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Abstract: The analyses of the next generation cosmological surveys demand an accurate,
efficient, and differentiable method for simulating the universe and its observables across
cosmological volumes. We present Hamiltonian ray tracing (HRT) — the first post-Born
(accounting for lens-lens coupling and without relying on the Born approximation), three-
dimensional (without assuming the thin-lens approximation), and on-the-fly (applicable to any
structure formation simulations) ray tracing algorithm based on the Hamiltonian formalism.
HRT performs symplectic integration of the photon geodesics in a weak gravitational field,
and can integrate tightly with any gravity solver, enabling co-evolution of matter particles and
light rays with minimal additional computations. We implement HRT in the particle-mesh
library pmwd, leveraging hardware accelerators such as GPUs and automatic differentiation
capabilities based on JAX. When tested on a point-mass lens, HRT achieves sub-percent
accuracy in deflection angles above the resolution limit across both weak and moderately
strong lensing regimes. We also test HRT in cosmological simulations on the convergence
maps and their power spectra.
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1 Introduction

Next-generation galaxy, lensing, and Cosmic Microwave Background (CMB) surveys promise
percent-level or better constraints on cosmological and astrophysical parameters. This
discovery potential, however, hinges on our ability to quickly and accurately simulate the
universe and its observables over cosmological volumes. For example, computing covariance
matrices for two-point cosmological analyses using mock catalogs requires a large number of
mock catalogs [1–4]. Higher-order statistical methods, such as peak and void counts, require
many high-fidelity simulations to model how observables and their covariances depend on
cosmology [5, 6]. Simulation-based inference (SBI) needs a large number of simulations for its
training set [7]. Finally, field-level inference (FLI) demands a fast and differentiable forward
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model to simulate the universe and to construct observables thereof [8–26]. Perhaps not
surprisingly, photons are the primary carriers of information for most cosmological observables.
A photon conveys information from both its source (e.g., the temperature or polarization of
the primordial CMB, or the positions of galaxies) as well as the intervening matter structures
through which it traverses. In this work, we propose a new ray tracing algorithm called
Hamiltonian ray tracing (HRT) that 1) accounts for the actual light trajectory and lens-lens
couplings (post-Born effects in short); 2) is differentiable and computed on-the-fly; and 3)
incurs minimal computational overhead when integrated with a background N-body algorithm.

The Born approximation assumes that lensing observables (e.g., weak lensing convergence
κ or the CMB deflection angle) accumulate along a photon’s unperturbed path and consider
subsequent lensing events as independent from each other. Post-Born corrections effectively
accounts for the ray deflection during a photons propagation and for the so-called lens-lens
coupling, which describes how gravitational lenses at different redshifts can interact to generate
rotational modes in the observable fields [27–29]. Post-Born effects introduce additional
non-Gaussianities into lensing observables besides those generated by the non-linear clustering
of the matter. Thus, it is important to include them in the modeling of higher-order statistics
for both CMB and galaxy lensing. In particular, in the case of CMB lensing, non-linear and
post-Born effects have similar amplitude [30, 31]. For example, post-Born effects significantly
change the higher-order moments or peaks statistics of galaxy weak lensing convergence
maps [32, 33]. These effects translate into cosmological biases for analysis that targets the
aforementioned higher-order statistics. Moreover, post-Born corrections affect FLI through
the galaxy delensing effect. As demonstrated by ref. [34], galaxies at z = 1 are typically
deflected on an arc minute scale, which is the typical pixel size in an FLI analysis. If the
post-Born effects are unaccounted for, the FLI’s forward model will generate observable fields
that are coherently shifted with respect to the truth. However, since all existing lensing
FLI models to date assume the Born approximation [24, 25, 35] and there does not yet
exist a forward model that captures post-Born effects, the resulting cosmological biases are
not well understood. Post-Born effects are less disruptive for two-point statistics, although
the corrections could still be measured for the highest multipoles of the shear and lensing
convergence power spectra at the level of sensitivity of future CMB lensing experiments and
galaxy surveys [27, 28, 33, 36–41]. Similar conclusions apply for cross-correlations between
CMB lensing and galaxy survey probes [42].

Weak lensing simulations typically capture post-Born effects using the multiple lens plane
(MLP) formalism [37, 43–45], which has been widely applied in many studies [31, 32, 41, 46–
54] Our new HRT formalism improves upon the MLP method in ways that enable new
cosmological analysis methods. First, whereas MLP deflects photons only by the gravitational
potential gradients instantaneously at a lens plane, HRT utilizes the gravitational potential
of the entire simulated volume without the thin-lens approximation, a feature known as three-
dimensional ray tracing [43, 55–58]. Second, the MLP algorithm requires initially running an
N-body simulation, storing its time steps (called snapshots), preparing the density field on the
light cone in mass shells, and finally accumulating the convergence fields backward in time.
This multi-step process decouples ray tracing from the N-body simulations, complicating
implementation when varying cosmology and introducing computational overhead in terms of
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data storage and transfer. Our HRT method performs ray tracing on-the-fly by co-evolving the
light rays with the matter particles. The physics and the time-stepping of the rays are tightly
synchronized with the N-body simulation and subject to the same cosmological model, thereby
eliminating the need for data storage. Refs. [56, 57]’s algorithm performs three-dimensional
ray tracing on-the-fly, but ignore post-Born effects and lack differentiability and other features
listed below. Third, FLI requires that the observable fields be differentiable with respect to
all cosmological parameters and the initial conditions of the background N-body simulation.
Partly because of the multi-step process, current MLP codes are not differentiable. HRT
formalism leverages a combination of automatic differentiation routines in JAX and variational
equation to achieve efficient differentiation with respect to all parameters of interest. Fourth,
MLP typically uses Kaiser-Squires algorithm [37] or finite-difference [45] methods to compute
lensing observables, which could suffer from numerical instability. As we shall see, since
most lensing observables are defined in terms of derivatives of the photon trajectory with
respect to its initial position, and our new methods are differentiable, we can calculate these
observables by direct differentiation. Fifth, unlike MLP which approximates the total lensing
deflection as a Riemann sum over the radial comoving space, HRT solves each photon’s (light
ray’s) equations of motion (EOMs) using a highly stable and accurate symplectic integrator.
This provides a systematic way to correct for the finite time-resolution of the snapshots.
Finally, MLP implementations do not currently leverage hardware accelerators while HRT is
implemented on both CPUs and GPUs. Moreover, on-the-fly ray-tracing is particularly suited
for GPU applications since GPU-based N-body simulations are already memory limited and
cannot afford to store snapshots and post-process them later into shear maps.

