B dN2/dt = b*N2*N1 – (e+g+d)*N2 – 

e*(X+1)N2
2
/(X*N1) 

Aggregated distribution 

 

The density dependent mechanisms present in the uninfected populations was 

assessed by fitting four models, each of which differed in the relationship between 
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host density and density dependence (linear/non-linear) and/or in the process upon 

which it acted (births and deaths). As a baseline control, the population dynamics 

were modelled using a simple exponential growth equation with no density 

dependence (Model 1). Each model included the instantaneous host birth rate (r) and 

parasite independent host death rate (d). Models 2 and 3 also included host 

population carrying capacity (K), and in Model 3 a descriptor (θ) was used to vary 

the linearity in the density dependence. Model 4 contained a density dependent 

parameter (D) on host death rate, which in Model 5 was described by two parameters 

for non-linear density dependence on host death rate (a & v). Infected host dynamics 

were assessed with the same five models but were also linked, via the parasite-

induced host death rate (e), to a second equation, describing the parasite intensity 

dynamics. The infected host populations also included the rate of parasite growth (b) 

and two other descriptors of parasite death rate: death caused by interactions with the 

host immune system (g) and loss of hosts through natural host death rate (d). Further, 

the infected host populations were linked to two parasite models, each describing 

different levels of parasite distribution (random and aggregated, A and B 

respectively) and which were fitted to the parasite intensity data. For this, an 

aggregation parameter (X) was used to transform the distribution of the parasite 

population.     

Model fitting and goodness of fit 

The regulatory processes as described by the models were examined using a 

maximum likelihood-based approach to determine the best fitting model or models 

for each replicate colony. This approach used a model fitting procedure to compare 

the integrated models of the host and host-parasite dynamics with that of the 

observed data. This was implemented using numerical integration and optimization 

algorithms in the C programming language (Bonsall & Hastings 2004). This process 

generated a series of parameter estimates for each model with a likelihood value that 

described the relationship between the model and the observed data. The likelihood 

values were obtained from each model in turn and the fitting procedure was repeated 

for the uninfected (n = 5) and infected (n = 5) populations, for both random and 

aggregated parasite distributions and for three measures of host and parasite 

stochastic error: Gaussian, Poisson and negative binomial. An AIC score was 
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subsequently obtained from each likelihood value (L) given the relationship: AIC = 

2k – 2 ln (L), where k is the number of parameters in the model. Within each host 

colony, the AIC scores were weighted to determine the most appropriate model or 

series of candidate models and error distributions per colony. One-step-ahead 

predictions were then generated using the best fitting model or set of models for each 

colony. In the final step a goodness of fit test was performed to examine the 

similarities between the predicted (expected) and observed data for each candidate 

model using a Chi-squared test.    

2.4 Results 

Gregarina blattarum had a significant effect on the population density of its host B. 

germanica. The mean density of colonies containing the parasite were reduced by 

71.6% from an estimated bootstrapped mean density of 4619 to 1309 per colony (t4 = 

3.07, p = 0.037; Table 2.2).  
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Table 2.2: Summary of uninfected German cockroach population densities (A-E) an 

infected colonies (1-5). Mean = bootstrapped mean with 2.5% and 97.5% confidence 

intervals (CI); the variation between samples over the time series for each colony is 

given as the coefficient of variation (C of V). . CI = confidence intervals; .  

 

 Colony Mean 2.5% CI 97.5% CI C of V 

Uninfected hosts (control) A 2807 1640 4492 0.26 

 B 3030 1543 5618 0.37 

 C 2849 1623 4577 0.27 

 D 6498 4699 9110 0.18 

 E 7888 4370 13516 0.31 

G. blattarum-infected hosts 1 1351 1064 1688 0.12 

 2 1336 964 1901 0.19 

 3 1356 1025 1746 0.14 

 4 1095 849 1399 0.13 

 5 1408 949 2009 0.19 

Mean control - 4615 2775 7463 0.3 

Mean infected - 1309 970 1748 0.2 

 

Host population densities were considerably varied (Fig. 2.1), but the bootstrapped 

variation in colony density was substantially lower in infected (CV = 0.15) compared 

to uninfected colonies (CV = 0.28) (t8 = 3.58, p = 0.007). 
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Figure 2.1: Time series of uninfected German cockroach populations (a-e, left 

panel), Gregarina blattarum infected populations (1-5, right panel), and G. 

blattarum intensity (dashed lines). 
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Host population densities varied over time between periods of high and low 

frequency fluctuations (Fig. 2.2). However, the spectral analyses did not show any 

consistent patterns (indicative of population cycles), either in uninfected colonies or 

infected colonies (see Appendix 7.2).   

 

 

 

 

 

 

 

Figure 2.2: Example spectral analysis plot of an uninfected German cockroach 

population (a) and an infected host population (b). Blue line denotes 95% confidence 

intervals for the power spectrum; blue bar is mean power spectrum level. All host 

and parasite spectral analyses are shown in Appendix 7.2. 

 

Parasite abundance and intensity were substantially different amongst the five tested 

colonies (Table 2.3; F4,151 = 6.12, p < 0.001 and F4,151 = 5.84, p < 0.001 

respectively). The bootstrapped mean abundance of parasites 33.4 trophozoites in the 

host population and the bootstrapped mean parasite intensity was 48.4 amongst 

infected hosts. The bootstrapped mean prevalence of parasite infection varied 

between 10-95% through time with a mean prevalence of 65.3%, but there were no 

statistically significant differences in the prevalence levels between the five colonies 

(F4,151 = 174, p = 0.144).  

 

 

 

 

a) b) 
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Table 2.3: Summary of Gregarina blattarum parasite population dynamics 

(bootstrapped mean host density with the coefficient of variation), presented as mean 

parasite abundance, intensity and prevalence (%). CI = confidence intervals.  

 

 
Colony 

 

Mean 

 

2.5% CI 

 

97.5% CI 

 

Coefficient 

of variance  

G. blattarum abundance 1 22.5 15.7 30.4 0.16 

 2 27.6 21.0 34.8 0.13 

 3 39.6 32.2 46.8 0.10 

 4 37.3 30.1 44.8 0.10 

 5 40.2 27.0 56.0 0.18 

Mean abundance - 33.4 25.2 42.6 0.13 

G. blattarum intensity 1 31.8 23.3 41.1 0.14 

 2 42.5 32.2 54.4 0.13 

 3 55.8 45.9 65.8 0.09 

 4 53.7 43.6 64.4 0.10 

 5 58.0 39.9 80.4 0.18 

Mean intensity - 48.4 37.0 61.2 0.13 

G. blattarum prevalence (%) 1 60.2 53.3 66.9 0.06 

 2 63.2 57.6 68.7 0.05 

 3 69.6 65.1 74.1 0.03 

 4 68.2 62.9 73.5 0.04 

 5 67.6 61.3 73.6 0.05 

Mean prevalence (%) - 65.7 60.0 71.3 0.04 

 

Parasite distribution amongst hosts was generally aggregated (Fig. 2.3; b > 1) but the 

levels of aggregation varied with time, with an interaction between time and the 

status of the adult (F2,102 = 3.26, p = 0.042). The predicted mean aggregations in 

males (1.58 ± 0.07 SE) and females with oothecae (1.59 ± 0.08 SE) were higher 

compared to females that were not carrying oothecae (1.39 ± 0.06 SE). Parasite 

aggregation was also negatively correlated with parasite abundance (R
2
 = 0.15, t154 = 

-5.25, p < 0.001), intensity (R
2
 = 0.19, t154 = -6.20, p <0.001) and prevalence (R

2
 = 

0.03, t154 = 2.35, p = 0.02). 
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Figure 2.3: Time series of Gregarina blattarum parasite aggregation according to 

Taylor’s aggregation parameter, b for males (black line), females (blue line) and 

females with oothecae (red line). Dashed line represents the random distribution 

level (b = 1). 

 

There was no correlation in any of the five infected colonies (p > 0.05) between the 

host density and the parasite population measures of abundance, intensity or 

prevalence (e.g. Fig. 2.4a; see Appendices 7.3-5 for all correlation plots). There was 

also no evidence of time lags in host-parasite correlations in any of the colonies from 

the cross-correlation plot (e.g. Fig. 2.4b; see Appendices 7.3-5 for all cross-

correlation plots). 
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Figure 2.4: Example correlation plot of log German cockroach host density (N) 

against log Gregarina blattarum parasite prevalence (P) (a), and cross-correlation 

analysis of log host density with log parasite prevalence (b). Blue lines are 95% CI 

for cross-correlation significance level. Colonies 2-5 and comparisons with parasite 

abundance and prevalence are shown in Appendix 7.3-5. 

 

Model Selection 

The best model selected for each host and parasite population is shown in Table 2.4. 

Model 4, which describes host regulation by linear density dependence acting on 

host death rate (see Table 2.1 for model descriptions), most closely described the 

uninfected host colonies (A-E). These uninfected host populations were also 

associated with a substantial amount of Poisson stochastic error, as shown by 

irregular population fluctuations (Fig. 2.1) and poor goodness of fit between the 

deterministic model and the observed data (Fig. 2.5a, p < 0.001).  

 

 

 

 

 

 

b) a) 
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Table 2.4: Goodness of fit test (Chi-squared) between the closest fitting model 

predictions and observed time-series data for uninfected German cockroach hosts 

(A-E), infected hosts (1-5a) and Gregarina blattarum parasites from infected host 

populations (1-5b). *Models not significantly different to observed data (p > 0.05). 

Neg-bin = negative binomial 

 

The candidate model selection was more varied in the infected host populations 

(colonies 1-5) where almost every candidate model was used as the best descriptor 

for one or other of the infected colony dynamics. Only the non-linear density 

dependence model (model 5) gained no support by comparison of the weighted AIC. 

There was a better goodness of fit of infected models to the observed data compared 

to parasite-free models (Fig. 2.5b), with non-significant differences between 

predictions and observed data for colonies 2 (Chi-sq1 = 30.59, p = 0.288) and 3 (Chi-

sq1 = 20.19, p = 0.821). However, more than half the host population deterministic 

models (Table 2.4; colonies 1, 4 and 5) and all of the parasite deterministic models 

were poor fits to the data as determined by a goodness of fit test. The stochastic error 

description for the infected host populations was either Gaussian or Poisson 

distributed. The parasite populations were most frequently (4/5) described by a 

random distribution amongst hosts and were associated more often (3/5) with a 

Gaussian error structure.  

 Colony Host error Parasite 

error 

Parasite 

distribution 

Model AIC Chi-sq P 

Uninfected 

hosts 

A Poisson   4 78.65 1590.26 < 0.0001 

 B Poisson   4 84.51 27403.90 < 0.0001 

 C Poisson   4 85.64 16430.46 < 0.0001 

 D Poisson   4 45.52 712.79 < 0.0001 

 E Poisson   4 70.34 579.33 < 0.0001 

Infected hosts 1a Gaussian Poisson Random 2 156.97 125.55 < 0.0001 

 2 a Gaussian Neg-bin Random 3 147.24 30.59 0.288* 

 3a Poisson Gaussian Aggregated 4 125.18 20.19 0.821* 

 4a Poisson Gaussian Random 1 119.58 626.18 < 0.0001 

 5a Poisson Gaussian Random 1 130.50 653.40 < 0.0001 

Parasites 1b Gaussian Poisson Random 2 156.97 423.66 < 0.0001 

 2 b Gaussian Neg-bin Random 3 147.24 76.19 < 0.0001 

 3b Poisson Gaussian Aggregated 4 125.18 89277.05 < 0.0001 

 4b Poisson Gaussian Random 1 119.58 268.10 < 0.0001 

 5b Poisson Gaussian Random 1 130.50 311.23 < 0.0001 
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Figure 2.5: One-step-ahead predictions for log German cockroach host numbers (N) 

in an uninfected sample population “A” (a) and infected population “1” (b), and 

parasite (P) intensity from colony “1” (c). Closed circles are observed data and open 

circles are model predictions. All one-step-ahead predictions are shown in Appendix 

7.6. 

a) 

b) 

c) 

Time (days) 
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2.5 Discussion 

This study has demonstrated that endemic parasites can alter the regulatory structure 

of an invertebrate host population. In the absence of parasites, cockroach populations 

were most frequently described with models that included linear density dependence 

acting on host mortality (Table 2.1, equation 4). However, where parasites were 

present, the dynamics of host populations were not described by any single model 

form. Instead, models describing each colony contained different density dependent 

functions and descriptions of the host stochasticity. In a study by Bonsall & 

Benmayor (2005), the density dependent processes were shown to be shifted from 

density dependence on host death rates to host birth rates in the presence of multiple 

microparasite infections compared to single infections. The current work 

demonstrates that a shift can also occur in host density dependence in the presence of 

endemic, gastrointestinal infections. However, it is not clear from these data whether 

host birth or death rates are more important or whether the effects are linear or non-

linear, due to the various outcomes from the fitting procedure. It is likely that 

multiple processes may be responsible for the changes in host regulatory processes 

which needs further investigation, for example by fitting models that allow density 

dependence on both processes.   

A goodness of fit test was used to assess the suitability of the deterministic model 

selection (i.e. in the absence of stochasticity) when compared to the observed data. 

There was good support for two infected host population models (colonies 2 and 3), 

although there were no similarities in the density dependent function of the two 

models, which described non-linear density dependence on births and linear density 

dependence on deaths repetitively (Table 2.4). The remaining infected host 

population deterministic models (colonies 1, 4 and 5), the parasite population models 

and the parasite free population models (a-e) all had poor fits to the observed data 

(Fig. 2.5). This suggests that the stochasticity in the models were extremely 

important in the initial model fitting procedure. In parasite free models this was best 

described with a Poisson distribution. This particular stochastic distribution is 

generally used in modelling demographic stochasticity (Melbourne & Hastings 

2008) and has been demonstrated to be important in other invertebrates such as 

stoneflies (Engen et al. 2011), mayflies (Engen, Aagaard & Bongard 2011), 
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mosquitoes (Otero, Solari, & Schweigmann 2006) and moths (Bonsall & Benmayor 

2005). However, in parasite infected host populations, the stochasticity shifted 

towards a Gaussian error distribution which is normally indicative of environmental 

variation. Endemic parasites are therefore impacting not only on the deterministic 

processes in the host population dynamics, but also the stochastic processes which 

may explain the selection of multiple models for the infected populations, and the 

poor goodness of fit.  

