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A B S T R A C T

Multiphase flows are present in many industrial and engineering applications as well as in some physical
phenomena. Capturing the interface between the phases for complex flows is challenging and requires an
accurate method, especially to resolve fine-scale structures. The moment-of-fluid (MOF) method improves
drastically the accuracy of interface reconstruction compared to previous geometrical methods. Instead of
refining the mesh to capture increased levels of detail, the MOF method, which uses zeroth and first moments as
well as a conglomeration algorithm, enables subgrid structures such as filaments to be captured at a small extra
cost. Coupled to a finite volume Navier–Stokes solver, the MOF method has been tested on a fixed grid and
validated using well-known benchmark problems such as dam break flows, the Rayleigh–Taylor and Kelvin–
Helmholtz instability problems, and a rising bubble. The ability of the novel filament MOF method to capture
the filamentary structures that eventually form for the Rayleigh–Taylor instability and rising bubble problems
is assessed. Good agreement has been found with other numerical results and experimental measurements
available in the literature.
1. Introduction

Multiphase flow modelling plays a pivotal role in engineering since
this class of flows are ubiquitous in many natural and industrial ap-
plications. They arise in electronics cooling, volcanic eruptions, cloud
formation, and chemical reactions in bubble columns and fluidised
beds. Investigating and understanding these phenomena necessitates
the development of innovative technologies, enhancing process effi-
ciency, safety, and sustainability. Consequently, a comprehensive un-
derstanding of multiphase flows remains indispensable to provide an
accurate prediction of complex topological change.

Focusing on recent advances, we explore the key challenges faced
in accurately capturing intricate interfacial dynamics and complex flow
phenomena. Several numerical methods have been developed over
the years to represent interfaces in multiphase flows, such as the
marker-and-cell [1], volume-of-fluid (VOF) [2,3], front-tracking [4],
level set [5,6], phase field [7] and particle methods [8]. All of these
methods possess advantages and disadvantages [9]. The desirable at-
tributes of these methods include easy implementation, fast computa-
tion and exact mass conservation, whereas undesirable features include
high complexity, diffusive discretisation and low accuracy.

Among the methods described above, VOF methods are used exten-
sively due to their natural characteristics, such as maintaining mass
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conservation, computational efficiency, and ease of implementation.
In this context, two categories of algorithms exist for solving the
transport equation for volume fraction: geometric and algebraic com-
putation [3]. In the first category [9], interfaces are reconstructed
based on volume fraction data, leading to the derivation of a geometric
shape that approximates the actual interface. Subsequently, changes in
volume fraction are computed by integrating volume fluxes across cell
boundaries. In contrast, algebraic computation algorithms capture the
interface by solving the transport equation for volume fraction using a
high-resolution scheme [10–12].

Regarded as an extension of the VOF method, the moment-of-fluid
(MOF) technique is employed to capture the interface separating two
distinct materials [13]. As for the VOF method, the MOF method is
based on a mesh approach with the difference being that the centroid
is transported in addition to the volume fraction in order to reconstruct
an interface solely within a cell, irrespective of neighbouring cells [13–
16]. It has been shown that cells of any geometrical form can be used
and the technique is not limited to a Cartesian grid. The process of
transport and reconstruction of interfaces can prove to be computa-
tionally expensive since it relies on the efficiency of an optimisation
procedure. However, recent developments have significantly reduced
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Fig. 1. Flowchart highlighting in blue the extra steps needed for the MOF method based multiphase flow solver. In green, the MOF method can select a standard or filament
MOF. On the right hand side, subgrid structures are highlighted on a mesh-based approach with the example of saliva beads.
the computational cost of this process [14,17,18]. Recently, enhance-
ments have been made to the original MOF method [13] through
the use of symmetric reconstruction [19], expanding its applicability
to multi-material configurations [20,21]. Consequently, this enhance-
ment has facilitated the reconstruction of filaments and subgrid-scale
structures [16,22].

Numerous methods have been used to couple interface captur-
ing/tracking methods to a fluid flow solver based on the Navier–Stokes
equations [23–27]. However, there has only been a limited number of
attempts at performing this coupling with a MOF method. The first con-
tribution coupled the MOF method with a finite element method [28].
Other contributions have employed a coupled level set moment-of-fluid
(CLSMOF) method with a Navier–Stokes solver on a Cartesian grid
but using a split advection method for several 2D and 3D benchmark
problems [15,29]. There are also some contributions that have used
MOF in engineering applications [30–33]. The dynamics of interfa-
cial flows can produce highly complex topological changes. Therefore,
based on fixed meshes, a very fine mesh across the entire computational
domain is required to capture the intricate interfacial details, resulting
in significantly increased computational effort.

