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A B S T R A C T   

Acting in advance of floods, drought and cyclones often requires decision-makers to work with 
weather forecasts. The inherently probabilistic nature of these forecasts can be problematic when 
deciding whether to act or not. Cost-loss analysis has previously been employed to support 
forecast based decision-making such as Forecast-based Financing (FbF), providing insight to when 
an FbF system has ‘potential economic value’ relative to a no-forecast alternative. One well- 
known limitation of cost-loss analysis is the difficulty of estimating losses (which vary with 
hazard magnitude and extent, and with the dynamics of population vulnerability and exposure). 
A less-explored limitation is ignorance of the temporal dynamics (sequencing) of costs and losses. 
That is, even if the potential economic value of a forecast system is high, the stochastic nature of 
the atmosphere and the probabilistic nature of forecasts could conspire over the first few forecasts 
to increase the expense of using the system over the no-forecast alternative. Thus, for a forecast- 
based action system to demonstrate value, it often needs to be used over a prolonged length of 
time. However, knowing exactly how long it must be used to guarantee value is unquantified. This 
presents difficulties to institutions mandated to protect those at risk, who must justify the use of 
limited funds to act in advance of a potential, but not definite disaster, whilst planning multi-year 
strategies. Here we show how to determine the period over which decision makers must use 
forecasts in order to be confident of achieving ‘value’ over a no-forecast alternative. Results show 
that in the context of seasonal forecasting it is plausible that more than a decade may pass before 
a FbF system will have some certainty of showing value, and that if a particular user requires an 
almost-certain guarantee that using a forecast will be better than a no-forecast strategy, they must 
hold out until a near-perfect forecast system is available. The implication: there is potential value 
in seasonal forecasts, but to exploit it one must be prepared to play the long game.   

1. Introduction 

In recent years, the humanitarian community has expressed an increased desire to use weather and climate forecasts to guide their 
anticipatory actions (see Wilkinson et al., 2018). However, past research has highlighted a number of problems in integrating forecasts 
into climate risk management. These can be considered to be broadly related to: (i) the perception of forecasts, including a perceived or 
real lack of saliency, credibility and legitimacy (Hansen et al., 2011, Patt et al., 2007, Cash et al., 2003); and, (ii) difficulties in decision 
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making using uncertain information, including overcoming behavioural, institutional, social and technological barriers within rele
vant organisations (Hammer et al., 2000, Hammer et al., 2001, Hillier and Dempsey, 2012, Ngugi, 2002, Patt and Gwata, 2002, Phillips 
et al., 2002, Podestá et al., 2002, Patt et al., 2005, Bharwani et al., 2005, Rengalakshmi, 2007, Hansen et al., 2009, Roncoli et al., 
2009). Such challenges may be particularly pronounced in the application of seasonal climate forecasts, in which forecast skill is often 
relatively low and timescales for building adequate experience and confidence are very long (decades). Thus, despite decades of 
provision and dissemination of seasonal climate forecasts, direct uptake remains limited. While many of the observed problems can be 
envisaged to be mitigated through greater efforts towards co-production, the issue of uncertainty is inherent to forecasts (Lemos et al., 
2012). In practice this means that when acting in advance of a warning of a hazard using a forecast, for each event there is a chance of 
acting in vain (commonly referred to as a ‘false alarm’) or failing to act (commonly referred to as a ‘miss’) which both carry repu
tational and socio-economic costs. To maximise the benefits of early action and minimise the impact of the false alarms and misses, 
decision makers must decide at which forecast probability levels to act upon (the forecast trigger) and what actions are most 
appropriate. These decisions constitute the Early Action Plan (EAP) of automated, objective Forecast based Finance (FbF) systems 
(Coughlan de Perez et al., 2016, hereafter CdP16). 

The FbF approach, developed by CdP16 and further refined in Lopez and Haines (2017) Lopez et al., (2018, hereafter L18) is a 
systematic approach to help decision-makers utilise uncertain probabilistic forecasts. Based on a ‘value of information’ approach the 
FbF formulation utilises knowledge of the forecast skill and the monetary costs and benefits of forecast-based actions, including the 
disaster losses, costs of actions and acting in vain, losses avoided by the actions and unavoidable losses. Through an optimisation 
approach (e.g. Eq. (2) of L18) the ‘optimal’ forecast probability thresholds are derived, that if acted on, in the long run, will lead to net 
benefits with respect to not acting on forecasts. 