Stabilising effects of host populations by parasites are indicated by reduced 

fluctuations, parasite-induced host mortality rate and over-dispersion of parasites 

within hosts (Anderon & May 1978). Gregarina blattarum reduced the mean density 

of host populations by 71% compared to populations where the parasite was absent. 

Reduction in mean host density is likely to be a consequence of reductions in host 

fecundity or survival and given the stabilising effects of G. blattarum it would be 

expected that survivorship costs in the hosts are more influential in the regulatory 

processes (addressed in Chapter Three). The time series were also extremely varied 

(Fig. 2.1) but the variation in host population fluctuations was reduced in infected 

hosts compared to parasite-free populations. However, rather surprisingly, there was 

no relationship between the levels of the parasite infection (abundance, intensity or 

prevalence) and the dynamics of the host population which is also noticeable when 

parasites regulate host populations (Dobson & Hudson 1992).  

From the model fitting procedure, the parasite dynamics were best explained by a 

model containing random parasite distribution. This was surprising as an aggregated 

distribution was most frequently measured in the observed samples (Fig. 2.3; b > 1). 

Boag et al. (2001) demonstrated that parasite data does not always conform to 

standard error descriptions, such as the negative binomial distribution. Therefore the 

selected parasite distributions in this current study may require further investigation 

to capture the aggregated distribution in the population models. Overall, the 

aggregation levels that were measured in the host time series dataset, is indicative of 

stabilising effects on the host population (in accordance with Anderson & May 

1978), and combined with the reduced variation in host density this suggests that the 

parasites are stabilising rather than destabilising host population dynamics in this 

system.  
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This study also provided evidence of sex bias and female reproductive stage 

variation in parasite distributions, where infections in females without oothecae were 

more randomly distributed than males or females that carried oothecae. Variation in 

the levels amongst hosts may be caused by environmental, behavioural or social 

factors (Boag et al. 2001). Female cockroaches for example, may reduce food 

consumption and spend longer periods inside refugia when incubating oothecae (Lee 

& Wu 1994), thereby altering their parasite exposure risk. This can have an 

important impact on the transmission rate of the parasites as well as on the regulatory 

processes that govern the host population dynamics.  

The endemic parasite, G. blattarum is clearly having an effect on the overall host 

population density, the structure of the deterministic models and the model 

stochasticity terms. There is good support that the endemic parasites are stabilising 

the dynamics of this invertebrate host population, but further work is needed to test 

this hypothesis. Now that the general host and parasite population structures and 

stochastic error distributions associated with this host-macroparasite system have 

been established, future work can explore the effect of different types of stochasticity 

(demographic, environmental and process errors) that are clearly important in 

influencing the host-parasite dynamics. Overall, this study provides a novel insight 

into how endemic parasites may regulate invertebrate host populations. 
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3. Gregarina blattarum infection reduces both survival and fecundity 

in the German cockroach  

3.1 Abstract 

Endemic infections can cause changes to the regulatory processes which drive host 

population dynamics. Finding which life history traits are most affected by 

parasitism can help establish which regulatory processes are the most important in 

governing host dynamics. The key aim of this study was to determine whether 

observed population level effects of an endemic infection with Gregarina blattarum 

in German cockroach hosts, Blattella germanica, were more likely to be due to 

parasite induced changes in host survivorship or host fecundity. The effect of G. 

blattarum on four life-history traits (adult survivorship, female maturation time, 

fecundity and nymph developmental rate) was explored. Infection reduced the mean 

lifespan of females by 42.6%, and by 35.7% in males. There were no differences in 

the female maturation period or the fertilisation rate of oothecae between parasite-

free or infected females, but uninfected females produced almost twice as many 

oothecae during their lifespan as parasitized females. The number of nymphs 

produced by infected females was reduced by 36% from 127.73 (± 49.57) to 82.86 

(± 35.67). The developmental rate of nymphs from infected parents was 

approximately two weeks longer compared to parasite-free cohorts, and there was a 

significant reduction in nymph survivorship to adulthood. Gregarina G. blattarum 

infection resulted in a substantial change in most measures of host life history. The 

main exception was female maturation time, but the energy required to maintain this 

trait could lead to trade-offs with future reproductive effort and survival. As survival 

and fecundity were strongly affected by G. blattarum, it is likely that both processes 

are playing a role in the regulation of host populations. 
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3.2 Introduction 

Parasite infections have important consequences for the dynamics of host 

populations (Anderson & May 1978, 1982; May & Anderson 1978; Hudson, Dobson 

& Newborn 1992). Population dynamics are regulated by density dependent 

feedbacks that result in reduced survival or birth rates as population density reaches 

a carrying capacity (May 1981). When parasitism leads to substantial reductions in 

host survival, host populations are more likely to be stabilised by the parasite 

(Anderson & May 1978). On the other hand, when host fecundity is reduced by 

infection, the parasite can destabilise the host population, leading to regular cycles in 

the host population dynamics (May & Anderson 1978; Hudson, Dobson & Newborn 

1998; Albon et al. 2002). Determining which life history traits are most affected by 

parasitism can therefore be vital in understanding how parasites regulate host 

populations.   

Whilst several prominent studies have examined the population level effects of 

epidemic microparasite infections (e.g. Anderson & May 1981; Boots & Norman 

2000; Bonsall 2004; Bonsall & Benmayor 2005) and parasitoids, in invertebrate 

populations (e.g. Hassell, Comins & May 1991; Jones et al. 1993; Bonsall & Hassell 

1998), relatively few studies have considered the effects of endemic disease in 

invertebrates. In previous work, the regulatory effects of the gastrointestinal parasite 

Gregarina blattarum on population dynamics of the German cockroach, Blattella 

germanica were explored (Chapter Two). However, there was evidence for the 

regulation of cockroach populations by both birth and death dependent processes 

(Table 2.4, p33). It is therefore essential to determine whether birth or death rates are 

more strongly influenced by the parasite in order to fully explain the regulatory 

processes occurring in this invertebrate system.  

The life history consequences of G. blattarum infection have not been extensively 

studied previously in the German cockroach, although a study by Lopes & Alves 

(2005) briefly mentioned that G. blattarum infection is associated with increased 

mortality of cockroaches within laboratory reared colonies. In other invertebrate 

species, gregarine infection is associated with altered host mating behaviour 

(Simmons 1990; Tsubaki & Hopper 2004), fecundity (Córboda-Aguilar, Salamanca-
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Ocaña & Lopezaraiza 2003; Canales-Lazcano, Contreras-Garduno & Cordoba-

Aguilar 2005; Kumano et al. 2010) and can lead to the development of smaller 

offspring (Bouwma, Howard, & Jeanne 2005; Er & Gökce 2005). It is therefore 

likely that G. blattarum infection can impact on other components of the cockroach 

life cycle as well as host survival.  

The life cycle of the German cockroach can be divided into four key stages: female 

maturation, ootheca (eggs case) development, nymph emergence and nymph 

development to adulthood (Ross & Mullins 1995). Female maturation is defined here 

as the time from eclosion of last instar female nymphs into adulthood, to when the 

first ootheca is visible protruding from the female abdomen. This period therefore 

includes the time taken for females to reach sexual maturity, for eggs to be fertilised 

by the male, and for the eggs to develop and begin to be packaged into an ootheca 

(Roth 1968). When all the eggs have been assembled, the ootheca remains attached 

to the female until the nymphs are fully formed. Nymphs then emerge from the 

ootheca whilst it is still attached to the female after which the egg case is discarded 

(Ross & Mullins 1995). The mean number of offspring per ootheca varies with strain 

and temperature, but is approximately 47 nymphs at 25
o
C from the first two oothecae 

with reductions thereafter (Ross & Mullins 1995). Females produce up to nine 

oothecae throughout their lifespan continuously every 30 days (Roth 1965), and can 

occur by both single as well as multiple copulations (Ross & Mullins 1995). The 

offspring develop over a period of approximately 60 days, and moult several times 

before they reach adulthood (Roth 1968). The number of instars can vary depending 

on environmental conditions and can increase from six to seven under stressors such 

as malnutrition (Roth 1968).  

The aim of this study was to determine the effect of G. blattarum on the life history 

of the German cockroach. There has been no evidence from previous work (personal 

observations and literature) that nymphs are infected with G. blattarum. Therefore 

this study has focused on the effect of infection on adult life history and the effect of 

parental infection on offspring fitness. An additional component to this study was to 

explore potential trade-offs between life history traits, and therefore female 

maturation time and the time that oothecae (egg cases) were incubated for were also 

measured, and were expected to be traded-off against other host fitness costs (i.e. 
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fecundity and survivorship).   It was expected that G. blattarum would reduce host 

survivorship and fecundity of the German cockroach host. Further, it was expected 

that offspring survival and developmental rate will be negatively affected by 

infection, with nymphs requiring a longer developmental time to reach adulthood. 

An alternate hypothesis, is that trade-offs would exist between host life history traits, 

so that a decrease in host survivorship would be associated with an increase in host 

fecundity or that adult fitness may be traded off against the fitness of offspring.  

3.3 Materials & Methods 

Host-parasite cultures 

German cockroaches, B. germanica, were reared in colonies under standard 

laboratory conditions (see Chapter Two, p21) and all were provided with ground dog 

food (Tesco® Complete) and de-chlorinated water ad libitum. These rearing 

conditions were also maintained for all the life-history experiments described below. 

A sub-set of three parasite-free colonies and three colonies infected with the 

gastrointestinal parasite G. blattarum were chosen at random from the stock supplies 

and used for the life history experiments to control for variation between 

populations.  

Experimental set-up for life-history evaluation 

Female (n = 300) and male (n = 300) final instar nymphs, removed from the three 

uninfected and three infected colonies, were reared in isolation in 90 cm diameter 

Petri dishes, until they reached their adult moult. The first 50 females and 50 males 

emerging from their final moult from the same colony, were paired and transferred to 

Fluon®-lined plastic rearing pots with lids (Cater For You Ltd; 275 ml vol., 11.5 cm 

dia. x 7.5 cm height). To maintain infection levels, frass (faeces and debris) was 

collected each week from all three infected colonies and mixed to ensure the uniform 

distribution of gametocysts (gregarine infective stages). A sample of 0.1 g of frass 

was then added to each experimental container. Frass was also collected from 

uninfected colonies, mixed, and 0.1 g added to the uninfected containers as a control 

for any nutritional input or pheromonal influences that might be coming from the 

frass.  
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Life history measurements 

i. Host survivorship 

The survival of adult cockroaches was monitored daily until both the male and 

female had died. The time (in days) that adults were alive was calculated from the 

day the female and male first emerged into adulthood to the day on which they died, 

and used to calculate both mean lifespan and survival probability. All cadavers were 

removed from the experimental arena on the day of death. Due to rapid desiccation 

of host tissue, it was not possible to determine G. blattarum parasite load in dead 

hosts.  

ii. Female maturation time 

Female maturation time was calculated from the day the female reached adulthood to 

the day when the first ootheca was observed protruding from the female. Females 

were monitored daily to determine whether oothecae had hatched. Any oothecae that 

did not hatch were assumed to be unfertilised and were subsequently used to 

calculate the percentage of fertilised oothecae.  

iii. Oothecae, Egg and Nymph counts 

Females were monitored daily for the presence of oothecae, the length of time the 

oothecae was attached to the female (protrusion time, days) and the number of 

nymphs that hatched per female. The total number of oothecae produced per female 

was then calculated for both fertilised and unfertilised oothecae. The length of time 

females spent carrying oothecae (protrusion time, days) was estimated for each 

ootheca, and these data were also summarised as the total protrusion time per female 

lifespan. The discarded cases from the first oothecae produced per female (fertilised 

only) were collected and the number of un-hatched eggs were counted using a stereo 

microscope (GX Optical XLT-101). The hatch rate was then estimated from the total 

number of eggs that were produced per oothecae. Newly hatched nymphs were 

counted by anaesthetising the contents of each experimental arena with CO2 and 

removing all nymphs with soft forceps. The first nymph cohort from each cockroach 

pair was placed into new pots and reared in sibling groups under the same conditions 
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as the adults. All other nymphs were returned to the colonies from which their 

parents had been sourced. 

iv. Nymph development and survival  

Nymphs from the first cohort were monitored daily for progression through their 

different instars and survival to adulthood. The developmental rate of the offspring 

was calculated as the number of days spent in each instar and the total number of 

days to adulthood. 

Statistical Analysis 

The effect of G. blattarum on life history measurements of the German cockroach 

was assessed using a series of generalised linear models (GLMs) and generalised 

linear mixed models (GLMMs), using the statistical packages R version 2.13.2 (R 

Development Core Team 2011) and ASReml-R version 3.0 (VSN International, 

2009). Details of the structure of all the initial models and any interactions between 

model variables are presented in Table 3.1. In general, the models contained the life 

history measurement being assessed as the dependent variable and all models 

included host infection status as an independent variable. All models were initially 

assessed using GLMMs where the random model contained the colony identification 

code (colony ID), to control for variation between the laboratory stock populations 

from which the adults were originally obtained. Where colony ID was found to be 

non-significant (via assessment of the Log-Likelihood), a GLM replaced the GLMM. 

Where the dependent variable was a repeated measure a GLMM was always used 

with the unique identification number for each individual placed in the random 

model to control for pseudoreplication. In all repeated measure models a splinic term 

for time was also initially incorporated in the random model. Each set of model 

residuals were checked for normality and the models were refined in a stepwise 

manner using the Log-likelihood (for the random model) and Wald test statistic (for 

the fixed model) for the GLMMS, and the ANOVA table and associated F statistic 

for the GLMs. 
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Table 3.1: Initial generalised linear mixed model (GLMM) and Generalised linear model (GLM) structures for the effects of Gregarina blattarum infection on German 

cockroach life history components. v denotes a covariate; f denotes a categorical variable. Nb. All second order interactions between fixed model terms were also included. 
† 

First oothecae data only. 
‡
 Fertilised oothecae data only. 

