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Abstract The cross-view matching of local image
features is a fundamental task in visual localization
and 3D reconstruction. This study proposes FilterGNN,
a transformer-based graph neural network (GNN),
aiming to improve the matching efficiency and
accuracy of visual descriptors. Based on high matching
sparseness and coarse-to-fine covisible area detection,
FilterGNN utilizes cascaded optimal graph-matching
filter modules to dynamically reject outlier matches.
Moreover, we successfully adapted linear attention in
FilterGNN with post-instance normalization support,
which significantly reduces the complexity of complete
graph learning from O(N2) to O(N). Experiments
show that FilterGNN requires only 6% of the time
cost and 33.3% of the memory cost compared with
SuperGlue under a large-scale input size and achieves
a competitive performance in various tasks, such as
pose estimation, visual localization, and sparse 3D
reconstruction.

Keywords image matching; transformer; linear
attention; visual localization; sparse
reconstruction

1 Introduction

Finding pixel-wise correspondences in image pairs is
an essential step in camera pose estimations and has
been widely used for structure-from-motion (SfM) [1],
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simultaneous localization and mapping (SLAM) [2, 3],
and visual localization [4] purposes. Most of the
existing methods require two phases: local feature
extraction and feature matching. Over the past
decade, significant effort [5, 6] has been devoted
to feature extraction using deep convolutional neural
networks (DCNNs). Recently, some transformer-
based [7] methods [8–13] have been proposed to
significantly improve the matching ability compared
with the traditional nearest neighbor (NN) searching
strategy. However, some additional computational
costs challenge their practical use in real-time
applications.

Attention-based graph neural networks, such
as SuperGlue [8], primarily benefit from the
transformer’s support for irregular data and the
aggregated global context through a pairwise
attention mechanism. In particular, (a) self-attention,
which exhaustively calculates the correlation between
any two keypoints extracted from the same image,
is used to aggregate the inner-view global context.
(b) Correspondingly, cross attention is applied to a
complete bipartite graph comprising two keypoint
sets grouped by source images to learn cross-view
information. (c) Unlike bipartite graph matching,
the local feature matching task involves numerous
unmatchable keypoints. Therefore, a reasonable
rejection mechanism is required to detect the
optimal matching layer. In refining local descriptors
using complete graph-based attention, SuperGlue
achieves significant performance gains in many
pose estimation [14, 15] and visual localization
benchmarks [16–18]. However, fully connected atten-
tion mechanisms (as shown in Fig. 1(c)) result in
a computational complexity of O(N2d)¬, which is

¬ N denotes the input size; and d, the number of feature dimensions.
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significantly higher than conducting an NN search.
Efforts to reduce the attention computation have

been made. One method involves building a sparse
graph from the inputs. Owing to the discrete and
unordered nature of local image features, traditional
methods such as spatial neighbor attention [19–21],
which rely on ordered sliding windows, cannot be
directly applied. More appropriate solutions focus on
building subgraphs by sampling [9], projection [22,
23], or clustering [10, 24], thereby reducing the
computational complexity to O(kNd), where k is
a small constant. Typically, these methods inevitably
result in losing information in the size dimension,
and the ratio of k to N should be selected
carefully. A second method involves designing linear
kernel functions to approximate fully connected
attention [23, 25, 26]. However, previous work on
ClusterGNN [10] reported the incompatibility of
linear approximations with cross attention, resulting
in a significant drop in the matching accuracy.

This study proposes FilterGNN, which effectively
combines the two aforementioned methods for the
comprehensive optimization of feature matching.
Previous studies [8, 10] detected unmatchable points
only in the final optimal matching layer. Conversely,
FilterGNN exploits hierarchical outlier filters to
dynamically reject invalid outliers interspersed
between attentional aggregation blocks. As shown
in Fig. 1, the low-level filter can quickly reject
isolated keypoints outside the covisible area according

to the basic descriptors, and the high-level filter
accurately removes outlier matches according to the
refined descriptors considering sparsity, visibility, and
geometric distribution consistency.