FbF initiatives have developed rapidly in recent years. However, despite the promise of ‘optimised’ forecast, the formal FbF 
approach as specified by CdP16 and L18 has been rarely implemented in full, at least in risk management systems of humanitarian 
organisations. There are likely various reasons for this, including access to the required information (forecast skill information, robust 
estimates of costs/losses) as well as inertia in institutions. There is a fundamental issue of estimating non-monetary costs and losses: 
where these cannot be estimated, they may be excluded from utility evaluations. In the absence of such information, early action-early 
warning asks that decision-makers utilise uncertain forecast information without clear evidence of the benefits. 

Whilst the FbF approach inherently demands a long term perspective (through the use of forecast skill information derived from 
hindcast information) the actual time that would be required to realise the benefits of acting on forecasts is not known, given that the 
actual sequence of weather/climate events is largely stochastic. The case of using seasonal climate forecasts is especially challenging 
given that the hindcast sample size is orders of magnitude smaller than for weather forecasting. The net long term benefits of acting 
based on short-lead weather forecasts may be realised rather quickly, for example, a single season may see many trials of forecasts for 
tropical cyclones, but just a single trial for a seasonal rainfall forecast. Here, we extend the work of CdP16 and L18 to consider in detail 
a case of seasonal climate prediction and to assess how long it may be expected to take to realise benefits of acting of forecasts, even 
when forecast skill is known. 

2. Methodology 

2.1. Potential economic value of a forecast 

To estimate the potential benefit for using a forecast to guide decision-making, the potential economic value has been defined, 
based on the cost-loss framework (Murphy 1977). This assumes that it is possible to take action with a cost (C) to protect against the 
loss (L) experienced when a hazard occurs with no protection. The expected expense associated with a particular forecast system can be 
calculated and if that expense is lower than a default decision-making strategy, that forecast can be said to have potential economic 
value. 

To estimate the expense of a forecast system based on historical forecasts for some hazard, it is necessary to determine when that 
system might have triggered action. For a probabilistic forecast system, this can be done by determining a probability trigger threshold: 
forecasts with probabilities above that threshold are assumed to trigger action and those below do not. This sequence of actions/no 
actions can then be compared to occurrences of the specified hazard. If action is triggered a cost C is incurred: a ‘hit’ occurs if a hazard 
follows, a ‘false alarm’ or ‘action in vain’ otherwise. If no action is triggered but the hazard occurs a ‘miss’ occurs, incurring cost L, with 
a ‘correct rejection’ if no action is taken and no hazard occurs. These outcomes are summarized in Table 1. 

A FbF system becomes financially worthwhile when condition of Eq. (1) below is met (CdP16). L18 modified this equation to 
include a term to account for the unavoidable losses that occur despite the preparedness actions. Here we disregard these unavoidable 
loses as they exist whether there was a hit or a missed event. 

Table 1 
Contingency table based on triggering early action if the forecasted probability exceeds a threshold, p (adapted 
from CdP16).   

Hazard occurs Hazard does not occur 

Forecast triggers action Hit, a(p) Acting in vain, b(p) 
No action taken Miss, c(p) Correct rejection, d(p)  
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In Eq. (1) a, b and c are the number of event ‘hits’, ‘false alarms’ and ‘misses’ using a particular forecast over some period from 
Table 1. The left-hand side of represents the financial losses experienced when unprotected hazards occur and the right-hand side 
represents the average cost accrued when using a forecast system to guide decision-making. The first two terms on the right-hand side 
of Eq. (1) represent the combined cost of worthy action and action in vain, whilst the third term represents the losses associated with 
missed events. In the following we assume zero extra cost of action in vain (i.e. ΔC = 0). 

Eq. (1) represents the condition for a forecast system to show value over a no-forecast alternative, averaged over a period. However, 
it may still take many forecast trials for a system to show value, even if this condition is met. To quantify this, we then use a Monte 
Carlo sampling approach to simulate the impact of sequencing of hazards and non-hazards, hits, misses and false alarms, described 
below. We provide an answer to the question: given a specification of forecast skill, how long will it take for an FbF system based on 
that system to clearly show value? 