 Generalised linear mixed models (GLMMs) Generalised linear models (GLMs) 

Cockroach          

life-history 

measurement 

Dependent variable        

Error structure (link 
function) 

Fixed model variables Random model variables              

 (after removal of insignificant 
values) 

Dependent variable                                  

Error structure (link 
function) 

Independent variables 

Adult lifespan 
Adult lifespan (days)  

Gaussian (identity) 

Infection status (parasite-free or G. 

blattarum infected) (f) ; Sex (f)                                                            

Colony (f)   

Female 

maturation 

Female maturation 
time†‡(days)                         

Gaussian (identity) 

Infection status(f) Colony (f) Proportion of all oothecae 
fertilised (Gaussian (identity) 

Infection status              
Female maturation time (days) (v) 

 

      

 

Proportion of first 

ootheca fertilised   

Binomial (logit) 

Infection status (f)               

Female maturation time† (days) (v)  

Ootheca protrusion time† (days) (v)    

Colony (f)   

Oothecae, 
eggs & 

nymphs 

   Number of eggs†  
Gaussian (inverse) 

Infection status (f)  
Female maturation time†‡ (days)  (v)  

Ootheca protrusion time†‡ (days) (v) 

 
   Nymph hatch rate† 

Inverse Gaussian (1/µ2) 
Infection status (f) 
Female maturation time (log days) (v) 

 

 

Number of oothecae‡  

Gaussian (identity) 

 

Infection status (f) 

  

Number of oothecae 
Gaussian (identity) 

Infection status (f) 

 

 
 

   
Total oothecae protrusion 

time as proportion of female 

lifespan (maturation time 
removed) Gaussian (identity) 

 
Infection status (f) 

 

 

 

Number of nymphs per 
ootheca  

Gaussian (identity) 

 

Infection status (f) 
Female maturation time† (days) (v) 

Ootheca number (v) 

 

ID code for experimental arena (f) 
spline (Oothecae number) (v) 

 

 

Number of nymphs† 

Gaussian (inverse) 

 

Infection status (f) 
Female maturation time†‡ (days) (v) 

Protrusion time†‡ (days) (v) 

Number of eggs†(v) 

      

 

   Total number of nymphs 
Gaussian (identity) 

Infection status (f) 
Female lifespan (days) (v) 

Female maturation time (days) (v) 

Total oothecae protrusion time (days) (v) 

Instar 
development 

& survival to 

adulthood 

Development time per 

instar (days) 

Poisson (log) 

Infection status (f) 

Ootheca protrusion time†‡  (days) (v) 

Number of nymphs† (v) 
Female maturation time‡ (days) (v) 

Nymph instar number (v) 

ID code for experimental arena 

spline (Nymph instar number) (v) 

 

Total instar development 

time (days) 

Gaussian (identity) 

Infection status (f) 

Female maturation time‡ (days) (v) 

Ootheca protrusion time†‡ (days) (v) 
Number of nymphs† (v) 

 

 

   Proportion of nymphs 
surviving to adulthood 

Gaussian (identity) 

Infection status 
Female maturation time‡ (days) (v) 

Ootheca protrusion time†‡ (days) 

Number of nymphs† (v) 
Nymph development time to adulthood (days) (v) 
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3.4 Results 

i. Host survivorship 

The lifespan of B. germanica was significantly lowered by infection with G. 

blattarum (Table 3.2) and the relationship between lifespan and infection status 

varied between the sexes (infection status:sex, F1,557 = 31.14, p < 0.001). Infected 

female lifespan was reduced by 42.6% compared to uninfected females, whereas 

infected male lifespan was reduced by 35.7%. There was a significant effect of G. 

blattarum infection on the probability of survival of both females (Chisq1 = 80.9, p < 

0.001) and males (Chisq1 = 145, p < 0.001) over time.  
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Table 3.2: Summary of the main effects of Gregarina blattarum on German 

cockroach life history. *p <0.05, p**< 0.01, ***p <0.001. NA = all nymphs reached 

adulthood in 6 instars.  

 

 Control (±1 SD) Infected (±1 SD) Test (F) d.f p value 

 

ADULT SURVIVORSHIP 

 

     

 

Adult female lifespan (days) 
 

Adult male lifespan (days) 

 

 

263.02 (±87.83) 
 

159.67 (±50.78) 

 

151.13 (±53.53) 
 

102.72 (±26.03) 

 

31.14 
 

31.14 

 

 

1,557 
 

1,557 

 

<0.001*** 
 

<0.001*** 

 

FEMALE MATURATION  

 

     

 
Female maturation time (days)  

 

Proportion of 1st ootheca fertilised (%) 
 

Proportion of all oothecae fertilised (%) 

 

 
13.95 (±5.26) 

 

64.66 
 

66.9 

 
14.63 (±4.15) 

 

69.53 
 

39.6 

 
182.7 

 

0.851 
 

42.35 

 
1,198 

 

1,4 
 

1,289 

 
0.834 

 

0.105 
 

<0.001*** 

 

OOTHECAE, EGGS & NYMPHS 

 

     

 
Number of oothecae (fertilised) 

 

Number of oothecae (all) 
 

Total ootheca protrusion time (% of 

female lifespan) 
 

Number of eggs in 1st oothecae 

(fertilised only) 
 

Hatch rate of 1st ootheca (%) 

 

 
3.79 (±1.35) 

 

6.53 (±2.29) 
 

61.79 

 
 

36.64 (±0.42) 

 
 

93.07 (±8.24) 

 
2.58 (±1.05) 

 

3.14 (±1.19) 
 

57.94 

 
 

35.72 (±0.35) 

 
 

85.41 (±13.51) 

 
5.46 

 

146.8 
 

3.52 

 
 

4.73 

 
 

7.30 

 
1,4 

 

1,299 
 

1,277 

 
 

1,158 

 
 

1,152 

 

 
0.078 

 

<0.001*** 
 

0.062 

 
 

0.031* 

 
 

<0.01** 

 

Number of nymphs in 1st oothecae   
 

Total number of offspring per female 

 

34.15 (±5.07) 
 

127.73 (±49.57) 

30.37 (±5.03) 
 

82.86 (±35.67) 

11.17 
 

7.00 

1,158 
 

1,4 

<0.01** 
 

<0.01** 

 

NYMPH DEVELOPMENT & 

SURVIVAL 

 

     

 

Nymph development tine to 

adulthood (days) 
                                        

Number of instars 
 

Nymph survival to adulthood (%) 

 

 

73.16 (±9.22) 

 
6 

 
 

80.65 

 

86.66 (±4.50) 

 
6 

 
 

78.36 

 

140.9 

 
NA 

 
 

7.98 

 

1,8731 

 
NA 

 
 

1,98 

 

 

<0.001*** 

 
NA 

 
 

<0.01** 
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Survivorship plots show the uninfected females are most at risk of death after 120 

days (Fig. 3.1a) whereas infected females have a significantly higher and constant 

risk of death at an early stage (after only 90 days). Male survivorship probability 

declines rapidly after 90 days (Fig. 3.1b) whereas in infected males, a high and 

constant risk of death commenced the day they emerged to adulthood. 

Figure 3.1: Kaplan-Meier probability of survival of female (a) and male German 

cockroaches (b). Each sex is divided between parasite-free hosts (black lines) and 

those infected with Gregarina blattarum infection (dashed lines). Dotted lines show 

±1 SE. 

a) 

b) 
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ii. Female maturation  

Infection did not affect the mean maturation time of female cockroaches (Table 3.2; 

p > 0.05). The proportion of oothecae that were fertilised was significantly higher in 

uninfected females (Table 3.2; F1,289 = 42.35, p < 0.001), although this was not 

significant for the first oothecae (p > 0.05). In addition, the proportion of oothecae 

that were fertilised was negatively associated with female maturation time (F1,286 = 

14.93, p < 0.001) and positively associated with oothecae protrusion time (F1,286 = 

58.59, p < 0.001).  

iii. Oothecae & nymph counts 

There was a highly significant effect of parasite infection on the number of oothecae 

produced by each female over the course of their lifespan (F1,299 = 146.84, p < 

0.001). Females without an infection produced on average more than twice as many 

oothecae (6.53 ± 2.29 SD) compared to those that were infected (3.14 ± 1.19 SD). 

However, the total number of fertilised oothecae (those that produced viable 

offspring only) was not statistically different (F1,299 = 5.46, p = 0.078) between 

uninfected and infected females (3.79 ± 1.35 SD and 2.58 ± 1.05 SD respectively). 

Therefore, two thirds of the oothecae produced by uninfected females (66.9%) were 

unfertilised, compared to just over a third of those produced by infected females 

(39.6%) (F1,289 = 42.24, p < 0.001). 

All female cockroaches spent over half their lifespan carrying oothecae (Table 3.2). 

When controlling for adult lifespan and maturation rate, uninfected females carried 

oothecae for a slightly greater proportion of their lives (61.7% ± 0.01 SD) compared 

to infected females (57.9% ± 0.01 SD), but this result was not statistically significant 

(F1,277 = 3.52, p = 0.062). 

Infection significantly reduced the mean egg number in the first ootheca (Table 3.2). 

The effect of infection on female egg number was also affected by the time taken for 

females to mature (infection status:maturation time, F1,158 = 4.73, p = 0.031). The 

number of nymphs emerging from the first oothecae was more strongly associated 

with egg number in uninfected groups (Fig. 3.2; egg number:infection status, F1,158 = 

11.17, p < 0.01). The proportion of nymphs that hatched from the available eggs in 
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the first oothecae was therefore lower in infected hosts (Table 3.2; F1,152 = 7.30 p < 

0.01).  

 

 

 

Figure 3.2: Predicted number of German cockroach nymphs in the first oothecae 

from uninfected (black line) and infected (dashed line) females with increasing egg 

number. Dotted lines show ±1 SE.  

Infection reduced the total number of nymphs produced by females over their 

lifetime by 36% (Table. 3.2; F1,4 = 7.00, p < 0.01). The nymph cohort size also 

varied depending on which oothecae the female had produced (F1,228 = 55.06, p < 

0.001), cohorts were generally smaller in the first oothecae compared to the second 

and declined thereafter (Fig. 3.3). Infection lowered the number of nymphs produced 

in all oothecae, although this was only significant in the first five oothecae (F1,259 = 

13.56, p < 0.001). Nymph numbers were also associated with male lifespan, so that 

longer lived males fathered more nymphs (F1,268 = 24.23, p < 0.001).  
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Figure 3.3: Predicted mean number of German cockroach nymphs for each ootheca 

produced by uninfected females (white bars ±1 SE) and females infected with 

Gregarina blattarum (grey bars ±1 SE). 

 

iv. Nymph development and survival  

All nymphs undertook six instars to reach adulthood (Fig. 3.4). Nymphs from 

infected parents took on average 14 days longer to reach adulthood than nymphs 

from infected parents (F1,8731 = 140.94, p < 0.001). There was also a positive 

association between the number of nymphs that were present in the cohort and the 

time taken to reach adulthood where larger groups took longer to develop (F1,4246 = 

8.47, p = 0.004). Infection status was also highly significant in affecting the time 

between instars (F1,1044 = 98.61, p < 0.001). The number of days that the offspring 

spent in each instar varied with the instar stage, and the relationship between instar 

number and length of time spent in that instar also varied with the maternal 

maturation time (instar:female maturation time, F1,1040 = 14.57, p < 0.001).  
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Figure 3.4: Predicted developmental rate per instar of nymphs from uninfected 

parents (bold line ±1 SE) and infected parents (dashed line ±1 SE). 

 

Offspring survival rate was significantly affected by parental infection status, and the 

relationship between parental infection status and offspring survival was also 

affected by the maternal maturation time (maternal maturation:infection status F1,98 = 

7.984, p < 0.01). Uninfected females that took longer to mature produced nymphs 

with a greater likelihood of surviving to adulthood (coefficient = 0.02) whereas there 

was a negative relationship between maternal maturation time and nymph survival in 

infected groups (coefficient = -0.04).  
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3.5 Discussion 

The effect of G. blattarum infection on a range of host life history measurements in 

the German cockroach was assessed to determine the most important effects driving 

changes at the host population level. Specifically, four questions were addressed in 

this study:  

1) Does G. blattarum affect host lifespan and survival risk?  

The adult lifespan of B. germanica adults is substantially reduced when hosts are 

infected with G. blattarum. Infected hosts were also at greater risk of dying at an 

earlier age compared to uninfected hosts which was particularly true of males, whose 

increased risk of death began from the day they moulted into adulthood. Other 

studies have also shown that gregarine infection can reduce host lifespan (Lantova et 

al. 2011; Kumano et al. 2010; Thomas & Rudolf 2010; Canales-Lazcano et al. 2005; 

Tsubaki & Hopper 2004) but by assessing survivorship risk here it was possible to 

identify the period of their lifespan in which the hosts were most likely to die. 

However, the current study did not observe the same degree of host damage 

(pathogenicity) as described by Lopes & Alves (2005), whose work found that the 

mortality of German cockroaches infected with G. blattarum was associated with a 

putrid smell and septicaemia. All dead hosts in this study desiccated quickly with no 

evidence of putrification. As gregarines cannot invade host tissue other than the host 

gastrointestinal tract (Harry 1970), previously reported septicaemia may be a result 

of other infectious diseases which were not specified (Lopes & Alves 2005). This 

highlights the possibility that G. blattarum may increase host susceptibility to other 

infections. Whilst the mechanism of increased host death in infected hosts is 

unknown, it is possible that the lower lifespan is a product of fewer host resources 

during infection, as shown in other host-parasite systems (Sorci et al. 1996; Sorensen 

& Minchella 1998; Brown, Loosli & Schmid-Hempel 2000). In Chapter Four 

evidence is provided for G. blattarum host resource costs which may explain the 

reductions in host lifespan and other parasite related costs discussed in this study.    
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2) Is female maturation affected by parasitism?  