The motivation of this paper is to couple the new filament MOF
method recently developed by Hergibo et al. [16] to a Navier–Stokes
fluid flow solver and assess performance of the new method. In this con-
text, the incorporation of subgrid-scale filaments (shown in Fig. 1 for
example) within the MOF method constitutes a novel contribution to
the simulation of multiphase flows. This innovative approach addresses
the challenges of resolving subgrid-scale features and complex changes
in topology. By introducing subgrid filaments, the MOF method en-
hances the representation of thin films and droplets, while operating on
a relatively coarse computational grid. In order to capture fine details
using a reasonable computational cost, the community would generally
consider using alternative techniques such as adaptive mesh or high-
order methods. Tackling subgrid solutions for multiphase flows has
caught recent interests in the community to limit the computational
cost. However, limited research has been performed to assess the
precision of the numerical subgrid structures as well as their fidelity.
The novel MOF-based fluid solver proposed in the present study sig-
nificantly improves numerical accuracy and computational efficiency,
expanding the range of applicability of the MOF method with increased
fidelity. The flowchart in Fig. 1 highlights in blue the extra steps
required to complete the coupling between the novel filament MOF
method and the Navier–Stokes solver. The green box highlights the
choice of selecting either a standard MOF or a filament MOF depending
on different scenarios.
2 
This paper is structured as follows. Section 2 describes the flow
solver and governing equations as well as the MOF method including
how filaments are reconstructed within a cell on a fixed grid. The
coupling between the flow solver and the MOF method is introduced
together with the treatment of boundary conditions. Section 3 presents
numerical results and analysis of several benchmark problems for a
standard MOF method. In Section 4, the results of the novel filament
MOF method coupled to the Navier–Stokes solver are presented for two
classical benchmark problems. Some concluding remarks are made in
Section 5.

2. Governing equations and numerical methods

2.1. Navier–Stokes flow solver

The governing equations are based on the Navier–Stokes equa-
tions. These are used for incompressible immiscible Newtonian two-
phase flow. The continuity and momentum equations are, respectively,
written in the form

∇ ⋅ 𝐮 = 0 (1)

𝜕(𝜌𝐮)
𝜕 𝑡 + ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝 + ∇ ⋅

[

𝜇
(

∇𝐮 + ∇𝐮𝑇 )] + 𝜌𝐠 + 𝐟 (2)

where 𝐮 is the velocity vector, 𝑝 is the pressure, 𝐠 is gravity vector, 𝐟 is
the external forces vector and 𝑡 is time. The fluid parameters, 𝜌 and 𝜇
are the density and dynamic viscosity, respectively.

In terms of physical properties, the flow solver is constituted of re-
lations for density and dynamic viscosity. These properties are defined
by:

𝜌 = 𝐹 𝜌𝑎 + (1 − 𝐹 )𝜌𝑏, (3)

𝜇 = 𝐹 𝜇𝑎 + (1 − 𝐹 )𝜇𝑏, (4)

respectively, where the two fluids are labelled ‘a’ and ‘b’ and 𝐹 denotes
the volume fraction of material ‘a’ within a cell.

There are different discretisation methods for solving the governing
equations, such as the finite difference method, finite volume method
and finite element method [34]. In the context of the VOF method and
its extension, a Cartesian grid is very favourable, hence the choice of
the finite volume method due to its advantage for mass conservation.

A Cartesian grid based fluid flow solver is used for the computations.
The governing equations are discretised using the finite volume method
on a staggered Cartesian grid. The advection terms are discretised using
a high-resolution scheme [35], combining high-order accuracy with
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monotonicity, whereas the gradients in the pressure and diffusion terms
re obtained using a central difference scheme. The SIMPLE algorithm
s employed in the present study for the pressure–velocity coupling and
 first-order backward Euler method is used for the time derivative.

The pressure correction method is a numerical technique utilised in
luid dynamics simulations to enforce the satisfaction of the continuity

equation in the context of incompressible flows. It involves computing
an intermediate velocity field that may not initially satisfy mass conser-
vation, followed by solving a pressure correction equation iteratively
until the mass conservation requirement is satisfied to an acceptable
level and a prescribed convergence criterion is met. The multiphase
flow solver has already been extensively verified and validated through
numerous test cases for flow over complex geometries [36], moving
odies [24], and fluid–structure interaction problems [37].

2.2. Surface tension model

In situations where interfacial forces are important, surface tension
cannot be neglected. A continuum surface force (CSF) model is included
n the Navier–Stokes equations to account for the surface tension. This
orce can be expressed as:

𝐟CSF = 𝜎 𝜅𝐧𝛿 (5)

where 𝜎 is the surface tension coefficient, 𝐧 is the interface normal,
= −∇ ⋅ 𝐧 is the interfacial curvature and 𝛿 is the Dirac delta function.
e use 𝛿 = |∇𝐹 | and 𝐧 = ∇𝐹

|∇𝐹 |

to address the surface tension modelling
s a function of the volume fraction.

