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The Simons Observatory (SO), due to start full science operations in early 2025, aims to set tight
constraints on inflationary physics by inferring the tensor-to-scalar ratio r from measurements of cosmic
microwave background (CMB) polarization B-modes. Its nominal design including three small-aperture
telescopes (SATs) targets a precision σðr ¼ 0Þ ≤ 0.003 without delensing. Achieving this goal and further
reducing uncertainties requires a thorough understanding and mitigation of other large-scale B-mode
sources such as Galactic foregrounds and weak gravitational lensing. We present an analysis pipeline
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aiming to estimate r by including delensing within a cross-spectral likelihood, and demonstrate it for the
first time on SO-like simulations accounting for various levels of foreground complexity, inhomogeneous
noise and partial sky coverage. As introduced in an earlier SO delensing paper, lensing B-modes are
synthesized using internal CMB lensing reconstructions as well as Planck-like cosmic infrared background
maps and LSST-like galaxy density maps. We then extend SO’s power-spectrum-based foreground-
cleaning algorithm to include all auto- and cross-spectra between the lensing template and the SAT B-
modes in the likelihood function. This allows us to constrain r and the parameters of our foreground model
simultaneously. Within this framework, we demonstrate the equivalence of map-based and cross-spectral
delensing and use it to motivate an optimized pixel-weighting scheme for power spectrum estimation. We
start by validating our pipeline in the simplistic case of uniform foreground spectral energy distributions. In
the absence of primordial B-modes, we find that the 1σ statistical uncertainty on r, σðrÞ, decreases by 37%
as a result of delensing. Tensor modes at the level of r ¼ 0.01 are successfully detected by our pipeline.
Even when using more realistic foreground models including spatial variations in the dust and synchrotron
spectral properties, we obtain unbiased estimates of r both with and without delensing by employing the
moment-expansion method. In this case, uncertainties are increased due to the higher number of model
parameters, and delensing-related improvements range between 27% and 31%. These results constitute the
first realistic assessment of the delensing performance at SO’s nominal sensitivity level.

DOI: 10.1103/PhysRevD.110.043532

I. INTRODUCTION

Anisotropies of the cosmic microwave background
(CMB) offer a unique window on the first instants after
the birth of the Universe, probing fundamental physics at
energy scales unreachable to any earthbound accelerator.
After Planck’s cosmic-variance-limited measurements of
the temperature power spectrum [1], present and future
CMB experiments are directing their focus towards polari-
zation patterns; large-scale B-modes are particularly inter-
esting as they hold the key to a potential first detection of
primordial gravitational waves (PGW). Predicted by most
inflation models, these tensor fluctuations of the spacetime
metric are the only ones capable of producing parity-odd
polarization anisotropies, unlike the scalar (density) per-
turbations that exclusively create E-modes at linear order
[2,3]. The detection of primordial B-modes would therefore
constitute a significant breakthrough, providing unprec-
edented evidence in favor of the inflationary scenario,
which, despite being widely accepted as a theoretical
framework due to its ability to generate the right initial
conditions for our Universe, still lacks direct experimental
verification.
Two recent studies combining maps from BICEP/Keck,

Planck and WMAP with baryon acoustic oscillation data
allowed to set the tightest constraints to date on the
amplitude of PGW, as described by the tensor-to-scalar
ratio r; they respectively inferred r < 0.036 [4] and r <
0.032 [5] at 95% confidence for a pivot scale of
0.05 Mpc−1. Together with the latest bounds on the scalar
spectral index of the power spectrum of primordial curva-
ture perturbations, these results favor a concave potential
for the inflaton field driving inflation and have ruled out
monomial models as well as natural inflation [4]. While
many inflationary scenarios remain viable [6], the absence

of a detection of PGW at the sensitivity level of current
experiments has also motivated the development of alter-
native theories aiming to explain observed features of the
Universe without the need for such a mechanism. These
include, for example, bouncing cosmologies [7] as well as
CPT-symmetric models [8]. New measurements of r with
lower uncertainties will be an essential step towards
discriminating between this wide range of possible descrip-
tions of the early Universe.
The Simons Observatory (SO) [9], whose construction

on Cerro Toco in the Atacama Desert is nearing completion
with full science operations expected to start in early 2025,
will significantly improve upon existing constraints; with
deep observations of around 10% of the sky by three 0.5 m
small-aperture telescopes (SATs), its nominal design aims
to detect or rule out r ≥ 0.01 at the 3σ level [10]. The
planned addition of three more SATs will allow to reduce
error bars even further. SO will therefore set tight bounds
on currently allowed inflation scenarios such as quartic
hilltop potentials and α-attractors [11]. Furthermore, the
technologies and analysis pipelines developed for SO pave
the way towards a new generation of experiments including
CMB-S4 [12] and LiteBIRD [13], which will push limits to
σðrÞ < 10−3 in the early 2030s. This foreshadows a
particularly exciting time for early-Universe physics as
several popular models, for example Starobinsky [14] and
Higgs inflation [15], will then be decisively tested.
In order to reach its target precision, SO will have to

overcome two main challenges. The first relates to the weak
gravitational lensing of CMB photons by large-scale
structures [16], which sources large-scale B-modes from
intermediate- and small-scale E-modes [17]. Consequently,
the deflected CMB light reaching our detectors contains an
additional, lensing B-mode component sourced by scalar
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fluctuations rather than PGW, whose amplitude surpasses
that of the primordial tensor signal. This lensing-induced
noise is larger than instrumental noise at SO’s sensitivity
level, and its contribution to sample variance will therefore
be one of the main limiting factors affecting parameter
constraints. Mitigating this effect, a process known as
delensing, requires an accurate model of the specific
lensing B-mode realization observed in our sky. Such a
template is built by convolving measurements of inter-
mediate- and small-scale E-modes with an estimator of the
CMB lensing potential. In SO’s case, both of these products
will be extracted from high-resolution maps obtained with a
6 m large-aperture telescope (LAT); external large-scale
structure tracers such as the cosmic infrared background
(CIB) and galaxy surveys will also contribute to recon-
structing the lensing convergence [18]. Delensing is per-
formed by subtracting the B-mode template from the
observed polarization maps, or by cross-correlating it with
the data. This parametric power-spectrum-based approach
was recently demonstrated for the first time by the BICEP/
Keck Collaboration and resulted in a 10% improvement on
the inferred r constraint [19]. While the present work uses
the same component separation technique, delensing of SO
data is predicted to lead to a greater decrease in σðrÞ due to
lower noise levels.
The second main challenge encountered by PGW