The paper is organized in the following way. We first review the Hamiltonian formulation
of the photon dynamics in a gravitational field in section 2. Next, we discretize the EOMs to
construct a symplectic integrator for the photons’ trajectories in section 3. Once we have the
trajectories, we construct an algorithm that calculates the weak lensing observables along the
light path in section 4. We discuss an efficient implementation of the algorithm in section 5,
and test the algorithm for point mass deflection and weak lensing maps in cosmological
volumes in section 6. We conclude in section 7.

2 Hamiltonian dynamics of light rays

In post-Born ray tracing, the trajectories of photons are deflected by the large-scale structure.
Consequently, it is not known a priori if a photon emitted by a source will reach the observer.
The core idea of HRT is to evolve both light rays (from its observed position on the image
plane, denoted by θ0) and the matter particles (from their displacements and velocities at
today) backward in time in an N-body simulation1 The light ray EOMs are reversible once
we describe them with Hamiltonian dynamics, which we then implement numerically using
symplectic integration. This approach involves three parts: constructing the spacetime metric
with gravitational perturbations, defining the photon’s Hamiltonian using this metric, and

1We can backward evolve the dark matter particles by reversing the time variable in their EOMs. Table 2
of ref. [8] has shown that both the positions and velocities of the dark matter particles can be recovered
to high accuracy across different simulation configurations in pmwd when the EOMs are solved with a
symplectic integrator.
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finally, solving Hamilton’s equations. We only motivate the results in this section and leave
the detailed derivations to appendix A.

Let us parameterize spacetime with conformal time τ and comoving spatial coordinates
x. On scales smaller than the cosmic horizon, the matter density contrast δ(x, τ) sources
a gravitational potential field Φ(x, τ) via Poisson’s equation,

∇2Φ(x, τ) = 3
2

ΩmH2
0

a(τ) δ(x, τ) , (2.1)

where the gradient (unless specified) is with respect to the comoving coordinates. Here, a,
Ωm, and H0 represent the scale factor, matter fraction, and Hubble parameter, respectively.
The potential Φ(x, τ) perturbs the otherwise homogeneous and isotropic Friedmann-Lemaître-
Robertson-Walker metric, given by

ds2 = −a2
(
1 + 2 Φ

c2

)
dτ2 + a2hijdxidxj (2.2)

≡ −a2
(
1 + 2 Φ

c2

)
dτ2 + a2

(
1− 2 Φ

c2

)
(r2dθ2 + dχ2) , (2.3)

for i = 1, 2, 3. r and χ are the transverse and radial comoving distances, respectively, and
r = χ in a flat universe. We parameterize the sky under the flat-sky approximation with
angular coordinates, i.e., x = (θ, χ).

Now, consider a photon. The general relativistic covariant Hamiltonian of a photon
is given by

H(xj , pi, τ) = c
√

hijpipj

(
1 + 2 Φ

c2

)
, (2.4)

where pi is the momentum one-form [59]. The EOMs of the photon are solutions to Hamilton’s
equations. The results are (see detailed proof and discussion in appendix A; ref. [59] also
derives a similar result albeit with a different parameterization of the image plane)

dθ

dχ
= − η

r2 , (2.5)

dη

dχ
= 2

c2
∂Φ
∂θ

, (2.6)

dτ

dχ
= −1

c

(
1− 2 Φ

c2 + η2

2r2

)
, (2.7)

where we have defined the conjugate momentum

η = rv

c
, (2.8)

and v is the transverse peculiar velocity of the photon. Eq. (2.5) is simply a geometric
relation in the deflection tangent: −rdθ/dχ = v/c. The second and third terms in eq. (2.7)
correspond to the Shapiro and the geometric time delay, respectively. θ has the unit of angle
while η has the unit of length.2 The initial conditions are given by

θ(χ0) = θ0 , η(χ0) = 0 , χ0 = 0 . (2.9)
2They are actually conjugate variables in a separable Hamiltonian and relates to the Fermat action as

shown in appendix B. In fact, the time delay terms can also be seen easily from the separable Hamiltonian.

– 4 –



J
C
A
P
1
0
(
2
0
2
4
)
0
6
9

To arrive at these EOMs, we have used the flat-sky (small angle) approximation, kept Φ/c2,
∇Φ/c2, and assumed (v/c)2 is of O(Φ/c2). We have also used the comoving distances instead
of conformal time to parameterize the photon trajectory. The two are related by eq. (2.7),
where the second term is the Shapiro time delay. However, we will not consider the time
delay correction in our study.

3 Symplectic ray tracing

3.1 Equations of motion in discrete time

So far, we have derived the EOMs for photons in angular coordinates and conjugate momenta
using the Hamiltonian formalism. We now introduce a second-order symplectic integrator to
integrate these EOMs and trace the photons’ trajectories. A symplectic integrator advances
the equations of motion in discrete time steps, each of which preserves the mathematical
structure of the Hamiltonian. As such, a symplectic integrator maintains the long-term
behavior of the particle’s motion. Symplectic integrators have been widely used in cosmological
simulations and achieve superior accuracy compared to other integration methods of the
same or even higher orders [60–62].

In this work, we utilize the kick-drift-kick (KDK) integrator, also known as the velocity
Verlet method [63]. We will only sketch out the key ideas here, and leave a more detailed
analysis of the integrator to appendix B. The KDK integration scheme operates by decom-
posing each integration step of the EOMs, ∆χ, into three consecutive stages, updating either
the positions or the momenta at a time. Initially, we update η for a half time step (∆χ/2),
leaving θ unchanged (the first kick). Next, we update θ for a full time step (∆χ), while
keeping η unchanged (the drift stage). Finally, we apply another half time step update to
η to complete the integration (the second kick).

To implement this integration scheme, we configure the time steps in our simulations
as follows. We perform ray tracing while evolving the N-body simulation backward in time.
Light is traced from the observer’s position at χ = 0 and τ = τ0, towards the light source
at χs > 0 and τ = τ0 − χs/c. We define a series of lens in mass shells perpendicular to the
main line of sight, labeled by the subscript n, with n = 0 at the observer and n = s at the
source. The lens shells are determined by the time stepping of the forward simulation itself,
with each shell sandwiched between the light fronts at two consecutive time steps, and the
n-th shell’s midpoint labeled by n + 1/2. With this set up, we can now integrate the EOMs
iteratively via (see appendix B for derivation and error analysis)

ηn+1/2 = ηn + Kn+1/2
n (θn, χn) , (3.1)

θn+1 = θn + Dn+1
n (ηn+1/2, χn+1/2) , (3.2)

ηn+1 = ηn+1/2 + Kn+1
n+1/2(θn+1, χn+1) , (3.3)

where

Kb
a(θc, χc) = −2

c

∫ χb

χa

dχ r(χ)∇⊥Φ(xc, τ(χ)) , (3.4)

Db
a(ηc, χc) ≃ ( ηc

cr2
c

)(χb − χa) , (3.5)
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are the kick and the drift factors, and ∇⊥ ≡ r−1∇θ denotes the gradient with respect to
the transverse comoving coordinates. Note that the traditional velocity Verlet algorithm
typically approximates the first kick operator in eq. (3.1) as 1

2K
n+1/2
n−1/2 (θn, χn). The proposed

iteration thus provides a better comoving space (time) resolution.