The interfacial normal 𝐧 is discretised based on the smoothed vol-
me fraction. The curvature term is discretised using an approximation
f the normal at cell faces and its surrounding neighbouring values. It

can be expressed as :

𝜅𝑖,𝑗 = −
(

𝑛𝑥𝑖,𝑗 − 𝑛𝑥𝑖−1,𝑗
𝑑 𝑥 +

𝑛𝑦𝑖,𝑗 − 𝑛𝑦𝑖,𝑗−1
𝑑 𝑦

)

(6)

where the superscripts 𝑥 and 𝑦 corresponds to the horizontal and
vertical components of the normal, 𝑑 𝑥 and 𝑑 𝑦 represent the grid size in
he horizontal and vertical directions, respectively.

2.3. Interface capturing

The transport of the interface is governed by an advection equation
or the volume fraction 𝐹 :
𝜕 𝐹
𝜕 𝑡 + 𝐮 ⋅ ∇𝐹 = 0 (7)

where 𝐮 is the velocity field. The choice of the MOF method has
merged as a prominent research topic for several key reasons. Its
mproved interface capturing ability, reduced numerical diffusion com-
ared to VOF techniques and problems involving sharp discontinuities
r complex geometries make it appealing for multiphase flows chal-
enges. In addition, as an extension of VOF methods, the intrinsic
ass conservation properties offered are advantageous for these types

f computational model. The latest research in MOF methods aims
to enhance computational efficiency and expand their relevance to-
wards real applications. Also, it aims to address challenges concerning
accuracy, robustness and efficiency.

2.3.1. Standard MOF method
The MOF method is an optimisation problem in which the zeroth

and first moments of a material are used to reconstruct the interface
using a Piecewise Linear Interface Calculation (PLIC). While the zeroth
moment acts as a constraint, the difference between the first moments
of the reference interface and its reconstruction needs to be minimised
n order to obtain the best approximation of the normal to the interface.
he detailed calculation of the zeroth and first moments can be found

n Hergibo et al. [16]. The objective function, 𝐸𝑐 (𝐧), defined by
| |
𝐸𝑐 (𝐧) = |

|

𝐱𝑟𝑒𝑓 − 𝐱𝑎𝑐 𝑡(𝐧)|
|

(8)

3 
where the 𝐱𝑟𝑒𝑓 represents the reference centroid and 𝐱𝑎𝑐 𝑡 the recon-
tructed centroid, captures this minimisation process, with 𝐧 represent-
ng the outward unit normal to the interface. For non-rectangular cells,
ny optimisation method can be employed. However, for rectangular
ells like Cartesian cells, an analytical solution exists, eliminating the
eed for a minimisation algorithm [14]. This has proven to be a
ignificant improvement in reducing the computational cost. In this
aper, the work from Lemoine et al. [14] has been used for most

standard MOF reconstructions and working within this framework to
enhance precision in reconstruction, the decision is made to reconstruct
the material in a cell that has the smallest volume fraction [14].

2.3.2. Filament MOF method
Filaments are complex topological formations that arise during the

eformation of materials (shown in Fig. 1). Since they are typically
smaller in size compared to grid cells, the standard MOF method
fails to determine their precise structure accurately. When dealing
with filaments, a cell contains two interfaces, one on each side of
the filament structure. Consequently, two separate reconstructions are
required to accurately depict the topology. This necessitates an addi-
tional step in the procedure, as the detection of the thin structure must
precede its reconstruction. In order to understand the topology, the
onglomeration algorithm identifies materials/polygons that have no
djacent sides to one another. The algorithm detects them, and then
orms two or more separate conglomerates. This study intelligently
aves computational resources by limiting the number of conglomerates

to two per material, with one of these considered to be a fictitious
material. Note the detection is independent of the cell geometry.

When filaments are involved, a multi-material approach becomes
ecessary due to the creation of fictitious material. A nested dis-

section algorithm coupled to symmetric reconstruction techniques is
employed, which minimises the number of conglomerates that are
considered [19]. This not only reduces the computational complex-
ity but also diminishes the number of combinations, resulting in im-
proved efficiency [16]. The objective function, 𝐸𝑠𝑦𝑚

𝑐 (𝐧), in a symmetric
reconstruction process is given by

𝐸𝑠𝑦𝑚
𝑐 (𝐧) = |

|

|

𝐱𝑟𝑒𝑓 − 𝐱𝑎𝑐 𝑡(𝐧)||
|

+ |

|

|

𝐱𝑟𝑒𝑚𝑟𝑒𝑓 − 𝐱𝑟𝑒𝑚𝑎𝑐 𝑡 (𝐧)||
|

(9)

where the superscript rem denotes the remaining conglomerates in
a cell. Fig. 2 depicts the two MOF reconstruction approaches. The
reference interface and its reconstruction are shown for a standard
reconstruction. The centroid of the material considered as well as
the centroid of the remaining material are highlighted to explain the
ymmetric MOF reconstruction. The filament reconstruction is shown

with two conglomerates highlighted using dashed blue lines and their
respective centroids in green. Note that in the filament case, two
materials are grouped together and their volume fraction and centroid
recalculated in this operation.