2.2. Using a Monte Carlo approach to evaluate the relationship between the skill of a forecast-based decision system and its long-term value 

The skill of a probabilistic forecast system is often defined for some event, such as the seasonal rainfall total falling below the lower 
tercile of climatological rainfall. A variety of complementary verification scores have been defined but we choose metrics compatible 
with the formal mathematical formulation of an ‘worthy’ FbF system (eq (1)): specifically:  

(i) The Hit rate (HR), defined as the percentage of events which were successfully forecast (HR = a/a + c)  
(ii) The False Alarm Ratio, defined as the proportion of actions taken which are in vain. FAR = b/(a + b) 

Luck plays a role in probabilistic forecasting. Even if the underlying frequency of a hazard is precisely known, the exact sequence of 
events and non-events is subject to significant uncertainty. For example: one may roll a die three times and get six three times or roll it 
ten times without a single six. Similarly, a hazard with a one in five-year return period may happen several times in the next decade, or 
not at all. The exact sequence of events and non-events has a clear impact on hazard-related losses, along with the perceived value of an 
FbF system. Acting on a probabilistic forecast it is quite possible to experience a string of ‘bad luck’ (misses or false alarms), even if the 
system is highly skilful in the long term. 

In the context of a decision taken based on a seasonal forecast ahead of an annual rainy season, such a decision would be taken once 
per year. Hence a string of bad luck may last many years and the long term the value of the system could take several years or longer to 
reveal itself. To use another gambling analogy: with a card counting system for Blackjack that shifts the odds slightly in our favour it is 
not unlikely that we lose several hands after sitting down at the table. But if our system works, we will beat the house – as long as we 
play for long enough. The question here is: how long is long enough? 

This impact of ‘luck’ (or more precisely, sampling uncertainty) on the realized economic value of a forecast system has not been 
considered before. However, it is essential to evaluate its importance: users setting up a forecast-based action system should be clearly 
aware of the length of time needed before a system will show value. A clear demonstration of a worthwhile system is far from 
guaranteed within the first few forecasts. The previous approaches of CdP16, L18 are idealized analyses and implicitly correspond to 
the expected value of the system obtained over an infinite number of trials. Here we inject some further realism by using a Monte Carlo 
approach to evaluate the time an FbF system would take to ‘beat the house’, and how this expected time-to-value is dependent on the 
skill of the underlying forecast system. 

We generate a large ensemble of one thousand ’climate event trajectories’ each of 100 years duration, consistent with the un
derlying probability of the event. These take the form of a binary sequence of events and non-events, each generated with an inde
pendent probability, p, equal to the baseline frequency. We carry out separate simulations for events with different return periods: one 
in three years, five years and ten years (p = 33%, 20% and 10% respectively). Results for a one in five year hazard are shown in the 
main manuscript, comparison with one in three and one in ten year events is presented in supplementary material. 

Two strategies are possible in the absence of any forecast information:  

• “Always act”, in which early preparedness actions are taken every year. The accumulated expense of this strategy here is simply the 
cost of acting multiplied by the number of years and is independent of the event trajectory.  

• “Never act”, in which early preparedness actions are never taken, and losses are faced when an event occurs. The accumulated 
expense of this strategy depends on the specific event trajectory; no expense is incurred when no event occurs, whilst losses accrue 
if an event occurs. 

These two strategies provide a benchmark to measure the value of a forecast system; if more expense is accrued when guided by a 
seasonal forecast compared to either of these two strategies then it is difficult to claim the forecast is useful. To calculate the expenses 
of different strategies we must first define costs and losses, noting that expenses scale linearly with a multiplication of both C and L. 
Instead it is the ratio C/L is the crucial factor. We therefore carry out simulations for a range of C/L ratios. We focus in the main 
manuscript on results where C/L is set to equal to the event frequency, as this C/L ratio is an equilibrium point where the expected 
expenses of the default strategies are equal, noting that ‘always act’ always costs C and ‘never act’ costs pL on average. These are equal 
where C = pL, or C/L = p. We also show results in supplementary material for C/L = 0.5p and C/L = 2p, situations which favour 
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‘always act’ and ‘never act’ respectively. In all cases we explicitly show nominal expenses associated with L=$1000. 
We add a third reference strategy to these two ‘no-forecast’ default options: the expense associated with a theoretical perfect 

forecast. This is calculated for each event trajectory by accruing a cost every time an event occurs and $0 otherwise. In reality this 
strategy is impossible (requiring perfect advance knowledge of hazard occurrence) but is a useful indication of the maximum possible 
saving that a seasonal forecast could provide. Finally, we calculate the expense accrued if an (imperfect) forecast system is relied upon. 
This is calculated for a theoretical system with particular values of both HR and FAR. For each of the 1000 event trajectories we 
calculate a 1000-member ensemble in order to sample possible “forecast trajectories”. Multiple forecast trajectories are necessary, as 
the forecast system is probabilistic: e.g. with HR = 50% when an event occurs there is 50% chance a warning would have been given. 
Each forecast trajectory is then generated as a sequence of warnings, where the probability of issuing a warning is mathematically 
conditional on the occurrence of an event or non-events and is a function of HR and/or FAR. 