To further accelerate the matching, we focused
on approximating the fully connected attention with
linear attention by considering the following aspects.
(i) The residual attention block of SuperGlue [8] may
lead to excessive variance amplification, which affects
the convergence speed and performance. Therefore,
a reasonable normalization layer is recommended,
particularly for training from scratch. (ii) Considering
the potentially large domain gaps between the input
image pairs, such as orientation, scale, and lighting,
we adopted instance normalization [27] instead of
layer normalization [28] in the vanilla transformer
[7]. (iii) The training gradient for linear attention is
not as good as that for standard attention. Because
the attention layer does not require additional
learnable parameters, rather than training from
scratch, we finetuned the linear attention using
pretrained weights from standard attention. This
preserves a high matching performance and helps the
training converge faster.

The main contributions of this study are summa-
rized as follows:
(1) We propose a cascaded optimal graph matching

filter module that can dynamically reject
unmatchable keypoints. It reduces the compu-
tational cost and provides a better feature

Fig. 1 (a) Visualization of the proposed hierarchical filtering. Keypoints in red, yellow, and green are discarded layer-by-layer. (b) The
remaining keypoints (blue) are used for the final feature matching with our FilterGNN. (c) Standard and linear attention. Q⊗KT yields a
computational complexity of O(N2d), where ⊗ indicates matrix multiplication and (φ, ϕ) indicates kernel functions with linear complexity. The
dimensions of the matrices are shown in orange.



FilterGNN: Image feature matching with cascaded outlier filters and linear attention 875

distribution space for highly correlated
keypoints.

(2) We propose an efficient and effective linear GNN
architecture with post instance normalization,
significantly reducing the computational
complexity from O(N2d) to O(Nd).

(3) Extensive experiments on various computer
vision tasks demonstrate the applicability
of our method, which achieves competitive
results compared with state-of-the-art (SOTA)
methods and demonstrates a significantly higher
efficiency.

2 Related work

Image feature matching. Traditional pipelines
primarily focus on robust interest-point detection and
visual descriptor computations. SIFT [29] is a scale-
invariant handcrafted feature method widely used in
pose estimation tasks of SfM and multiview stereo
(MVS). ORB [30] focuses on efficiency and is primarily
applied to SLAM. Recently, deep convolutional neural
networks (CNNs) have inspired many learning-based
image feature extraction methods such as D2Net [5],
SuperPoint [6], and ASLFeat [31], whose matching
ability significantly surpasses that of handcrafted
methods. They describe the content of local regions
and often perform data augmentation on the scale,
rotation, and imaging perturbations to achieve
orientation invariance [32] or affine invariance [33].

Recently, Sarlin et al. [8] proposed SuperGlue,
which exploits a transformer-based graph neural
network to aggregate inner-global and cross-view
information from keypoint sets of image pairs.
As feature-matching networks aim to refine the
descriptors, the source and target image features
can be used as inputs directly. SuperGlue improves
the transformer architecture of the encoder (stacked
self-attention modules) and decoder (stacked cross-
attention modules) with alternately stacked self-
and cross-attention modules. However, SuperGlue
suffers from a quadratic computational complexity of
O(N2d), which is impractical for direct application
in real-time systems.

Efficient transformer-based architecture. The
transformer architecture has succeeded in both
natural language processing [34] and computer vision
tasks [35]. The inputs (text or images) for these tasks
have regular structures, from which sparse graph

patterns can be easily built. The sparse transformer
[19, 36] performs attention computation only for
the text subsequences within a shifted local block.
Similarly, SwinTransformer [37] adopts a sliding
window mechanism to compute the multi-level local
attention efficiently using the high sparsity of the local
window. Linformer [22] performs linear projections
on the dimension of the input size, which requires
ordering the input elements. These methods cannot
be directly generalized to cross-image matching tasks
because no reasonable manner of predefining the order
and spatial adjacency of the sparse input keypoints
exists.

SGMNet [9] simulates seed downsampling through
attentional pooling with a computational complexity
of O(kNd), which is affected by the number of
seeds k, particularly for large-scale inputs. Following
SGMNet, Suwanwimolkul and Komorita [12] pro-
posed neighborhood attention with an additional
pairwise neighbor layer. ClusterGNN [10] and
RoutingTransformer [38] divide the complete graph
into multiple subgraphs in terms of semantic
similarity by clustering and then perform only
self-attention within each subgraph. The ideal
time complexity of a GNN is O(N1.5d). These
methods focus on building appropriate sparse graphs
from a complete input graph to simplify attention
computation.