Infection with G. blattarum did not alter the time taken for females to mature. This 

14 day period consisted of the time taken for females to reach sexual maturity after 

final instar eclosion, the mating ritual, whereby males present the female with a food 

packet, copulation, and the time until the first oothecae is observed protruding from 

the female (Ross & Mullins 1995). Each of these processes are in their own right, 

costly to maintain and as a result would be expected to be traded-off against other 

life history processes, particularly in times of stress such as parasitism. Yet an 

interesting characteristic of German cockroach females is that they continue to 

develop oothecae regardless of whether fertilisation has occurred (Ross & Mullins 

1995). In further work, infection is shown to reduce host energy levels (Chapter 

Four). With that in mind, it was surprising to find that the fertilisation rate (i.e. the 

proportion of oothecae that produced viable offspring) was similar between parasite-

free and infected hosts (approx. 66 %). As host resources are lower during G. 

blattarum infection, conserving the maturation period and fertilisation rate must 

therefore require additional investment by females or males, or incur costs in future 

life history traits. Engvist & Sauer (2001) demonstrated that males of the 

scorpionfly, Panorpa cognata that are in poor condition can increase the quantity of 

a food packet presented to the female, thereby trading-off current versus future 

reproductive success. Male cockroaches also provide a nuptial gift to the female to 

initiate copulation (Ross & Mullins 1995). Examination of the male and female 

investment in reproductive fitness could therefore determine whether trade-offs in 

the allocation of resources occur during parasite infection which could be important 

in determining the life history changes during parasitism in this species.  

3) Do infected females produce fewer ootheca, eggs and nymphs?  

The current study has shown for the first time that G. blattarum has substantial 

reproductive costs for the German cockroach. Overall, 36% fewer nymphs hatched 

from eggs produced by infected compared to uninfected females. The reduction in 

nymphs was due to both the reduced number of eggs that were packaged into the 

oothecae and the reduced hatch rate of these eggs. Fecundity has been shown to be 

limited by gregarine infection in other systems (Kumano et al. 2010; Canales-

Lazcano et al. 2005; Cordoba-Aguilar et al. 2003) but the mechanism is not 
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currently known. Fan et al. (2002) demonstrated that large amounts of maternal 

resources are required for egg development, and water soluble nutrients are 

transferred to oothecae as they develop during the protrusion of oothecae (Mullins et 

al. 2002). Reduced host resources could therefore limit host egg quality as well as 

quantity. As there is evidence that G. blattarum infection is associated with reduced 

host lipid levels (examined in Chapter Four) this may explain the reduction in host 

fecundity.  

Whilst infection reduced the overall nymph number produced by each female, there 

were no differences in the percentage of oothecae that were fertilised (i.e. produced 

viable offspring) between parasite-free and infected females. However, uninfected 

females produced twice as many unfertilised oothecae as infected females. Male 

lifespan was always considerable shorter than females (Fig. 3.1), and a lack of males 

in later life could have resulted in this excess of unviable oothecae in parasite-free 

females. This point is emphasised by the fact that longer lived males fathered more 

nymphs. The females in the current study were housed individually, whereas in the 

colonies, females would have access to multiple partners and this may raise the 

levels of fecundity above that observed for the singly-paired females used in this 

study. Therefore, fecundity costs may be underestimated here when compared to 

within colonies and fecundity could therefore be much more greatly affected by 

parasitism than was determined here.  

4) Do nymphs that emerge from infected parents have altered developmental rate or 

survival?  

The developmental time required by nymphs to reach adulthood was up to two 

weeks slower in infected nymph cohorts, and nymphs from infected parents were 

less likely to survive to adulthood. The delayed development was not a result of 

increased instar number (as found by Roth 1968), as all the nymphs monitored 

required six instars to reach adulthood. Delayed nymph development has been 

previously associated with gregarine infection in the flour beetle Tribolium confusum 

(see Thomas & Rudolf 2010). To the best of my knowledge, gregarine infection in 

the German cockroach does not occur until the nymphs reach adulthood (personal 

observations and literature). Therefore, fitness costs associated with longer 

development and reduced survival must be attributed to parental resource 
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provisioning. Indeed, in Chapter Four it is shown that parasitized adults have fewer 

storage energy reserves. Extending the nymph study here to explore reproduction 

and survival of the nymphs as adults would identify whether there are future costs of 

parental parasitism for offspring. As the infected adults chosen in this study were 

taken from  infected colonies, it is likely that their parents were also infected, and 

therefore the costs associated with the life history traits measured in this study may 

also be related to the adults’ own parental resource provisions. Such stage-dependent 

costs of parasitism, for example, the delayed development rate in juveniles and 

reduced offspring survival, can also be incorporated into population models to 

explain host population dynamics (Briggs & Godfray 1995; Bjornstad et al. 1998). 

Nymph fitness may therefore not only incur costs for future reproductive and 

survival, but impact on the processes that regulate the population as a whole.  

The results presented here demonstrate that G. blattarum infection affects both the 

life-span and fecundity of the host. It is recognised that parasites which affect host 

survival are more likely to stabilise host population dynamics (Anderson & May 

1978) whereas reductions in host fecundity during parasite infection are more likely 

to destabilise the host population (May & Anderson 1978; Hudson, Dobson & 

Newborn 1992; Albon et al. 2002). Chapter Two revealed that both birth and death 

rates were important in regulating German cockroach population dynamics in 

colonies containing G. blattarum, and the current study demonstrates that it is 

possible for G. blattarum to impact on both processes. Future modelling attempts 

might therefore be improved by incorporating the effects of parasitism on host birth 

and death rate as well as considering the reduced developmental rate of the offspring.   

In conclusion, G. blattarum imposes significant fitness costs for both fecundity and 

survival on its German cockroach host indicating that both processes may be 

important in regulating host population dynamics. There are also substantial costs of 

parental infection to offspring fitness which may contribute to the life history effects 

observed in the adults. Resource investment at the start of the female reproductive 

cycle may also explain future reproductive and survival costs of infection and by 

exploring host resource availability during infection would enable further 

understanding of how endemic parasites may affect invertebrate life history. 
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Endemic infections are therefore extremely important in invertebrate life history and 

should be considered in future invertebrate studies.    
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4. Endemic infection in the German cockroach reduces parasite 

transmission potential during co-infection 

4.1 Abstract 

Parasite transmission can be dependent on the level of resources within the host. 

Endemic infections can decrease host resources which could indirectly affect the 

transmission rate of other parasites during co-infection. This study aimed to 

determine whether the reproduction, and therefore transmission potential of an 

epidemic infection, is limited by energy costs imposed on the host by an endemic 

infection. The amount of stored energy resources (lipids) within the German 

cockroach were measured in hosts that were starved and compared to hosts that were 

infected with the endemic parasite Gregarina blattarum and parasite-free controls. 

The effect of infection on host feeding rates was also monitored to assess if any 

resource changes were due to altered host feeding behaviour. The reproduction of an 

epidemic parasitic infection of the nematode Steinernema carpocapsae was assessed 

by counting the emergence of nematode infective stages from control hosts fed ad 

libitum, starved hosts and hosts infected with G. blattarum. Host lipid levels were 

reduced by 48.1% in starved female hosts when compared to hosts fed ad libitum. 

Infection reduced lipid levels in females by between 37.1% and 69.9% (where 

difference were due to reproductive status) and by 49.4% in males. There were no 

differences in the food consumption rate between infected and uninfected hosts. 

Infection with G. blattarum reduced the emergence of nematode infective stages by 

60.5% which was comparable to host starvation. Endemic infection with G. 

blattarum is associated with a substantial reduction in host energy resources and 

those resources are likely to be the cause of the reduced reproductive capacity of S. 

carpocapsae. As the number of infective stages produced by the parasite is a large 

component of parasite transmission, the rate of transmission is likely to be reduced 

by the substantial losses in infective stages emerging from co-infected hosts. 

Therefore, future studies of disease transmission should consider the effects of other 

diseases in the host population. 
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4.2 Introduction 

The transmission rate of a parasite is fundamentally linked to parasite reproduction 

(Heffernan, Smith & Wahl 2005), where the reproductive capacity of parasites is 

dependent on the availability of resources within the host (Poulin & George-

Nascimento 2006; Seppala et al. 2008). Thus, if hosts are deprived of energy, 

resource restrictions can limit the reproductive rate of the parasite (Lafferty & Kuris 

2005; Seppala et al. 2008). As parasites must acquire host resources in order to 

reproduce, infection can also lead to a reduction in host energy levels (Tocque 1993; 

Tocque & Tinsley 1994). More specifically, host condition can be reduced directly 

by parasite acquisition of host resources used for parasite life history processes 

including reproduction (Booth, Clayton & Block 1993) or indirectly because of an 

increase in host metabolism (through increased immunity and/or repair) (Sheldon & 

Verhulst 1996). Reduced host condition may also occur through decreased host food 

intake due to a loss of appetite during infection (Stein et al. 2002). Therefore 

outcomes of the host-parasite interaction is integrally linked to the levels of resources 

within the host, both in terms of the resources that are available to the host and those 

resources that are utilised and available to the parasite.   

As parasite infection can lead to altered host resource levels, the presence of one 

infection could potentially create a limitation for the reproduction of a second 

parasite species. Co-infections, where more than one parasite is present in the same 

host, are extremely common in nature (Petney & Andrew 1998) and can limit host 

resources further than single infection alone (Lello, Boag & Hudson 2005). In 

particular, endemic parasites, such as gastrointestinal helminths and protozoa, which 

often have direct costs to host energy levels (Booth, Clayton & Block 1993), are 

commonly present when the host encounters more severe infections such as 

microparasites or other species causing epidemic outbreaks (Lello et al. 2004; Fenton 

2008). Co-infections can also lead to altered host susceptibility to diseases (Lello & 

Hussell 2007; Cattadori et al. 2008) and modify the host responses to different 

infections (Graham 2008). The reproduction and transmission rate of acute infections 

could therefore be confounded by resource costs associated with infections. 

This study explores the relationship between an endemic parasite and an acute 

infection in a model host, the German cockroach, Blattella germanica, and examines 



 

 

 

 

69

whether host resources play a role in directing this relationship. In addition to the 

cockroach host, the study system compromised an endemic gastrointestinal 

protozoan parasite Gregarina blattarum which persists at relatively stable levels in 

the host population (see Chapter Two) and an entomopathogenic nematode, 

Steinernema carpocapsae which causes acute infection leading to host death within 

72 hours (Adams & Nguyen 2001). 

The German cockroach is an omnivorous consumer, with the majority of energy 

resources stored as lipids in the fat body (Ross & Mullins 1995). Infection by the 

parasite G. blattarum occurs after accidental consumption of host faeces, whereupon 

infective stages (sporozoites) migrate and attach to the host cell wall (Clopton & 

Gold 1996). Invasion of gregarine species in other hosts can damage the host cell 

walls, where the parasite forms an attachment during infection (Takahashi, 

Kawaguchi & Toda 2009) and this may lead to a reduced capacity of the host to 

absorb nutrients. The second parasite species, S. carpocapsae invades the host 

through openings in the host cuticle (mouth, spiracles and anus). In the host, the 

nematodes release symbiotic bacteria (Xenorhabdus nematophila) that colonise and 

metabolise stored host energy reserves (Adams & Nguyen 2001). The nematodes are 

able to grow and reproduce, utilising both host energy reserves directly and those 

that have been digested by the bacteria. When host resources are depleted, the 

nematode life cycle switches to the production of non-feeding transmission stages 

(infective juveniles), which re-ingest the bacteria into a dedicated vesicle in their gut, 

and then they exit the host (Adams & Nguyen 2001).  

The main aims of this study were to determine whether an endemic infection could 

alter the reproduction, and therefore transmission potential of a second parasite 

species during an acute infection. Four questions were specifically addressed in this 

study: (i) Do host starvation and G. blattarum infection reduce host lipid levels? (ii) 

Are any resource reductions explained by behavioural changes in host food 

consumption? (iii) Does host starvation and G. blattarum infection reduce the 

reproductive rate of S. carpocapsae? (iv) Is host mortality due to S. carpocapsae 

infection greater in hosts co-infected with G. blattarum? 
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4.3 Materials & Methods 

Host cultures 

German cockroaches, B. germanica, were obtained for this study from laboratory 

stock colonies reared under standard laboratory conditions (see Chapter Two, p. 22). 

The two groups of hosts used in this study were removed from colonies that were 

parasite free or those that contained high prevalence of infection (> 80%) with the 

endemic parasite G. blattarum.  

Nematode cultures 

Stock nematode cultures of the nematode S. carpocapsae (original stock obtained 

from Becker Underwood Ltd.), were maintained in cockroach hosts within infection 

arenas comprising a 275 ml plastic pot (Cater For You Ltd.; 275 ml vol.; 11.5 cm 

dia. x 7.5 cm height), lined with Fluon
®
 and with a sterile sand substrate base, 

inoculated with nematodes (50 nematodes/cm
2
). The sand was moistened weekly 

with distilled water to prevent desiccation of the nematodes. Cockroaches were 

added to the infection arenas (n = 20) and died within 72 hours. For the purpose of 

maintaining stock levels, the cadavers were replaced every seven days to allow for 

infective juveniles to replenish the sand substrate. The removed cockroaches were 

placed onto White’s traps containing 30 ml sterile distilled water (White 1927) to 

isolate infective juveniles. For experimental work, nematodes were collected from 

the White’s traps after 14 days, transferred to 50 ml falcon tubes, topped up to 50 ml 

using sterile distilled water and stored at 5
o
C for up to 10 days. The nematode 

concentration per ml was estimated using a Sedgewick-Rafter counting cell under a 

compound microscope (Olympus UCC/BY 501 at x40 magnification).  