searches is due to polarized Galactic foregrounds, in
particular thermal dust emission and synchrotron radiation
[20]. For the r values targeted by SO, the total B-modes
produced by these sources dominate over the predicted
inflationary tensor polarization pattern by orders of mag-
nitude; on the angular scales of interest, their combined
amplitude is at least equivalent to that of a primordial signal
with r ∼ 0.05 for any part of the sky [21]. Distinguishing
these contaminants from the CMB is therefore an essential
step towards inferring accurate cosmological information
from the data [22]. Existing foreground cleaning techniques
rely on the distinctive spectral energy distributions (SEDs) of
Galactic emissions, which differ from the CMB blackbody
spectrum and can be separated from the latter by multi-
frequency observations [23]. Three independent algorithms
have been designed to perform this task using SO’s six
frequency bands (from 27 to 280 GHz), both at the map and
power spectrum levels, and have been tested on realistic SO-
like simulations recently [24]. Delensing was not performed
at this stage; its effect was instead estimated by using input
simulations with decreased lensing B-mode power.
The present work aims to include delensing in the power-

spectrum-based parametric component separation pipeline
from Ref. [24], optimize its performance and characterize
the subsequent reduction of statistical uncertainties on r
when applied to simulations mimicking SO’s noise and
foreground properties. Lensing B-mode templates are
obtained using the multitracer approach described in
Ref. [18], where cross-spectral delensing was demonstrated

for an idealistic foreground-free case. Different levels of
foreground complexity are investigated; biases related to
residuals from spatial variability of foreground SEDs are
mitigated by using a technique known as “moment expan-
sion,” which introduces additional parameters to model
deviations from the sky average of the spectral properties
[25–27]. This method was first demonstrated for SO B-
modes in Ref. [28].
The paper is structured as follows. Section II summarizes

the working principle of our analysis pipeline as well as the
theoretical and mathematical foundations on which it relies.
In Sec. III, we demonstrate the equivalence between map-
based methods and the cross-spectral approach adopted
here. Building upon this result, we optimize the delensing
performance in Sec. IV by defining a new pixel-weighting
scheme accounting for both instrumental noise and lensing
B-mode variance. Section V describes the input simulations
and the practical implementation of our pipeline, while
statistical uncertainties and biases on r for all considered
foreground and instrumental noise models are presented
and analyzed in Sec. VI. Finally, we conclude and explore
prospects for future work in Sec. VII. Further details on the
likelihood derivation and tests performed with an alter-
native pixel-weighting scheme are provided in
Appendices A and B respectively.

II. THEORETICAL FRAMEWORK

A. Delensing: Motivation and principle

We start by outlining essential mathematical results
related to CMB lensing and polarization, in order to
illustrate the importance of delensing and characterize
the B-mode template construction stage of our pipeline.

1. CMB lensing and cosmic variance

The linear polarization of light is quantified by the
Stokes parametersQ and U, which are the components of a
symmetric trace-free tensor on the sphere Pab such that
Pθ̂ θ̂ ¼ −Pϕ̂ ϕ̂ ¼ Q=2 and P θ̂ ϕ̂ ¼ Pϕ̂ θ̂ ¼ U=2 in a right-
handed orthonormal basis1 ðn̂; êθ; êϕÞ. As photons traveling
from the last-scattering surface are deflected by potential
wells along the line of sight n̂, Pab is subjected to the
direction-dependent remapping

P̃abðn̂Þ ¼ Pabðn̂Þ þ αcðn̂Þ∇cPabðn̂Þ ð1Þ

at leading order, where the tilde refers to lensed quantities
[29]. In the Born approximation, the small deflection angle
αðn̂Þ corresponds to the gradient of the lensing potential ϕ.
Using the spin-weight formalism described in [30], the
Stokes parameters are related to E- and B-modes as follows:

1Here, n̂ is the line-of-sight direction and θ̂ and ϕ̂ are along the
θ and ϕ directions of a spherical coordinate system.
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Elm � iBlm ¼ −
Z

ðQ� iUÞðn̂Þ�2Y
�
lmðn̂Þd2n̂: ð2Þ

Integrating Eq. (1) allows one to derive the lensing B-mode
contribution in the absenceof primordial tensor perturbations
[18]:

Blens
lm ¼ −i

X
l0;m0

X
L;M

�
l l0 L

m m0 M

�
p−Fð2Þ

ll0LE
�
l0m0κ�LM: ð3Þ

In Eq. (3), the factor p− is 0 for lþ l0 þ L even and 1 for
lþ l0 þ L odd, while κ ¼ − 1

2
∇2ϕ represents the lensing

convergence and the spin-s mode coupling function FðsÞ
ll0L is

given by

FðsÞ
ll0L ¼

2

LðLþ1Þ ½l
0ðl0 þ1ÞþLðLþ1Þ− lðlþ1Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2l0 þ1Þð2Lþ1Þ

16π

r �
l l0 L

s −s 0

�
: ð4Þ

As a result of this coupling, large-scale lensing B-modes
receive contributions fromE-modes at all scales, in particular
from the high multipoles at which their power spectrum
peaks [16].
The presence of an additional B-mode component in the

data increases cosmic variance, thus amplifying uncertain-
ties on inferred parameters. As an illustration, let us assume
that the observed B-modes, Blm, are a full-sky Gaussian
field such that hB�

lmBl0m0 i ¼ δll0δmm0Cl, where the angle
brackets denote an ensemble average over CMB and noise
realizations. We fit this power spectrum with a theoretical
model rCprim

l þ Clens
l þ Nl consisting of the primordial

signal, the lensing term2 and a noise component. The
full-sky log likelihood at a given multipole l corresponds to

