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Abstract Mantle heterogeneity in lithology and geochemistry is often attributed to recycled subducted
materials. While distinct mantle end‐members are identified by radiogenic isotopes, the specific recycled
materials contributing to this heterogeneity remain debated. This study presents Mo‐Sr‐Nd‐Pb isotopic data for
OIB‐like alkali basalts from theMaguan area in the southeastern Tibetan Plateau, focusing on slab inputs' role in
mantle heterogeneity. The Miocene (ca. 13 Ma) Maguan alkali basalts are divided into two types based on
petrographic and geochemical characteristics, showing similar Sr‐Nd‐Pb isotopic signatures but different Mo
isotopic compositions. Type I basalts exhibit a wide δ98/95Mo range (− 0.31‰ to − 1.03‰, average
− 0.47‰ ± 0.06‰, 2SD = 0.40‰, n = 13), while type II basalts have heavy and constant δ98/95Mo values
(− 0.11‰ to − 0.17‰, average − 0.14‰ ± 0.01‰, 2SD = 0.05‰, n = 6). The unique low δ98/95Mo value
(− 1.03‰) in type I basalts is among the lowest reported in OIB‐like continental basalts. Type I basalts likely
originate from an enriched asthenospheric mantle metasomatized by melts from recycled dehydrated oceanic
crust and sediments, whereas type II basalts are derived from partial melting of an enriched asthenospheric
mantle metasomatized by melts from recycled serpentinized peridotites. The residual Tethys oceanic slabs in the
deep mantle significantly contribute to the mantle source of the Maguan basalts. The formation of Maguan
Miocene magmas may be linked to mantle upwelling induced by the subduction of the West Burma plate. This
study highlights the Mo isotopic system's utility in tracing complex slab fluxes generating mantle geochemical
heterogeneity.

Plain Language Summary Recycling of subducted material can exert a profound influence on the
deep mantle. Tracing superficial substances in the mantle is crucial for understanding Earth's evolution.
However, radiogenic isotopic compositions for different enriched mantle end‐members overlap, hindering our
understanding of which specific recycled materials contribute to enriched mantle end‐members. In this paper,
we solve this problem by studying the molybdenum (Mo) isotope system in Cenozoic mantle‐derived basalts
from the southeastern margin of the Tibetan Plateau. Our findings show that although the studied basalts have
similar ratios of radiogenic isotopes, they can be divided into two types based on petrographic and geochemical
characteristics, especially Mo isotopes. We attribute recycled dehydrated oceanic crust with sediments to
isotopically lighter Mo and serpentinized peridotites to isotopically heavier Mo in their mantle sources. This
study shows the mantle heterogeneity for Mo isotopes, and in turn demonstrates that the Mo isotope system for
mantle‐derived magmas is an effective tool to track substances in the Earth's interior.

1. Introduction
Recycling of crustal materials results in variable geochemical and lithological enrichment in the deep mantle and
is crucial for understanding Earth's evolution (Eriksen & Jacobsen, 2022; Gamal El Dien et al., 2020). Although
over the last 50 years or so there has been a significant amount of research into which subducted crustal materials
contribute to enriched mantle, the issue is still controversial (Elliott et al., 2006; Hofmann, 1997; Jackson
et al., 2007; Ma et al., 2022). Our understanding of enriched mantle is mainly based on the trace elements and
isotopic compositions of mantle‐derived melts, such as oceanic island basalts (OIBs) (Doucet et al., 2020;
Hofmann, 1997; S. S. Sun &McDonough, 1989; Weaver, 1991) and continental basalts (Z.‐Z. Wang et al., 2018;
H.‐F. Zhang et al., 2003). According to their radiogenic isotopic (e.g., Sr‐Nd‐Pb‐Hf) compositions, a range of
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typical enriched “end‐member” mantle components have been identified, including HIMU (high 238U/204Pb),
EM1 (enriched mantle 1) and EM2 (enriched mantle 2) (e.g., Zindler & Hart, 1986). However, radiogenic isotopic
compositions for most OIBs and continental basalts have intermediate compositions between these enriched
mantle end‐members (e.g., Lei et al., 2021; Wagner et al., 2023). As a result, it is difficult to identify the specific
contributions of various recycled materials to these mantle end‐members from radiogenic isotopes alone.

The rapid development of multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS) has
elevated the utility of stable isotope systematics, making them invaluable geochemical tools that complement
radiogenic isotopes in investigating mantle heterogeneity (Eriksen & Jacobsen, 2022; Teng et al., 2017). Thus, a
combination of stable isotopes and radiogenic isotopes can be used to provide new perspectives on recycled
materials (Ma et al., 2022; Tian et al., 2016; Wagner et al., 2023). An ideal tool to probe mantle heterogeneity
should feature significant variations across different reservoirs, exert a significant impact on the compositions of
the mantle, and remain largely resistant to perturbations en route back to the surface. While Mo (Molybdenum)
isotopes can be affected by crustal contamination due to their incompatible behavior, careful selection of samples
and geochemical screening can minimize these effects, making Mo isotopes powerful tracers for slab recycling
(Willbold & Elliott, 2017).

Mo is a highly incompatible element with a bulk distribution coefficient comparable to that of light rare earth
elements (LREEs) and thus concentrates in melts during mantle melting (Liang et al., 2017). On this basis, Mo
abundances in the continental and oceanic crust are much higher than in the putative primitive mantle or the
depleted mantle (DM). According to estimates based on mid‐ocean ridge basalts (MORBs) (Bezard et al., 2016;
Chen et al., 2022; Hin et al., 2022), komatiites, picrites (McCoy‐West et al., 2019), and mantle xenoliths (Liang
et al., 2017), the δ98/95Mo value of the Earth's mantle is around − 0.20‰ (McCoy‐West et al., 2019). Sediments,
including black shales (δ98/95Mo = 0‰ to +1.7‰; Freymuth et al., 2016; L. Xu et al., 2012) and marine car-
bonates (mean δ98/95Mo = +1.43 ± 0.97‰, mean Ce/Mo = 1.43, Y. Zhang et al., 2020 and references therein),
generally exhibit heavyMo isotope signatures. A significant proportion of sediments, however, show isotopically
light Mo with δ98/95Mo values extending to − 1.87‰ (Freymuth et al., 2015). Oceanic MORB‐type eclogites,
representing recycled oceanic crust, also possess isotopically light Mo (δ98/95Mo = − 0.68 to − 0.13‰, Chen
et al., 2019). The large Mo concentration and Mo isotopic compositional variation among different terrestrial
reservoirs suggest that Mo isotopes can be sensitive tracers for crustal material recycling (Kendall et al., 2017).