Katharopoulos et al. [25] proposed a linear
approximation of the attention layer using a kernel
function. As shown in Fig. 1, the computational
complexity is reduced by changing the order of
the matrix multiplication. Several follow-up studies
[23, 26, 39] have designed different types of kernel
functions for different tasks. We drew inspiration from
these kernel-function-approximation-based methods
to make significant progress in image-matching tasks.

3 FilterGNN architecture

3.1 Overview

Given two keypoint sets (XA,XB) from a pair of
images (A,B), feature matching is used to determine
the correspondences M = {(i, j)} that make the 3D
positions of the features X (i)

A and X (j)
B as close as

possible. Input X comprises keypoint descriptors D
and positions P = {(u, v, c)}, where (u, v) are the
image coordinates, and c denotes the corresponding
keypoint detection score.
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Typically, we can build a similarity score matrix
directly using the cosine distances of the visual
descriptors and generate correspondences through
an NN search. Currently, most visual descriptors
such as SIFT [29], SuperPoint [6], and D2net [5]
encode only the local context. However, in long-term
visual localization systems, many interference factors
exist, such as lighting conditions, camera poses,
and repetitive structures (buildings, checkerboards,
etc.), that cannot be effectively handled using local
descriptors.

Therefore, the proposed FilterGNN aims to refine
local visual descriptors for feature matching. As
shown in Fig. 2, FilterGNN applies optimal GMFs
to the keypoint sets in a cascaded manner to
filter out unmatchable keypoints step-by-step, in
addition to refining the descriptors by aggregating
the global context through an attention cascade, such
as SuperGlue. Each GMF is dedicatedly designed
with a novel linear attention GNN. Therefore, the
final correspondences can be efficiently and accurately
generated by performing a traditional NN search on
the remaining distilled keypoint sets.

3.2 Graph matching filter (GMF)

Similar to the lightweight SuperGlue, our GMF
comprises a shared positional encoder, a linear

attention GNN, and a top-K filter. The positional
encoder is used to extract the geometric content,
and the linear attention GNN was designed to
aggregate global information. After refining the input
feature descriptors, we removed a fixed proportion
of unmatchable points based on their cross-image-
matching scores.
3.2.1 Positional encoder
The positional encoder module is defined as Eq. (1):

F̃ = σ(D ⊕mlppe(P)) (1)
where σ indicates instance normalization [27], and
⊕ denotes matrix addition. D contains feature
descriptors. mlppe is the position encoding multi-
layer perceptrons (MLPs) that perform the high-
dimensional embedding of input image coordinates
P. Here, instance normalization was used to control
the variance of the output features.
3.2.2 Linear attention GNN
A linear attention GNN comprises L alternating self-
and cross-attention blocks. Figures 3(a) and 3(b)
illustrate this. Unlike SuperGlue, we placed additional
normalization layers after residual computing.
Inspired by the SwinTransformerV2 [41], we demon-
strate the variance change in Fig. 3.

The feedforward layer is simply defined as a residual
MLP mlpff as Eq. (2):

Fig. 2 FilterGNN architecture. FilterGNN uses cascaded optimal graph matching filter (GMF) modules (Section 3.2) to efficiently filter
isolated keypoints for improved feature matching. Each GMF module, acting as a miniature SuperGlue [8] block, refines the descriptors F of
the input keypoints set X = (F ,P) using a shared positional encoder (Section 3.2.1) and L stacked linear attention GNN layers (Section 3.2.2).
A top-K filter is adopted to remove the k keypoints with the lowest matching probabilities, gradually reducing the size of the keypoint set. The
score matrix of each GMF is then expanded with an additional dustbin dimension to detect outliers, and it generates the matching loss using
the dual-softmax operator [40] for training. Final correspondences are generated by performing the traditional NN search on the remaining,
distilled keypoint sets (XH

A ,XH
B ) after H GMFs.
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Fig. 3 (a) Original attention block in SuperGlue. (b) Our proposed
linear attention block with post-norm. (c) Standard attention.
(d) Linear attention. The red numbers indicate the variance during
the operation. The variance multipliers of both the feedforward and
attention layers are assumed to be five.