− lnLðrÞ ¼ 1

2

X
m

ðB�
lmBlmC−1

l þ lnClÞ

¼ 2lþ 1

2
ðĈlC−1

l þ lnClÞ; ð5Þ

where the power spectrum estimator satisfies hĈli ¼ Cl.
For r ¼ 0, the associated statistical error can then be
derived from the Fisher information:

σ−2ðrÞjr¼0 ¼
X
l

�
−
∂
2 lnL
∂r2

�����
r¼0

¼
X
l

�
2lþ 1

2

��
Cprim
l

Clens
l þ Nl

�2

: ð6Þ

The lensing B-mode contribution to Eq. (6), which
behaves similarly to white noise on large scales with a
standard deviation of approximately 5 μK − arcmin,
already surpasses SO’s goal noise level of around
2 μK-arcmin and therefore constitutes a significant limi-
tation. While the heuristic argument above does not capture
complex effects such as survey nonidealities (e.g., masking,
inhomogeneous noise and foreground residuals) or the non-
Gaussianity of lensing B-modes, it highlights the impor-
tance of delensing for SO and future PGW experiments.

2. B-mode template construction

Inorder to reduce the lensingcontribution to thevarianceof
r measurements, a template matching the particular realiza-
tion of the lensingB-modes on our skymust be computed and
subtracted from thedata. This is donebyevaluatingEq. (3) for
estimates of the E-modes and the lensing convergence;
Ref. [18] previously investigated the lensing B-mode tem-
plate construction process for SO. In the following, we
summarize the method used to extract the E-modes and
the lensing potential and comment on the differences between
the present paper and Ref. [18]. Note that the multifrequency
LAT data used at this stage will be subjected to map-based
foreground cleaning before any information is drawn from it;
in the present analysis, we assume foreground residuals to be
negligible and do not include them in our simulations.
Investigating the impact of such residuals will be the subject
of future work (see Sec. VII).
Small-scale E-modes are obtained by coadding data

from three LAT frequency channels (93, 145 and
225 GHz) with inverse-noise-variance weighting in har-
monic space. Instrumental noise is then mitigated by
applying a diagonal Wiener filter

ÊWF
lm ¼ CEE

l

CEE
l þ NEE

l
Êlm; ð7Þ

where CEE
l is the theoretical lensed E-mode power spec-

trum, NEE
l is computed for the coadded bands using the

LAT noise model and hats refer to observed quantities. In
Ref. [18], the Wiener-filtered E-modes are obtained with
the algorithm presented in Ref. [31] to account for the
inhomogeneities of noise and the survey boundary.
Furthermore, Ref. [18] includes SAT E-modes, defined
over the smaller area displayed in the right panel of Fig. 1.
This technique was shown to improve the correlation
between the estimator and the input E-modes for the
foreground-free situation studied in Ref. [18], but has the

2Since the lensing B-mode power spectrum is predicted very
accurately within a given cosmological model and the latter is
much better constrained than the foregrounds, we can afford to
treat it as a fixed component. As discussed in Sec. VII, the
possible inclusion of a free parameter modulating the lensing
amplitude when working with real data is not expected to
significantly impact σðrÞ.
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disadvantage of being very CPU intensive. To reduce
computational costs, the present analysis will be restricted
toLAT-onlydiagonally filteredE-modes. This condition also
prevents our lensing templates from containing SAT fore-
ground residuals and instrument systematics; these would
contribute as small corrections to the cross-spectra between
the template and the SAT maps, and will be the subject of
future work. Note that while Eq. (3) refers to unlensed E-
modes, the latter are not directly observable and our estimator
is built using their lensed counterparts; gradient-order
templates computed this way have actually been found to
result in more efficient delensing due to cancellations
between higher-order terms in the B-mode residuals [32].
Let us nowbriefly describe themethodused to estimate the

lensing convergence. As was done in Ref. [18], we combine
the LAT CMB lensing map with external large-scale struc-
ture tracers. To reconstruct the CMB lensing map internally,
we use quadratic estimators based on the correlation between
lensed temperature (Θ) and polarization (E, B) fields, whose
ensemble average over unlensed CMB fields but with a fixed
realization of the κ field is given by

hX̃lmỸl0m0 i ¼ δll0δm−m0 ð−1ÞmCXY
l

þ
X
L;M

�
l l0 L

m m0 M

�
fXYll0Lκ

�
LM ð8Þ

at leading order [33]. The second (off-diagonal) term in
Eq. (8) appears as a result of mode coupling and the response
functions fXYll0L correspond to

fΘΘll0L ¼ Fð0Þ
ll0LC

ΘΘ
l0 þ Fð0Þ

l0lLC
ΘΘ
l ;

fΘEll0L ¼ pþFð0Þ
ll0LC

ΘE
l0 þ pþFð2Þ

l0lLC
ΘE
l ;

fEEll0L ¼ pþFð2Þ
ll0LC

EE
l0 þ pþFð2Þ

l0lLC
EE
l ;

fEBll0L ¼ −ip−Fð2Þ
l0lLC

EE
l ; ð9Þ

where pþ is 1 for lþ l0 þ L even and 0 for lþ l0 þ L odd.
Aiming to build a robust estimator of κ satisfying
hκ̂LMi ¼ κLM, Ref. [34] proposed the form

ðκ̂XYLMÞ� ¼ AXY
L

X
ll0mm0

�
l l0 L

m m0 M

� ðfXYll0LÞ�
ΔXY X̄lmȲl0m0 ; ð10Þ

where ΔXY jX≠Y ¼ 1, ΔXY jX¼Y ¼ 2 and the fields X̄lm and
Ȳl0m0 are the inverse-variance-filtered observed fields, related
to the Wiener-filtered fields in Eq. (7) by X̄lm ¼ X̂WF

lm =CXX
l .