2.3.3. Material advection
The process of material advection encompasses the dynamic evo-

lution of a material through translation, rotation, and deformation.
Understanding these processes is crucial for evaluating the accuracy of
interfacial methods. A purely Lagrangian approach is employed here,
distinguishing it from other studies. This approach offers several advan-
ages, including greater flexibility in choosing the Courant–Friedrichs–
ewy (CFL) number and an unsplit advection technique that employs
 Lagrangian pre-image to capture the volume fraction and centroid of
he material from the previous time step.

To achieve this, the vertices of a cell are traced backward in
time using a second-order Runge–Kutta scheme (RK2) before deter-
mining the intersection between the pre-image and the material. This
is a pragmatic decision which balances accuracy and computational
expense compared with an approach that solely focuses on varying
higher order schemes. Subsequently, forward advection is performed
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Fig. 2. Schematic of the MOF reconstruction for both standard (a) and filament (b) methods. The reference interface is depicted in grey and its reconstruction in red for a standard
MOF method. Filament reconstruction is highlighted in green with green squares denoting the reference centroid of conglomerates with a dashed blue line surrounding the desired
material.
for centroids, and reconstruction is conducted using the corresponding
volume fraction.

When enabling the filament MOF reconstruction in a simulation,
additional steps are required to ensure the advection process is com-
plete. While the standard MOF can be performed only using the desired
material as targeted intersection, the filament MOF needs to intersect
all materials present in the domain in order to reproduce the exact
topology. Moreover, the conglomeration algorithm, which also contains
the adjacency test, is performed which enables the volume fraction and
centroid of conglomerates to be calculated. Only then, can the choice
between standard MOF and filament MOF be made. Fig. 3 summarises
the essential steps involved in the advection process for both standard
and filament MOF.

These advection procedures are valid for a single cell reconstruc-
tion. However, there are two important aspects of these procedures
that are not discussed here, viz. the limitation to three materials for
filament MOF and the redistribution algorithm or repair to conserve
mass/volume fraction through the time iterations. Details of these can
be found in the recent work of Hergibo et al. [16].

2.4. Boundary conditions

To fully specify the mathematical model, it is imperative to es-
tablish boundary conditions that play a critical role in defining fluid
flow behaviour at the boundaries of a finite computational domain.
They accurately capture the interaction between the fluid and its sur-
roundings, classified into inflow, outflow, and solid boundaries. Inflow
conditions specify fluid characteristics upon entering the domain, while
outflow conditions prevent disturbances caused by fluid leaving the
domain. Solid boundaries simulate fluid interactions with solid objects
through various approaches. Accurate selection and implementation of
boundary conditions are crucial for reliable results in numerical fluid
simulations, requiring careful consideration of the specific problem and
desired representation of fluid behaviour near the boundaries.

In most MOF methods, the treatment of the boundary condition is
rarely discussed as the interfacial topology is inside the computational
domain. However, the reduction of the number of neighbouring cells
near the boundary means that MOF methods exhibit better accuracy
when reconstructing interfaces in these regions. Therefore, special at-
tention needs to be paid to the MOF method in addition to the boundary
conditions for the Navier–Stokes solver.
4 
2.5. Coupling between flow solver and MOF method

While the MOF method presented above uses node velocities during
the advection process [16], in both 𝑥 and 𝑦-directions, the finite volume
Navier–Stokes flow solver uses face velocities [35]. To accommodate
this, an extra step is needed to interpolate the node velocity before
MOF advection can be performed. The face velocity, representing the
velocity at the face of each control volume, is commonly known and
readily available. However, to compute the node velocity, which char-
acterises the velocity at the corner of each control volumes, a simple
linear interpolation technique is employed. Note that for each control
volume, the east face defines the 𝑥-velocity, the north face defines the
𝑦-velocity, whereas the bottom left node defines both 𝑥 and 𝑦-velocities
simultaneously (see Fig. 4).

The case of a control volume located next to a wall is illustrated in
Fig. 5. When dealing with boundary conditions, additional adjustments
are required to ensure proper treatment of the velocity field near the
boundaries. The interpolated node velocities near the boundaries are
adjusted to adhere to the prescribed boundary conditions, maintaining
consistency with the physics of the problem. For no-slip conditions,
the interpolated velocities at the wall are zero. In this instance, the
node velocity at the wall in the tangential direction is forced to take
the value at its nearest node, typically the first node velocity in its
normal direction. It is interesting to note that this can be overcome
by using a slip condition for the MOF method. Regarding periodic
boundary conditions, node velocities remain unaffected by the domain
boundaries. Nevertheless, the use of ghost cells presents a counter-
intuitive aspect. Regardless of the direction of periodicity, the first
row/column of cells corresponds to the last row/column of cells in the
domain. In this instance, the row/column of ghost cells on one side
corresponds to the penultimate row/column of cells of the domain of
the opposite side and vice versa.