The conditional probability that a warning is issued given the occurrence of an event is defined as: 

P(warning|event ) = HR (2) 

and the conditional probability that no warning is issued before an event is: 

P(no warning|event ) = 1 − HR (3) 

Eqs. (2 and 3) enable the classification of the events in each event trajectory into hits and misses. 
Classifying non-events as false alarms or correct rejections using FAR is slightly more complicated. It would be trivial if the false 

alarm rate (the fraction of non-events followed by a warning), was specified, however here we use the false alarm ratio, as it is more 
relevant to FbF practitioners, as it indicates the chance an early action will be in vain on average (CdP16). Since FAR is a function of 
both false alarms and hits, the probability of classifying a non-event as a false alarm is dependent on both FAR and HR. 

In order to derive conditional probabilities for warnings in advance of non-events we use the notation of Table 1 to define FAR 
explicitly, as the fraction of warnings which are in vain: 

FAR =
b

a + b
(4) 

We then express the number of hits as a function of the hit rate and the total number of trials: 

a = p∙HR∙n (5)  

where p is the baseline frequency of the event (specified previously as 20%, or 0.2). Substituting Eq. (5) into Eq. (4) gives: 

FAR =
b

p∙HR∙n + b
(6) 

This may be rearranged as an equation for the number of false alarms: 

b = p∙HR∙FAR∙n
1 − FAR

(7) 

The marginal probability of a false alarm could now be calculated by dividing both sides of the equation by n. However, we require 
the conditional probability of a warning, given no event. This is calculated by dividing (7) by the number of non-events, (1 − p)n, 
giving: 

P(warning|noevent) = p∙HR∙FAR
(1 − FAR)(1 − p)

(8) 

The conditional probability of no warning given no event is then given by: 

P(nowarning|noevent) = 1 − p∙HR∙FAR
(1 − FAR)(1 − p)

(9) 

Eqs. (2), (3), (8 and 9) now allow the classification of each event and non-event in each event trajectory to be converted to a 
sequence of warnings and non-warnings. The 1000 forecast trajectories generated for each event trajectory quantify the possible 
forecasts which might be issued ahead of a particular sequence of events, each consistent with a particular value of HR and FAR. The 
associated forecast expense of each forecast trajectory using the established values for cost and loss. 

In total one million potential series of forecast expense are calculated for a particular value of HR and FAR. These allow the 
temporal characteristics of the forecast expense to be calculated. From this sample the central estimate indicates average expected 
reduction in expense from default action provided by the forecast system, relative to the reduction in expense provided by a perfect 
forecast (in the long term this will asymptote to the traditional estimation of forecast value as in L18). Finally, for each member the 
sample we calculate the number of trials pass before forecast value is (and remains) positive relative to default action; the percentiles of 
this metric across the sample then quantify the number of trials one must wait in order to have confidence of the system displaying 
positive value. 

This Monte Carlo sampling process is then repeated for all possible sequences of HR and FAR, ranging from 0 to 100%, in intervals 
of 5%. Metrics described above are then displayed as a function of HR and FAR, providing a direct visualization of the relationship 
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between expected forecast skill and economic value. 

2.3. Theoretical restriction on allowed combinations of HR and FAR 

FAR and HR are not mutually independent, as both depend on forecast hits. The implication of this is an exclusion of combinations 
of HR and FAR, found when both HR and FAR and sufficiently large. We exclude these regions in our analysis and describe the 
delineation of this part of HR, FAR space here. 