In this study, we report the major and trace elements and Sr‐Nd‐Pb‐Mo isotopic compositions of the Miocene (ca.
13Ma) Maguan alkali basalts in the southeastern Tibetan Plateau. The alkali basalts contain mantle xenoliths, and
display OIB‐like trace element patterns, indicating that they ascended rapidly without suffering significant crustal
assimilation and crystallization (Lei et al., 2021; C.‐Z. Liu et al., 2013; S.‐A. Liu et al., 2020; Spera, 1984). The
Maguan basalts can be classified into two types based on petrographic features and whole‐rock compositions.
These two types show similar Sr‐Nd‐Pb isotopic compositions but distinct Mo isotopic compositions. Our study
demonstrates that Mo isotope system provide an efficient way to distinguish between different subducted
components that can contribute to mantle enrichment.

2. Geological Setting and Sample Description
The Ailaoshan‐Red River shear zone (ARSZ), situated at the southeastern margin of the Tibetan Plateau, is a
significant tectonic boundary between the Yangtze Craton to the east and the Indochina Block to the west
(Figure 1a; X. Wang et al., 2000). The India‐Asia continental collision triggered significant sinistral slip on the
ARSZ (Gilley et al., 2003), triggering the movement of the Indochina Block toward the southeast by ∼500–
700 km (Chung et al., 1997; Tapponnier et al., 1982). Seismic observations have revealed that subducted Neo‐
Tethys Oceanic slab may reside in the mantle transition zone (MTZ) beneath the ARSZ and the area has expe-
rienced a relatively stable intraplate setting since closure of the Neo‐Tethys Ocean at least before 45 Ma (J.
Huang & Zhao, 2006; Ji et al., 2016; C. Li et al., 2008; M. Xu et al., 2018). Two distinct Cenozoic episodes of
mafic magmatism have been identified along the ARSZ, occurring either before or after the left‐lateral movement
along this significant fault. The first is found in the Dali‐Lijiang area and neighboring regions of western Yunnan
and Sichuan and was related to a period of potassic to ultrapotassic activity, spanning the Late Eocene to the Early
Oligocene (Flower et al., 2013; Guo et al., 2005; X.‐L. Huang et al., 2010; J.‐H. Wang et al., 2001). The second,
younger episode of magmatism, which occurred in the Pliocene or earlier in the Pleistocene, includes basalt and
basanite phases with high sodium content (Flower et al., 2013; X.‐K. Huang et al., 2013; Lei et al., 2021; S.‐A. Liu
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et al., 2020; Xia & Xu, 2006). This study focuses on Cenozoic basalts from Maguan, Yunnan, which are part of
the younger episodes of magmatism.

The studied outcrops of Maguan alkali basalts occur as explosive breccia and intruded the Cambrian‐Ordovician
strata during the Miocene (12.2–11.6 Ma, biotite 40Ar/39Ar ages, J.‐H. Wang et al., 2001; 13.3–11.7 Ma,
groundmass 40Ar/39Ar ages X.‐K. Huang, 2012) and cover around 8 km2 close to a series of N‐S‐trending rifts
(Figure 1d; Lei et al., 2021). Twenty‐five samples of basalt with no significant sign of alteration were collected.
Samples are divided into two types based on petrographic observation. The type I basalts show typical porphyritic
textures with subhedral‐euhedral phenocrysts composed of 3%–5% olivine (0.1–0.4 mm), 3%–6% clinopyroxene
(<0.2 mm) and 2%–4% plagioclase (<0.2 mm) set in a fine‐grained groundmass mainly of plagioclase, K‐
feldspar, albite, clinopyroxene and olivine (Figure 2c). Type II basalts also have porphyritic textures but
contain dominant olivine phenocrysts (0.1–0.4 mm, 4%–6%) and accessory clinopyroxene phenocrysts. Their
groundmasses contain less plagioclase or albite but more clinopyroxene, K‐feldspar and glass compared to those
of type I basalts (Figure 2d).

3. Results
The analytical methods and data are provided in Supporting Information S1. 40Ar/39Ar analyzed on the
groundmass of whole rocks are shown in Table S1 and in Figure S1 in Supporting Information S1. Whole‐rock
major and trace elements as well as Sr‐Nd‐Pb isotopic compositions are shown in Table S2 and Table S3 in
Supporting Information S1. Major elements in olivine are shown in Table S4 in Supporting Information S1.

Figure 1. (a) Map of the Tibetan plateau and its surroundings with major geological blocks and plate boundaries. The dashed blue line (W–E) is the profile shown in
panel (c). (b) Topography of study area and its surrounding regions and the distribution of Cenozoic volcanics (X.‐K. Huang, 2012; X.‐L. Huang et al., 2010; Lei
et al., 2021; J.‐H. Wang et al., 2001). SGF, Sagaing Fault; LCF, Lancangjiang Fault; XJF, Xiaojiang Fault; (c) Surface topography (top) and vertical cross‐section P‐
wave tomography (bottom) along the profile (W–E) shown in panel (a) (J. Huang & Zhao, 2006). (d) Geological map of the Maguan region and sample locations.
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Molybdenum concentrations and δ98/95Mo data obtained in this study as well as age‐corrected Sr‐Nd‐Pb isotopic
data are presented in Table 1.

3.1. 40Ar‐39Ar Dating

The 40Ar‐39Ar dating based on groundmass yielded concordant age spectra with plateau ages of 11.02 ± 0.23 Ma
(2SE, Σ39Ark = 54.10%, Figure S1a in Supporting Information S1) and 13.16 ± 0.18 Ma (2SE, Σ39Ark = 100%,
Figure S1b in Supporting Information S1) for the type I basalts and 12.49 ± 0.14 Ma (2SE, Σ39Ark = 95.23%,
Figure S1c in Supporting Information S1) for the type II basalts. The inverse isochron ages are consistent with the
plateau ages (Figure S1 in Supporting Information S1). Our 40Ar‐39Ar dating results indicate that the two types of
Maguan basalts erupted within the same Miocene time window, in line with the 40Ar‐39Ar age (11.9 ± 0.3 Ma)
from biotite of the related basaltic trachy‐andesite reported by J.‐H. Wang et al. (2001) and basalt groundmass
40Ar‐39Ar age (13.3–11.7 Ma) reported by X.‐K. Huang (2012).