FF(X) = σ(X ⊕mlpff(X)) (2)

For self/cross-attention block Ãtt, source features
Fsrc ∈ RN,d and target feature Ftgt ∈ RM,d

refine the aggregated features as inputs and outputs,
respectively, by adding the attention output to Fsrc.
Here, M and N denote the numbers of remaining
keypoints in the two images not required to be equal.
Ãtt are defined as Eq. (3):

Ãtt(Fsrc,Ftgt) = σ(Fsrc ⊕Att(Q,K,V)⊗Watt)
Q = Fsrc ⊗WQ

K = Ftgt ⊗WK

V = Ftgt ⊗WV

(3)

where Watt,Q,K,V ∈ Rd,d denotes the linear projection
weights, and ⊗ denotes matrix multiplication. Q, K,
and V correspond to the queries, keys, and values
in the transformer architecture, respectively. When
the source and target are the same (e.g., from the
same image), Ãtt performs self-attention; otherwise,
it performs cross-attention.

The attention mechanism is at the core of the
proposed GNN. As shown in Fig. 3(c), for the
standard attention mechanism of SuperGlue [8] from
the vanilla transformer [7], Att(Q,K,V) is defined as

Attstd(Q,K,V) = Softmax(Q⊗K
T

√
d

)⊗ V (4)

where the computational complexity of Q ⊗ KT is
O(N2d), which is the bottleneck of the entire method.

Linear attention [25] through the kernel function
approximation is defined as Eq. (5):

Attlinear(Q,K,V) = φ(Q)⊗ (ϕ(KT)⊗ V)
φ(x) = ϕ(x) = Softmax(x) (5)

In addition, (φ, ϕ) has the following options. The
definition in the equation above was borrowed from
that of efficient attention [39]. The computational
complexity of Attlinear is O(Nd2). Typically, N is
significantly greater than d. Therefore, O(N2d) and
O(Nd2) can be represented as O(N2) and O(N),
respectively.

As reported by Shi et al. [10], directly training
FilterGNN with Attlinear from scratch does not
cause the network to converge well. Note that
neither Attstd nor Attlinear require additional learning
parameters for the network. Therefore, we can
adopt a two-step training approach: first, we use
Attstd for pretraining until convergence; second, we
replace Attstd with Attlinear to finetune the network
parameters. Thus, FilterGNN converges quickly
without significant performance degradation. For a
more detailed discussion, please refer to Section 4.3.
3.2.3 Top-K filter
For each GMF module, the score matrix S ∈ RN,M

is defined as the dot product between the refined
features:

S = F̃A ⊗ F̃T
B (6)

We expand S to S̃ ∈ RN+1,M+1 by adding an
additional learnable dustbin dimension for unmatched
keypoint detection called SuperGlue [8]. Then, we
adopt the dual-softmax [40] operator to produce an
optimized matching confidence matrix C as Eq. (7):

C = log Softmax(S̃) + log Softmax(S̃T)T (7)
Finally, we define the matching probability of each
keypoint as the row (column)-wise maximum value of
C (excluding the dustbin dimension), and filter out the
lowest k keypoints. k is set to γN . Note that the NN
search of the last layer in Fig. 2 illustrates a similar
process. This step no longer considers the dustbin
and directly determines the predicted matches based
on the score matrix. This process is efficient because
numerous outliers are filtered out in the previous
layers. As shown in Figs. 1 and 4, the outliers
detected by GMF are highly related to the covisibility.
The source image outputs different outlier detection
results for the different target images.
3.3 Loss function

We adopt a multilevel weighted loss function for H
GMF modules as Eq. (8):
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Fig. 4 (a) Visualization of matching probabilities: the color of the
keypoints changes from yellow to red as the probability changes from
high to low. (b) Visualization of the matching confidence vector of
a matchable keypoint. (c) Visualization of the matching confidence
vector of an unmatchable keypoint. The color of the lines changes
from red to green indicates the confidence changing from high to low.

L =
∑

h

whLh, wh = 1− γh (8)

to achieve a fast convergence and ensure the stability
outlier filtering. γ represents the rejection ratio of
each layer, which was set to 0.1. The matching loss
Lh of the hth GMF module is defined as

Lh =− 1
|M|

∑
(i,j)∈M

Cij−

1
|UA|

∑
i∈UA

Ci,m+1 −
1
|UB|

∑
j∈UB

Cn+1,j (9)

whereM denotes the ground truth matching set, and
(UA,UB), the unmatchable keypoint sets. Combined
with the definition of C in Eq. (7), we hope that
the matching confidence vector of any matchable
keypoint is as similar as possible to a one-hot
vector (as shown in Fig. 4(b)). That is, the cosine
similarity between unmatched keypoints should be
as low as possible. However, the dimensions of the
features are limited, and, as the input size increases,
the angle between nonmatching points is reduced,
increasing the possibility of mismatching. Note that
the proposed outlier filtering mechanism can provide
a relatively wide feature distribution space for
deeper layers. Therefore, the validity of FilterGNN is
theoretically guaranteed.