Taking the ensemble average of Eq. (10) and substituting
Eq. (8) for hX̂lmŶl0m0 i, we find that the contribution from the
diagonal term vanishes for L > 0 and the off-diagonal term
allows to determine the normalization factor

AXY
L ¼

�X
ll0

ð2Lþ 1Þ−1jfXYll0Lj2
ΔXYðCXX

l þ NXX
l ÞðCYY

l0 þ NYY
l0 Þ

	−1
: ð11Þ

Again, Eq. (9) refers to unlensed fields, however the lensed
ones used in practice have been found to provide a better
approximation to the nonperturbative result for correlators
involving κ̂LM [35].
The expression (10) with AXY

L given by Eq. (11) corre-
sponds to the quadratic estimator (QE) of the lensing
convergence as described in Ref. [34]. All field pairings
listed in Eq. (9) (ΘΘ, ΘE, EE and EB) are included in the
present work, and are coadded with weights minimizing the
reconstruction noise variance at each multipole. We do not
use the ΘB combination due to its low signal-to-noise ratio.
As explained in Refs. [36] and [37], the EB QE becomes a
source of bias if themultipole range of the fields used to build
it overlaps with that of the B-modes we aim to delens. We
therefore only consider modes between l ¼ 301 and l ¼
4096 in our lensing reconstruction; the temperature
field is further restricted to 500 < l < 3000 in order to
avoid large-scale atmospheric noise and residual small-scale

FIG. 1. Normalized hit counts over the areas observed by the LAT (left) and SATs (right) in equatorial coordinates, multiplied by the
Planck 70% Galactic mask. Masked pixels are shown in a lighter tone. These maps were made using the latest version of the planned SO
scanning strategy. Of the pixels observed by the SAT, 96% are also seen by the LAT as a result of using slightly narrower Galactic cuts
than in Ref. [24] to maximize overlap.
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extragalactic foreground contributions [38,39]. The latter are
not included in our simulations at this stage, but will be
important for the analysis of real SO data. Finally, note that
noise inhomogeneities and the presence of a surveymask can
cause the ensemble average hκ̂XYLMi to become nonzero.
Following Ref. [18], we mitigate this bias for each QE by
subtracting a mean-field correction computed from the
average of our simulations.
Combining all possible internal tracers of κ still does not

lead to optimal delensing performance. Indeed, reconstruc-
tion noise resulting from statistical fluctuations of the
unlensed CMB is a significant limitation at intermediate
and high multipoles which are particularly relevant for
delensing. Quadratic estimators should therefore be com-
plemented by external large-scale structure tracers such as
galaxy surveys or measurements of the CIB. For future SO
analysis, the latter will be extracted from Planck data using,
for example, the GNILC algorithm [40], while the DESI
Legacy Imaging Surveys [41], unWISE [42] and the
upcoming LSST [43] will provide information on the
spatial distribution of galaxies. Other types of internal
lensing reconstruction techniques, for example likelihood-
based estimators [44], are not included in this work as they
are not expected to outperform QEs significantly for SO’s
nominal configuration [9].
Coadding all tracers κ̂i with weights chosen to maximize

the correlation between our final estimator κ̂comb and the
true lensing convergence κ, we obtain3 [46]

κ̂comb
LM ¼

X
ij

ðρ−1ÞijLρjκL
ffiffiffiffiffiffiffiffiffi
Cκκ
L

Cκ̂i κ̂i
L

s
κ̂iLM: ð12Þ

In Eq. (12), ρijL and ρiκL represent, respectively, correlation
coefficients between tracers κ̂i and κ̂j, or between κ̂i and the
true lensing convergence. These quantities, which are the
components of the correlation matrix ρL, were computed in
Ref. [47] for the simulated tracers used in this work. As
shown in Fig. 2 of Ref. [18], internal reconstruction is the
most relevant tracer for L < 250; at smaller scales
(250 < L < 1000), both the CIB and galaxy overdensity
maps have a higher degree of correlation with the true
convergence for the noise level of the SO LAT.
The lensing B-mode template, built by performing the

weighted convolution of ÊWF
lm (with 50 < l < 2048) and

κ̂comb
LM (with 20 < L < 2048) as indicated in Eq. (3), can
then be subtracted from observations at the map level (over
the regions observed by both the SATs and the LAT) or

cross-correlated with the data in order to infer tighter
constraints on r. While this paper focuses on the latter
approach, both techniques will ultimately be used for SO
and are expected to yield equivalent results (see Sec. III).
Finally, note that the ensemble-average cross-spectra of

the lensing template with SAT B-modes are identical to the
template autospectrum for ideal (statistically isotropic)
surveys. Indeed, Eq. (12) implies

Cκκ̂comb

L ¼ Cκ̂combκ̂comb

L ¼ Cκκ
L

X
ij

ρiκL ðρ−1ÞijLρjκL : ð13Þ

Considering the Wiener filter in Eq. (7) and the fact that
CEÊ
l ¼ CEE

l as the noise component is uncorrelated with the
underlying E-modes, we then obtain the following expres-
sion for the cross-spectrum between the template (denoted
by the superscript Bt) and the true lensing B-modes:

CBtB
l ¼

X
l0L

jMðl; l0; LÞj2 C
EE
l0

CÊ Ê
l0

CEÊ
l0 Cκκ̂comb

L

¼
X
l0L

jMðl; l0; LÞj2 C
EE
l0

CÊ Ê
l0

CEE
l0 Cκκ̂comb

L ; ð14Þ

where all the prefactors from Eq. (3) have been grouped
into Mðl; l0; LÞ for legibility. Similarly, the lensing tem-
plate autospectrum is given by

CBtBt
l ¼

X
l0L

jMðl; l0; LÞj2
�
CEE
l0

CÊ Ê
l0

�
2

CÊ Ê
l0 Cκ̂combκ̂comb

L

¼
X
l0L

jMðl; l0; LÞj2 C
EE
l0

CÊ Ê
l0

CEE
l0 Cκκ̂comb

L : ð15Þ

The equality between Eqs. (14) and (15) was verified to
hold approximately for our simulations, despite the aniso-
tropic LAT noise. (We note that the external-tracer simu-
lations are masked by the LAT footprint but are otherwise
statistically isotropic.) In an effort to reduce computational
costs, the power spectrum obtained from the average of
simulated lensing templates was therefore also used in our
component separation pipeline to model cross-spectra
between the template and observed B-modes from the
different SAT channels. When working with real data, the
template autospectrum may contain foreground residuals
and should then be modeled separately from the cross-
spectra.