3.2 Time resolution correction

Eq. (3.4) updates light ray’s conjugate momenta by integrating the time-evolving ∇⊥Φ(x, τ(χ))
along their trajectories. In practice, we derive ∇⊥Φ(x, τ(χ)) from the forces in N-body
simulation, at discrete time steps often referred to as “snapshots”, say at τ(χc). If each time
step is small, we can approximate the growth of the matter structure using

Φ(x, τ(χ)) = Φ(x, τc)
D1(τ)
D1(τc)

a(τc)
a(τ) , (3.6)

where D1 is the linear growth function, τ = τ(χ), and τc = τ(χc). Using this correction,
eq. (3.4) becomes

Kb
a(θc, χc) = −2

c

∫ χb

χa

dχ r(χ)∇⊥Φ(xc, τ) D1(τ)
D1(τc)

a(τc)
a(τ) . (3.7)

4 Weak lensing observables

In section 3, we worked out the trajectories of the photons. We now aim to construct
observable maps on the image plane using these photon trajectories. Most cosmological
observables O can be written as line-of-sight integrals along the light path,

O(θ) =
∫

θ(χ)
dχ P (χ)Q(x, τ(χ)) , (4.1)

where P is the line-of-sight kernel, and Q is any cosmological field. Examples include
weak lensing distortions, the galaxy density, the Sunyaev-Zel’dovich effects, the integrated
Sachs-Wolfe effect, and the dispersion measure [57, 64, 65]. Here, we focus on weak lensing
and develop an efficient and accurate algorithm for computing the convergence, shear, and
rotation maps.

We begin with the distortion matrix A, which characterizes the lensing effect of an
object at source χ,

A(χ) = ∂θ(χ)
∂θ0

. (4.2)

A can be decomposed into the product of a rotation and a shear matrix:3

A =
(

cos ω sin ω

− sin ω cos ω

)(
1− κ− γ1 −γ2
−γ2 1− κ + γ1

)
. (4.3)

The convergence κ, shear γ, and rotation ω are the primary weak lensing observables. Since
ω is orders of magnitude smaller than κ and γ, we solve for the observables in terms of

3Omitting χ for clarity.
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the entries of A keeping ω to first order,
κ = 1− C1 , γ1 = C3 + C4 ω ,

ω = C2
1− κ

, γ2 = −C4 + C3 ω ,
(4.4)

where 
C1 = A11 + A22

2 , C3 = A22 −A11
2 ,

C2 = A12 −A21
2 , C4 = A12 + A21

2 .

(4.5)

Finally, going back to eq. (4.1), the line-of-sight kernel P is the normalized galaxy density
distribution ng(χ), and Q is either κ, γ, or ω.

Past works have computed these observables using either the Kaiser-Squires inversion [37]
or finite differences [45, 57]. However, the former is sensitive to boundary conditions and
the latter can induce numerical instability. We propose a new algorithm that computes the
observable maps via direct (forward-mode) differentiation of eq. (4.2), which is convenient
to implement in our framework using JAX automatic differention.

The main idea is to decompose An,4 as chained products of Jacobian matrices for time
steps n′ < n. Differentiating the discretized EOM in eq. (3.2) with respect to the initial
ray position using the chain rule,

∂θn+1
∂θ0

= ∂θn

∂θ0
+ ∂Dn+1

n

∂ηn+1/2

∂ηn+1/2
∂θ0

= ∂θn

∂θ0
+ ∂Dn+1

n

∂ηn+1/2

(
∂ηn

∂θ0
+ ∂K

n+1/2
n

∂θn

∂θn

∂θ0

)
(4.6)

Using the helper function

B(χ) = ∂η(χ)
∂θ0

, (4.7)

we can then rewrite eq. (4.6) as an iteration,

Bn+1/2 = Bn + ∂K
n+1/2
n

∂θn
An , (4.8)

An+1 = An + ∂Dn+1
n

∂ηn+1/2
Bn+1/2 , (4.9)

Bn+1 = Bn+1/2 +
∂Kn+1

n+1/2
∂θn+1

An+1 , (4.10)

with the initial conditions (for each photon),

A0 = I2×2 , B0 = O2×2 . (4.11)

Here, I and O are the identity and the zero matrices, respectively. We compute the iterations
for A and B while calculating the trajectories of the photons. Each A and B iteration

4We use the subscript n to denote observables computed at χn, e.g., A(χn) = An.
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step is a Jacobian-vector product, allowing us to calculate them automatically using the
forward differentiation in JAX, with minimal computational and memory overhead. Finally,
we accumulate the observables by

O =
∑

n

ng(χn) On , (4.12)

where On ∈ {κn, γn, ωn}.

5 Implementation

5.1 Efficient dark matter and photons co-evolution

In this section, we propose an implementation of the HRT algorithm that co-evolves the dark
matter particles and light rays.5 This implementation only incurs minimal computational
overhead compared to evolving the dark matter particles alone. The HRT algorithm is appli-
cable to all numerical simulations of structure formation, and particularly so to differentiable
ones. Specifically, we have implemented it atop the pmwd library, which offers a differentiable,
fast, and memory-efficient particle mesh-based dark matter simulation [8, 9].

Let us first evolve a dark matter distribution from the initial condition to a = 1 where
the observer is. To start ray tracing, we first initialize the rays on a uniform grid representing
the pixels (of size µ2D; table 1 lists the mesh variables in this section) on the image plane
at a = 1. To simplify our discussion, we will focus on tracing a single ray. The actual
implementation parallelizes trivially across all the rays since there are no interactions between
them. We use PP to denote the state (position and momentum) of this ray and PDM to
represent the state of all the dark matter particles. We co-evolve the matter particles and
the light rays backward in time as described in algorithm 1. At each time step, we compute
the potential gradient ∇⊥Φ on the 3D mesh. We then use ∇⊥Φ to first evolve the dark
matter particles (nbody_reverse_step in algorithm 1, [8]) backward in time and then to
integrate the ray’s EOMs via the KDK integrator (section 3).

The most computationally expensive operation in the simulation is to calculate ∇⊥Φ
via the Fast Fourier Transform (FFT) [8]. Algorithm 1, however, only requires ∇⊥Φ to be
calculated once per time step. The extra computation is either in 2D or on a thin shell of 3D
field (e.g., the computation of the kick operator as detailed below in section 5.2), and thus is
negligible compared to the 3D work load already done by the gravity solvers.