The space of ’impossible’ combinations of FAR and HR can be defined by starting with the definition of the number of false alarms 
(Eq. (7)) and considering that the ratio b/n is bounded by [0,1]. It is not possible for values of HR and FAR in the range [0,100%] to 
lead to values of this ratio below zero. However there are values which lead to impossible values b/n >1. Considering this possibility, 
Eq. (7) gives: 

1 > p∙HR∙FAR
1 − FAR

(10) 

which can be rearranged as an identity for disallowed values of FAR: 

FAR >
1

p∙HR + 1
(11) 

giving a first exclusion on HR/FAR space. 
A second restriction on allowed regions of HR/FAR space comes from the restriction that the values of Table 1 must sum to n. 

a+ b+ c+ d = n (12) 

whilst the total of hits and misses must equal the number of events 

a+ c = pn (13) 

Eq. (12) and (13) can then be combined: 

b = (1 − p)n − d (14) 

which when combined with Eq. (7) gives an expression for the fraction of the total number of trails which are correct rejections: 

d/n = 1 − p − p∙HR∙FAR
1 − FAR

(15) 

d/n is also bounded by [0,1]. Values greater than one would require an impossible negative value of HR or FAR, however value 
below zero is possible when: 

FAR >
1 − p

p(HR − 1) + 1
(16) 

Eqs. (11 and 16) define non-identical impossible regions of HR/FAR space. These both depend on p, with a larger region of the 
space disallowed with a greater frequency of events. 

Intuitively this restriction can be thought of as contrary influence of hits on HR and FAR: an increasing number of hits increases HR, 
forcing ever-larger numbers of false alarms in order to obtain high FAR. At some point there are insufficient trials to obtain these high 
values. As a simple example: as soon as there is one hit, FAR = 100% is impossible. If all events are hits, the maximum possible FAR 
depends on the number of remaining non-events (indicated by p). In an extreme case of p = 1 it is clear to see that any value of FAR 
beyond FAR = 0% is undefined: when an event occurs with every trial, a false alarm is impossible. 

It can be shown that of Eqs. (11 and 16), Eq. (16) is a more restrictive condition on HR/FAR space and so this is used to define the 
limit of HR/FAR sampling. 

2.4. Plausible seasonal forecasting skill 

In order to provide an indication of real-world HR and FAR values, we calculate scores from the European Centre for Medium- 
Range Weather Forecast (ECMWF) SEAS5 seasonal forecasting system. Full technical details are provided in Johnson et al 2019: 
here analysis of the hindcast over 1981–2020 is used to estimate skill. Skill scores are over Kenya, focusing on one in five year wet 
events for the two seasons. These are chosen as a neat example of low and high skill: the long rains (March-May) has relatively low 
predictability as relationships to large-scale predictable climate drivers are weak (e.g. Kilavi et al., 2018, Vellinga and Milton 2018, 
MacLeod 2018, MacLeod 2019), whilst the short rains (October-December) has high predictability, particularly for wet events, with 
strong forcing from the Indian Ocean Dipole and El Niño Southern Oscillation (MacLeod and Caminade, 2019; MacLeod et al., 2021). 
In each case forecasts at a lead time of one month are used (corresponding to initialization of 1-February and 1-September respec
tively), and for each, three HR-FAR pairs are estimated based on triggering on a forecast probability of 50%, 30% and 10% separately. 

D. MacLeod et al.                                                                                                                                                                                                      



Climate Risk Management 34 (2021) 100375

6

3. Results 

An indicative example of potential expense accumulation is shown in Fig. 1. A single event trajectory is shown in Fig. 1a, with 
accumulated expense for default strategies, along with a single forecast trajectory consistent with HR of 80% and FAR of 40%. The full 
range of forecast expense associated with this specific event trajectory is shown in Fig. 1b, according to the distribution of the 1000- 
member forecast trajectory ensemble. 

The uncertainty in event trajectories can then be quantified by considering the distribution across all event trajectories. This is 
shown in Fig. 1c. Here spread in the baseline strategies of “perfect forecast” and “never insure” are generated from 1000 possible event 
trajectories, consistent with a one in five year return period event. The spread in possible forecast expenses corresponds here to the 
uncertainty both in the 1000 possible event trajectories as well as the forecast response to these trajectories (consistent with the 
specified HR = 80% and FAR = 40%). 