B. Galactic foreground model

We now introduce the parametric model used to char-
acterize SAT Galactic foregrounds and distinguish them
from the CMB signal. The present analysis focuses on
thermal dust emission and synchrotron radiation, as they

3Here, we ignore correlations between multipoles. Further
optimization would be possible by accounting for such effects as
was done in Ref. [45]. However, in our setup, the external tracers
are Gaussian fields with no correlations between multipoles, so
the delensing efficiency from simulations is close to that obtained
with idealized forecasts; extending Eq. (12) would thus not
significantly improve σðrÞ.
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are the two most prominent polarized sources over the
scales of interest [21].

1. Baseline complexity

In its simplest form, our model assumes foreground
properties to be well described by their sky average; the
SEDs therefore depend on a restricted set of parameters that
do not vary with position.
The dominant contribution at low frequencies comes

from synchrotron radiation, produced by the helical motion
of high-energy cosmic-ray electrons around Galactic mag-
netic field lines. Integrating the Larmor formula over a
population of electrons with a power-law energy distribu-
tion, we obtain the SED Ssν ¼ ðν=νs0Þβs [48] in Rayleigh-
Jeans units, where βs ≈ −3 and we fix νs0 ¼ 23 GHz. As a
consequence of its negative spectral index, synchrotron
radiation is subdominant above around 70 GHz where
thermal emission from dust grains heated by starlight
becomes the most important foreground source.
The dust component peaks in the far infrared and is

polarized due to the alignment of dust particles with
Galactic magnetic field lines, which arises from the action
of radiative torques on irregularly shaped grains [49]. A
modified blackbody function

Idν ∝ νβd
2hν3

c2
1

expðhν=kBTdÞ − 1
ð16Þ

was empirically found to be a good approximation of its
intensity spectrum [50]. The SED, Sdν ¼ Idν=Idνd

0

, then

depends on the positive spectral index βd as well as on
the interstellar dust temperature Td and the reference
frequency νd0, which we fix at 353 GHz. Computing the
sky average of the dust SED maps extracted from the
Planck 2015 Commander analysis [51] yielded the refer-
ence values βd ≈ 1.54 and Td ≈ 20 K, which are consistent
with subsequent results from power-spectrum-based meth-
ods [52].
Planck, WMAP and S-PASS observations have also

shown that the foreground angular power spectra can be
parametrized by power lawsCc

l ¼ Acðl=l0Þαc−2, where l0 ¼
80 and c ¼ d or s for dust [52] and synchrotron [53]
respectively. For each component, the slope of the angular
power spectrum remains identical in all frequency chan-
nels, while its amplitude is multiplied by the product of the
two relevant SEDs.
A dust-synchrotron correlation parameter ϵds is also

included in our model and contributes terms proportional

to Cds
l ¼ ϵds

ffiffiffiffiffiffiffiffiffiffiffi
Cd
l C

s
l

q
to the power spectra. This brings the

total number of free foreground parameters to seven: ϵds,
βd, Ad, αd, βs, As and αs.
Note that we do not include the Faraday rotation of

primary E-modes into B-modes by Galactic or primordial
magnetic fields in our foreground model. As the power

spectrum of such B-modes scales as ð ν
30

GHzÞ−4 and peaks
at l ∼ 1000 [54], this effect is expected to be negligible for
the frequency bands and multipole range of the SO SATs.

2. Spatially varying SEDs

While the model described above is a useful approxi-
mation for pipeline validation purposes, it does not fully
capture the complexity of realistic foreground emission.
Indeed, the SEDs actually exhibit spatial variations due to
inhomogeneous dust temperature and grain types as well as
fluctuations in the cosmic-ray energy distribution. Treating
them as constants, especially over the large fractions of sky
targeted by SO, has been shown to produce systematic
residuals leading to significant biases in measurements
of r [24].
In order to mitigate this effect, we apply the moment-

expansion approach described in Ref. [28]. Assuming small
spatial fluctuations δβcðn̂Þ with respect to the sky average
β̄c, we can expand the foreground contributions to second
order at the map level4:

mνðn̂Þ¼
X
c

Tcðn̂ÞScνðβcðn̂ÞÞ

¼
X
c

½Tcðn̂ÞðS̄cνþδβcðn̂Þ∂βc S̄cνþ
1

2
ðδβcÞ2ðn̂Þ∂2βc S̄cνÞ�:

ð17Þ

Here, mνðn̂Þ corresponds to the total foreground Stokes
parameters at frequency ν, Tcðn̂Þ represents the amplitudes
of the Stokes parameters of a given component at the
reference frequency νc0 and the bars denote the SED or its
derivatives evaluated at β̄c.
We can now propagate the expansion in Eq. (17) to the

cross-spectrum of the B-modes at frequencies ν and ν0,
using some simplifying assumptions justified in more detail
in Ref. [28]. The leading-order term,

Cνν0
l;0 ¼ S̄dν S̄dν0C

d
l þ S̄sνS̄sν0C

s
l þ ðS̄dν S̄sν0 þ S̄sνS̄dν0 ÞCds

l ; ð18Þ

corresponds to the sky-average model presented in the
previous subsection. While correlations between dust and
synchrotron amplitudes are accounted for in Eq. (18), we
consider δβd and δβs to be independent. We further assume
independence between Tcðn̂Þ and δβcðn̂Þ. Under these
conditions, the first-order terms vanish and the second-
order contribution to the power spectrum is given by

4Variations in the dust temperature Td are almost degenerate
with amplitude variations at the frequencies of interest, and
contribute very little to SED variations. For this reason, we do not
need to include the dust temperature in the moment expansion.
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Cνν0
l;2 ¼

X
c

�
∂βc S̄

c
ν∂βc S̄

c
ν0
X
l1l2

ð2l1þ1Þð2l2þ1Þ
4π

�
l l1 l2
0 0 0

�
2

×Cc
l1
Cβc
l2
þ1

2
ðS̄cν∂2βc S̄cν0 þ S̄cν0∂

2
βc
S̄cνÞCc

l

×
X
l0

2l0 þ1

4π
Cβc
l0

	
: ð19Þ

Further details of the derivation can be found in
Ref. [28]; the important takeaway of Eq. (19) is that only
one additional power spectrum per component, Cβc

l , needs
to be modeled in order to compute the effects of foreground
spatial variability to second order in δβcðn̂Þ. Parametrizing
it as a power law, Cβc

l ¼ Bcðl=l0Þγc , leads us to extend our
simple model by four variables. The full set of foreground
parameters to be sampled is now given by ϵds, βd, Ad, αd,
Bd, γd, βs, As, αs, Bs and γs.