5.2 The kick operator

In a particle mesh (PM)-based N-body simulation, we first compute the gravitational force
field on a 3D mesh and then interpolate this force onto particle positions. Similarly, we
compute the force on light rays (in the kick operator, Kb

a(θc, χc) in eq. (3.7), where θc is the
position of the ray at the integration step) using the PM method. Our algorithm achieves
this using 3 meshes/arrays: a 3D particle mesh covering the entire simulation volume with
resolution l3D and coordinates x3D, a 2D array of rays covering the image plane with angular

5Each ray (bundle) is defined as the collection of photons observed in the same pixel on the image plane.
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procedure raytracing(PP ,PDM , ng)
A← I2×2 , B ← O2×2
[κ , γ1 , γ2 , ω]← 0
a← 1
while a ≥ amin do ▷ ray-trace backward in time to amin

∇⊥Φ← PDM
PDM ← nbody_reverse_step(PDM , ∇⊥Φ) ▷ Evolve dark matter backward [8]
PP ← kick(PP , ∇⊥Φ) ▷ eq. (2.5)
B ← iterate_B(PP , A , B , ∇⊥Φ) ▷ eq. (4.8)
PP ← drift(PP) ▷ eq. (2.6)
A← iterate_A(PP , A , B) ▷ eq. (4.9)
PP ← kick(PP , ∇⊥Φ) ▷ eq. (2.5)
B ← iterate_B(PP , A , B , ∇⊥Φ) ▷ eq. (4.10)
κ , γ1 , γ2 , ω ← observe(A , ng , κ , γ1 , γ2 , ω) ▷ eqs. (4.4) and (4.12)
a← a−∆a

end while
return κ , γ1 , γ2 , ω

end procedure

Algorithm 1. Reverse-time co-evolution of dark matter and a single ray.

Variable Purpose/Definition
l3D 3D particle mesh comoving resolution
x3D 3D positions of particle mesh grid points
µ2D 2D ray spacing/pixel resolution on the image plane
θ0, θ 2D ray positions on the image plane and during ray tracing, respectively
ν2D 2D ray mesh resolution during ray tracing
θ2D 2D positions of ray mesh grid points during ray tracing

Table 1. Definitions of mesh and ray variables. The white rows define the resolution of meshes or
rays, while the light gray ones define their corresponding position vectors. The top two rows are for
the 3D particle mesh, on which the gravitational forces are computed. The middle two rows specify the
2D configuration of rays. And the bottom two rows describe the 2D ray mesh on which we interpolate
and transfer the transverse gravitational forces, from the 3D particle mesh and to the 2D ray positions.

resolution µ2D and coordinates θ0, and an intermediate 2D ray mesh transferring forces from
the first mesh to the second with angular resolution ν2D and coordinates θ2D.

We first evaluate the integrand of eq. (3.7) on the 3D mesh. For mesh points within the
lens plane (having comoving coordinates χa ≤ χ < χb), we calculate their projected angles,
then interpolate and accumulate their values onto the ray mesh using cloud-in-cell (CIC), or
trilinear, interpolation [66]. This process evaluates the kick operator line-of-sight integration
on the ray mesh, Kb

a(θ2D, χc). To account for the smoothing effect introduced by the CIC
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interpolation, we deconvolve Kb
a(θ2D, χc) in Fourier space as follows,

K̃b
a(k, χc)→ K̃b

a(k, χc) sinc
(kxν2D

2
)−4

sinc
(kyν2D

2
)−4

, (5.1)

where ·̃ denotes the Fourier space quantity and k is the wave vector. And the powers of -4 on
the sinc functions accounts for both the interpolation from the 3D particle mesh to the 2D
ray mesh, and that from the latter to the rays. To account for the finite width of the ray
bundle, we apply Gaussian smoothing on Kb

a(θ2D, χc) at the resolution

λlim = max
( 2 l3D

ra + rb
, µ2D

)
, (5.2)

by applying

K̃b
a(k, χc)→ K̃b

a(k, χc) exp
(1

2(k2
x + k2

y)λ2
lim

)
. (5.3)

Finally, we use CIC interpolation to map Kb
a(θ2D, χc) onto the positions of the rays, resulting

in Kb
a(θc, χc).

5.3 Adaptive ray mesh

Unlike the 3D mesh which has a fixed comoving resolution, an angle on the 2D mesh
corresponds to a comoving length that varies with the redshift. For example, at low z,
ν2Dχ(z)≪ l3D. As a result, a 2D ray mesh samples forces from the 3D particle mesh at a
much higher resolution the latter doesn’t offer. So maintaining a high resolution 2D mesh
at low redshift is both computationally inefficiency. Therefore, we employ an adaptive ray
mesh, where we progressively coarsen ν2D towards low redshifts. The choice of ν2D depends
on the 3D mesh resolution, pixel size, and efficient FFT sizes (including padding). Further
details and convergence tests are discussed in appendix C.

6 Validations

6.1 Lensing by a point mass

We test our ray tracing algorithm on the classic problem of gravitational lensing by a point
mass in a flat, static universe. The observer is positioned at χ = 0, with a lens mass
M = 1.3× 1015M⊙ (with an Einstein radius of θE = 1.8′, representative of a massive cluster)
at χl = 350 Mpc/h, and the source plane at χs = 850 Mpc/h (or zs ≈ 0.3). The theoretical
prediction for the deflection angle αtheory ≡ θtheory − θ0 is provided by [67]:

αtheory = χs − χl
χs

[
α̂ + 15π

4 α̂2 +O
(
α̂3
)] θ0
|θ0|

, (6.1)

where α̂ ≡ 4GM/(bc2) and b = χl |θ0| is the impact parameter. We solve the same problem
using HRT. We define a 3D mesh of size (256, 256, 512) with a resolution of 1.66 Mpc/h,
and an image plane spanning 256′ × 256′ with a pixel resolution of 1′. We initialize rays on
a uniform grid (θ0) at z = 0 and trace them to zs in 45 time steps. Panel (a) of figure 1
shows the deflection angle αHRT obtained via HRT.
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Figure 1. We apply HRT to the problem of point mass lensing as described in section 6.1, using
a 256× 256× 512 box with a mesh resolution l3D = 1.66 Mpc/h. We show αHRT in panel (a). For
a given l3D, the point mass angular resolution limit is θlim = 4 l3D/χl (see figure 2). We mask light
rays within this threshold where the potential field of the point mass lens is not well resolved. The
black circle indicates the Einstein radius θE. Panel (b) illustrates the relative error between αHRT
and αtheory. HRT achieves accuracy within < 0.5% for both configurations above the resolution limit.