Mass conservation is performed only near the interface. Indeed, in
order to reduce computational expense, only cells near the interface
are advected as the CFL constraint guarantees that cells further away
from the interface maintain their volume fraction. Therefore, material
distribution is performed on ‘‘mixed’’ cells, i.e. cells that contain an
interface in a global fashion. Over/under-filled cells are used to redis-
tribute mass uniformly to mixed cells in the domain. More details on the
redistribution procedure can be found in [38]. The authors are aware
that this does not guarantee mass conservation to machine precision.
However, the choice of time step may influence mass variation during
the simulation, which is not discussed in the remainder of this paper.
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Fig. 3. Flowchart highlighting key steps to standard and filament MOF reconstruction and advection. Red denotes the use of standard MOF. Green denotes the use of filament
MOF.
3. Results

In this section, the coupling between a flow solver and our MOF
method is validated. We present results obtained from the numerical
simulations using the MOF method for simulating multiphase flows.
The filament capability is enabled for this series of simulations. This
implies that if the topology does not produce thin structures, the
reconstruction will remain standard. The simulations were performed
on a two-dimensional domain using a Cartesian grid in order to validate
our numerical implementation by considering well-known benchmark
test cases.

In our previous publication dedicated to pure advection problems,
both standard MOF and filament MOF methods have shown good
agreement on test cases where a prescribed divergence-free veloc-
ity field is imposed [16]. In the present study, these methods are
applied to dynamic physical test cases where the velocity field is deter-
mined by solving the momentum equation and will not be identically
divergence-free due to numerical rounding errors.

3.1. Dam break

We examine the classical benchmark 2D dam break flow problem,
that has been investigated extensively both experimentally [39] and
numerically [40]. The computational domain has dimensions of 4𝑎× 4𝑎
in the streamwise and vertical directions, respectively. Initially, a water
column of height 2𝑎 and width 𝑎 is at rest. In this study we choose
𝑎 = 0.146 m. Three computational grids are used, 32 × 32, 64 × 64,
128 × 128, respectively.

Fig. 6 displays snapshots of the computed remaining water interface
for a coarse mesh. Note that the leading edge of the water column
5 
swirls into a small recirculation region that is captured by the accurate
MOF method. Physically, the surge front and height position are good
indicators of high-fidelity simulations. These can be compared with ex-
periments. In terms of surge position, since the dam cannot be instantly
removed in the experiment, a slight time delay in the experimental data
is expected, which is also observed in other numerical simulations. A
delay of 0.27 in nondimensional units is observed, which corresponds
to 0.023 s. Fig. 7 shows the comparison between our simulations using
several meshes with the VOF simulations of Xie & Stoesser [24] and
experiments of Martin [39]. Generally, the numerical results converge
as the mesh is refined, with only a minor disparity in surge position
between the coarse and fine mesh simulations.

In order to investigate the convergence rate of the present method
further, the free surface profiles obtained from the simulations on the
three meshes at 𝑇 = 1 and 𝑇 = 2 are compared to the benchmark
solution. Additionally, an extra simulation using an even finer mesh of
256 × 256 is performed; the resulting air–water interface is considered
as the benchmark solution for the purpose of the convergence study.
Fig. 8 presents the calculated 𝐿1, 𝐿2, and 𝐿𝑖𝑛𝑓 errors in relation to the
benchmark solution. The convergence rate is observed to lie between
first-order and second-order, tending towards second-order as the fine
mesh is approached. The surge position error shows similar trends.
It is interesting to note the oscillation in mass variation during the
simulation due to the advection of only the interface and redistribution
procedures.

3.2. Rayleigh–Taylor instability

This well-known instability is a phenomenon that emerges when a
gravitational field causes a heavy fluid initially at rest on top of a lighter
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Fig. 4. Face velocities are defined at the face of the control volume. 𝑈 (𝑖, 𝑗) denotes the horizontal velocity of cell 𝑖, 𝑗 in full blue arrow. 𝑉 (𝑖, 𝑗) denotes the vertical velocity of
cell 𝑖, 𝑗 in dashed blue arrow. Node velocity is interpolated from two neighbouring control volumes (red arrows). 𝑢𝑣(𝑖, 𝑗) denotes both horizontal and vertical velocities of cell 𝑖, 𝑗
at the node.
Fig. 5. Schematic diagram showing the wall boundary conditions imposed in the
domain for all velocities at the bottom left edge of the domain. Cells in dashed lines
are ghost cells. Red arrows and dot represent the node velocities for MOF treatment.
Green arrows are imposed boundary conditions for face velocities.