Fig. 1. Estimating the possible future value of a forecast-based action system. Example here shows the expense incurred by different strategies for a 
1 in 5-year event (where action costs $200 to avoid a $1000 loss from a hazard). (a) shows a possible trajectory of events (black dots on top axis) and 
actions based on a forecast consistent with HR = 80% and FAR = 40% (yellow circles). Red and blue lines show the expenses incurred by never and 
always acting, whilst the yellow and green lines show the expense incurred by acting based on a forecast system with HR = 80% and FAR = 40% or a 
perfect system. Figure (b) shows the same sequence of events as (a), but with the 5–95% confidenceFbF interval of the expense of the forecast 
system, estimated by resampling 1000 possible action sequences consistent with the specified HR and FAR. (c) shows the 5–95% confidence interval 
of the expense of all strategies, calculated by sampling over 1000 event trajectories consistent with the baseline event frequency (NB 1000 action 
sequences are sampled for each of 1000 event sequences. (d) Shows the reduction in expense from “Never act” when using the forecast system. This 
reduction is expressed as a percentage of the expense reduction which would be achieved if the forecast were perfect. Lighter shading indicates the 
5–95% range of subsamples, darker shading indicates the 25–75% range and the line indicates the median. 
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In order to show the added value of the forecast system, relative to never acting, Fig. 1d shows the difference in expense between 
the forecast and “never act”, scaled by the expense of the perfect forecast. From this example, most ensemble members indicate positive 
value relative to never acting, from the very first forecast trial. However around 25% of the samples show negative value in the first 
year, and around 20 trials are necessary to have a 95% confidence that expense associated with the forecast will be lower than never 
insuring. 

Next the accumulated expense is plotted as a function of HR and FAR in Fig. 2. Fig. 2a–c show the median expense of the forecast 
system after 10, 20 and 30 trials in US$. As expected, the lowest expenses are seen when forecast skill is high: when HR is close to 100% 
(no misses) and FAR is close to zero (no false alarms). Naturally, the expense increases over time, with the expense after 30 years 
ranging around $2000 to over $5000, depending on forecast skill. 

The expense saved by a forecast system relative to never acting is shown in Fig. 2d–f as a function of forecast skill, after 10, 20 and 
30 years. As expected, more money is saved on average when the system is used for longer; after 30 years a perfect forecast (HR =
100%, FAR = 0%) saves on average well over $2000 in this context. With lower forecast skill less money is saved, although most values 
of HR and FAR ultimately provide value in the long term, on average. For instance, even a forecast system anticipating with HR = 20% 
and FAR = 60% could save between $200–1000 after 30 years. However it should be noted that Fig. 2 shows the expected expense 
reduction; within the bootstrapped ensemble there is significant variability and in practice a particular realization of a forecast system 
can accrue larger expenses compared to a default “never act” strategy (particularly for systems with lower forecast skill). 

Finally we estimate the length of time necessary to be sure a system will show less expense of the alternative of never or always 
insure. This is shown by calculating the timing that a certain percent of the 1 million ensemble members show less expense that an 
alternative strategy. This is repeated for each HR/FAR combination and shown in Fig. 3. Fig. 3a and b show the number of years until at 
least 75% and 95% of the ensemble show less expense than never insuring, whilst 3c and 3d show the number of years for 75% and 95% 
to show less expense than always insuring. Along with the time-to-value estimate, some indicative skill scores from a real example of a 
seasonal forecast with high and low skill are included. 

Clearly the number of forecasts needed before a system clearly shows value is a strong function of forecast skill. If the system is more 
skilful with HR >80% and FAR <50%, then there is at least a 75% chance that the forecast will be better than never insuring after only 
two forecasts (Fig. 3a). This level of skill is possible from the real-world high skill example. However, even with this system there is still 

Fig. 2. (a-c) Median expense incurred after 10, 20, 30 trials when using a forecast to trigger action. (d-f) the expense reduction provided by a 
forecast (relative to a “never act” strategy). The grey region indicates undefined regions of HR/FAR space (see methodology for details). 
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25% chance that the forecast will be more expensive than the alternative after two forecasts; one must use this system for at least 10 
forecasts to ensure that money is saved over never insuring (Fig. 3b). For a system with lower skill (e.g. HR = 40% and FAR = 60%) 
such as is achieved with the real-world low skill example, the long-term expected value of the system is still positive (Fig. 2), however 
one must use the system for at least 50 years to have 95% certainty that money is saved over the alternative (95% chance Fig. 3b). 