The HRT result aligns with theoretical predictions with very high accuracy. We plot
the relative error on the image plane, defined by ϵ = |αHRT −αtheory|/|αtheory|, in panel (b)
of figure 1. HRT consistently achieves accuracy within 0.5% across the image plane where
the 3D mesh resolution is adequate. Specifically, we mask pixels within θlim = 4 l3D/χl,
where the potential field generated by the point particle cannot be clearly resolved due
to the finite resolution of the 3D mesh. A lower resolution mesh dampens the potential
field at the mesh scale, thereby suppressing αHRT near the lens mass. Figure 2 illustrates
ϵ for the M = 1.3 × 1015M⊙ case above as a function of θlim for two configurations with
different resolutions: l3D = 1.66 Mpc/h and 3.32 Mpc/h. These two configurations test HRT
in the weak field limit, where the Einstein radius θE ≪ θlim. As expected, for pixels falling
within θlim, αHRT is systematically lowered (figure 2, solid blue line). Halving the 3D mesh
resolution doubles θlim, but αHRT still demonstrates percent-level accuracy outside θlim and is
suppressed within it (figure 2, solid orange line). We also test HRT in a stronger gravitational
field by increasing M such that θE ≈ θlim. The result for the high and low resolution cases
are shown in dashed green and red lines in figure 2, respectively. In general, we find the
definition of θlim serves as a robust and universal threshold to characterize the accuracy
of HRT regardless of l3D and M . This also shows that HRT is accurate as long as the
3D mesh resolution is sufficiently high. The accuracy of HRT also weakly depends on the
resolution and boundary conditions of the ray mesh, as well as the number of time steps.
We characterize these effects in appendix D.
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Figure 2. Relative error of αHRT versus |θ0| (in unit of θlim) for two different 3D mesh resolutions
and two different lens masses. The low and high mass cases are shown in solid and dashed lines,
respectively, with their masses represented in terms of their Einstein radiuses θE. We observe a
universal relationship between the accuracy and |θ0|/θlim. HRT maintains sub-percent accuracy
beyond θlim, demonstrating that mesh resolution is the primary determinant of accuracy.

6.2 Post-Born weak lensing in a cosmological volume

We use the HRT algorithm to perform ray tracing over a cosmological volume and study the
statistics of weak lensing observables. Throughout this paper, we adopt the Planck 2015
cosmology [68]. This cosmology also underpins the κTNG simulations [50] and the lensing
forward model by ref. [24], with which we compare our results. The κTNG simulations
are obtained by post-processing the higher resolution dark matter-only TNG300-1-Dark
simulations (hereafter TNG-Dark) using the MLP ray tracing algorithm [50, 69–73]. Ref. [24]
constructed weak lensing convergence maps with PM simulation using the Born approximation.
The main purpose of this paper is to present the HRT algorithm itself; we will focus on power
spectrum recovery here and leave detailed higher-order statistics analysis for a future work.

Our fiducial results are obtained using a 512× 512× 512 simulation box with a particle
spacing of 0.4 Mpc/h and a mesh spacing of 0.4 Mpc/h. We first evolve the particles from
initial condition to a = 1/64 using 2nd-order Lagrangian perturbation theory. We then
simulate the gravitational interaction using the PM algorithm from a = 1/64 to today in 64
time steps.6 From there, we perform ray tracing back to zs = 1.034 across 30 time steps. The
lens distirbution is the entire density field in the simulation, and the source distribution is a
Dirac delta distribution at zs. The image plane spans 205′×205′; it includes 1024×1024 pixels
with a 0.2′ pixel size. The size and resolution of our simulation box are constrained by the
memory capacity of the GPU.7 Consequently, we do not yet have the hardware capability to
conduct ray tracing within a single, monolithic simulation box. Instead, we tile our past light

6This choice differs from ref. [24]’s, who seeds the initial condition at a = 1/7.
7For this test, we use a H100 NVL GPU on the Vera cluster at the Pittsburgh Supercomputing Center.
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Figure 3. Convergence (κ) maps generated using the HRT algorithm on a cosmological simulation.
The left panel shows the κ map derived from a density field evolved using the standard PM gravity
solver. The right panel illustrates the κ map derived from the same initial cosmological conditions
but evolved using the PM algorithm enhanced with the spatial optimization (SO) gravity solver, that
sharpens the convergence peaks compared to the regular PM.

cone by replicating the snapshots 12 times, each modified by a random translation and rotation
along the three spatial axes. This tiling strategy, extensively studied in ref. [74], can produce
104 independent realizations of weak lensing power spectra and peak statistics with even a
single snapshot. This process has been used in many weak lensing mocks including the κTNG
simulations [50]. An example of our ray-traced κ map is shown in the left panel of figure 3.
We run 50 independent simulations and present the distribution of CHRT

ℓ along with its
comparison to theory (black, solid) and CκTNG

ℓ (black, dashed) in the top and bottom panels
of figure 4 (in blue). The plot shows that CHRT

ℓ aligns with CκTNG
ℓ within 20% for ℓ < 800

and within 30% for ℓ < 1200. CHRT
ℓ is suppressed on the large scale because our simulation

box is small and can only include a limited number of large-scale modes. However, the amount
of deficit in power is consistent with the result CκTNG

ℓ and the results in obtained by ref. [24]
who performed lensing simulation using the same simulation volume. We also observe CHRT

ℓ

to be suppressed at high ℓ’s. This is because the PM gravity solver cannot accurately resolve
gravitational interactions at the mesh scale. This result is comparable to the “DLL without
correction” analysis in ref. [24], who recovers lensing Cℓ up to ℓ ≈ 300 compared to CκTNG

ℓ .
We recover Cℓ over a larger ℓ range because of the finer mesh size used in the present work.

Next, we explore the potential of recovering the convergence power spectrum at higher ℓ

ranges by extending the regular PM gravity solver to smaller scales with a spatial optimization
(SO) algorithm that sharpens the PM forces near the mesh scale [75]. In Fourier space,
the gravitational force is proportional to (k/k2)δ(k). SO modifies the Fourier force kernel
by a nonlinear function g:

k

k2 →
k

k2 g(k; ϑ) , (6.2)
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Figure 4. The top panel shows the distribution of the convergence power spectra obtained by ray
tracing through cosmological simulations using HRT. The bottom panel shows the relative error
compared to theory (black, solid) for the same cosmology and n(z). The κTNG results are shown
in black, dashed lines for comparison. Simulations where gravity is solved using the standard PM
method are depicted in blue, while those using the PM enhanced with the spatial optimization (SO)
force-sharpening method are shown in orange. The HRT and the κTNG Cℓ’s are similarly suppressed
at low ℓ’s because of the finite simulation box size and the lack of large-scale modes. The HRT results
align with κTNG at large scales but are suppressed at smaller scales since PM methods cannot resolve
interactions at or below the mesh resolution. Enhancing PM with SO mitigates this issue and extends
CHRT

ℓ to higher ℓ’s. For the PM+SO result (where the redshift distribution is a delta function at the
same redshift, z = 1.034, as the κTNG lensing map), CHRT

ℓ agrees with CκTNG
ℓ to within 10% for

ℓ < 800 and 15% for ℓ < 1200, where ℓ = 1200 is marked by the vertical dotted line.