3.2. Elemental Compositions of Whole Rocks and Olivines

Most of the type I basalts are trachy‐basalts, with a minor occurrence of basanites (Figure 3a), based on the TAS
(Total Alkali‐Silica) classification scheme of Le Bas et al. (1986). They have SiO2 contents of 46.1–48.3 wt.%,
CaO contents of 7.0–8.4 wt. %, and MgO contents of 8.0–10.7 wt.% (Figure 3b; Table S2 in Supporting Infor-
mation S1). On a CaO‐Zn/Fe*10000 whole rock plot and the Ni‐1000Mn/Fe plot for olivine, most type I samples
plot in the field of pyroxenite melt influence (Figures 3b and 3c). Type I basalts are enriched in LREEs with no
negative Eu anomalies (Figure 4). On a primitive mantle‐normalized diagram, all samples exhibit significant
enrichment in large‐ion lithophile elements (LILEs) and positive Nb, Ta, Pb, Zr anomalies with slight negative
anomalies of Ti and Y (Figure 4b). Type II basalts are all basanites, based on the TAS classification scheme, and
have lower SiO2 contents (43.1–44.7 wt. %) than type I basalts. They have higher MgO (8.9–10.8 wt. %) and CaO
(8.4–9.2 wt. %) contents than type I basalts (Figure 3b; Table S2 in Supporting Information S1). On a CaO‐Zn/

Figure 2. (a) Outcrop photograph of basalt in the Magun region. (b) Photograph of a basalt hand specimen containing mantle
xenoliths. (c) TIMA image of representative Maguan type I basalt. (d) TIMA image of representative Maguan type II basalt.
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Fe*10000 plot for whole rock and Ni‐100Mn/Fe plot for olivine, most type II samples plot in the peridotite melt
field (Figures 3b and 3c). They are enriched in LREEs and LILEs with positive Nb, Ta, Zr anomalies and slight
negative anomalies of Ti and Hf (Figure 4). The absence of positive Pb anomaly distinguishes type II basalts from
type I basalts.

3.3. Sr‐Nd‐Pb Isotopes of Whole Rocks

Initial Sr, Nd, and Pb isotopes were calculated at t = 12 Ma. Type I basalts have (87Sr/86Sr)i values of 0.703773–
0.704588 and εNd(t) values of 5.47–6.67 (Table S3 in Supporting Information S1; Figure 5c). Their

206Pb/204Pbi,
207Pb/204Pbi and

208Pb/204Pbi ratios are 18.370 to 18.814, 15.553 to 15.675, 38.422 to 39.119, respectively
(Figures 5b and 5d). Although the two types of basalts show similar Sr‐Nd‐Pb isotopic compositions, type II
basalts have slightly more depleted Sr‐Nd isotopic compositions than type I samples. They have (87Sr/86Sr)i
values of 0.703771 and 0.703791, εNd(t) values of 6.9–7.0 (Table S3 in Supporting Information S1; Figure 5c).
They display 206Pb/204Pbi,

207Pb/204Pbi and
208Pb/204Pbi ratios of 18.129, 15.478, 37.986 to 37.988, respectively

(Figures 5b and 5d). Generally, the isotopic ratios of Nd and Sr in both types of basalts lie in or close to the DM
field (Figure 5c), thus implying an asthenospheric origin. The Pb isotopic compositions clearly reflect a hybrid of
EM1 and DM mantle sources (Figures 5b and 5d).

Table 1
Mo Isotope, Mo Concentration, and Corresponding Sr‐Nd‐Pb Isotope Data for Maguan Alkali Basalts

Sample Rock type δ98/95Mo (‰) 2SE Mo (μg/g) Ce/Mo 87Sr/86Sri
143Nd/144Ndi εNd(t)

206Pb/204Pbi
207Pb/204Pbi

208Pb/204Pbi

MG03‐5 Type I basalts − 0.72 0.04 2.76 17.87 0.704376 0.512904 5.47 18.3803 15.5969 38.6550

MG08‐3 Type I basalts − 0.31 0.04 3.06 14.24 0.703773 0.512964 6.67 18.5709 15.6137 38.6584

MG08‐4 Type I basalts − 0.41 0.04 2.86 17.94

MG08‐6‐2 Type I basalts − 0.32 0.04 3.12 17.26

MG04 Type I basalts − 0.50 0.06 2.97 16.02 0.704234 0.512935 6.10 18.3857 15.5533 38.4222

MG05 Type I basalts − 0.36 0.05 3.26 14.74 0.704356 0.512932 6.04 18.8142 15.6751 39.1191

MG06 Type I basalts − 0.45 0.02 2.88 16.05

MG06 R Type I basalts − 0.43 0.02 3.18 16.24

MG09 Type I basalts − 0.43 0.06 2.67 18.48

MG10 Type I basalts − 0.36 0.04 2.63 18.77 0.704186 0.512913 5.68 18.4661 15.5943 38.5939

MG11 Type I basalts − 1.03 0.05 3.24 14.57 0.704588 0.512909 5.56 18.3701 15.5972 38.6510

MG13 Type I basalts − 0.44 0.06 3.25 15.09

MG15 Type I basalts − 0.33 0.04 3.25 14.70 0.704330 0.512924 5.86 18.4104 15.5613 38.4328

MG06‐2 Type II basalts − 0.15 0.03 5.54 14.37

MG06‐3 Type II basalts − 0.17 0.03 6.07 13.17 0.703771 0.512980 6.95 18.1290 15.4785 37.9876

MG06‐5 Type II basalts − 0.12 0.04 6.17 13.72 0.703791 0.512981 6.97 18.1286 15.4777 37.9863

MG06‐5R Type II basalts − 0.16 0.03 6.24 11.70

MG01 Type II basalts − 0.14 0.05 5.94 13.39

MG02 Type II basalts − 0.11 0.02 6.26 11.95

Standards References δ98/95Mo (‰) 2SE Mo (μg/g) n

NIST3134 This study 0.00 0.07 20

IAPSO‐seawater This study 2.07 0.07 0.01 3

IAPSO‐seawater Zhao et al. (2016) 2.02 0.06 0.01 20

AGV‐2 This study − 0.15 0.05 1.96 2

AGV‐2 Willbold et al. (2016) − 0.15 0.05 1.96 3

GSR‐3 This study − 0.47 0.07 3.00 2

GSR‐3 Zhao et al. (2016) − 0.51 0.04 2.92 1

Note. R: sample replicate.
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3.4. Whole Rock Mo Isotope Compositions

Type I basalts have Mo concentrations of 2.63–3.26 ppm, which are higher than MORB (0.07–1.93 ppm, Bezard
et al., 2016; Chen et al., 2022), bulk continental crust (0.8 ppm, Rudnick &Gao, 2014), and arc lava (0.4–1.3 ppm,
Freymuth et al., 2015) but are similar to OIBs (0.7–4.2 ppm, Liang et al., 2017). The Ce/Mo ratios of type I basalts
vary from 14 to 19 (Table 1), which is higher than the normal mantle value of approximately 0.03 (Newsom
et al., 1986). The δ98/95Mo values of type I basalts show a large range of − 0.31‰ to − 1.03‰ (mean − 0.47‰,
n = 13, Table 1), which are significantly lower than those of MORBs and global mantle xenoliths. Some of the
values ranging from − 0.50‰ to − 0.31‰ are similar to Mediterranean lamproites, subduction‐related igneous
rocks, and MORB‐type eclogites (− 0.68‰ to − 0.13‰; Figure 6; Chen et al., 2019), while two samples show
much lower δ98/95Mo values (− 1.03‰ and − 0.72‰) than those of reported oceanic eclogites. The type II basalts
exhibit higher Mo concentrations (5.5–6.3 ppm) and lower Ce/Mo ratios (12–14) than those of the type I basalts.
The δ98/95Mo values of the type II basalts are − 0.11‰ to − 0.17‰, with an average of − 0.14‰ (n = 6), which is