fluid to deform the interface between them. In our study, we adopt the
same configuration as previous investigations [23,25,26]. The rectan-
gular domain is [0, 𝑑] × [0, 4𝑑]. The Atwood ratio 𝐴𝑡, which signifies the
density difference between the heavier and lighter fluids, is set to 0.5.
Additionally, we set the Reynolds number 𝑅𝑒 = 𝜌 𝑑3∕2𝑔1∕2∕𝜇 = 3000,
𝐴 𝐴 𝐴

6 
where 𝜌𝐴 and 𝜌𝐵 represent the densities of the heavier and lighter
fluids, respectively, and 𝜇𝐴 corresponds to the dynamic viscosity of the
heavier fluid. The interface between the two fluids is initially perturbed
with a sinusoidal waveform of amplitude 0.1𝑑. Following Tryggvason’s
work [25], we employ non-dimensional variables, scaling length by
𝑑, time by

√

𝑑∕𝐴𝑡𝑔, and velocity by
√

𝐴𝑡𝑔 𝑑. Surface tension is not
considered.

We conduct computations using three fixed Cartesian meshes,
32 × 128, 64 × 256 and 128 × 512, respectively. Fig. 9 highlights
the different stages of the deformation of the interface from a non-
dimensional time 𝑇 = 0 to 𝑇 = 2. We observe that the vortex
formed during the spike penetration is well reconstructed. The interface
remains sharp and does not exhibit any diffusion.

The predictions of the present numerical scheme for this test case
are compared to those of other methods in order to ensure the correct
behaviour is achieved. Fig. 10 shows the position of the perturbation
for both the heavy and light fluid. Good agreement is found with other
methods for both fluids [23,25]. Whilst the position of the perturbation
is a good criterion to ensure that the physics is correctly captured, the
precision of the vortex is also a good criterion. However, the vortex is
reconstructed more precisely with finer meshes. We believe that grid
convergence is not appropriate for this test case. Instead, the spike
penetration position and its error relative to a benchmark solution on
the finest mesh are more appropriate measures of the accuracy of the
approximation.

In this instance, the benchmark considered is the solution on a
256 × 1024 grid. The error corresponds to the distance of the spike
position relative to the benchmark solution. The convergence is then
evaluated for each grid. Fig. 11 highlights that near quadratic conver-
gence is obtained. In addition, the mass loss during the evolution of
the flow is kept to within 0.2%. A sudden loss of mass occurs at the
beginning when the interface evolves slowly.
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Fig. 6. Snapshots of the interface for the dam break test case for a 64 × 64 grid.
Fig. 7. Convergence of (a) water column height, and (b) surge front position, with mesh refinement and comparison with the numerical predictions of Xie and Stoesser [24] and
he experimental data of Martin [39].
Fig. 8. Convergence study for the dam break case, using grid convergence and surge position convergence as well as mass variation.
t

s

3.3. Kelvin–Helmholtz instability

This well-known instability is a phenomenon that occurs when
fluids with different velocities interact. It is formed due to the shear-
ing motion between fluids, leading to the formation of vortices. It is
commonly observed in natural settings such as cloud formations, ocean
currents, and atmospheric phenomena like jet streams. The domain of
ratio 4 ∶ 1 contains two fluids of the same densities and viscosities.
Gravity is neglected. At the initial stage, the interface between the two
fluids takes the form of a sinusoidal function 0.5(1 + 0.01 sin(2𝜋 𝑥)). The
fluid at the bottom has a velocity of amplitude 0.5 towards the left hand
7 
side of the domain. The fluid at the top has a velocity of amplitude 0.5
owards the right hand side of the domain in order to create the shear

motion. Periodic boundary conditions are employed in the horizontal
direction, while no-slip wall boundary conditions are imposed on top
and bottom boundaries.

Numerical predictions for this test case are performed for two
different grid sizes, respectively 128 × 32 and 256 × 64. Fig. 12 shows
napshots of the evolution of the interface at 𝑡 = 0 s, 𝑡 = 1 s, 𝑡 = 2

s and 𝑡 = 3 s, respectively, in physical time. The vortices are well
reconstructed. Note that even for a coarse mesh, the gap between the
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Fig. 9. Evolution of the Rayleigh–Taylor instability interface using the standard MOF method for a 32 × 128 grid.
u

two fluids remains larger than a cell size, which justifies the decision
ot to use a filament MOF method for this test case.

4. Filament MOF method coupled with Navier–Stokes equations

4.1. Rayleigh–Taylor instability

In this section, we discuss the coupling between a flow solver and
ur filament MOF method. Resolving subgrid-scale structures for mul-

tiphase flows is challenging. It requires an extremely accurate method.
Our newly developed filament MOF method [16] is one such method
hat possesses good reconstruction features mainly for filamentary
lows. The Rayleigh–Taylor instability problem exhibits these char-
cteristics. However, most numerical techniques for this benchmark
roblem are unable to resolve these filamentary structures and are
imited to simulation times before the development of thin structures.
n the one hand, finer grids are used to resolve fully the physical
henomena occurring in these instances. On the other hand, if coarser
eshes are used, unphysical filament break-ups would likely arise. In

this section, we show some results illustrating the coupling between the
filament MOF method and the finite volume Navier–Stokes solver.