where ϑ includes cosmological parameters and simulation configurations. We implement
g using symmetry-preserving neural networks, which are trained to align the PM+SO
simulations with the GADGET-4 [62] simulations across a wide range of cosmologies and
simulation configurations. As illustrated in figure 5, SO boosts the small-scale P (k) compared
to the regular PM algorithm for k > 1h/Mpc, though still slightly lower than the halofit [76]
predictions. We run HRT simulations under the same settings as previously discussed but
integrate SO with the same initial conditions. An example κ map, shown in the right panel
of figure 3, indicates that SO indeed sharpens the small-scale fluctuations compared to the
regular PM simulations. The distribution of power spectra with SO is displayed in figure 4
in orange. SO consistently improves the convergence power spectrum at all scales, but is
especially helpful at high ℓ’s. CHRT

ℓ agrees with CκTNG
ℓ to within 10% for ℓ < 800 and 15%

for ℓ < 1200. In general, the maximum ℓ at which we can recover Cℓ depends on the 3D
mesh resolution l3D and the shape of the lensing kernel. Empirically, we find this scale to
be approximately ℓ ≈ ℓlim

16 ≈ 1200 for zs = 1.034 when SO is applied (vertical dotted line
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Figure 5. Matter power spectrum at z = 0 with the regular PM solver (orange) and with PM +
spatial optimization (SO, blue). They are compared to the prediction of the Halofit model in red and
the linear theory in green. The shaded regions represent the standard error of the mean estimated
with 50 independent simulations. The simulation has 5123 particles with a 0.4 Mpc/h particle spacing.
SO corrects for the small-scale interactions between dark matter particles that are ignored by the
regular PM, boosting power at high-k.

in figure 4). We define ℓlim = π/
(

χ(zs)
2l3D

)
, since χ(zs)

2l3D
is the angular scale of the 3D mesh

at the radial comoving distance where the lensing kernel has the most sensitivity. More
generally, when the source distribution is not a delta function, the denominator of ℓlim should
be similarly approximated by the distance to the peak of the lensing kernel.

We anticipate that higher mesh resolution and stronger force-sharpening effects will
enable CHRT

ℓ to reach even smaller scales, which is potentially achievable when larger GPU
memory becomes accessible in the future. We also conduct convergence tests with varying
HRT hyper-parameters in appendix E.

7 Conclusions

We have presented a post-Born, three-dimensional, on-the-fly ray tracing algorithm based on
the Hamiltonian dynamics of light rays. This method, termed Hamiltonian ray tracing (HRT),
includes the lens-lens coupling and does not assume the Born approximation. Additionally,
HRT deflects photons based on the gravitational potential generated by the entire cosmological
volume, not just that within a single lens plane. HRT also performs ray tracing on-the-fly.
As a result, it integrates well with any gravity solver and computes light ray trajectories
and lensing observable maps with minimal computational overhead compared to running
the gravity solver alone. We implemented HRT using the pmwd library on a GPU platform,
demonstrating its accuracy and limitations both for point mass lensing and in generating
convergence maps and power spectra for dark matter simulations. For point-mass lensing,
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HRT yields deflection angles accurate to sub-percent levels above the resolution limit. When
applied to cosmological simulations using the standard PM gravity solver with a 0.4 Mpc/h

particle spacing, HRT generates lensing convergence maps whose power spectrum aligns
with the fiducial κTNG results to within 20% of CκTNG

ℓ for ℓ < 800 and 30% for ℓ < 1200.
Extending the PM with small-scale force-sharpening method (SO) enables recovery of Cℓ to
within 10% of CκTNG

ℓ for ℓ < 800 and 15% for ℓ < 1200. Future works could extend the tests
to other scenarios, such as lensing by compensated black holes in an evolving cosmological
setting [77] or different weak lensing statistics paired with various redshift distributions.

While HRT should work with any simulation of structure formation, its implementation
is particularly easy in frameworks with automatic differentiation capability, such as pmwd
which is based on JAX. The forward mode in automatic differentiation helps to co-evolve the
lensing observables, such as cosmic shear, with the light ray deflections, since the Jacobian
of the latter involves the former. On the other hand, we would also need the reverse-mode
differentiation to compute the likelihood gradient, for example, in FLI applications that
involve Hamiltonian Monte Carlo. Automatic reverse-mode differentiation through the
whole simulation can be extremely memory consuming, and the adjoint method [8] has been
introduced to obtain memory-efficient gradients. The same method can be applied to HRT,
which we leave for future development.

The accuracy of HRT is primarily limited by the mesh resolution and the precision of
the gravity solver at small comoving scales. If we assume that the smallest scale at which
the gravity solver is accurate is kmax ∝ l−1

3D, and that the smallest angular scale at which
HRT is accurate is ℓmax ∝ l−1

3D, then ℓmax ∝ kmax. For the current generation of weak lensing
surveys like HSC, ℓmax ≈ 1800 [78], about 2 times higher than the ℓ limit we achieve here.
To bridge the gap between simulation and observational data, future work could extend the
SO framework to push kmax above 5 h/Mpc where baryonic effects also becomes important.
Alternatively, increasing the resolution of the cosmological simulation by two or three-folds,
which could be achieved by parallelizing the PM code and the HRT algorithm across multiple
GPU devices or nodes, may also prove equally effective.

The HRT algorithm empowers cosmological analysis in several ways. HRT can quickly
generate cosmology-dependent ray tracing shear maps, making it suitable for training machine
learning models for simulation-based inference. It can help establishing the connection
between cosmology and higher-order statistics in a data-driven manner and aid in estimating
cosmology-dependent covariance matrices for summary statistics analyses. As a differentiable
ray tracing algorithm, HRT also enables field-level inference that accounts for post-Born
effects. While this work focuses on the algorithm and its implementation, future studies could
extend this discussion with a detailed analysis of higher-order statistics in the convergence
maps simulated by HRT. Additionally, optimizing the differentiation of HRT through the
adjoint method could make it more memory-friendly in field-level inference applications.

Code availability. pmwd is open-source on GitHub (https://github.com/eelregit/pmwd).
The ray tracing feature will be made available in that repository after code cleaning, including
the source files and scripts of this paper (https://github.com/eelregit/pmwd/tree/ma
ster/docs/papers/hrt).
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A Hamiltonian dynamics of photons lensed by weak gravitational field

In this section, we derive the EOMs in eqs. (2.5)–(2.7) from the Hamiltonian principle.
Although the procedure is similar to that of ref. [59], we employ a different metric and
present the derivations in full detail. These details, not included in ref. [59], may prove
helpful to some readers.