Figure 3. (a) SiO2 (wt.%) versus total alkali diagram classifying alkali lava from Maguan, southeastern Yunna, along with literature data (Lei et al., 2021; S.‐A. Liu
et al., 2020) and data for continental intraplate basalts from western China (Cheng et al., 2022; Xie et al., 2023) and eastern China (Z.‐Z. Wang & Liu, 2021; Z.‐Z. Wang
et al., 2018; Zou et al., 2022). (b) CaO (wt.%) versus Zn/Fe (×104) of Maguan basalts. The green dashed line is the trend discriminating mantle sources dominated by
peridotites or pyroxenites referenced by Bowman and Ducea (2023). (c) Ni (ppm) versus Mn/Fe (×102) of olivine from Maguan basalts. (d) La/Yb versus Sm/Yb
diagram for Maguan basalts. Also shown is a partial melting model of a hypothetical mantle source consisting of peridotites and garnet pyroxenites. The peridotite is
assumed to be composed of 60% olivine, 15% clinopyroxene, 10% garnet, and 15% orthopyroxene, while the garnet pyroxenite consists of 90% clinopyroxene and 10%
garnet in mineralogy, as proposed by Cheng et al. (2022). The elemental abundances are from McDonough and Sun (1995), and the partition coefficients are from
Rollinson (1993) as follows: La: olivine = 0.0067, clinopyroxene = 0.03, garnet = 0.001, orthopyroxene = 0.047; Sm: olivine = 0.028, clinopyroxene = 0.30,
garnet = 0.02, orthopyroxene = 0.1; Yb: olivine = 0.014, clinopyroxene = 0.40, garnet = 5.0, orthopyroxene = 0.049. The black numbers represent degrees of partial
melting, while the blue numbers represent proportions of garnet pyroxenites.
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Figure 4. Diagrams of (a) Chondrite‐normalized (S. S. Sun & McDonough, 1989) rare earth element patterns of Maguan alkali basalts and (b) trace element patterns of
Maguan alkali basalts normalized to primitive mantle values (S. S. Sun & McDonough, 1989). The comparison plots of oceanic island basalt, E‐MORB and N‐MORB
are all from S. S. Sun and McDonough (1989).

Figure 5. Diagrams of (a) Zr/Th versus Ba/Th; (b) 206Pb/204Pbi versus
207Pb/204Pbi; (c)

87Sr/86Sri versus
143Nd/144Ndi; (d)

206Pb/204Pbi versus
208Pb/204Pbi for Maguan

alkali basalts. Data sources for the DM, HIMU, EM1, EM2 fileds are from Reinhard et al. (2019) and Jackson et al. (2014). Data for Cenozoic intraplate alkali basalts
from eastern China represented by gray rectangles with a green border are from Zou et al. (2022).
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slightly higher than those of the Earth's mantle represented by MORBs (− 0.206 ± 0.02‰, Bezard et al., 2016)
and global mantle xenoliths (− 0.206 ± 0.05‰, Liang et al., 2017).

4. Discussion
4.1. Contrasting Mo Isotopic Variations of the Mantle Source

All studied Maguan alkali basalts contain mantle xenoliths (Figure 2b), indicating that they ascended rapidly to
the surface from the mantle source (Lei et al., 2021; C.‐Z. Liu et al., 2013; S.‐A. Liu et al., 2020; Spera, 1984).
This implies that crustal contamination and fractional crystallization did not significantly affect their geochemical
compositions. This inference is also supported by high Nb/U (mean 47.3 for type I basalts and mean 59.2 for type
II basalts) and Nb/La (mean 2.6 for type I basalts and mean 2.4 for type II basalts) ratios and no correlation
between MgO contents and Sr‐Nd‐Pb‐Mo isotopic values (Figure S2 in Supporting Information S1). Despite the
fact that the LOI (Loss on Ignition) values indicate that the samples have undergone minor alteration, the lack of
correlation between LOI values and Mo isotopic values suggests that low‐temperature alteration has little effect
on the Mo isotopic composition of the samples (Figure 7a). The good correlations between the fluid‐immobile Nb
and fluid‐mobile elements (e.g., Th, U; Figure S3 in Supporting Information S1) also suggest low‐temperature
alteration effects were insignificant. We therefore argue that all studied Maguan alkali basalts are strong can-
didates for being primary or near‐primary magma.

The two types of Maguan alkali basalts display similar trace element patterns and Sr‐Nd‐Pb isotopic compositions
(Figures 4 and 5b–5d), but they contrast strongly in terms of Mo isotopic compositions (Figures 6–8). As dis-
cussed above, we have excluded the possibility that the Mo isotopic variation is caused by crustal contamination
and the fractional crystallization processes. Some studies have suggested that fractional crystallization of TiO₂‐
rich minerals can lead to Mo isotope fractionation (e.g., L. Zhang et al., 2024). Specifically, 50% fractional
crystallization of Fe‐Ti oxides (e.g., magnetite and ilmenite) can result in a 0.15‰ shift in δ98/95Mo under QFM
conditions (L. Zhang et al., 2024). In our samples, the TiO₂ content ranges narrowly from 2.29 wt.% to 3.26 wt.%
(Figure 7c), indicating that the extent of fractional crystallization of TiO₂‐rich minerals is very limited and far
from reaching 50%. This degree of crystallization is insufficient to cause such significant Mo isotope variation