Fig. 3c and d show the time a forecast system will clearly show value against to a strategy of “always act”. Compared to Fig. 3a and 
b, HR/FAR space is clearly demarcated into regions which quickly show value and those for which value is not guaranteed even after 
100 forecasts. The reason for this is due to the independence of an “always act” strategy to the exact timing of hazards. When using a 
baseline of “always act”, using a forecast with HR below 20% will not show positive value after 100 forecasts in at least 25% of cases, 
whilst a HR of at least 50% will demonstrate value immediately on using the forecast in 75% of cases (unless FAR is particularly high). 
However, if one requires 95% certainty that a forecast system will show value compared to always acting, a near-perfect HR is 
required, along with a FAR of <60%. This stringent condition is because when measuring against “always act”, the forecast can only 
reduce expense by advising not to act. It is then heavily penalized for any misses, which requires many correct worthy actions to recoup 
this loss. 

For reference, additional versions of Fig. 3 are shown in supplementary material which compare results for different hazard fre
quencies and C/L ratios. Results demonstrate that as hazard frequency increases, the time-to-value decreases. This reflects the decrease 

Fig. 3. (a & b) show the number of trials necessary before the expense associated with using a forecast will be lower than the ‘never act’, in 75% or 
95% of cases respectively. Fig. 3 (c & d) show the same metric when measured against the ‘always act’ scenario. Also included on all figures are six 
triangles, indicating plausible skill from a seasonal forecast. Three triangles are shown for a high and low seasonal forecast (upward and downward 
pointing triangles respectively); these results are obtained from ECMWF SEAS5 forecasts of one in five wet seasons over Kenya, for the short and 
long rains respectively (see methods for details). In each case three instances of HR and FAR are calculated, based on acting with a probability 
trigger threshold of 50, 30 and 10% (associated with triangles appearing from left to right). 
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in the time the forecast system must “wait” until it can prove itself; even a forecast with perfect discrimination ability must wait for a 
hazard to occur before it can beat a forecast of “never acting”. Another feature noted is that with increasing hazard frequency, the 
range of FAR which still provides a reasonable time-to-value also decreases. Where C/L = p, this limit of ‘still-useful FAR’ is equal to 1- 
p: this corresponds to the same FAR one would achieve by taking action at random: varying the overall frequency of such a ‘random 
action’ provides any desired HR. It is hopefully obvious that any forecast system with FAR is equivalent (or higher) than that achieved 
by acting at random (or worse) will not show positive economic value! 

Finally, supplementary figures show the implications of different C/L ratios which favour either ‘always act’ or ‘never act’. When 
‘always act’ is favoured (C/L = 0.5p), this strategy becomes very difficult to beat: forecasts must have HR >80% to have 75% chance of 
showing value over this strategy (supplementary Fig. 3, top row); to have 95% confidence they must have HR > 90% and still this will 
take at least a decade to show value. When ‘never act’ is favoured (C/L = 2p), FAR determines the possibility of providing certainty of 
value: with a one in five year event to have 75% certainty then FAR below 50% is required to show value within 50 trials, but to have 
95% certainty of this then FAR below 30% is required for HR >50%. 

4. Discussion and conclusion 

Weather and climate forecasts are inherently probabilistic in nature. This can be problematic to users whose actions (and inactions) 
are traditionally viewed in the binary terms of being either being right or wrong. This paper attempts to reframe this mismatch by 
promoting a decision-making approach whereby forecast use is assessed as a longer-term climate risk management strategy. In 
particular, this reframing places the metrics of skill of the forecasts system at the centre of determining the return. Clearly, a forecast 
system with a high level of skill leads to reduction in costs and losses, compared to never or always acting: and these returns are 
realised relatively quickly. When forecast skill is low the use of forecasts can still be theoretically better than a no-forecast strategy, 
although this may take a very long time to be realized. This is a factor which must be acknowledged as limiting the uptake of such 
information. 

In this paper we place the decision to use forecasts to decide whether to take early preparedness actions in the context of alternative 
‘no-forecast’ decision strategies, i.e., of always acting or never acting, in the absence of forecasts. In particular, we find that there is less 
uncertainty when estimating the returns on using forecasts when compared against always acting as opposed to never acting. This 
arises because there is zero uncertainty in the future expense of always acting. When comparing against never acting the uncertainty in 
realized value of using a forecast system is much higher, as it depends on the sequence of climate events. For example, a decade could 
pass without a single one in five year event. It is quite possible that a relatively skilful system could unnecessarily trigger in this decade, 
which would make it look worse. In this context, the risk tolerance of the user becomes key factor in determining whether to use 
forecasts. For example, a user with a higher risk tolerance can take advantage of a larger range of skilful systems. If the user only 
requires 75% certainty that using the forecast will show value compared to never acting after 10 years, our research shows that this is 
possible as long as HR >40% and FAR <50%. However if the user almost guaranteed (95%) certainty of value within 10 years, they 
must use nothing less than a perfect forecast. 