Experiment One: Host lipid levels in starved and G. blattarum infected hosts 

The effect of starvation on the lipid levels of the cockroach was assessed over a 28 

day period in female cockroaches collected from uninfected colonies only. A total of 

fifty females without oothecae (to control for the effects of oviposition on lipid 

levels; Rust et al. 1995) was randomly selected and maintained in ten groups of five 

in circular plastic container (275 ml; Cater4You Ltd.) lined with Fluon
®

. The first 

five groups were fed on ground dog food ad libitum and distilled water (fed group) as 
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a control, and the remaining five groups were provided with distilled water only 

(starved group). At 0, 7, 14, 21 and 28 days, a group of five females from the starved 

and fed groups respectively were collected for lipid analysis. Lipid levels were 

obtained using a simple chloroform extraction technique (in accordance with Marden 

1989). Cockroaches were anaesthetised with CO2 and placed in a glass vial (5 ml), 

dried in an oven for 24 hours, weighed (accurate to 10 µg) and then immersed in 1 

ml of 95% chloroform. After 24 hours, the chloroform was removed and the samples 

were gently rinsed in 1 ml of distilled water, repeated three times, and dried for 72 

hours. The amount of lipid in each host fat body was calculated from the difference 

in mass between dry cockroach weight and the amount lost after the extraction.   

The effect of parasitism on host energy reserves (lipids) was measured in hosts 

infected with G. blattarum. Hosts were taken directly from uninfected (n = 30 

females; n = 30 males) and infected colonies (n = 30 females; n = 30 males). All 

individuals were anesthetised with CO2, weighed, female sexual status noted (no 

eggs present, eggs inside the body, oothecae present) and dissected to assess parasite 

load in the mid-gut (as described in Chapter Two p22). The lipids were subsequently 

extracted using the same procedure as for the starvation experiment (above).  

Experiment Two: Host food consumption 

Cockroach food consumption during infection was measured to determine the effect 

of G. blattarum on host feeding rate. To ensure all hosts collected from infected 

colonies were parasitized, a hundred female cockroaches, which were collected from 

infected colonies, were maintained separately for 24 hours in arenas comprising of 

Petri dishes (90 mm dia.) with 5g ground dog food (provided in a 50 mm dia. Petri 

dish lid), and a 5 ml specimen tube containing distilled water sealed with a cotton 

wool bung. At the same time, a further thirty females from parasite-free colonies 

were collected and maintained for 24 hours under the same conditions (control 

group). After 24 hours, host frass (faeces and debris) in the infected cockroaches was 

examined to determine the presence of any gregarine infective stages (gametocysts), 

which has been previously found to correlate positively with trophozoite intensity in 

the host gut (see Appendix 7.7). The thirty cockroaches with the highest gametocyst 

levels in their frass were retained and the others were returned to the colony. 

Immediately after gametocyst assessment, each food dish from the uninfected and 
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infected female arenas was weighed (accurate to 10µg) and weighed weekly 

thereafter for six weeks to monitor the mean food consumption rate.   

Experiment Three: Nematode reproduction in starved and G. blattarum infected 

hosts 

The effect of host condition on nematode reproduction was determined by measuring 

the emergence of infective juvenile nematodes from hosts that were starved and fed. 

Uninfected female cockroaches (n = 50) were collected and divided into groups of 

five females and incubated under the same conditions as the previous starvation 

experiment (see above), with the exception that at each time interval, a group of five 

cockroaches from the starvation and fed group was transferred to a nematode 

infection arena. The infection arenas were prepared by pipetting 5 ml of a solution of 

infective juveniles prepared in distilled water (concentration = 6.3 x 10
4
) onto a piece 

of filter paper (90mm dia.; Whatmann®) within a Fluon® lined pot. Hosts were 

exposed to nematodes for 72 hours, during which time all the hosts died. At 72 

hours, the cockroaches were removed from the infection arenas, weighed and then 

checked for the presence of an ootheca. Each cockroach was then transferred to a 

separate White’s trap (White 1927). The total amount of nematodes that emerged 

from each host were collected from the White’s Traps after 14 days and counted 

using a Sedgewick-Rafter counting cell under a compound microscope (Olympus 

UCC/BY 501). 

The emergence of nematodes from G. blattarum infected hosts was measured to 

determine the effect of endemic infection on nematode reproduction. Infection arenas 

were prepared as for the starvation experiment (see above), but all cockroaches were 

supplied with ad libitum food and water, and the two treatment groups comprised of 

females (without oothecae) taken from colonies with or without G. blattarum 

infection. After 72 hours, cockroach cadavers were transferred from the infection 

arenas to White’s trap. Nematodes were collected into 50 ml falcon tubes at three day 

intervals and counted using a Sedgewick Rafter counting cell. The White’s traps 

were then refilled with distilled water and this process was repeated every three days 

for 28 days, until the nematodes ceased emerging from the cadaver. 
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Experiment Four: Host mortality rate during single (S. carpocapsae) and co-

infection (S. carpocapsae and G. blattarum) 

The effect of G. blattarum infection on the survival rates of hosts when infected with 

S. carpocapsae was assessed by monitoring the time to host death in infection arenas. 

Infection arenas (n = 40) were prepared by placing a single piece of 90 mm diameter 

filter paper onto the base of a 275 ml plastic pot (Cater For You Ltd.). Infective 

juveniles were collected from stock White’s traps after 10 days, counted with a  

Sedgewick-Rafter counting cell under a compound microscope (Olympus UCC/BY 

501), and the concentration adjusted with distilled water to give four working 

solutions:  0, 120, 1200, 12000 nematodes/ml. The infection arenas were then 

prepared by pipetting 1 ml of nematode solution (10 arenas per concentration) 

directly onto the centre of the filter paper.  Immediately after the nematodes were 

added, 25 female cockroaches (without oothecae to reduce variability between 

samples) were collected from parasite free colonies and 25 from G. blattarum 

infected colonies, and each cockroach was added to a separate infection arena. Hosts 

were monitored every 8 hours for 30 days or until death. The time to host death was 

recorded and used to calculate the probability of survival.  

Statistical Analysis  

The effect of starvation on host lipid levels, the association between parasite intensity 

and host lipid levels and the number of nematode infective stages emerging from 

host cadavers were assessed using three General Linear Models (GLM) in the R 

statistical package version 2.10.1 (R Development Core Team; 2009). The dependent 

variables in each model were transformed prior to analysis using a square root, 

natural log and base ten log transformation respectively, to normalise the 

standardised residuals for each model. In the starvation analysis, the variables 

included in the model were host treatment (starved or fed) and treatment time. Host 

lipid levels were assessed for correlation with parasite intensity (normalised using a 

natural log transformation (x+1)), and the reproductive status of the host (males, 

females, females with eggs, females with oothecae). For the nematode emergence 

model the effect of feeding status (starved or fed hosts), and exposure time were 

assessed. All second order interactions were included in the models, and each model 

was subsequently refined by stepwise deletions.  



 

 

 

 

74

The effects of G. blattarum on host food consumption and the emergence of 

nematodes over time were assessed using a repeated measures General Linear Mixed 

Model (GLMM) using a restricted maximum likelihood method in the package 

ASReml-R (v2; VSN International Ltd.) within the R interface. Host ID number and 

a splinic fit to time were included in the random models to account for repeated 

measures in the experimental design and non-linearities in the relationship between 

time and the dependent variables respectively. The fixed model included the 

variables host mass (mg), presence/absence of G. blattarum and time. The food 

consumption model also contained a variable describing whether the female had 

produced an ootheca during the experimental period. Residuals from both models 

were checked for normality before refinement by removal of the nonsignificant terms 

in a stepwise manner using the using the Log-likelihood for the random model and 

the Wald test statistic for the fixed model. 

The effect of G. blattarum infection on survival of hosts during S. carpocapsae 

infection were assessed using a Generalised Linear Model in R version 2.10.1 (R 

Developmental Core Team 2009) with an inverse Gaussian error distribution and log 

link function. The standardised residuals were checked for normality and the model 

was refined using stepwise deletions. The probability of survival in parasite-free and 

G. blattarum infected hosts was then assessed using a Kaplein-Meier survival curve 

for each of the four nematode concentrations (0, 120, 1200 and 12000 nematodes/ml) 

and the differences between uninfected and infected groups was determined using a 

log rank test.  

4.4 Results 

i. Does host starvation and G. blattarum infection reduce host lipid levels? 

Starvation of B. germanica adult females (not carrying oothecae) resulted in a 

substantial decline in lipid levels of 48.1% over the 28 day observation period (Fig. 

4.1; F1,80 = 15.20, p < 0.001). Females that were fed an unlimited food source during 

the same period accumulated 73.2% more lipids compared to the start of the 

experiment.  
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Figure 4.1: Predicted change in host lipid levels with time (days) in German 

cockroach females fed ad libitum (bold line ±SE) or starved (dashed line ±SE). 

 

All cockroaches infected with G. blattarum had significantly lower lipid levels than 

uninfected cockroaches (Table 4.1; F1,180 = 63.18, p < 0.001). Females carrying 

oothecae suffered the greatest percentage decline in lipid levels during infection. 

Males lost similar amounts of lipids (49.4%) as starved hosts. Females carrying 

oothecae also had fewer lipids than uninfected females but this loss was not as high 

as those females that were starved.   
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Table 4.1: The mean lipid levels of German cockroach females with or without 

Gregarina blattarum infection for females without eggs, with eggs, with oothecae 

and in adult males. * Significance level p < 0.05 

 

 

 

 

 

 

 

 

Host lipid levels were negatively associated with the intensity of the parasite 

infection (Fig. 4.2) and an interaction between parasite intensity and with the 

reproductive status of the host (females, females with eggs, females with oothecae, 

males) (infection intensity:status, F3,175 = 3.81, p < 0.05). Lipid levels of females 

carrying oothecae were decreased more sharply with increasing parasite intensity 

than the other three reproductive status groups. 

 

Sex/status 

Mean lipids in 

uninfected hosts 

(mg ± SE) 

Mean lipids in 

infected hosts 

(mg ± SE) 

Infection 

induced lipid 

loss (%) 

Females (no 

eggs/ootheca) 
0.32  (±0.09) 0.13 (±0.07) 58.7* 

Females with eggs 0.64 (±0.15) 0.40 (±0.09) 37.1* 

Females with oothecae 0.57 (±0.26) 0.18 (±0.18) 68.9* 

Males 0.15 (±0.06) 0.07 (±0.03) 49.4* 
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Figure 4.2: Predicted mean host lipid levels (ln) with increasing G. blattarum 

trophozoite intensities (ln(x+1)) in Blattella germanica. Four lines show (i) females 

with eggs (bold line ±1 SE), (ii) females with oothecae (long dashed line ±1 SE), (iii) 

females without eggs/oothecae (small dashed line ±1 SE) and (iv) males (dot-dash 

line ±1 SE). 

 

ii. Are any resource reductions explained by behavioural changes in host 

food consumption? 

 

There was no effect of infection on host food consumption (F1, 1022 = 0.04, p = 0.851). 

However, daily food consumption was affected by time (F1, 1023 = 4.59, p = 0.033), 

host size (F1, 1023 = 7.22, p = 0.008) and whether or not females carried an ootheca 

(F1, 1023 = 126.4, p < 0.001). Food consumption generally declined with time and 

larger females consumed on average a higher mass of food. Females without 

oothecae consumed significantly more food per day (0.89 mg) than those that were 

carrying an ootheca (0.65 mg). 

 

 

 



 

 

 

 

78

iii. Does starvation and G. blattarum infection reduce the reproductive 

rate of S. carpocapsae? 

 

Nematode reproduction was 62.0% lower in hosts that were starved prior to 

nematode infection, compared to hosts that had been fed ad libitum over the 28 day 

treatment period (F1,16 = 6.41, p = 0.022). Nematode emergence in G. blattarum 

infected hosts, changed substantially with time (F1,329 = 11.35, p < 0.001) and the 

mass of the female (F1,44 = 0.01, p < 0.001) where females that were lighter yielded 

fewer nematodes. However, no shift in the pattern of emergence was detected, with 

the emergence peaking at 10 days in both groups (Fig. 4.3), but there was a 

substantially lower output of nematodes from G. blattarum infected hosts between 

days 5 and 12 (F1,44 = 0.35, p < 0.001). Overall, there was a 60.5% reduction in the 

nematode output from hosts infected with G. blattarum compared to those that were 

infected with nematodes alone.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Predicted number of Steinernema carpocapsae infective juveniles 

emerging from uninfected female cockroaches (bold line ±1 SE), and from females 

infected with Gregarina blattarum (dashed line ±1 SE) over a 28 day period. Model 

predictions were generated at the mean weight of females.  
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iv. Is host mortality due to S. carpocapsae infection greater in hosts co-

infected with G. blattarum? 

Cockroach survival risk when hosts were infected with nematodes, was significantly 

affected by the G. blattarum infection status of the host (F1, 197 = 5.60, p = 0.018) and 

the concentration of nematodes that the host was exposed to (F1, 197 = 22114, p < 

0.001). All cockroaches died from a dose of 12000 nematodes/ml
 
over the 30 day 

monitoring period, whereas only 12% and 72% died from doses of 120 and 1200 

nematodes/ml respectively. The mortality rate was significantly different between 

uninfected and infected cockroaches at a concentration of 120 nematodes/ml (Fig. 

4.4; Chi-sq1 = 4.1, p = 0.042), which resulted in an overall mortality over the 30 day 

monitoring period of 4% and 24% respectively. Although there was a slight increase 

in the mortality rate of co-infected hosts at 1200 nematodes/ml, the mortality rates 

were not significantly different at 1200 or 12000 nematodes/ml concentrations (p > 

0.05). 
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Figure 4.4: Kaplein Meier survival probability of German cockroaches singly 

infected with Steinernema carpocapsae (black lines) and those co-infected with 

Gregarina blattarum and S. carpocapsae (dashed lines). Four concentrations of 

nematodes were tested: a) 0, b) 120, c) 1200 and d) 12000 nematodes/ml. Only for 

cockroaches at 120 nematodes/ml (b) was there a statistically significant difference 

in the survival probability (p < 0.05).  

 

 

 

 

c) d) 

b) a) 
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4.5 Discussion  

The aim of this study was to determine whether an endemic parasite species could 

alter the transmission potential of an acute parasite through the indirect cost of host 

resource depletion. The endemic parasite G. blattarum caused substantial reduction 

in host lipid levels, which for most of the females tested (those not bearing 

eggs/oothecae and those with oothecae) was greater than the effect of 28 days 

starvation (Table 4.1). Gregarine infection was subsequently associated with a 

substantial reduction in the emergence of infective larvae of the entomopathogenic 

nematode S. carpocapsae as well as decreased survivorship of hosts exposed to 

nematodes. Gregarine infection, through resource depletion, can therefore have a 

significant effect on the transmission potential of an acute parasitic infection.   