Figure 6. Diagram of Ce/Mo (log‐scale) versus δ98/95Mo (‰) forMaguan alkali basalts. Ce/Mo ratio and δ98/95Mo of DM are
33.4 (Gale et al., 2013) and − 0.20‰ (Bezard et al., 2016; McCoy‐West et al., 2019), respectively. Data for oceanic eclogites
representing subducted oceanic crust are from Chen et al. (2019) and Ahmad et al. (2021). Data for sediments are from
Freymuth et al. (2015). Data for serpentinized peridotites are from Chen et al. (2019) and Rojas‐Kolomiets et al. (2023). Data
for continental alkali basalts from western China and eastern China are from Y. Zhang et al. (2019) and Fang, Dai, Zheng,
and Zhao (2023), respectively.
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(Figure 6). Additionally, the presence of mantle xenoliths in the Maguan basalts further suggests that the process
or influence of fractional crystallization is minimal. Therefore, we conclude that the observed Mo isotope var-
iations reflect primary magma or source characteristics rather than being caused by fractional crystallization.
Refractory Mo‐bearing phases, such as oxides and sulfides, in the mantle source could lead to potential δ98/95Mo
fractionation during partial melting. The positive Nb and Ta anomalies in the samples suggest the absence of
residual rutile in the mantle source (Figure 4b). Magmatic sulfides, with significantly heavier δ98/95Mo signature
compared to coexisting silicate melts (Voegelin et al., 2012) and stronger Cu partitioning relative to Mo (Y. Li &
Audétat, 2012), imply that residual sulfides in the mantle source would likely produce lower Cu/Mo and lower
δ98/95Mo. Nevertheless, this trend is not evident in our samples (Figure 7b). Thus, residual minerals in the mantle
are not the primary factor influencing Mo isotope variations during partial melting.

Low degree melting can induce Mo isotopic fractionation, since Mo6+ is more incompatible than Mo4+, resulting
in melts with elevated Mo6+/ΣMo ratios compared to the residue, and consequently, heavier δ98/95Mo values
(McCoy‐West et al., 2019). Given that La and Sm are more incompatible than the heavy rare earth element (REE)
Yb during partial mantle melting, the ratios of La/Yb and Sm/Yb are indicative of the degree of partial melting.
Based on the trace elemental modeling of a hypothetical peridotite + garnet pyroxenite mantle, type I basalts
could be produced at 5%–8% degrees of melting with 10%–30% garnet pyroxenite, while type II basalts are
generated by 3%–4% degrees of melting with little to no contribution from garnet pyroxenite (Figure 3d). Ac-
cording to the non‐modal batch melting model developed by McCoy‐West et al. (2019), our calculated results
suggest that Mo isotopic fractionation during partial melting is minimal, with Δ98/95Mo < 0.04‰ for melts

Figure 7. Diagrams of δ98/95Mo (‰) versus (a) LOI; (b) Cu/Mo; (c) TiO2 (wt.%); (d) Zr (ppm) for Maguan alkali basalts. The δ98/95Mo value of DM is from McCoy‐
West et al. (2019). Error bars represent the average of two standard deviations (2σ) for δ98/95Mo values, representing long‐term precision and accuracy.
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fractions of 5%–10% and a Mo6+/ΣMo ratio between 0.90 and 0.99. This result does not explain the isotopically
lighter Mo in type I basalts, the significant isotope variations (mean 0.33‰) between the two types of basalts, or
the δ98/95Mo variations among type I basalts of comparable melting degrees (Table 1).

Therefore, we propose that mantle melting alone does not account for the Mo isotope compositions of the Maguan
alkali basalts, which more plausibly indicate a heterogeneous mantle source. Previous studies have proposed that
the Maguan alkali basalts were derived by partial melting of the metasomatized asthenospheric mantle (Lei
et al., 2021; S.‐A. Liu et al., 2020). The Mo isotopic heterogeneity is more likely ascribed to the variable addition
of recycled subducted components.

4.2. Origin of Isotopically Light Mo Component for Type I Basalts

Type I basalts exhibit lower δ98/95Mo values compared to depletedMORB (− 0.206± 0.02‰, Bezard et al., 2016)
and global peridotite xenoliths (− 0.206 ± 0.05‰, Liang et al., 2017), indicating that some recycled components
with low δ98/95Mo value have contributed to the mantle source. In addition to the necessary depleted astheno-
spheric mantle (e.g., J. Wang et al., 2024), potential low δ98/95Mo contributors to the continental alkali OIB‐like
basalts include subcontinental lithospheric mantle (e.g., Z. Wang et al., 2018), recycled basaltic oceanic crust
(e.g., Jin et al., 2020; Ma et al., 2022), recycled sediments (e.g., Jin et al., 2020) or subducted oceanic lithosphere.

The subcontinental lithospheric mantle beneath the research area during the Cenozoic era has been well‐
documented by Eocene‐Oligocene potassic magmas in Western Yunnan, volcanic rocks in Tengchong (Guo
et al., 2005; X.‐L. Huang et al., 2010), and peridotite xenoliths in the Maguan basalts (X.‐K. Huang, 2012; C.‐Z.
Liu et al., 2013). Maguan basalts markedly differ from the magmas inWestern Yunnan and Tengchong, which are
characterized by negative anomalies in HFSEs such as Nb and Ta and enriched Sr‐Nd isotopic signatures (Guo
et al., 2005; X.‐L. Huang et al., 2010). The Sr‐Nd isotopic compositions of peridotite xenoliths in Maguan basalts,
like those of MORB (X.‐K. Huang, 2012), suggest a depleted refractory lithospheric mantle origin (C.‐Z. Liu
et al., 2013), and do not account for the characteristics of Maguan alkali basalts. Additionally, the depleted upper
mantle has low Mo concentrations (<0.03 ppm, Z. Wang & Becker, 2018). For instance, DM xenoliths from

Figure 8. Diagrams of (a) δ98/95Mo versus 87Sr/86Sri, (b) δ
98/95Mo versus εNd(t) for Maguan alkali basalts. Data of DM, Oceanic crust and sediment are displayed in

Table S5 in Supporting Information S1. Mo isotopic composition of the DM endmember was chosen from Bezard et al. (2016) and McCoy‐West et al. (2019). Other
isotopic compositions and trace elements of DM are fromGale et al. (2013). Mo content and δ98/95Mo value of oceanic crust are an average value estimated from studies
by Chen et al. (2019). The Ce/Mo values, 86Sr/87Sri and εNd(t) of oceanic crust were chosen within the range of values reported by Yu et al. (2022), Fang, Dai, and
Zhao (2023) and reference therein. Other data of oceanic crust were chosen from Frey et al. (1991). Mo content and δ98/95Mo value of sediments endmember were
chosen within the range of within range of clay sediments (Freymuth et al., 2015; Gaschnig et al., 2017). Other data of sediments endmembers are from Plank (2014).
Mo content and δ98/95Mo value of serpentinized peridotites endmember are average values estimated from studies by Chen et al. (2019) and Rojas‐Kolomiets
et al. (2023). Other data of serpentinized peridotites endmember are from Frisby et al. (2016a, 2016b). Due to the limited Mo isotope fractionation between mantle
source and melts compared to the significant difference between distinct endmembers, we simply present mixing calculations using bulk rocks rather than melts. Input of
oceanic eclogite, sediment and serpentinized peridotite into the DM are shown by black, orange and blue dashed lines, respectively, with the tick marks and numbers
showing the proportion. Input of sediment and serpentinized peridotite into oceanic eclogite are shown for comparison by yellow and green dashed lines, respectively,
with the tick marks and numbers showing the proportion.
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Kilbourne Hole exhibit extremely low Mo contents (0.04–0.05 ppm, Liang et al., 2017). Given that the highly
depleted peridotite xenoliths fromMaguan, representing the lithospheric mantle, share similar characteristics with
xenoliths from Kilbourne Hole (C.‐Z. Liu et al., 2013), we infer that their Mo contents are also low. Other studies
of subcontinental lithospheric mantle further support this. For example, the Mo content of the subcontinental
lithospheric mantle that produced the Sailipu ultrapotassic rocks is less than 0.022 ppm, as calculated based on
data from F. Huang et al. (2023) and C. Sun et al. (2007). Therefore, the low Mo concentrations of the sub-
continental lithospheric mantle make it unlikely to significantly influence the Mo content and Mo isotopic
composition of the Maguan basalts. Consequently, the subcontinental lithospheric mantle does not contribute to
the low‐δ98/95Mo end member in the source of Maguan basalts.