4 Experiments and discussions
4.1 Implementation details

Training dataset. FilterGNN was trained using the
MegaDepth dataset [42], which contains 195 outdoor
scenes with reconstructed camera poses and depth.
We adopted the same training/validation split of
153/36 as reported in Ref. [8].

Visual descriptor. We used ASLfeat [31], a
robust indoor/outdoor visual descriptor with 128
dimensions throughout all experiments. We extracted
a maximum of 2048 keypoints for each image
and randomly selected 1024 keypoints for data
augmentation during training.

Architecture details. All feature representations
(Q,K,V,D,F) share the same 128 dimensions as
ASLfeat. H and L were set to 3. The mlppe channels
were set to (3, 64, 128, 256, 128), and those
of mlpff were set to (128, 512, 128). Each linear
layer (excluding the last layer) in both MLPs was
followed by batch normalization and a ReLU layer. All
attention layers mentioned were implemented with
four-head multi-head attention. Our model was
optimized using Adam, with an initial learning rate
of 1 × 10−4 for the first 10 epochs, followed by an
exponential decay of 0.9 for 20 epochs.

4.2 Results
We evaluated the efficiency and performance of our
method by comparing it with SOTA methods, including
SuperGlue [8], SGMNet [9], and ClusterGNN [10], on
various computer vision tasks. ASLfeatV2 [31] is
specified as the input image visual descriptor and
currently one of the best descriptors applicable to
both indoor and outdoor scenes.
4.2.1 Efficiency
All experiments were performed on the same NVIDIA
GeForce RTX 3090 GPU. To clearly demonstrate
the effect of the cascaded filter mechanism in
FilterGNN, we adopted FilterGNN∗ to represent the
corresponding results with standard attention for
comparison.

First, we compared the running time and memory
usage of the inference phase on a single GPU for
the basic feature-matching task. Most statistics were
averaged using the same batch size (four by default).
For SuperGlue with a 10,000 input size, the batch
size was set to three to avoid running out of memory.
In Fig. 5, we report the running time and memory
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Fig. 5 (a) Running time and (b) GPU memory consumption with
respect to the number of input keypoints for different methods.

consumption for different numbers of input keypoints
(ranging from 1000 to 10,000). The time complexity
of our FilterGNN is linear with the input feature
size, and our method significantly improved in both
time and memory consumption compared with SOTA
methods. In particular, when the number of input
keypoints is 10,000, our method requires only 6% of
the time cost and 33.3% of the memory consumption
of that of SuperGlue. In the following reports, we
used 2000, 4000, and 6000 input points for different
experiments.
4.2.2 Pose estimation
Camera pose estimation is one of the most important
applications of local feature matching, for which
RANSAC postprocessing is typically adopted to filter
correspondences. Following SuperGlue, we evaluated
the accuracy of the location estimation on the

YFCC100M [14] benchmark, which contains 4000
test image pairs with ground truth relative poses and
known camera intrinsics. In addition to SuperGlue,
SGMNet, and ClusterGNN, we used NN search as
the baseline to evaluate the performance of the raw
input ASLfeatV2 descriptors. In this experiment,
the number of input keypoints was set to 2048.
Table 1 reports the success rates according to the
area under curve (AUC) metric [1, 43, 44] with
three different thresholds (i.e., 5◦, 10◦, and 20◦),
which combine both the rotation and translation
error. In addition, we report the precision (P)
of the matches and ratio between the number of
matches and input size (MS). All indicators are
better for larger numbers. FilterGNN∗ significantly
outperforms current SOTA methods, indicating that
the cascaded filter mechanism does not exclude
unmatchable keypoints and increases the number
of matches, thereby contributing to a more accurate
pose estimation. FilterGNN uses linear attention
to achieve a competitive performance compared
with SOTA methods, but with lower time and
memory consumptions, as demonstrated. Note that
the high prediction accuracy of SuperGlue [8] was
based on fewer predicted matches. We can infer that
SuperGlue [8] is conservative, whereas FilterGNN is
more aggressive and capable of solving fine-grained
problems. Figure 6 presents the qualitative results.
4.2.3 Visual localization
Visual localization is another important application
in local image feature matching. A typical pipeline
comprises image retrieval, image matching, and a
perspective n-point pose solver. Both the number and
accuracy of matches affect the localization precision.
We integrated FilterGNN into the official HLoc [4]
pipeline and conducted experiments on the long-term
visual localization benchmark [45]. In particular, we