C. Likelihood analysis

In the likelihood analysis, we use the measured B-mode
cross-spectra to infer the probability distributions of the
foreground and cosmological parameters. Even if the
underlying fields were Gaussian, dealing with the exact
likelihood for the measured spectra in the presence of
survey masking and inhomogeneous noise is intractable.
We therefore adopt an approximate Gaussian likelihood for
the measured spectra with a fixed covariance matrix. This
approximation is expected to hold for large enough sky
coverage and when enough multipoles are binned together
and averaged, by virtue of the central-limit theorem.
The Gaussian likelihood for the power spectra is

−2 lnLðfXlgjfX̂lgÞ ≈ ðX̂ − XÞTM−1
f ðX̂ − XÞ; ð20Þ

where the vectors X̂ and X contain the measured cross-
spectra and the model at all considered multipoles, respec-
tively, andMf is the fixed covariance matrix of the spectra.
The covariance is precomputed from a set of simulations at
fiducial parameter values and does not need to be recom-
puted as parameter space is explored, greatly reducing
computational costs. A further advantage of working with a
spectral likelihood is that non-Gaussianity of the fields
(such as from lensing) can be dealt with approximately
through the covariance matrix.
We also tested the approximate Hamimeche and Lewis

likelihood [55], which similarly makes use of a fiducial
covariance but additionally approximately captures the non-
Gaussian shape of the likelihood. We compare results
obtained with this likelihood and the Gaussian likelihood
in Appendix A. As shown there in Fig. 9, the posterior
distributions for the parameters are in excellent agreement;
the Gaussian likelihood will therefore be used throughout
thiswork as it leads to faster sampling.Note that theGaussian
approximation holds for SO due to the relatively large sky

patch allowing to average overmanymodes. For experiments
targeting smaller areas such as BICEP/Keck, non-Gaussian
likelihood approximations, such as Hamimeche and Lewis,
must be used (especially at low l).

III. EQUIVALENCE OF CROSS-SPECTRAL AND
MAP-BASED DELENSING

We now compare the expected performance of the
power-spectrum-based approach presented above with that
of map-based delensing, which will also likely be per-
formed on future SO data. While directly subtracting the
lensing B-mode template from the observed maps might
seem more straightforward, cross-spectral methods have
significant advantages for ground-based surveys. For
example, complex filtering operations used to mitigate
atmospheric disturbances are easier to take into account in
harmonic space, and data splits can be used to provide an
accurate estimate of the noise power spectrum (see Sec. V).
In an idealistic situation without such filtering, equivalent

constraints on r can be obtained with both methods. In order
to demonstrate this, let us first consider a foreground-cleaned
map from which we subtract the lensing template. The
B-mode harmonic coefficients are given by Bdel

lm ¼ Blmþ
nlm − Bt;lm, where the subscript t refers to the template.
Assuming negligible foreground residuals, approximately
Gaussian lensing B-modes and no correlations between the
noise nlm and the other components, the power spectrum of
this map then corresponds to

CBB;del
l ¼ CBB

l − 2CBtB
l þ Nl þ CBtBt

l

¼ CBB
l − CBtBt

l þ Nl; ð21Þ

where we used the equality of Eqs. (14) and (15) (which is
verified later for our simulations in Fig. 3) to simplify the
result. With the likelihood in Eq. (5), the Fisher information
for r at multipole l is given by

I lðrÞ¼
�
−
∂
2 lnL
∂r2

�
¼ 2lþ1

2

�
∂rCBB

l

CBB
l −CBtBt

l þNl

�
2

: ð22Þ

The error on r is the same as in Eq. (6) withClens
l replaced by

its delensed counterpart.
Let us now consider the foreground-cleaned SATmap and

the template separately. Again equating CBtB
l and CBtBt

l , the
matrix Cl containing all auto- and cross-spectra becomes

Cl ¼
�
CBB
l þ Nl CBtBt

l

CBtBt
l CBtBt

l

�
: ð23Þ

The Fisher information can be computed from the exact,
full-sky likelihood for Gaussian fields, Eq. (A1); using
ln jClj ¼ TrðlnClÞ, we obtain
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I lðrÞ ¼
2lþ 1

2
TrðC−1

l ∂rClC−1
l ∂rClÞ: ð24Þ

We can then substitute Eq. (23) into this expression, where
CBB
l is the only r-dependent element (neglecting small tensor

contributions to the internal lensing estimators). As expected,
the result is identical to Eq. (22) and we conclude that the
map-based and the cross-spectral method lead to equivalent
uncertainties on r. We verify this equivalence empirically in
Sec. VI. Comparing constraints obtained with both tech-
niques will therefore be a useful cross-check for future
SO data.
Note that our reasoning was demonstrated on an ideal-

istic full-sky situation (and with no foreground residuals)
for simplicity; however, the argument still holds in the
presence of a survey mask, provided that the same pixel
weighting is used on all maps so that the cross-spectral
likelihood takes as input all of the pseudospectra required
to form the pseudospectrum of the map after map-based
foreground cleaning and delensing.

IV. OPTIMAL PIXEL WEIGHTING

For computational efficiency, we use local pixel weight-
ing when measuring the power spectrum (i.e., we construct
pseudo-Cl estimates) rather than full inverse-variance
weighting, which is nonlocal and requires inversion of
large matrices. This local weighting scheme can be chosen
to minimize the variance of the measured spectra (after
deconvolution of the effects of the masking and weighting).
Building upon the results of Sec. III, we construct optimal
local pixel weights for a foreground-cleaned and delensed
SAT map; these will be applied to all SAT channels as well
as to the lensing template when computing pseudo-Cl
power spectrum estimates. A natural choice is the inverse-
variance weighting

wi ∝
1

σ2i;res þ σ2i;noise
; ð25Þ

where both the lensing residuals and the noise contribution
(assumed to be constant over the pixel size) are taken into
account.
This scheme can be heuristically motivated as follows.