During subduction, hydrous minerals in the oceanic crust break down and release fluids (Peacock, 1990). Mo is
fluid‐mobile and heavier Mo isotopes are inclined to partition into fluids because 98Mo prefers tetrahedral co-
ordination in fluids, while 95Mo preferentially retains octahedral sites in minerals such as rutile and sulfides. This
is corroborated by arc lava (Freymuth et al., 2015; König et al., 2016; Voegelin et al., 2014; Wille et al., 2018),
which are Mo‐enriched and have δ98/95Mo values higher than depleted MORB (Bezard et al., 2016) and most
oceanic sediments (Freymuth et al., 2015). Consequently, the residual slab, particularly residual eclogites, are left
with a comparatively isotopically lighter Mo and high Ce/Mo ratios. This is evidenced by the isotopically light
Mo composition found in rutile (Chen et al., 2019), a frequent accessory phase in the mafic subducted crust.
Additionally, eclogites, being dehydrated and partially melted residues of subducted oceanic crust, typically
exhibit very light Mo isotopic compositions. This is well‐documented by Chen et al. (2019) and Ahmad
et al. (2021), who analyzed exhumed MORB‐type eclogites and found δ98/95Mo values as low as − 0.68‰ and
− 1.01‰, respectively. Furthermore, the Ce/Mo ratios in these eclogites are notably high (up to 250, Chen
et al., 2019). Consequently, the partial melting of recycled eclogites in the mantle source could potentially
produce melts with low δ98/95Mo values and high Ce/Mo ratios, mirroring the key geochemical characteristics
observed in our samples. The δ98/95Mo and Ce/Mo values in Maguan basalts closely resemble those of MORB‐
type eclogites (Figure 6). The super‐chondritic Nb/Ta (15.7–21) and Nb/La (1.97–3.17) ratios observed in the
Maguan basalts suggest that their mantle source likely includes contributions from partial melts of rutile‐bearing
eclogites (Foley et al., 2002; Rudnick et al., 2000). Therefore, MORB‐type eclogites have played a significant role
in the mantle source of type I basalts. If the light Mo isotope composition were solely due to contributions from
oceanic crust, we would expect a negative correlation between Mo isotope values and TiO2 or Zr content due to
the involvement of rutile. However, no such correlation is observed in our samples (Figures 7c and 7d), indicating
that rutile‐bearing eclogites are not the sole source of the isotopically light Mo composition. Moreover, the
relatively enriched Sr‐Nd isotopic compositions of type I basalts cannot be easily explained by a contribution
from dehydrated oceanic crust.

Other subducted materials with much lower δ98/95Mo values may have also contributed. Mo is a multi‐valent
element and sensitive to redox (Anbar, 2004; Leitzke et al., 2017). Thus, sediments deposited in different
redox environments show variable Mo isotope compositions due to mass‐dependent isotopic fractionation during
low‐temperature processes. Marine sediment samples from various ocean drilling sites display a range of δ98/
95Mo values, with certain pelagic sediments showing extremely low δ98/95Mo values, reaching − 1.87‰
(Freymuth et al., 2015). The interaction with sediment‐derived melts is postulated to contribute to isotopically
light Mo in certain arc lava (Freymuth et al., 2015; König et al., 2016). Casalini et al. (2019) and F. Huang
et al. (2023) also attribute the low δ98/95Mo values in mafic ultra‐potassic volcanic rocks to sediment melt
contributions. Therefore, marine sediments are suitable candidates for the source of isotopically light Mo. The
negative correlation between δ98/95Mo values and 87Sr/86Sri ratios and positive correlations between δ

98/95Mo
values and εNd(t) values (Figure 8) also corroborate the idea that sediments contributed to the isotopically lighter
Mo source.

However, negative Nb and Ta anomalies in sediment melts (Plank, 2014) cannot account for the positive Nb and
Ta anomalies observed in the Maguan basalts. Thus, contributions from both eclogites and sediments to the
isotopically light Mo composition are essential. We present mixing calculations between DM, subducted oceanic
eclogites, and subducted sediments to explain the Mo isotopes and Sr‐Nd isotopes for the Maguan basalts
(Figure 8). The mixing lines of the three end members fully encompass the Mo and Sr‐Nd isotopic characteristics
of Maguan type I basalts. The mixing model shows that melts from subducted sediments and eclogites, which are
less basic than melts of mantle peridotites, have influenced the mantle source of the type I basalts, resulting in a
mantle source of hybrid pyroxenites and peridotites. This inference is also consistent with the major and trace
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element characteristics of the whole rocks and olivine from the basalts (Figures 3b–3d; Bowman & Ducea, 2023).
In summary, the Mo isotopes of our samples reflect the mantle lithological heterogeneity that the pyroxenites
contribute to the source for Maguan type I basalts.

4.3. Origin of Isotopically Heavy Mo Component for Type II Basalts

Maguan type II basalts exhibit δ98/95Mo values reaching as high as − 0.11‰.While the δ98/95Mo values of type II
basalts align with those of DM, the OIB‐like REEs and trace element patterns (Figure 4) indicate that DM alone
cannot be the sole mantle source. The presence of isotopically heavy Mo in these basalts cannot be solely
attributed to the addition of dehydrated oceanic crust to the mantle, as it is known to possess isotopically light Mo
as mentioned above (Chen et al., 2019; Freymuth et al., 2015). Considering the effect of slab dehydration, which
could decrease δ98/95Mo by ∼0.4‰ or more in subducted materials (Chen et al., 2019), an end‐member with
isotopically heavier Mo is necessary to account for the Mo isotopic signatures of type II basalts.