Fig. 13 shows snapshots of the Rayleigh–Taylor instability problem
at a non-dimensional time of 𝑇 = 3 for three different grids, 32 × 128,
64 × 256 and 128 × 512, respectively. The black rectangle denotes
the area where zoomed solution is provided. Note that the filament
solution seems to be reconstructing filaments in a reasonable fashion.
Filament breakups are reduced drastically, although they may still
occur. In addition, at this later non-dimensional time, here 𝑇 = 3,
the different grids do not seem to overlap, reducing any chance of
grid convergence study. The finer grid shows an asymmetry in the
lighter fluid position. This may be due to different dynamic rather than
gravitational buoyancy occurring in the wake generation.

However, the physical spike penetration position remains a good
quantity to evaluate. Fig. 14 highlights the position of the heavy and
ight fluid during the simulation. In this case, the non-dimensional

time has been extended to 𝑇 = 3. Note the heavy fluid spike position
8 
Fig. 10. Evolution of the position of the heavier and lighter fluids in nondimensional
nits.

continues to go downwards and even seems to accelerate at these later
stages. To the best of the authors’ knowledge, no comparison can be
made for physical spike position at later stages. As to mass variation,
it shows a similar trend to the standard MOF results showed above. A
maximum of 0.654% mass loss is reached at 𝑇 = 3 for the coarsest mesh
32 × 128.

As a comparison, Fig. 15 shows the exact comparison between
the standard MOF and the filament MOF method. We observe that
despite the filaments not being resolved appropriately, the standard



P. Hergibo et al. Computers and Fluids 285 (2024) 106455 
Fig. 11. Convergence study on the Rayleigh–Taylor case, using spike penetration error convergence as well as mass variation.
Fig. 12. Snapshots of the Kelvin–Helmholtz instability interface using the MOF method on 128 × 32 (left) and 256 × 64 (right) grids.
MOF cannot resolve any feature that is thinner than a cell size. The
standard MOF simulation exhibits unphysical breakups. As subgrid-
scale structures get resolved more accurately, effort needs to be made to
ensure that the solution is physical and is validated with high-fidelity
numerical simulations. Quantifying features of the mushroom shaped
tail would be an interesting addition to the community.

Runtime is also compared between the standard and filament MOF
methods. On a single core, the test case takes 27 s to run for a standard
MOF simulation, whereas the filament MOF simulation takes 38 s.
As expected, understanding the topology through the conglomeration
algorithm and performing filament reconstruction is more expensive.
However, a 40% increase in runtime is not significant when taking into
consideration the quality of the reconstruction. Once filaments break
9 
up, coalescence is not possible for this case. This leaves the user with a
choice of balance between fast runtime and accuracy in reconstruction.

4.2. 2D rising bubble case

In this section, we consider a second benchmark problem, the 2D
rising bubble problem, in which filament structures are created. In this
problem a bubble of radius 𝑟 = 0.25 is initially positioned with its
centre at the point (0.5, 0.5) in the rectangular domain [0, 1] × [0, 2]. Slip
boundary conditions are applied at the left and right walls, and no-slip
conditions are imposed on the top and bottom walls. Following Hysing
et al. [41], we study the case in which thin trailing filaments are created
due to surface tension. The density ratio between liquid and gas phase



P. Hergibo et al.

s

t

6

Computers and Fluids 285 (2024) 106455 
Fig. 13. Snapshots of the Rayleigh–Taylor instability interface using the filament MOF method at 𝑇 = 3. Black rectangle highlights zoomed in areas on the top row. Bottom row
hows zoomed in areas.
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is 1000, whilst the viscosity ratio is 100. The surface tension coefficient
is 1.96 N m−1 and the acceleration due to gravity is 0.98 ms−2. Surface
ension is modelled through an additional term in the external force

balance as discussed in Section 2.2.
This study involves three Cartesian grid resolutions, 30 × 60,

0 × 120 and 120 × 240. The simulation is run until 𝑡 = 3 s. Fig. 16
shows the visual representation of the shape of the bubble at the final
stage. The bubble develops filaments as it rises which breaks up under
the action of surface tension. Possible causes of filament break up
include the numerical treatment of filamentary structures, calculation
of the curvature of the bubble surface or the time stepping procedure.