The general relativistic covariant Hamiltonian for a photon is given by eq. (2.4) and
copied here:

H(xj , pi, τ) = c
√

hijpipj

(
1 + 2 Φ

c2

)
. (A.1)

The photon’s EOMs are given by Hamilton’s equations

dxi

dτ
= {xi, H} = ∂H

∂pi
, (A.2)

dpi

dτ
= {pi, H} = −∂H

∂xi
, (A.3)

which we will solve explicitly. The time derivatives of position and momentum are

1
c

dxj

dτ
= ∂

√
hklpkpl

∂pj

(
1 + 2 Φ

c2

)
= hkl

2p

(∂pk

∂pj
pl + ∂pl

∂pj
pk

)(
1 + 2 Φ

c2

)
= nj

(
1 + 2 Φ

c2

)
. (A.4)

1
c

dpj

dτ
= −2p

∂jΦ
c2 −

pkpl∂jhkl

2p

(
1 + 2 Φ

c2

)
= −p

[
2∂jΦ

c2 + nknl∂jhkl

2
(
1 + 2 Φ

c2

)]
, (A.5)

where the unit momentum vector ni is

ni ≡ pi

p
= pi√

hijpipj

. (A.6)

ni is the most important dynamical variable in ray-tracing. To explicitly derive its EOM,
we express its time dependence in those of the two independent variables pi and xj , and
consider the following expansion

1
c

dni

dτ
= 1

c

d

dτ

(pi

p

)
= ∂(pi/p)

∂pj

1
c

dpj

dτ
+ ∂(pi/p)

∂xj

1
c

dxj

dτ
. (A.7)
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The first term becomes

∂(pi/p)
∂pj

1
c

dpj

dτ
= 1

c

dpj

dτ

(hik

p

∂pk

∂pj
− pi

p2
∂p

∂pj

)
= 1

c

dpj

dτ

hij − ninj

p

=
[
−2∂jΦ

c2 −
nknl∂jhkl

2
(
1 + 2 Φ

c2

)]
(hij − ninj) . (A.8)

Meanwhile, the second term becomes

∂(pi/p)
∂xj

1
c

dxj

dτ
= 1

c

dxj

dτ

(pk

p
∂jhik − pi

p2 ∂jp
)

= 1
c

dxj

dτ

(
nk∂jhik − 1

2ninknl∂jhkl
)

=
(
njnk∂jhik − 1

2ninjnknl∂jhkl
)(

1 + 2 Φ
c2

)
. (A.9)

Putting the two terms together,

1
c

dni

dτ
= −2∂jΦ

c2 (hij − ninj)− nknl∂jhkl

2
(
1 + 2 Φ

c2

)
(hij −���ninj )

+
(
njnk∂jhik −

��������1
2ninjnknl∂jhkl

)(
1 + 2 Φ

c2

)
= −2∂jΦ

c2 (hij − ninj)− hijnknl∂jhkl

2
(
1 + 2 Φ

c2

)
+ njnk∂jhik

(
1 + 2 Φ

c2

)
. (A.10)

It turns out that we can simplify the last two terms, because

−1
2hijnknl∂jhkl + njnk∂jhik = 1

2hijnknl∂jhkl − hilnjnk∂jhkl

= 1
2hilnjnk(∂lhjk − 2∂jhkl)

= −1
2hiln(jnk)(∂jhkl + ∂khjl − ∂lhjk)

= −Γi
jknjnk , (A.11)

where we have used ∂jhik = −hilhkm∂jhlm in the first equality, swapped j and l in the (first
term of the) second one, symmetrized j and k in the third, and reduced the metric derivatives
to the Christoffel symbol Γi

jk at last. With the result above, we can simplify dni/dτ as follows

1
c

dni

dτ
= −2∂jΦ

c2 (hij − ninj)− Γi
jknjnk

(
1 + 2 Φ

c2

)
, (A.12)

which agrees with the result in [59].
We are now ready to derive the EOMs of a photon. Until this point, we have not enforced

any specific metric on the EOMs. We now select the metric in eq. (2.3) with coordinates
x = (θ, χ). Here, we assume small angle approximations such that sin2(θ) ≈ 1. The unit
momentum vector in this coordinate system is then

n =
[ v

cr
,−1 +O

(v2

c2

)]
, (A.13)

where the first term can be viewed as the normalized peculiar angular velocity on the sky,
with v being the 2D transverse peculiar velocity. We shall work in the limits of weak fields
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and small angles, which corresponds to first order in Φ/c2, ∇Φ/c2, and v/c. The nonzero
Christoffel symbols are

Γ1
13 = Γ1

31 = Γ2
23 = Γ2

32 = r′

r
, Γ3

11 = Γ3
22 = −rr′ , (A.14)

where ′ denotes derivative with respect to χ. We have omitted corrections of O(∇Φ/c2)
because the Christoffel symbol only appears in the expression Γi

jknjnk(1+2Φ/c2), and always
pairs with at least one O(v/c) term. Taking time derivatives of ni for i = 1, 2, we obtain

1
c

dni

dτ
= 1

c2r

dvi

dτ
− vi

c2r2
dr

dτ
(A.15)

Consider i = 1 of the ni EOM:
1
c

dn1

dτ
= 1

c2 (−2h11∂1Φ + 2n1n1∂1Φ + 2n1n2∂2Φ + 2n1n3∂3Φ)− 2Γ1
13n1n3

(
1 + 2 Φ

c2

)
≃ −2 ∂1Φ

c2r2 + 2v1r′

cr2 . (A.16)

The general case follows similarly by symmetry:

1
c

dni

dτ
= −2 ∂iΦ

c2r2 + 2vi

c

r′

r2 , (A.17)

where we ignore the potential and its gradient terms since they are higher order corrections
(while more generally hij − ninj projects in the transverse direction of ni). Comparing this
with the above equation, and approximating cdτ ≈ −dχ by ignoring time delay correction
of O(Φ/c2) and O(v2/c2), we derive

dηi

dχ
≡ d(rvi/c)

dχ
= rvi′ + r′vi

c
= 2∂iΦ

c2 = 2 1
c2

∂Φ
∂θi

. (A.18)

B Symplectic integrator

We have purposely written the EOMs in eqs. (2.5) and (2.6) using θ and η, in unit of angle
and length, respectively. Either from the Hamiltonian eq. (2.4) or from the EOMs, we see
that the system, under the assumptions above, admits a separable Hamiltonian

H̃(θ, η, χ) = η2

2r2︸︷︷︸
T

+ 2Φ(θ, χ)
c2︸ ︷︷ ︸
V

, (B.1)

where θ and η are the canonical coordinate and momentum, χ serves the function of time,
and T and V represent kinetic and potential energy. In fact, H̃ also follows from the Fermat
principle, and can be derived with Legendre transformation from the Lagrangian in the
Fermat action (see [59, 79, 80], especially for the continuous version in the former). This
allows us to decouple the effect of the kinetic and the potential energy and rewrite the
EOMs in eqs. (2.5) and (2.6) as

dθ

dχ
= {θ, T} ,

dη

dχ
= {η, V } , (B.2)

where {} is the Poisson bracket.
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Formally, we can integrate8 eq. (B.2) over the interval [χ, χ + ∆χ] by[
θ