Assume that any statistical anisotropy due to the survey and
the pixel weighting, are slowly varying compared to the
scales of interest. We can then approximate the weighting
as dividing up the sky into patches, large enough that the
fluctuations are approximately uncorrelated between
patches but small enough that the weights and statistical
properties of the fluctuations can be treated as constant
within each patch. Denote these patch weights by wi, where
i labels the patch. The observed B-mode power spectrum,
corrected for the weighting, can then be approximated by a
sum over patches:

Ĉl ≈
�X

i

w2
i C̃

i
l

�
=hw2ipatch; ð26Þ

where C̃i
l is the pseudo-Cl power spectrum in patch i

obtained with binary weighting (one in the patch and zero
outside). The expected value of C̃i

l is approximately

hC̃i
li ≈ fsky;iðCi

l þ Ni
lÞ; ð27Þ

where Ci
l is the signal power spectrum in patch i, which

may differ between patches due to statistical anisotropy
(e.g., due to variation in delensing efficiency), Ni

l is the
local noise power spectrum there, and fsky;i is the sky
fraction of the patch. The normalization factor in Eq. (26),

hw2ipatch ≡
X
i

w2
i fsky;i; ð28Þ

corrects for the effects of the weights and approximates the
mask-deconvolution step in unbiased power-spectrum
estimation.
The variance of Ĉl then corresponds to

σ2ðĈlÞ ≈
�X

i

w4
i σ

2ðC̃i
lÞ
�
=hw2i2patch; ð29Þ

where the variance of the C̃i
l is [56]

σ2ðC̃i
lÞ ≈

2

ð2lþ 1Þfsky;i
hC̃i

li2: ð30Þ

Minimizing Eq. (29) with respect to wi leads to the weights

wi ∝
1

Ci
l þ Ni

l
; ð31Þ

as both the lensing B-modes and the noise power spectrum
are approximately constant over the multipole range con-
sidered in our analysis (30 ≤ l ≤ 300), we indeed re-
cover Eq. (25).
The lensing residual term σ2i;res is equivalent to

ð5 μK-arcminÞ2 white noise multiplied by a factor Alens
resulting from delensing. Due to the relative homogeneity
of the LAT hit-count map (see Fig. 1), we take Alens to be
uniform, computing it as5

Alens ¼ 1 −
� ðCBtB

l Þ2
CBB
l CBtBt

l

�
; ð32Þ

5We give this more general form for completeness; in our

analysis, the simpler form Alens ¼ 1 − CBtB
l =CBB

l is very nearly
equivalent due to the equality of CBtB

l and CBtBt
l .
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where the bar refers to an average over l, on the whole area
of overlap between the surveys with the SATs and the LATs
[18]. For future full-sky surveys such as LiteBIRD, which
may be combined with a range of partially overlapping
external tracers, the template properties might not be as
uniform [45,57]. In this case, Alens could be treated as a
spatially varying quantity. The noise term σ2i;noise corre-
sponds to the minimal white-noise variance in the deepest
area of the map (hereafter referred to as the central white-
noise variance σ2white) modulated by the relative number of
hits:

σ2i;noise ¼
σ2white
Nhit

i
: ð33Þ

In the case of noise-dominated data, Eq. (25) therefore
reduces to the hit-count mask used in Ref. [24]; however,
this is suboptimal for SO as the residual lensing variance
surpasses the central white noise variance of the mid-
frequency SAT channels. Similarly, the uniform weighting
used in Ref. [18] is only appropriate for areas in which
noise inhomogeneities are negligible; mitigating the
strongly increasing noise variance towards the outer regions
of the map then requires aggressive apodization resulting in
a loss of data. The strategy proposed here naturally
transitions between these two extremes when moving from
the edges to the center of the survey area.
With the lensing term characterized by Eq. (32), the final

step towards building our mask is the determination of the
central noise variance σ2white for a foreground-cleaned
coaddition of SAT multifrequency maps. For this purpose,
we approximate the map-based foreground cleaning assum-
ing known SEDs for all components.
In detail, we express the data dνðn̂Þ at frequency ν as a

sum of a noise contribution nνðn̂Þ and three components
scðn̂Þ (the CMB, dust and synchrotron) multiplied by their
respective SEDs, which make up the mixing matrixA [58]:

dνðn̂Þ ¼
X
c

Aνcscðn̂Þ þ nνðn̂Þ: ð34Þ

Assuming the noise to be Gaussian with covariance matrix
N ¼ diagðσ2white;1;…; σ2white;6Þ, where the central levels for
individual channels are listed in Table I, we get the
likelihood function

−2 logL ¼ ðd −AsÞTN−1ðd −AsÞ: ð35Þ
We aim to compute the error on the element of s
corresponding to the CMB [59]. The associated Fisher
information is given by

IðsCMBÞ ¼
�
−
∂
2 lnL
∂s2CMB

�
¼ ðATN−1AÞCMB;CMB; ð36Þ

leading to the variance

σ2ðsCMBÞ ¼ σ2white ¼ ðATN−1AÞ−1CMB;CMB; ð37Þ
which we can then substitute into Eq. (25). Considering the
goal values presented in Table I, Eq. (37) indicates a central
white noise level of 2.5 μK-arcmin for the foreground-
cleaned map.

V. PIPELINE INPUTS AND LOGISTICS

A. Simulations

Full-sky CMB Q and U polarization maps are simulated
as lensed Gaussian realizations of CMB power spectra
computed with CAMB [60] for the Planck best-fit cosmo-
logical parameters listed in Ref. [61]. One set of input
simulations is produced with r ¼ 0 (no primordial
B-modes) and the other one with r ¼ 0.01. The lensing
operation is performed using the pixell package. These
maps are generated at a high resolution (Nside ¼ 2048 in
HEALPix [62]), then convolved with symmetrical
Gaussian beams whose FWHMs are listed in Table I.
Our noise model accounts for detector white noise as

well as a 1=f component related to timestream–level
filtering (which mainly targets the mitigation of atmos-
pheric noise), leading to the following angular power
spectrum:

TABLE I. Noise and beam specifications used to produce the simulations in this work, corresponding to the goal/
optimistic case of Refs. [9] and [24]. Note that the white-noise levels are given for the central area of the map
assuming 5 years of observations, and are weighted according to the hit counts when generating the final noise
maps. We use lknee ¼ 700 and αknee ¼ −1.4 for all LAT channels.