Host nutritional status may be limited during parasite infection through changes in 

host feeding behaviour.  For instance, parasitism in the gut of ruminants can lead to 

malaise and general lack of appetite (Stein et al. 2002). However, hosts did not alter 

food consumption rates during infection with G. blattarum, and hence the reduction 

in host lipid levels cannot be the result of decreased food intake. There was also no 

evidence from this study that hosts were able to increase their feeding rate, a 

mechanism that can mediate the effects of parasitism in other invertebrates (Lee et 

al. 2006; Ponton et al. 2010), as hosts were provided with food ad libitum and did 

not over-feed. The reduction in host lipid levels could therefore occur due to parasite 

acquisition of the host resources, as resources are required for parasite reproduction 

(Poulin & George-Nascimento 2006; Seppala et al. 2008) or be the consequence of 

increased host metabolism as energy may be required to mount an immune response 

(Lafferty & Kuris 2005; Chapter Five) or repair damage (Takahashi, Kawaguchi & 

Toda 2009). Indeed, Takahashi, Kawaguchi & Toda (2009) were able to demonstrate 

that gregarine infection damaged micro-villi in the epithelial wall. Therefore, the 

infection may have prevented the host from absorbing lipids from the gastrointestinal 

tract, leading to a decline in measured host lipid levels.    

The effect of parasitism was found to be most profound in females carrying oothecae 

(Fig. 4.2). Although no difference was found between the food consumption rate of 

infected and uninfected hosts overall, during the time females were carrying 

oothecae they were found to consume less food than at any other time during their 



 

 

 

 

82

reproductive cycle. This may explain why lipid loss is greatest in these females, 

because both the pressure of reduced food intake and parasite infection is acting to 

lower host resource levels. Reduction of food intake in females carrying oothecae has 

been previously reported (Lee & Wu 1994), and which may be a strategy to protect 

the host from parasitic uptake during oviposition. Females carrying oothecae are 

therefore potentially allocating more resources to rearing their offspring at this stage 

in their reproductive cycle than to their own metabolic needs.  

Although lipids were lower in infected hosts than in starved hosts, the output of 

nematodes was similarly reduced by infection (60.5%) and starvation (62.5%). This 

indicates that the transmission stages are either being provisioned differently or have 

obtained energy from another source to maintain the similar reproductive levels. One 

possible source would be the gregarines themselves, which are digested during S. 

carpocapsae infection but which were removed before lipid analysis. Ciancio, 

Scippa & Cammarano (2001) demonstrated that rich lipid deposits are present in the 

cytoplasm of the gregarine species, Lankesteria ascidiae which could therefore 

provide an energy resource. However, if the nematodes are not able to compensate 

for lipid reductions by obtaining resources from gregarines, there may be 

consequences for the resource provisioning of the infective larvae. The transmission 

stages are dependent on what can be acquired within the host as the infective larvae 

themselves are non-feeding (Qui, Lacey & Bedding 2000). Therefore the infective 

larvae may harbour fewer energy reserves from hosts where G. blattarum infection is 

present.  Whilst it has previously been reported that nematode lipid levels do not alter 

immediate infectivity (Patel, Stolinski & Wright 1997), the lipids in the larvae are 

finite and so there must ultimately be a cost of limiting this resource. As the 

nematodes may have to survive long periods in the environment (Adams & Nguyen 

2001; O’Leary et al. 2001), their survival probability may be limited by the lack of 

resources, which could impact on the rate of transmission. Nematode transmission in 

hosts that are infected with the endemic infection could therefore be altered both by 

the substantial reduction in the number of transmission stages as well as fitness 

consequences for the individual larvae.  

The survivorship of hosts was decreased in cockroaches that were co-infected with 

G. blattarum and S. carpocapsae. Poor host condition can lead to increased host 
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mortality rates during infection (Brown, Loosli & Schmid-Hempel 2000). This 

decrease in survival may therefore be a result of limited resources during G. 

blattarum infection. Resource reduction by G. blattarum may diminish the host’s 

ability to mount an immune response, which may also explain the increased mortality 

rates of co-infected hosts. In Chapter Five, it is demonstrated that the anti-microbial 

defence is depleted in hosts when G. blattarum is present. Nematodes release a 

symbiotic bacterium which enables degradation of host tissue in order for nematodes 

to acquire resources and reproduce (Adams & Nguyen 2001). Therefore, host 

immune activity against the bacterial symbiont may also be limited by resource 

depletion, which could allow for increased colonisation of the bacteria during 

infection, and account for the faster host death rate. Therefore whilst nematodes 

cannot reproduce at the same intensity in hosts where G. blattarum are present, they 

may be capable of recruiting host resources faster through reduced host immune 

responses. This could potentially allow for selection of faster transmission rates of 

parasites from hosts where the endemic parasite is present.  

By exploring host resources during parasite invasion, this study has identified how an 

endemic parasite species can alter the reproductive rate of an acute infection. The 

reproductive rate of the parasites is directly linked to the number of parasite stages, 

therefore endemic infections could have important consequences for parasite 

transmission. As endemic infections are extremely common in nature, the ability to 

predict and model disease transmission of infectious diseases is likely to be improved 

by considering endemic diseases in the host population.  
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5. Immune response to micro- and macroparasites in the German 

cockroach, Blattella germanica is altered by gastrointestinal 

infection 

5.1 Abstract 

Host responses to parasite infections can vary between individuals across a 

population. Endemic infections in vertebrates contribute to this variation by 

changing host responses to the invading parasites, but so far this has not been 

extensively studied in an invertebrate host species. This study aimed to determine 

whether the presence of an endemic infection influenced host investment in different 

host immune response components. The laboratory system was comprised of 

German cockroaches infected with a gastrointestinal parasite, Gregarina blattarum 

and parasite free control hosts. Three measures of host immune function were 

explored which together cover both macro- and microparasite immune function. 

First, general immune fitness (active against both micro- and macroparasites) was 

assessed by measuring the levels of phenoloxidase in haemolymph extracted from 

both G. blattarum infected and parasite free hosts. Second, a measure of anti-

microparasite response was determined by measuring the lytic activity of the 

cockroach haemolymph, by assessment of the size of zones of growth inhibition of 

Micrococcus lysodeikticus on culture plates. Third, host response to macroparasites 

was measured by challenging the host with an artificial parasite (a nylon filament) 

and recording the amount of melanisation and cellular debris that formed around the 

nylon. The generalised immune response (measured phenoloxidase levels) did not 

differ between G. blattarum and uninfected hosts, although there was a substantial 

reduction in haemolymph protein levels in infected hosts. However, there was a 

substantial reduction in lytic activity, the anti-microparasite response in the infected 

hosts. Conversely, the anti-macroparasite response, encapsulation, was greater in 

hosts infected with G. blattarum. Infection with a gastrointestinal parasite therefore 

changed the balance of immune response against micro- and macroparasites, 

compared to gregarine uninfected hosts. This variation may be caused by trade-offs 

between different forms of immunity. These findings demonstrate the potential for 

co-infections to alter the susceptibility of invertebrate hosts to different parasite 

infections, as has been shown previously in vertebrate systems.  
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5.2 Introduction 

Parasites can pose a significant threat to the health and fitness of many living 

organisms. As such, animals have evolved a set of innate and/or acquired immune 

functions in order to respond to the potential harm posed by disease (Goldsby et al. 

2006; Koella 2009). However, even within a single host population there can be 

large variation in the ability to respond to the same parasitic disease (Sheldon & 

Verhulst 1999; Norris & Evans 2000; Rolff & Siva-Jothy 2003; Wilson 2005). This 

can lead to heterogeneity in host resistance, susceptibility and variation in the 

longevity and severity of the disease between different hosts (Henter & Via 1995; 

Paterson, Wilson & Pemberton 1998). Understanding the causes of such variation 

can not only improve treatment strategies, but also help develop a better 

understanding of the ecological processes that govern disease virulence evolution 

and the evolution of host immune function (Wilson 2005).  

The causes of variation in host responses to parasite infections can be attributed to 

several factors including host and parasite genetic heterogeneity (Tella et al. 2000; 

Kaslow, Dorak & Tang 2005; Tinsley, Blanford & Jiggins 2006), sex of the host 

(Schmid-Hempel 2005), the age of the individual (Stear et al. 2000), resource 

availability (Schmid-Hempel 2005), seasonality (Dowell 2001; Faustino et al. 2004) 

and stochasticity in the environment (Krist et al. 2000; Ostfeld et al. 2006). Another 

important factor that affects host susceptibility is the presence of other infections 

(Lello et al. 2004; Cattadori, Albert & Boag 2007). Hosts encounter many different 

parasites during their lifetime (Petney & Andrews 2008) and either previous 

infections or concomitant infections may impact on which individuals become 

infected, as well as the severity and longevity of disease (Lello & Hussell 2008; 

Cattadori, Albert & Boag 2007).  

In mammals, the immune cells involved in the adaptive immune response against 

microparasites are type 1 T helper cells (Th1), whereas another class of T helper 

cells (Th2) are important in the response against macroparasites (Romagnani 1991a, 

b). The production of these two immune cell groups is governed by trade-offs, so 

that up-regulation of one process is associated with down-regulation of another 

(Kidd 2003; Fenton, Lamb & Graham 2008). Therefore, hosts that are infected with 

parasites which lead to the induction of Th2, have been shown to have increased 
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susceptibility to microparasites (Chakkalath & Titius 1994) whereas those that 

induce Th1 responses can occasionally increase host susceptibility to macroparasites 

(Graham 2008). Understanding these processes can be useful in determining how 

endemic parasites can alter variation in host immune responses. Yet most co-

infection studies to date have focused on mammalian systems. Invertebrates have 

simple immune systems that are easy to monitor and manipulate experimentally 

(Wilson 2005). Exploring host immunity during co-infections in invertebrate hosts 

may improve our understanding of the processes that determine variation in immune 

response as a whole.   

Like vertebrates, invertebrates have an immune system that is capable of responding 

to different types of parasites. Most of the immune functions are innate, however 

there is also increasing evidence of long term up-regulation and memory within that 

innate framework (Moret & Siva-Jothy 2003; Kurtz & Franz 2003; Korner & 

Schmid-Hempel 2004; Kurtz 2005; Schulenburg, Boehnisch & Michiels 2007). 

General response against both micro- and macroparasites are determined by humoral 

responses, particularly the action of the enzyme phenoloxidase which is induced 

during parasitic invasion with a variety of organisms including fungi, parasitoids, 

bacteria and nematodes (Bogos et al. 2007). The responses that are active against 

microparasites include the action of lytic enzymes, particularly lysozymes which 

causes breakages in the peptidoglycan wall in gram positive and gram negative 

bacteria (Koella 2009). The ability to respond to macroparasites such as nematodes 

is controlled by cellular responses and in particular, the encapsulation response 

(Peters & Ehlers 1997; Lavine & Strand 2002; Crossan et al. 2007). Encapsulation is 

the aggregation of haemocytes around the outside of a foreign body such as a 

parasite, which is reinforced with a layer of melanin and initiated by the action of 

phenoloxidase (Levin et al. 2005). The production of melanin is also used to 

strengthen the host cuticle against parasitic invasions (Wilson 2005). There is also 

increasing evidence that a similar paradigm to the Th1/Th2 in vertebrates may also 

be present in invertebrates due to the specific responses to different parasites (Cotter, 

Kruuk & Wilson 2004). The invertebrate model may therefore not only improve 

assessments of disease transmission by invertebrate vectors, but may also improve 

the understanding of immune processes in other organisms.  
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The host organism used in this study was the German cockroach host, Blattella 

germanica, parasitized with a gastrointestinal macroparasite, Gregarina blattarum. 

The infection cycle of G. blattarum is described more detail in Chapter One. Briefly, 

hosts are infected with G. blattarum through the accidental ingestion of parasite 

transmission stages (oocysts) by the host (Clopton & Gold 1996). The oocysts 

migrate to the mid-gut of the host, the main site of infection, where sporulation 

occurs and the emerging sporozoites attach to the mid-gut wall (Clopton & Gold 

1996). The cells grow to form trophozoites which eventually fuse in pairs to form 

reproductive units (gametocysts) which are passed into the environment where 

cellular division takes place (Clopton & Gold 1996).  

The aim of the current study was to determine whether an endemic parasite infection 

could alter different components of the invertebrate immune response. Three specific 

measurements of host immune function were assessed: general immune function 

(humoral phenoloxidase and haemolymph protein levels), anti-microparasitic 

response (lysozyme activity) and anti-macroparasitic response (encapsulation). It 

was expected that immune function would be decreased in hosts that were infected 

with the endemic infection, as hosts have been demonstrated to have fewer resources 

(lipids, Chapter Four) with which to mount a response to parasitic invasion.  

5.3 Materials & Methods 

Host cultures 

German cockroaches, B. germanica were collected from parasite free colonies or 

colonies containing the parasite species G. blattarum. The rearing conditions of these 

hosts are provided in detail in Chapter Two (p. 21).  

Haemolymph sampling 

Cockroaches were randomly collected from uninfected (n = 50) and infected 

colonies (n = 50) and were retained in small plastic containers with ad libitum food 

and water for one hour prior to sampling. Each host was anaesthetised with CO2 and 

an area below the left posterior limb was swabbed with 70% ethanol followed by 

PBS to remove any external bacterial contaminants. The haemolymph was collected 

using a sterilised syringe with 100 µl of EDTA to prevent coagulation. Haemolymph 
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was collected from five cockroaches at a time and the sample pooled into a 1.5 ml 

eppendorf tube and immediately placed on ice. The samples were stored at -20
o
C 

until required.  