Subducted sediments globally are complex and display a variety of Mo isotopic compositions, including some
with low δ98/95Mo values, but many sediments show isotopically heavy Mo. Mo is incorporated from seawater
into sediments in anoxic environments with minimal isotopic fractionation (Barling et al., 2001; Neubert
et al., 2008), leading to isotopically heavyMo in black shales (δ98/95Mo values range mostly from 0‰ to+1.7‰,
Freymuth et al., 2016). Marine carbonates are also distinguished by high δ98/95Mo values (+1.66 ± 1.05‰) and
low Ce/Mo ratios (average 1.4), as reported by Y. Zhang et al. (2020) and references therein. Continental margin
sediments also possess isotopically heavy Mo, a characteristic attributable to reducing depositional environments
and high primary oceanic productivity (Kendall et al., 2017). Consequently, these sediments appear to be viable
candidates as a source of isotopically heavyMo. However, the elevated δ98/95Mo values in Maguan type II basalts
are coupled with low 87Sr/86Sr ratios and high εNd(t) values, which argue against a contribution from subducted
sediments to the isotopically heavier Mo source.

Serpentinized peridotites, which exhibit high δ98/95Mo values (0.13‰, Chen et al., 2019) and low Ce/Mo ratios
(<2.5, Chen et al., 2019), may serve as potential candidates for an end‐member with isotopically heavier Mo.
Serpentinite likely constitutes a part of the subducting slab, functioning either as the descending oceanic litho-
sphere at the slab's base or as the fore‐arc mantle wedge drawn downward at the slab's uppermost portion
(Spandler & Pirard, 2013). Interaction with isotopically heavy seawater (δ98/95Mo=∼2.3‰, Barling et al., 2001)
during serpentinization results in high δ98/95Mo values in serpentinites (>0.1‰, Chen et al., 2019). Although
oceanic crust may be dehydrated efficiently during subduction, thus losing fluid‐mobile elements and isotopically
heavyMo, serpentinites associated with oceanic crust may carry fluid‐mobile elements and isotopically heavyMo
into the deep mantle (Deschamps et al., 2013). An underlying serpentinized slab mantle is an appealing source for
Maguan type II basalts because the top of the subducting slab would fully dehydrate before reaching sub‐arc depth
(Syracuse et al., 2010; van Keken et al., 2011;Wada et al., 2012). Moreover, the oldest core of the slab comprising
a serpentinized lithospheric mantle could be transported into the deep mantle before complete dehydration due to
the stabilization of antigorite serpentine at depths shallower than 250 km, according to an experimental study
reported by Hilairet et al. (2006). Serpentinized mantle peridotites have δ98/95Mo values between − 0.09 and
1.10‰ and Ce/Mo ratios from 0.01 to 2.06 (Chen et al., 2019; Rojas‐Kolomiets et al., 2023). This characteristic
establishes a noticeable correlation with enhanced δ98/95Mo values as well as lowered Ce/Mo, and increased Ba/
Th ratios, which are prominent in our type II samples (Figures 5a and 6; Table 1). Serpentinized peridotites are
enriched in fluid‐mobile elements such as Ba, Sr, and LREE due to the introduction of fluids during the ser-
pentinization process. The overall higher concentrations of trace elements and REEs in type II basalts, compared
to type I basalts, indicate a greater contribution of serpentinized peridotite in their source (Figure 4). In particular,
the significantly higher Ba and Sr contents in Maguan type II basalts further support this scenario (Table S2 in
Supporting Information S1).

We present mixing calculations between DM, subducted oceanic eclogites, and serpentinized peridotites to
explain the Mo isotopes and Sr‐Nd isotopes for Maguan basalts. These calculations can fully explain the Mo, Sr
and Nd isotopic compositions of Maguan type II basalts (Figure 8). The Mo isotopic characteristics confirm the
contribution of serpentinized peridotites to their source region. The contribution of serpentinized peridotites may
be small, but it is crucial to balance the isotopically light Mo of the oceanic crust and drives theMo isotopic values
of Maguan type II basalts to approach or even slightly exceed those of DM. Their Sr and Nd isotope ratios are
similar to those of MORB, indicating a significant contribution from depleted peridotite mantle and less
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contribution from sediments and oceanic crust melts compared to type I basalts. Their major and trace elements
also point to a predominantly peridotite mantle source (Figures 3b–3d; Bowman & Ducea, 2023). In this regard,
the Mo isotope compositions of our samples reflect mantle lithological heterogeneity where pyroxenites may
contribute less to the source for Maguan type II basalts compared to the source for type I basalts.

4.4. Tectonic Implications for Southeastern Margin of Tibetan Plateau

As shown above, the mantle source of type I basalts involved recycled eclogites and sediment melts, whereas the
mantle source of type II basalts mainly contained recycled serpentinized peridotites. The melting of residual
oceanic crust and sediments together resulted in less basic melts which then reacted with the asthenospheric
mantle to generate mafic‐ultramafic metasomatites containing pyroxenites and correspond to the source of type I
basalts. Residual serpentinized peridotites‐derived melts, together with oceanic crust‐derived melts, reacted with
the overlying mantle, generating the mantle source of Maguan type II basalts. Seismic tomographic images show
the presence of a high‐velocity slab at depths of 410–660 km beneath the Maguan area (Figure 1c; J. Huang &
Zhao, 2006), which is most likely to be the source of the oceanic crust, sediments and serpentinized oceanic
lithosphere metasomatizing the DM in Maguan. Our research findings suggest that the stagnant slab could not
have originated from the Indian continental plate. Based on the low 207Pb/206Pb (15.5–15.7) and the relatively
invariant Sr and Nd isotopes of the Maguan basalts, it is suggested that the source is less than 500 million years
old. Considering the complex geological records of Neo‐Tethys (since the Cretaceous), Paleo‐Tethys (Devonian‐
Triassic) and Proto‐Tethys (Late Sinian‐Silurian) oceans at the southeastern margin of the Tibetan Plateau (e.g.,
Deng et al., 2014, 2018; Nie et al., 2015), the origin of the residual slab in the deep mantle may be linked to the
subduction of one or more of the aforementioned oceanic plates.

Cenozoic activities on the southeastern margin of the Tibetan Plateau occurred in two episodes with distinct
geochemical signatures at 42‐24 Myr and 16‐0 Myr. Combined trace‐elemental and isotopic characteristics
indicate that the 42‐24 Myr high‐potassic magmas are derived from a metasomatized subcontinental lithospheric
mantle source (e.g., J. Wang et al., 2022; J.‐H. Wang et al., 2001), while the younger type of magmas, including
the Maguan basalts, are from the asthenospheric mantle. Therefore, the enriched mantle that existed beneath the
southeastern margin of the Tibetan Plateau during the Eocene–Oligocene has been replaced by upwelling
depleted and juvenile asthenospheric mantle during the Cenozoic, consistent with a Re‐Os isotopic study of
mantle xenoliths in Maguan basalts by C.‐Z. Liu et al. (2013). The replacement of the lithospheric mantle in the
Maguan region indicates that a geodynamic mechanism similar to the one responsible for the destruction of the
North China Craton is also active in southwestern China.