Table 1 Pose estimation on the YFCC100M benchmark. The best
result is in bold, and second-best is underlined

Matcher
AUC (↑)

P (↑) MS (↑)
5◦ 10◦ 20◦

NN 27.95 45.20 61.17 54.29 14.29

SuperGlue 39.92 59.93 76.03 99.16 15.55

SGMNet 32.22 52.53 70.16 — —

ClusterGNN 35.31 56.13 73.56 — —

FilterGNN 40.91 60.15 75.47 91.26 23.92

FilterGNN∗ 44.25 63.81 78.65 94.46 32.59
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Fig. 6 Qualitative examples of YFCC100M. The red and green lines indicate the outliers and inliers, respectively. The rotation error,
translation error, and number of inliers/matches are shown in the upper left corner of each image.

selected two representative datasets: the Aachen day–
night dataset [16, 17] (outdoor) and InLoc dataset [18]
(indoor).

The Aachen day–night dataset contains 922
query and 824/98 daytime/nighttime images. All
images were taken around the same street in Aachen,
where the sparseness of views and day–night variation
were the main challenges.

The InLoc dataset contains 329 query and
9972 database images. The main challenges include
complex lighting conditions and common textureless
objects (floors, ceilings, and walls).

The number of input keypoint was set to 4096.
We reported the percentage of correctly localized
queries under different thresholds (referring to the
leaderboard of the long-term visual localization
benchmark [45]). Tables 2 and 3 list the results for the
Aachen day–night and InLoc datasets, respectively.

Table 2 Outdoor localization results on Aachen day-night benchmark
(v1.0). The best result is in bold

Method
Day Night

(0.25 m, 2◦) / (0.5 m, 5◦) / (1.0 m, 10◦)

NN 82.3 / 89.2 / 92.7 67.3 / 79.6 / 85.7
Superglue 87.9 / 95.4 / 98.3 81.6 / 91.8 / 99.0
ClusterGNN 88.6 / 95.5 / 98.4 85.7 / 93.9 / 99.0

FilterGNN∗ 89.2 / 95.4 / 98.5 85.7 / 92.9 / 100.0
FilterGNN 88.7 / 95.4 / 98.7 84.7 / 92.9 / 100.0

Table 3 Indoor localization results on InLoc dataset. The best result
is in bold

Method
DUC1 DUC2

(0.25 m, 10◦) / (0.5 m, 10◦) / (1.0 m, 10◦)

NN 40.4 / 58.1 / 67.7 35.9 / 52.7 / 60.3

SuperGlue 51.5 / 66.7 / 75.8 53.4 / 76.3 / 84.0

ClusterGNN 52.5 / 68.7 / 76.8 55.0 / 76.0 / 82.4

FilterGNN∗ 55.6 / 69.7 / 78.8 59.5 / 75.6 / 77.1

FilterGNN 52.5 / 67.7 / 77.8 58.0 / 77.1 / 82.4

Our method achieved results comparable to those of
other SOTA methods.
4.2.4 Sparse reconstruction
To demonstrate the robustness of FilterGNN more
intuitively, we integrated it into the COLMAP [1]
pipeline for sparse 3D reconstruction. We extracted
6000 keypoints per image for this task. THU-MVS
dataset [46] contains multi-view images with 3D
ground truths consisting of two cases: (a) a cat model
with 108 views and (b) a dog model with 72 views.
Typically, animal images have weakly textured body
surfaces that challenge local feature matching. As
shown in Fig. 7, FilterGNN performed the best in
terms of both the reconstruction density and accuracy.
Compared with SuperGlue, our method increases the
reconstruction density by 72% on average and reduces
the reconstruction error by 35%.
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Fig. 7 Visualization of sparse reconstruction on the THU-
MVS dataset [46]. The size of the reconstruction point cloud and
reconstruction error are displayed above the corresponding model.
RMSE refers to the root-mean-square error.