Protein and Phenoloxidase Assays 

Host protein levels in the presence and absence of G. blattarum were determined 

using the BioRad® protein assay kit (Sigma-Aldrich) with bovine serum albumin 

(BSA) as the protein standard. Two replicates from each haemolymph sample (n = 5 

uninfected; n = 5 infected) were added to a 96 well plate in 10 µl quantities with 200 

µl of filtered dye reagent. After five minutes absorbance measurements were made 

using a UV spectrophotometer with a micro-plate reader (VERSAmax®) at 600 nm. 

The protein content was then estimated from the BSA standard curve. Phenoloxidase 

activity was measured by adding 6 µl of haemolymph to 300 µl of PBS in a 1.5 ml 

eppendorf tube. Two 100 µl replicate aliquots of each sample were dispensed into a 

96 well plate with 100 µl of 4 mM L-Dopamine (Sigma Aldrich) in each well, and 

immediately placed under a spectrophotometer with a plate reader following which a 

reading was taken every 30 seconds for 45 minutes. The levels of phenolodixase 

activity was calculated as the amount of activity required (in PO units per mg 

protein) to change the absorbance by 0.001 nm per min (Cotter, Kruuk & Wilson 

2004).  

Lytic activity 

The lytic activity of cockroach haemolymph against Micrococcus lysodeikticus was 

determined using a lysozyme assay. Plates were prepared with a 10 ml layer of 1% 

Agar (Sigma-Aldrich) inoculated with 5 mg per ml of freeze-dried M. lysodeikticus. 

These agar plates were perforated 14 times at equal spacing with a glass capillary 

tube (2 mm dia.) and 1 µl of haemolymph was placed in each well with 2 replicates 

for each sample (n = 10 uninfected; n = 10 infected). A standard curve of hen egg-

white lysozyme (Sigma-Aldrich) was prepared in distilled water and added in 

duplicates to the agar plates with a distilled water control. The plates were stored 

upside down for 20 minutes in a laminar flow cabinet and then transferred to an 

incubator at 33°C. After 24 hours the diameter of inhibition of bacterial growth 
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surrounding the inlet-wells was measured using a calliper (accurate to 0.5 mm) and 

the lysozyme concentration equivalent was calculated from the standard curve.  

Encapsulation response 

The anti-macroparasitic responses of hosts with G. blattarum were determined by 

measuring the levels of melanisation and cell deposition surrounding a piece of 

nylon filament (in accordance with Cotter et al. 2008). Nylon filaments (2mm 

lengths of fishing wire) were UV sterilised for 15 minutes. Female cockroaches 

(with oothecae absent to control for variation in resources associated with 

oviposition, see Chapter Four) were randomly selected from uninfected (n = 20) and 

infected colonies (n = 20) and anaesthetised with CO2. The implant area between the 

5
th

 and 6
th

 sternite was swabbed with a cotton wool bud soaked in 70% ethanol 

followed by a swab with phosphate buffered saline (PBS). The nylon filament was 

implanted by piercing the cuticle with the nylon, using sterilised forceps. 

Cockroaches were left in 275 ml plastic containers with lids (Cater For You Ltd.) 

with ad libitum food and water and incubated at 25
o
C. The implants were extracted 

by dissection after 24 hours. Each implant was gently rinsed with PBS and placed on 

a microscope slide. The level of melanisation was captured using a digital micro-

imaging camera (Olympus Advanced DP72) affixed to a stereo microscope (GX 

Optical XLT-101). Two images were taken from the implant within 180
o
 rotation of 

each other. The area of melanisation was then analysed using the image analysis 

software package Image J® (see Cotter, Kruuk & Wilson 2004).  

Statistical analysis 

The effect of G. blattarum on three measurements of host immune function, 

phenoloxidase activity, lysozyme-like response and encapsulation response, were 

assessed using three Generalised Linear Models in R version 2.13.2 (R Development 

Core Team 2011). The model family error structure and link functions for the three 

respective models were: gamma with identity link; Gaussian with log link and 

inverse-Gaussian with link 1/mu
2
. The overall protein concentration in host 

haemolymph was assessed with a General Linear Model, with protein levels log 

transformed prior to analysis. The standardised residuals from each model were 
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checked for normality prior to analyses, and the effect of infection on immune 

response was assessed using the F test statistic.  

5.4 Results 

Overall immune function 

Infection with G. blattarum was associated with a 57% reduction in mean 

haemolymph protein (Fig. 5.1a; F1,16 = 4.85, p = 0.043). The mean concentration of 

protein was 0.46 mg/ml (± 0.02 SE) in parasite free hosts and 0.19 mg/ml (± 0.01 

SE) in G. blattarum infected hosts. The humoral levels of phenoloxidase activity 

were higher in infected hosts (16.35 PO units/mg protein ± 6.08 SE) compared to 

parasite free hosts (4.66 PO units/mg protein ± 1.74 SE) but the result was not 

statistically significant (Fig. 5.1b; F1, 8 = 4.43, p = 0.069).  

Lysozyme activity (anti-bacterial) 

The response of hosts to a microparasitic challenge, measured as levels of 

haemolymph lytic activity, were significantly lower in infected hosts compared to 

hosts that were parasite free (Fig. 5.1c; F1,38 = 20.44, p < 0.001). Parasite-free lytic 

activity was 1.12 µg/ml (± 0.09 SE), but infected hosts only produced half the lytic 

response (0.61 µg/ml 0.08). 

Encapsulation response (anti-helminthic) 

Infection with G. blattarum led to a significant increase in the encapsulation 

response of hosts to an artificial parasite (nylon filament) in vivo (Fig. 5.1d; F1,48 = 

6.738 p = 0.013). The mean area of melanin on the nylon filament was 0.32 mm
2
 (± 

0.15 SE) in parasites free hosts, and was 2.6 times higher in infected host, i.e. 0.86 

mm
2
 (± 0.16 SE).  
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Figure 5.1: Predicted mean immune response levels in parasite free hosts (control) 

and hosts parasitized with Gregarina blattarum (infected) for a) haemolymph 

protein (mg/ml), b) phenoloxidase activity (µg/mg protein), c) lysozyme-like lytic 

activity (µg/ml), and d) nylon filament encapsulation (mm
2
). Error bars show ±1 SE. 

*p < 0.05; ** p < 0.001.  

Control       Infected Control       Infected 

Control       Infected Control       Infected 

a) b) 

c) d) 

* 

** * 
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5.5 Discussion 

Gregarina blattarum infection was found to cause changes in the German cockroach 

response to both micro- and macroparasite challenges. The levels of humoral lytic 

activity (lysozyme) and protein levels were, as predicted, reduced by G. blattarum 

infection. However, there was slightly greater activity of phenoloxidase (a general 

measure of anti-macro- and microparasite immune function; Adamo 2004) within the 

available protein, although this was not statistically significant. Further, the levels of 

encapsulation response to macroparasites were enhanced in the presence of G. 

blattarum. The presence of the gregarine infection is therefore likely to increase the 

susceptibility of the host to other microbial infections, particularly bacteria, but at the 

same time offer some protection to the host against infection with multi-cellular 

macroparasites.  

The levels of haemolymph lytic activity and protein were expected to decline in G. 

blattarum infected hosts, as previous investigations have found that host energy 

resources are reduced during infection (Chapter Four). Proteins are an important 

resource for the invertebrate immune system required for humoral and cellular 

responses (Koella 2009). It is therefore likely that energy costs from G. blattarum 

infection are constraining proteins levels required during the immune response. 

Although protein levels were lower, the amount of phenoloxidase that was active 

within that protein pool was not significantly affected by G. blattarum. One possible 

explanation for this is the role that phenoloxidase has in melanin production during 

an encapsulation response, which is substantially increased in G. blattarum infected 

hosts (discussed below). Another possibility is that the phenoloxidase levels are 

maintained in an effort to respond to damage caused at the infection site. Infection 

by gregarines can increase host damage to the epithelial cell wall (Takahashi, 

Kawaguchi & Toda 2009; Valigurova et al. 2007) and therefore slightly raised levels 

of phenoloxidase activity, which is also used in host repair processes (Adamo 2004) 

may be present as part of a reparative process.  

The encapsulation response was increased in hosts where G. blattarum was present. 

The mechanism for the increase in encapsulation response is unknown, but evidence 

has previously been reported that both lytic activity (anti-microparasitic) and 

encapsulation activity (anti-macroparasitic) are subject to trade-offs so that hosts 
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which can mount high levels of one response are limited in their ability to mount the 

other response (Cotter et al. 2004). Such trade-offs have been likened to the Th1/Th2 

paradigm in vertebrates, demonstrating the importance of invertebrate immunity 

models for our understanding of vertebrate immunity (discussed below; Koella 

2009). The evidence provided in this current study is also indicative of immune 

response trade-offs, however it is not clear how G. blattarum infection affects the 

differential response to micro- and macroparasites. Host resources are clearly 

depleted in G. blattarum infected hosts (Chapters Four and Five); therefore to mount 

a higher immune response to macroparasites, hosts must divert resources from other 

life processes. This may explain previous findings that gregarine infected hosts have 

reduced fecundity and lifespan (Chapter Three). Further exploration of the resources 

available in different host tissue (i.e. cuticle, mid-gut and haemolymph) is required 

to determine whether trade-offs occur in resource allocation during G. blattarum 

infection.  

Overall, there is strong evidence from these findings to suggest that gregarines may 

increase host protection to macroparasitic diseases and decrease the host response to 

microparasites. In order to draw comparisons with the vertebrate Th1/Th2 paradigm, 

it should be evident that gregarine infection up-regulates protection against similar 

parasites and down-regulates immunity to more distantly related species (Graham 

2008). Gregarines are eukaryotes, which are resistant to lytic enzymes, but as single 

celled organisms it is unlikely that they will induce an encapsulation response. 

However, gregarines do form large reproductive units of fused cells (gametocytes), 

visible to the naked eye, which could be large enough to induce encapsulation 

responses. Therefore, it is possible that gregarines may enhance the host ability to 

respond to other macroparasites, and such a reaction could be traded-off against the 

host’s ability to respond to microparasites. One way to test this would be to explore 

the immune responses to the gregarines themselves. Gregarines are extremely 

common to invertebrates; however there have been surprisingly few studies 

undertaken to examine the immune response within the host when gregarines are 

present, and none (to my knowledge) of the response to gregarines at the infection 

site. Further work will therefore explore immune function to the gregarines in the 

mid-gut to assess trade-offs and potential comparisons to the vertebrate Th1/Th2 

paradigm.  
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In conclusion, the presence of an endemic infection can alter the immune function to 

different parasites in this invertebrate system. Energy costs of infection to the host 

are likely to explain reductions in anti-microparasitic response. However, further 

work is needed to determine how the encapsulation response is increased and indeed 

whether or not there are trade-offs with immune functional responses. Extensions of 

this work may reveal parallels with vertebrate immunity, particularly the Th1/Th2 

paradigm, and as such this study system should prove an asset for future 

immunological research. Overall, gastrointestinal infections are likely to impact on 

the susceptibility of the host to other infections and future studies should consider 

the effect of gastrointestinal infections in the host population when exploring the 

variation in host susceptibility to disease.   
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6. General Discussion 

6.1 Endemic infections and host fitness 

Parasites are an important threat to life on Earth, both with respect to population 

decline and the threat of population extinction (Cunningham & Daszak 1998; 

Daszak, Cunningham & Hyatt 2000; Stuart et al. 2004; Schloegel et al. 2006; 

Pounds et al. 2006; Hawkins et al. 2006; Smith, Sax & Lafferty 2006; Skerratt et al. 

2007; McCallum et al. 2009). As increasing population density, loss of habitat and 

drug resistance are likely to lead to an increase in the emergence of diseases over the 

next century, predicting where and when new diseases will emerge from will be 

important for targeted prevention treatment strategies (Daszak et al. 1999). 

Outbreaks of epidemic infection are likely to occur in areas of the world where 

gastrointestinal infections are endemic (Petney & Andrews 1998). However, 

endemic infections are rarely considered when modelling disease outbreaks. 

Identifying how endemic parasite infections affect host biology and their interaction 

with other diseases will therefore improve our understanding of disease emergence 

and evolution for improved treatment strategies in the future.  

Endemic parasites have long term associations with their host population, and as a 

result can bring about substantial changes to the host energy budget, life history and 

population dynamics (Hudson, Dobson, & Newborn 1992; Zinsstag et al. 1997; 

Albon et al. 2002; Lello et al. 2005). This study provided further evidence that 

gastrointestinal protozoans can lead to host resource decline (Chapters Four and 

Five), with important consequences for host fecundity, life span and population 

dynamics (Chapters Two and Three). Very few empirical examples exist that 

demonstrate endemic parasites regulate host population dynamics, and most field-

based examples are also influenced by external factors such as climate or predation 

(Dobson & Hudson 1992; Albon et al. 2002). Laboratory populations of 

invertebrates in the absence of environmental variation and inter-specific 

competition can be regulated by parasites (e.g. Bonsall & Benmayor 2005) and 

parasitoids (e.g. Hassell, Comins & May 1991). The findings from this study provide 

new evidence that endemic parasites of invertebrates mediate important changes in 

the regulatory processes of their hosts (Chapter Two). Indeed, endemic infection 
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alone altered host population regulation, which led to the stabilisation of the host 

population, as infected host densities were less varied than parasite-free colonies. 

Stabilising effects of the endemic parasite was also demonstrated by increased host 

mortality during G. blattarum infection (Chapter Three) and aggregated parasite 

distributions amongst hosts (Chapter Three), both of which are understood to 

stabilise host populations (Anderson & May 1978). There was also some support for 

parasite stabilisation from the model fitting process. Endemic infections can 

therefore cause regulatory changes in host dynamics, which could have important 

effects on the host population in natural systems. 