The subduction of the Western Pacific plate is considered to be the main dynamic factor in the destruction of the
North China Craton (Zhu et al., 2012). Considering the similar major and trace element and isotopic compositions
of Cenozoic alkali basalts in Eastern China and Maguan basalts (Figures 3a, 5a, 5c, and 6), the main dynamic
factor that promoted formation of the Maguan basalts may be related to the subduction of a particular plate.
Moreover, it is suggested that arc magmas could have formed at the North Australian continental lithosphere edge
when it plowed through the mantle above the detached Arafura slab remnant (van Hinsbergen et al., 2020).
Considering the Maguan alkali basalts along with other widespread Miocene magmatic rocks and tectonic events,
such as faults and rifts across the Tibetan Plateau and its surroundings (e.g., Blisniuk et al., 2001; Hao et al., 2022;
Yin & Taylor, 2011), Miocene magmatic and tectonic activity in the region seem to have been governed by a
large‐scale geodynamic event related to plate subduction (van Hinsbergen, 2022). Seismological images reveal
that the Himalayan slab is currently steeply subducted below Tibet and has reached the MTZ (Hou et al., 2024;
van Hinsbergen, 2022). Therefore, Maguan Miocene volcanic rocks may derived from a previously subduction‐
enriched asthenospheric source that was stirred by the underthrusting of the Burma plate, a part of the Himalayan
slab, which is also consistent with the geophysical observations (Figure 1c).

4.5. Implications for Mo Isotopic Heterogeneity of OIB‐Like Alkali Basalts

Compared to arc basalts (δ98/95Mo = − 0.10 ± 0.02‰, Fang, Dai, & Zhao, 2023 and references therein), OIBs
(δ98/95Mo= − 0.59‰ to+0.10‰, Fang, Dai, & Zhao, 2023 and references therein) show large variations in terms
of Mo isotopic composition. The Mo isotopic compositions of OIB‐like continental basalts also show large
variations with δ98/95Mo ranging from − 0.53‰ to 0.09‰ (Fang, Dai, Zheng, & Zhao, 2023) in basalts from
Eastern China and − 0.4‰ to − 0.08‰ (Y. Zhang et al., 2019) in basalts from Western China. Although most of
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the OIB‐like continental basalts have δ98/95Mo values lower than those of the DM, a significant proportion have
similar or even higher δ98/95Mo values than the mantle, which is consistent with our samples (δ98/
95Mo = − 1.03‰ to − 0.11‰).

Isotopically light Mo in OIBs and OIB‐like continental basalts is commonly believed to be predominantly
influenced by contribution from dehydrated subducting oceanic crust (Ma et al., 2022; Willbold & Elliott, 2023).
However, dehydrated oceanic crust in the form of eclogites fails to explain the extreme isotopically light Mo,
because the lowest δ98/95Mo value of oceanic eclogites reported so far is − 1.01‰ (Ahmad et al., 2021), higher
than the lowest δ98/95Mo values (− 1.03‰) of Maguan basalts. Some sediments with extremely isotopically light
Mo must also have contributed to such basalts. Accordingly, a variety of pyroxenite signals, generated by re-
actions between sediments, oceanic crust melts and ambient mantle, exist in mantle sources of OIB‐like conti-
nental basalts. Given the wide variations in Mo isotopes in sediments, certain subducted sediments, such as black
shales (Freymuth et al., 2016) and carbonates (Y. Zhang et al., 2020), can also contribute to the isotopically heavy
Mo composition of intracontinental OIB‐like basalts. Some studies have already attributed the isotopically heavy
Mo to sediments (Fu et al., 2023; Y. Zhang et al., 2020). However, the negative correlation between δ98/95Mo
values and 87Sr/86Sr and positive correlation between δ98/95Mo values and εNd(t), however, exclude the contri-
bution of sediments to the isotopically heavy Mo of the Maguan basalts. Serpentinized peridotites can also
contribute to the isotopically heavy Mo composition of intraplate OIBs (Fang, Dai, & Zhao, 2023). This appears
to be the case for Maguan type II basalts because they show higher δ98/95Mo values than DM, lower Ce/Mo ratios
and are more depleted than the type I basalts, consistent with dominant peridotites in their mantle source.

Our study on Maguan intra‐continental alkali basalts supports a model where recycled oceanic crust and sedi-
ments are responsible for isotopically light Mo compositions in the source of intra‐continental basalts (Figure 9).
Meanwhile, the extremely isotopically heavy Mo in some intra‐continental basalts is mainly attributable to
serpentinized peridotites (Figure 9). In summary, the heterogeneity inMo isotopes in intraplate basalts arises from
the heterogeneity of subducted materials, primarily due to the compositional differences between oceanic crust,
sediments and serpentinized oceanic lithospheric mantle. Mo isotopic system serves as an efficient way to trace

Figure 9. A cartoon system model showing the recycling of complex material composition of oceanic slabs as tracked by Mo
isotope evidence from intra‐continental mantle‐derived magmas. The Mo isotopes of arc basalts and oceanic island basalts
are from Fang, Dai, and Zhao (2023) and references therein.
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subducted materials and decode mantle heterogeneity, which traditional radiogenic isotopic methods like Sr‐Nd‐
Pb might not resolve. At any point in time, the mantle is extremely heterogeneous in terms of Mo isotopes, even
over limited areas, which may provide an effective way to resolve complex geodynamic events of the past.

5. Conclusions
1. Miocene (∼13–11 Ma) Maguan intraplate alkali basalts are characterized by OIB‐like trace‐element patterns

and depleted Sr‐Nd‐Pb isotope compositions. These samples are divided into two groups based on petro-
graphic observation and geochemical features.

2. Type I basalts, characterized by low δ98/95Mo values, may originate from a DMmetasomatized by melts from
recycled dehydrated oceanic crust and sediments. The type II basalts with higher δ98/95Mo values may be
derived from a DM metasomatized by melts from subducted serpentinized peridotites.

3. The stagnant Tethys oceanic slabs in the deep mantle of the Maguan area have supplied significant materials to
the mantle source of the Maguan alkali basalts.

4. West Burma plate subduction‐induced mantle upwelling is a likely mechanism for the generation of Maguan
alkali basalts.

5. The mantle heterogeneity in Mo isotopic composition makes Mo isotopes effective tools in deciphering
recycled components.

Data Availability Statement
Data used in this work are available at D. Xu et al. (2024).
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