Fig. 17(a) compares the bubble profile on the finest grid at 𝑡 = 3
s with the corresponding profiles generated in the literature [41,42].
Both references use a finite element method. The numerical results
show that the trailing filament is resolved differently. We can see a clear
breakup for the TP2D (Transport Phenomena in 2D) method whereas
 m

10 
the conservative level-set method of Doherty et al. [42] manages to
maintain the satellite bubble within the main bubble. We also note that

e predict a slightly larger bubble elevation which may be caused by
a slightly larger rise velocity or a larger overall volume resulting in a
greater buoyancy force. One of these reasons may be dismissed with
reference to the mass variation shown in Fig. 17(b). Indeed, the mass
f the bubble varies throughout the numerical calculation but at the
nd of the calculation there is a negative variation suggesting a loss.
he mass loss is maintained within a margin of 1% for the finest grid.

Another interesting analysis is to compare the shape of the bubble
between the standard MOF and the filament MOF methods. As a
comparison, Fig. 18 illustrates the exact comparison of bubble shapes
t 𝑡 = 3 s. Despite the filament MOF method exhibiting breakups due
o large deformation, the standard MOF method cannot resolve any
eature that is thinner than a cell size appropriately. The filament MOF
ethod shows promising results for the rising bubble case.
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Fig. 14. Study on the Rayleigh–Taylor case using filament MOF. Spike penetration position (a) and mass variation (b) are presented.
Fig. 15. Comparison of the standard (a) and filament (b) MOF method for the Rayleigh–Taylor instability problem at 𝑇 = 3 for a 32 × 128 grid and their respective runtimes.
f
o

5. Conclusions

In this paper, the filament moment-of-fluid method coupled to a
inite volume Navier–Stokes solver has been presented for multiphase
lows on a fixed grid. First, the standard MOF is implemented for
ifferent benchmark test cases where the complexity of the flow is

relatively low. Then, the filament MOF is introduced where subgrid-
scale structures are resolved for a highly complex flow structure. This
represents a significant advancement in the understanding and mod-
elling of complex multiphase flows. Higher levels of accuracy and
 f

11 
efficiency in capturing the intricate interactions between two phases are
achieved. A direct comparison has shown the differences of approach
between a standard MOF and a filament MOF. The representation
of filaments is relatively well captured using the latter method, de-
spite some remaining filament breakups. Promising results in resolving
subgrid-scale structures have been demonstrated.

The proposed method is tested on well-known benchmark problems
eaturing different levels of complexity. Good quantitative predictions
f the evolution of the water column height and position of the surge
ront are achieved with both experimental measurements and previous
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Fig. 16. Bubble profile at 𝑡 = 3 s using filament MOF method for three different grid sizes.
Fig. 17. Comparison of the bubble shape at 𝑡 = 3 s using filament MOF method with other references in the literature [41,42] for a 120 × 240 grid and its mass variation for the
rising bubble case for different mesh resolutions.
numerical studies for the dam break flow problem. In the case of the
Rayleigh–Taylor instability problem, the method is able to reconstruct
he interface in a precise manner during the early stages of develop-
ent, while the filament MOF preserves highly deformed subgrid-scale

tructures during the later stages. Both standard and filament MOF
methods maintain satisfactory agreement with the predictions of other
numerical methods. The method exhibits a good level of accuracy for
the Kelvin–Helmholtz instability problem with qualitative agreement
with other results in the literature and recent MOF methods. Finally,
the rising bubble case, which exhibits filament structures, is tested
using the filament MOF method including surface tension modelling.
12 
The filament does break up but the flow features are captured even for
coarser grids. Qualitative results agree well with references using finite
element methods in the literature.

Despite these advances, challenges remain in the material diffusion
in interface capturing methods similar to MOF methods. Whether it
is sharp edges or under-resolved structures such as a filament tip
or tail, numerical simulations of multiphase flows with the moment-
of-fluid method encounter difficulties in the reconstruction of these
features. However, the method shows greater ability to reconstruct

accurate interfaces in complex situations such as near boundaries or
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Fig. 18. Comparison of the bubble shape at 𝑡 = 3 s between the standard MOF (left) and filament MOF (right) method for a 120 × 240 grid.
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filament/multi-material over VOF and LVIRA methods. In addition, sur-
face tension has been modelled in this paper and may need additional
improvements to capture the numerical curvature more precisely. The
complexity of the method and the associated computational cost, al-
though mitigated with analytical solution on Cartesian grids, may be
a limiting factor for its use. The MOF method can be also extended to
other more general meshes, such as unstructured grids for example, al-
though our focus is the Cartesian grid solver here, which can deal with
complex geometries using the cut-cell method [36]. Nevertheless, the
moment-of-fluid method remains a robust and promising improvement
to interface capturing/tracking methods and in numerical multiphase
flows in general. Increasing the levels of detail in subgrid-scale struc-
ure as well as including turbulence modelling, whether for Newtonian
r non-Newtonian flows is our next priority while maintaining accept-

able levels of computational resources. In addition, using adaptive mesh
methods may be of interest. Addressing challenging 3D problems is also
a development that we wish to pursue in the future. The moment-of-
luid method is an example of the next generation of interface capturing
ethods and will play an integral role in the analysis and prediction of

omplex multiphase systems.
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