Endemic infections can also have an important impact on the interaction of the host 

with other parasites. Co-infections may compete for host resources and this may lead 

to an increase in reproduction and transmission rate (May & Nowak 1995; Mosquera 

& Adler 1998; Sharomi et al. 2008). In Chapter Four, it was demonstrated that 

resource costs imposed by an endemic infection can impact on the transmission 

potential of a more severe parasite species. The reduction in resources by G. 

blattarum infection was associated with a subsequent decline in the output of 

infective larvae. Whilst this work did not assess transmission rate, there is strong 

support that co-infection would alter nematode transmission in this system both by 

the substantial reduction in nematode numbers and also by potential nutrient costs to 

the emerging nematodes. Endemic infection was also found to affect the survival rate 

of hosts during co-infection (Chapter Four). A decrease in host survival was thought 

to be a result of reduced host resources which were necessary for host defence 

against the nematodes. One of the most important invertebrate defence strategies 

against macroparasites is the encapsulation response, which has previously been 

shown to limit the mortality of wax moth larvae when infected with S. carpocapsae 

(Crossan et al. 2007). Whilst there was evidence in this study to show that both 

proteins and lipids were reduced during G. blattarum infection, the encapsulation 

response was in fact enhanced by gregarine infection in the gut (Chapter Five). 

However, on entry to the host, infective juveniles release a bacterial symbiont which 

enables host digestion and parasite reproduction (Adams & Nguyen 2001). As the 

host anti-bacterial response was lower in those hosts that were infected with G. 

blattarum, the reduction in host survival during co-infection could be explained by 

increased bacterial growth in hosts were lytic activity is reduced. Therefore, whilst 
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co-infection alters host-parasite interactions, there may also be consequences for the 

symbiont-nematode interaction as higher bacterial digestion of host resources could 

potentially select for increased pathogenicity.  

There is a considerable amount of variation in immune responses amongst host 

populations which has been previously linked to a range of different biological 

factors including co-infection (Graham 2008). Immune responses are also an 

important factor in understanding disease transmission and host susceptibility to 

disease (Henter & Via 1995; Paterson, Wilson & Pemberton 1998). Gastrointestinal 

infections are endemic in many parts of the world where newly emerging disease 

outbreaks occur, which could affect host interaction with acute infections in both 

positive and negative ways. In humans for instance, helminths infections, can 

sometimes increase host susceptibility to HIV (Maggi et al. 1994) and malaria 

(Spiegel et al. 2003), but helminths can also decrease the inflammatory responses 

produced in malarial infections (Nacher et al. 2000). Here it was demonstrated that 

the presence a gastrointestinal gregarine infection can also lead to both enhancement 

and reduction in host responses to different pathogens. Whilst eradication of 

gastrointestinal infections has been the focus of treatment efforts by the World 

Health Organisation in an attempt to remove diseases from the world in general 

(Bentwich et al. 1999), caution should be given to complete removal of 

gastrointestinal helminths as this could lead to an increase in the host susceptibility 

to other infections. It is therefore recommended that infection control programmes 

establish the parasite infections that are endemic in host populations in order to 

develop the most appropriate control strategies.  

6.2 Limitations and strengths of the study 

The invertebrate system used in this study was an established laboratory model 

species, the German cockroach, Blattella germanica. German cockroaches are 

extremely useful study organisms for population level work as well as individual 

based studies, due to large population densities, ability to rear all stages in the same 

container and culture isolated individuals in a simple experimental set-up. The two 

parasite species that were used in this study, G. blattarum and S. carpocapsae, have 

also been studied extensively and as a result have established modes of culture and 

maintenance. Combining the three chosen species into the same study therefore 
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provided an opportunity to use established laboratory methods with a novel co-

infection system.  

The mark-recapture method applied to assess cockroach population dynamics was 

based on technique previously used to determine German cockroach abundance in 

the wild (Rivault 1989; Tee, Saad & Lee 2011). The method developed for this 

laboratory study was adapted to include sub-sampling of hosts which allowed 

simultaneous monitoring of parasite levels during the longitudinal study. Many 

previous studies of host populations have only collected dead individuals, to monitor 

host and parasite loads (e.g. Bonsall & Benmayor 2005); therefore the methods here 

were an improvement on previous studies by reducing the possibility of skewed 

parasite loads from only collecting dead samples. The method of mark-recapture 

presented in this report could also be adapted to take haemolymph samples from 

individuals if required which could be of use for future ecological and 

immunological work.  

As with other population level studies of animals, identifying the dynamics of the 

population density is laborious, and requires monitoring over a substantial time 

period in order to capture any population cycles. The study here was conducted for 

approximately two years, but in that time no clear cycles were observed which may 

be a result of the time scale monitored. Overall, this approach did yield substantial 

rewards with respect to the detailed dataset on host and parasite numbers, the number 

of census time-points of host numbers and parasite distributions. Indeed, a 

substantial amount of data remains to be analysed including sex difference in 

population dynamics and the ratio of adults to offspring in the population over time 

(described below). 

Ecological datasets, particularly time-series studies are inherently noisy (e.g. 

Grenfell et al. 1998), and the dataset collected here was no exception. An advanced 

level of analysis using complex modelling approaches was therefore required to 

assess the parasite effects on the host population dynamics. As no previous attempts 

have been made to monitor cockroach population dynamics, there are no examples 

with which to begin a model selection process. The selection of candidate models 

was therefore based on assumptions of general host-parasite systems (Anderson & 

May 1978; Bellows 1981; Bonsall & Benmayor 2005). It was therefore necessary to 
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explore a wide candidate model selection for each of the infected and parasite-free 

colonies monitored. The levels of analysis allowed for assessment of the host-

parasite dataset that would not have otherwise been possible with correlation or 

simple time series analysis.  

The use of a novel co-infection system (G. blattarum and S. carpocapsae) provided 

an interesting opportunity to explore disease dynamics, which has generated 

considerable scope for future work (discussed below). The main limitation to 

working with G. blattarum is one that is problematic to infectious disease work in 

general, i.e. that careful laboratory management is required to prevent contamination 

of parasite free stocks. Whilst true epidemic studies could not be investigated with 

the parasite S. carpocapsae, as the nematodes are obligate killers (i.e. no host 

recovery from disease), preliminary work (not shown here) found that continuous 

exposure of hosts to S. carpocapsae can select for resistant hosts. Therefore, there is 

the potential for this co-infection system to be used as an endemic-epidemic system 

in future work.   

6.3 Future work 

The effect of endemic infections on host population dynamics is still an understudied 

area of host population ecology. Here, the population level work could not fully 

determine the biological effects on host population dynamics, as parasite-free hosts 

and the parasite dynamics were not well explained by the goodness of fit test. There 

are several possibilities for this which could be explored in future work. For 

example, there is clear evidence from the life history assessment, of sex and stage 

(juveniles) differences in the effects of parasitism on host fitness. The dataset that 

was collected for the host densities will therefore be separated into males and 

females to determine whether the dynamics differ between each of the sexes. 

Incorporating juvenile developmental into the population models could also improve 

the population models as there is a delay in offspring survival. To date, the biological 

estimates to start the model fitting procedures were also based on previously 

published work (Müller-Graf et al. 2001) as well as some parts of the life history 

data when they were available at the start of the modelling process. Fixing the 

parameters with measured life history data collected here, rather than allowing the 

model to be adjusted throughout the fitting process (through several thousand 
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iterations), would be an important next step in assessing the model suitability. A 

final development of the modelling process would be to distinguish the different 

types of stochasticity which may contribute to the large fluctuations in the host 

density using various stochastic models.   

The effect of endemic parasites has been shown to cause trade-offs in life history 

processes, which may be driven by changes in the allocation of host resources (e.g. 

Lafferty 1993). In order to fully understand whether resource trade-offs were 

responsible for the resource and life history changes in the German cockroach, it will 

be necessary to examine the levels of nutrients in host eggs and offspring to 

determine whether resources are partitioned differently towards reproduction in 

infected hosts. Gregarina blattarum infected hosts were capable of increasing their 

production of an encapsulation response, despite having fewer resources. Therefore, 

assessing resources within the haemolymph and at the infection site (mid-gut) would 

enable me to determine whether resources are partitioned differently during G. 

blattarum infection. Preliminary attempts were also made to explore the composition 

of lipids within the cuticle and fat body of the host, using chromatography to 

separate the lipids into the constitutive lipids (polar and neutral lipids) and determine 

the fatty acid composition of those separate lipid classes (not presented here). 

However, no differences were found between the composition and the quantity of 

lipids between infected and uninfected hosts. This information was not congruent 

with the findings from the simple lipid extractions (Chapter Four) but this was 

probably due to extremely low infection levels in the sampled cockroaches. 

Therefore, a repeat of the experiment with higher infection levels within the sampled 

cockroaches would be necessary to truly assess whether lipid composition, rather 

than just quantity, is altered under infection conditions. 

The infectivity and transmission of parasites is not solely dependent on the number 

of reproductive stages that are produced but also the nutrient levels within those 

transmission stages (Medica & Sukhdeo 1997). There was evidence that nematodes 

may utilise gregarines as a nutrient supply in order to maintain the same levels of 

reproduction in infected hosts as those hosts that were starved (Chapter Four). 

Assessing lipid levels of the gregarines would therefore determine whether the 

gregarines in this study are a sufficient supply for the levels of nematode 
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reproduction that were measured. Separating the lipids in gregarines as well as the 

host diet using chromatographic techniques (as outlined above) would also determine 

whether the gregarines utilise food from the cockroach diet in the mid-gut lumen or 

remove nutrients directly from the host. Further identification of the lipid levels in 

the nematodes themselves would then allow any costs for nematode fitness to be 

determined, as the infective stages are non-feeding and therefore dependent on the 

levels of nutrients obtained within the host for transmission.   

Despite the estimated millions of species of gregarines that may exist (Clopton & 

Gold 1996), there have been surprisingly few studies (<10) to assess immune 

function of hosts to gregarines, none in the German cockroach and no direct 

measurements in the gastrointestinal tract. The immune results presented in this 

report have so far demonstrated the general functional responses to different types of 

parasite of cockroaches infected with G. blattarum infection, but there is 

considerable scope for expansion. For example, exploring the levels of haemocytes 

in the haemolymph, which are essential in the encapsulation response (e.g. Cotter, 

Kruuk & Wilson 2004), could help determine whether the increased encapsulation 

response in the presence of G. blattarum is facilitated by a higher abundance of 

immune cells. This process may also be improved by fluorescent labelling of 

immune cells to visualise the phagocytic response (Mortensen & Glette 1996). 

Future work will also explore differential immune responses in different host tissue. 

This could enable trade-offs to be determined between immune responses used at the 

site of G. blattarum infection (mid-gut) and infection sites required to mount a 

defence to nematodes (cuticle and haemolymph).  

Co-infections are extremely widespread and varied, and hosts are likely to be 

exposed to not only one or two parasites but potentially hundreds of parasites during 

their lifespan (Petney & Andrews 1998).  Indeed, as parasite heterogeneity in the 

host increases, so are the constraints on host resources and host life history increased 

(Lello et al. 2005). Therefore, just as the host-parasite system presented here has 

been used to demonstrate clear effects of endemic infection on the host fitness and 

interaction with other parasites, it would also provide a platform for work with other 

parasites. For example, the pinworm, Blatticola blattae (see Muller-Graf et al. 2001) 
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has been shown to alter the life history of the German cockroach and could therefore 

be used with the gregarines as a gastrointestinal co-infection model.  

6.4 Conclusions 

This study has revealed the important consequences that endemic infections can 

have, creating resource constraints in the host which in turn alter host life history 

traits and host population dynamics. Resource reductions and immune function 

variations caused by endemic infection also impact on other invading parasite 

species, reducing the fecundity and hence transmission potential of the second 

parasite infection. The development of the German cockroach infection model has 

therefore provided a novel approach to exploring the effects of endemic infections on 

host biology and interactions with acute parasite infections. There is considerable 

scope for further work in this study system particularly regarding co-infection and 

host immunity. Accordingly, this new model will provide a platform for future host-

parasite investigations.   
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7. Appendices 

7.1 Jolly’s Stochastic Method 

Jolly’s stochastic method (Jolly 1965), like many other mark-capture-recapture 

methods, is a mathematical framework with which to estimate animal abundance 

(Begon 1979). A sub-sample of the population is first obtained, whereupon the 

individuals are counted and marked, and then released back into the population. 

When the population is resampled, the number of marks that are recorded from the 

previous time-point can be used to estimate the total population size, using a series 

of mathematical formulae. Jolly’s method is based on three general assumptions: (i) 

there are several marking occasions, (ii) several recaptures, (iii) only the most recent 

marks are noted (all previous marks are ignored). The population size, N, on a given 

day i, is then estimated from the following equation: 
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Where Mi is the number of marked individuals at risk of being recaptured on the ith 

occasion, ni is the number of individuals captured and mi is the total number of 

individuals that had a mark on the ith occasion. Mi is obtained from the following 

equation: 
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Where zi is the number of individuals that were marked before day i, but not caught 

on day i, and then caught after day i. Likewise, yi is the number of individuals that 

were released at point i that were subsequently caught again. Therefore, the value of 

N will undergo a slight adjustment with every additional time point added to the 

series. ri refers the number of individuals released at timepoint i.   
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Appendix 7.2: Spectral analysis of an uninfected German cockroach population (a-

e), Gregarina blattarum infected host populations (1-5a) and Gregarina blattarum 

infection intensity dynamics (1-5b). 
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Appendix 7.3: Correlation of log host density (N) and log parasite prevalence (P) (1-

5a) and cross-correlation of log host density with log parasite prevalence (1-5b).  

1a) 

2a) 

3a) 

4a) 

5a) 

1b) 

2b) 

3b) 

4b) 

5b) 



 

 

 

 

117

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 7.4: Correlation of log host density (N) and log parasite intensity (I) (1-

5a) and cross-correlation of log host density with log parasite intensity (1-5b).  
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Appendix 7.5: Correlation of log host density (N) and log parasite abundance (A) 

(1-5a) and cross-correlation of log host density with log parasite abundance (1-5b).  
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Appendix 7.6: One-step-ahead predictions for log host numbers (N) in uninfected 

population (a-e) and infected populations (1-5a), and parasite (P) intensity (1-5b). 

Black dots are observed data and empty dots are model predictions. 
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Appendix 7.7: Positive correlation (R
2
 = 0.89, t16 = 11.68, p < 0.001) between log 

parasite levels in host frasse (gametocysts collected after 24 hour host incubation) 

and log parasite counts from host mid-gut (trophozoites dissected from host gut).  

 