4.3 Ablation study and discussion

The ablation study addressed two aspects: the
submodule composition and structure. First, we
report the effects of the post-norm method, attention
method, and optimal matching function by comparing
the matching accuracy (precision and recall) on the
validation part of the MegaDepth dataset [42] (with
all training epochs set to 20). The post-norm has
two norm options: layer and instance. As the
optimal matching functions (Opt.), as reported in
previous works [10, 11], both Sinkhorn [47] and
dual-softmax [40] work well in most cases. For
the attention computation, we tested the four most
representative methods:
• Standard scale product attention implemented

in transformer [7];
• Linear attention (LA) [25] with both kernel

functions (φ, ϕ) set to 1 + elu;
• Performer [23] with an additional low-dimension

linear projection and kernel functions (φ, ϕ) set
to (softmax, exponential), respectively; and

• Efficient attention (EA) [39], which was
adopted in our work, with both kernel functions
(φ, ϕ) set to softmax.

Table 4 presents the comparison results. The
following conclusions can be drawn. (i) The instance
norm always has a positive effect, whereas the layer
norm leads to a negative effect. (ii) All linear attention
methods, except efficient attention [39], cause a
significant drop, which significantly differs from the
reported evaluation of vision tasks or natural language
processing tasks. (iii) Pretraining with standard
attention significantly improves the performance of
efficient attention [39] but has no significant effect

Table 4 Comparison different post-norms, attention methods, and
optimal matching functions. LN and IN indicate a layer or instance
norm, respectively. sh and ds indicate Sinkhorn or dual-softmax,
respectively; “any” means that the choice has no appreciable changes
on the results

Attention Norm Pretrain Opt. P/R

Standard — — sh 78.1/88.5

Standard — — ds 81.6/88.2

Standard LN — sh 67.0/50.0

Standard LN — ds NAN

Standard IN — any 86.8/87.8

Performer [23] — — any 54.3/59.6

Performer [23] IN any any 58.4/62.9

LA [25] — — sh 55.9/56.2

LA [25] — — ds NAN

LA [25] IN any any 59.3/57.6

EA [39] — — any 62.6/60.9

EA [39] IN — any 70.2/74.5

EA [39] — X any 78.3/79.0

EA [39] IN X any 80.3/80.1

on other methods. Directly adopting the traditional
linear attention method reduces the accuracy rate
by 30%, and the pretrained strategy reduces the
performance to under 8%. The two-stage pretraining
strategy results in an improvement of approximately
10%. Note that, in some cases, dual-softmax causes
abnormal gradients. We speculate that this may be
caused by the accumulation of data variance in the
residual network, which can be effectively avoided
using an instance norm.

We report the effect of the network structure,
including the number of GMFs H, filtering ratio
of the GMFs γ, and number of attention blocks
L in each attention GNN module of the GMF. As
shown in Table 5, increasing the value of H or L
from the default contributes to limited improvement.
An excessively large γ reduces the recall, which is
unsuitable for other postprocessing tasks.

Table 5 Ablation of FilterGNN structure. The bold row presents
the default settings

Method H L γ P/R

FilterGNN

3 3 0.1 78.0/81.5

3 3 0.2 80.3/80.1

3 3 0.3 92.0/65.7

3 2 0.2 74.2/78.3

3 4 0.2 80.5/80.2

2 3 0.2 77.9/75.7

4 3 0.2 85.2/72.3
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5 Conclusions

This study presents FilterGNN, which is an efficient
and novel approach for local image feature matching.
In observing the high-sparsity property of long-term
image feature matching, we designed hierarchical
filter blocks to remove unmatchable keypoints in
a cascading manner. This instant outlier removal
mechanism adjusts the network focus to the keypoints
within covisible regions, which is beneficial for
solving fine-grained problems. The results verified
that FilterGNN can substantially increase the number
of predicted matches, which is crucial for both
accurate visual localization and high-quality sparse
reconstruction. Moreover, we strictly reduce the
time complexity from O(N2) to O(N) by introducing
a two-stage pretraining-finetuning strategy without
obvious performance degradation, which many tasks
have validated. As FilterGNN can reach a running
speed of 50 Hz with an input of 10,000 keypoints, we
plan to apply it to more complex scenes in the future,
such as 3D point clouds [48] and super-resolution
images, which require more input feature points.
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