The analysis here provides an estimate of the expected value of a system given certain skill metrics. In practice, estimates of forecast 
skill are themselves uncertain. For example, with seasonal forecasts, skill metrics are generally calculated by evaluating reforecasts 
which generally have a sample size below 40. Sampling uncertainty leads to non-trivial uncertainty in both the estimation of the 
thresholds for a 1 in 5 year event, along with the estimates of HR/FAR themselves. So in reality an envelope of possible HR/FAR should 
be applied to the analysis presented here. The approach shown in this paper recognises that when using probabilistic information to 
make a decision, chance helps determine how quickly the user experiences the benefits of using forecasts to guide their decisions 
making. 

Another assumption to the results presented here is that the frequency of the hazard will stay constant in the long term. There is no 
reason to think this will be the case: significant internal or forced climate variability can significant change the frequency of hazards. 
The impact on the expected time for a system to show value will depend on how exactly the frequency of the hazard changes – which 
may be highly nonlinear, and non-monotonic. However analysis presented for hazards with different return periods indicates a general 
rule of thumb: as hazard frequency increases, a forecast with reasonable skill will show value quicker, as it is given more frequency 
opportunity to prove itself. 

In practice, costs and particularly losses are notoriously difficult to estimate beyond purely financial decisions (there is also an 
inevitable limitation to the framework as those experiencing losses are not the same as those paying preparedness costs: international 
aid donors fund FbF programmes, but do not experience the greatest losses when disaster hits). For simplicity we have focused on a 
scenario where C/L = p, as it balances the expected costs of the two no-forecast strategies; that is, they are equally bad. However results 
for C/L ratios which diverge from C/L = p reflect the much tougher test of one of the default actions. That is, as C/L moves away from 
the equilibrium point, one of the strategies becomes much more effective at the expense of the other. This improved default strategy 
then becomes correspondingly harder for a forecast system to beat: this can be seen when potential economic value curves are plotted 
as a function of C/L ratio; maximum value is achieved where C/L = p (e.g. Richardson 2000). The implications of this: if C, L and p can 
be estimated and C/L is significantly different from p, all but near-perfect forecast systems may be excluded as potential triggers for 
taking early actions. 

Nuances and external factors may also result in the real-world ‘value’ of an FbF system diverging from the idealised toy example 
presented here. As well as uncertainty in estimating action costs and event losses, these two factors can be non-stationary and 
dependent on the external, variable factors. Furthermore, event preparation is not an isolated activity: within the forecast horizon 
additional actions based on shorter-range forecasts may limit the loss of a missed event, whilst false alarms could see some costs 
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recuperated (e.g. by re-collecting pre-positioned supplies as shorter range forecasts show the hazard risk has decreased). In addition, 
although our results may indicate that a particular forecast should show value after twenty years, a series of back-to-back false alarms 
and misses soon after the set-up may lead to drop in trust and program cancellation. Therefore, we do not present these results as a 
statement about the actual real-world value of FbF, which is highly contextual and related not only to forecast skill and preparedness 
actions, but determined by specifics of program design, implementation, stakeholder buy-in and communication. Instead, we present 
the results to delineate reasonable expectations of ‘return’ from an FbF system, reframing forecast skill as the key determinant of this 
‘time-to-value’. 

The reframing of using forecasts exemplified in this paper puts the onus on the forecasters to quantify the skill of their forecast as 
much as the user to determine the costs and expected losses to justify the benefits of using forecasts. Clearly, to many of the institutions 
mandated to reduce disaster risk the cost of inaction when a disaster strikes is politically high, as is the loss of reputation if a disaster is 
predicted but never occurs. Although the cost-loss framework simplifies real-world decision-making, its value is less in determining 
where forecasts show value, but in the minimum forecast skill which must be achieved. In this paper we have used the framework to 
look further: to guide expectations on how long until a forecast-based decision-making system such as FbF must be used to show value. 
In the case of an annual potential decision from a seasonal forecast, the results are clear: to exploit the potential value of seasonal 
forecasts, one must be prepared to play the long game. 
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