η

]
(χ + ∆χ) = e(T +V )∆χ

[
θ

η

]
(χ) . (B.3)

Since the EOMs of θ and η are coupled together, we cannot solve them individually. The
KDK integrator utilizes the Baker-Campbell-Hausdorff identity to approximate this evolution
operator as the product

e(H+H̃err)∆χ = eV ∆χ
2 eT ∆χeV ∆χ

2 (B.4)

where H̃err denotes the approximation error, which is second order in ∆χ [63]. Eq. (B.4)
shows that we can decompose each ∆χ integration at each time step into three consecutive
steps, each updating only either the position or the momentum variables. eV ∆χ is termed a
kick operator since it updates η and leaves θ unchanged, while eT ∆χ is called a drift operator
since it updates θ and leaves η unchanged.

C Adaptive ray mesh

The 2D array of light rays is characterized by its pixel size µ2D, i.e. their spacing at z = 0, and
the number of pixels Mx,y. In order to interpolate and transfer the PM forces from the 3D
mesh to the rays, we need another intermediate 2D angular mesh of resolution ν2D and size
Nx,y. We call it the ray mesh (and likewise the 3D mesh particle mesh), as explained in table 1.

Generally, ν2D ≤ µ2D and Nx,y > Mx,y. Our adaptive ray mesh needs to address two
problems: 1) we need to vary the 2D mesh resolution ν2D as a function of χ (section 5.3)
and 2) we need to add padding to the ray mesh. Padding is crucial for accurate smoothing
and deconvolution in the computation of the kick operator, as it alleviates the effects of
periodic boundary assumptions inherent to FFT.

A 3D mesh cell at χ corresponds to an angular size l3D/r(χ). Therefore, for a lens plane
that spans [χa, χb], we define the angular resolution limit λlim as in eq. (5.2):

λlim = max
( 2 l3D

ra + rb
, µ2D

)
, (C.1)

in which the former dominates near the observer as limited by the PM force resolution, and
the latter takes effect at early times. Let us fix the ray mesh spacing as

ν2D = ιλlim , (C.2)

where 0 < ι ≤ 1 is an accuracy parameter. The smaller ι is, the finer the ray mesh. Take
the x-direction for example, we want

Nxν2D ≥Mxµ2D + pminλlim , (C.3)

where pmin is the minimum padding width in unit of λlim. The above conditions reduce to

Nx =
⌈
Mx

µ2D
ν2D

+ pmin
ι

⌉
FFT

, (C.4)

where we round up the mesh size to an integer that is efficient for FFT, e.g. powers of
2, while also saving the number of compilations that can affect JAX performance. The
y-dimension follows accordingly.

8Here, for an operator A and a vector v, we use the shorthand Av = {v, A}.
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Figure 6. Relative error of αHRT versus θlim as a function of the number of HRT integration steps
used for a point mass lensing task. This figure is to be compared to the blue line in figure 2 which has
the same experimental setup with 45 integration steps.

D Other considerations and convergence tests for point mass lensing

In the context of point mass lensing, we explore how the accuracy of HRT is influenced by
the boundary conditions of the 3D mesh, the number of integration steps, the 2D ray mesh
accuracy parameter ι, and the 2D ray mesh padding size pmin (appendix C).

First, when we perform ray-tracing on a point mass lens, we compute the gravitational
potential field using FFT with periodic boundary conditions. This is an approximation of the
gravity solver and not the ray-tracing algorithm itself. To disentangle the error induced by the
gravity solver from those due to HRT, we have compared αHRT against a theoretical result that
incorporates periodic boundary conditions throughout this work. To model the effect of the
periodic boundary condition, we assume there is not only one but also infinitely many periodic
images of the point mass lens, at comoving positions m ∈ {(0, 0), (±Lx, 0), (0,±Ly), · · · },
where Lx,y are the side lengths of the simulation box. The leading order deflection in eq. (6.1)
is replaced by its periodic summation:

α̂
θ0
|θ0|

= 4GM

c2
b

b2 −→
4GM

c2

∑
m

b−m

|b−m|2
, (D.1)

where b = (θ0xχl, θ0yχl) is the impact parameter of the photons. Eq. (D.1) reduces to
eq. (6.1) when only m = (0, 0) is considered. Throughout this work, we account for the
nearest 322 periodic images of the lens mass when computing αtheory. The theoretical result
converges within numerical precision.

The numerical experiments in section 6.1 use 45 integration steps and assume a padding
of ι = 0.5 and pmin = 256. We utilize the same setup as in section 6.1 to evaluate how
the accuracy of HRT depends on these hyper-parameters. Figure 6 illustrates that αHRT
converges to the theoretical values as the number of integration steps increases. With too
few integration steps, αHRT is typically lower than the truth. The two panels in figure 7
demonstrate the effect of the ray mesh hyper-parameters: the accuracy parameter ι and
the padding size pmin. The left panel uses (ι = 1, pmin = 4) and the right panel uses
(ι = 1, pmin = 256). These are compared to panel (b) of figure 1, which has the same
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Figure 7. The effect of ray mesh hyper-parameters: the accuracy parameter ι and the padding size
pmin. The two panels show αHRT’s residual errors on the image plane for the point mass test. The
left panel uses (ι = 1, pmin = 4) and the right panel uses (ι = 1, pmin = 256). They are compared to
panel (b) of figure 1 which uses (ι = 0.5, pmin = 256).
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Figure 8. Relative error of the SO-enhanced Cℓ as a function of the number of HRT integration
steps (left) and of the HRT ray mesh accuracy parameter ι (right). The shaded regions show the
standard error of the mean over 25 independent simulations. Similar to figure 4, the black solid line
shows the theory prediction, the dashed line shows the κTNG simulation, and the vertical dotted line
shows the ℓ = 1200 scale cut.

experimental setup but with (ι = 0.5, pmin = 256). In both cases, HRT achieves sub-percent
accuracy, showing that increased padding improves αHRT accuracy near the boundary and
higher ι results in more prominent discretization features of the particle and ray meshes. The
result also shows that, in practice, we do not need to carry a pmin that is as large.

E Convergence tests for weak lensing power spectrum

We compute the convergence power spectrum by ray tracing to a source plane at zs = 1.034.
We tile the past light cone with simulation boxes of a 5123 mesh and 5123 particles with
a particle/mesh spacing of 0.4 Mpc/h, similar to section 6.2. We vary the number of ray
tracing time steps and the ray mesh accuracy parameter ι, as shown in figure 8, and find
that the power spectrum is not sensitive to these hyper-parameters.
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