SAT LAT

Frequency [GHz] FWHM [arcmin] σwhite;ν [μK-arcmin] lknee αknee FWHM [arcmin] σwhite;ν [μK-arcmin]

27 91 33 15 −2.4 7.4 74
39 63 22 15 −2.4 5.1 38
93 30 2.5 25 −2.5 2.2 8.2
145 17 2.8 25 −3.0 1.4 8.9
225 11 5.5 35 −3.0 1.0 21
280 9 14 40 −3.0 0.9 52

EMILIE HERTIG et al. PHYS. REV. D 110, 043532 (2024)

043532-10



Nl ¼ Nwhite

�
1þ

�
l

lknee

�
αknee

	
: ð38Þ

The amplitude Nwhite is adjusted for each instrument and
frequency band in order for the central variance in the noise
maps to match the values listed in Table I. Current or past
experiments, such as QUIET [63] near SO’s observing site
and BICEP/Keck [64] at the South Pole, have allowed to
calibrate lknee and αknee for the six SAT frequency channels
(see Table I). For the LAT, we set lknee ¼ 700 and αknee ¼
−1.4 [9]; these estimates based on ACT [65] noise levels
are currently used for all LAT bands, but future work will
aim to characterize the frequency dependency of these
parameters. Noise maps are built by generating Gaussian
realizations of the power spectrum in Eq. (38) (with lmax ¼
6144 and 1536 for the LAT and SAT, respectively), then
multiplying each pixel i by 1=

ffiffiffiffiffiffiffiffi
Nhit

i

p
, where Nhit

i refers to
the LAT or SAT normalized hit counts shown in Fig. 1.
The inputs of the internal lensing reconstruction stage

simply consist of the CMB realizations described above
convolved with LAT beams for three different frequency
channels (93, 145 and 225 GHz), to which LAT-like noise
is added. These maps do not contain any Galactic or
extragalactic foregrounds, and therefore do not require
point-source masks.
In addition to LAT data, the template construction

process relies on external lensing tracers. The present work
follows Ref. [18] and uses Gaussian simulations of the CIB
as well as of a galaxy density field mimicking the
forecasted LSST gold sample [43]. The latter is split into
six redshift bins with edges z ¼ ½0; 0.5; 1; 2; 3; 4; 7�.
Relevant auto- and cross-spectra were computed in
Ref. [47] assuming linear galaxy bias. In order to ensure
accurate correlation between the external tracers and the
corresponding realization of the CMB lensing potential, we
implement the algorithm described in Appendix F of
Ref. [66]. The LAT binary mask derived from the hit
counts in the left panel of Fig. 1 is applied to all input maps,
both internal and external, throughout the template con-
struction step.
The next stage of the pipeline consists of extracting

cosmological information from SAT polarization data. To
simulate such observations, we use the same lensed CMB
realizations as for the LAT-like maps, downgrade the
resolution to Nside ¼ 512, convolve them with SAT beams
in six frequency channels and add noise following Eq. (38)
with the parameters listed in the left columns of Table I.
Our choice to use the goal/optimistic noise levels from
Ref. [9] is motivated by the recent approval of the SO:UK
and SO:Japan projects, which are constructing three addi-
tional SATs; indeed, even if the nominal design of SO were
to fall slightly short of these targets, our forecasts would
still be conservative in light of the expected performance of
the extended configuration. When analyzing real SAT
observations, noise biases in the spectra will be mitigated

by the use of data splits (see Sec. V B), corresponding to
maps built from different time periods throughout the
survey duration. In this paper, we use four splits (as was
done for the ACTDR4maps [67]); this process is simulated
by generating four uncorrelated noise realizations for each
CMB map and multiplying the amplitudes from Table I
by

ffiffiffiffiffiffiffiffiffiffiffi
Nsplits

p ¼ 2.
In order to assess the impact of Galactic foregrounds on

delensing performance, our SAT-like simulations contain
both dust and synchrotron emission. While past experi-
ments have provided valuable information on these con-
taminants, the fluctuations of their SEDs across the sky
have not been fully characterized yet. We therefore inves-
tigate three foreground models based on the PySM package
templates [68] and including different degrees of complex-
ity. All three models rely on dust and synchrotron ampli-
tude maps established, respectively, by Planck at 353 GHz
[51] and WMAP at 23 GHz [69]. The Commander
component separation code also allowed to estimate the
spatial distribution of the dust spectral index βd and
temperature Td from the aforementioned Planck data set.
In the case of synchrotron radiation, spectral properties
were inferred by combining WMAP data with the Haslam
map at 408 GHz [70,71]. The d1s1 foreground model used
in our analysis is built upon this information.
A simpler model with uniform SEDs, referred to as

d0s0, is derived from the d1s1 templates by averaging
the spectral parameters over the whole sky. The resulting
values are Td ¼ 20 K, βd ¼ 1.54 and βs ¼ −3. While it
does not capture the full complexity of realistic fore-
grounds, this model is a very useful approximation for
pipeline validation purposes as it allows the component
separation process to be performed at a significantly lower
computational cost.
On the other hand, more recent data from S-PASS at

2.3 GHz [72] seems to indicate that the synchrotron spectral
index varies more significantly than in the original PySM
template. A more complex model called dmsm is therefore
constructed by rescaling the d1s1 map of the fluctuations
βs − β̄s, using an amplification factor of 1.6. In this model,
the spectral parameter templates for both dust and syn-
chrotron are also smoothed at an angular resolution of
2 deg.. in order to mitigate instrumental noise residuals,
which might have affected the d1s1 maps. Gaussian
fluctuations are then artificially added below this scale.
Foreground maps are convolved with the SO SAT-like

Gaussian beams listed in Table I before being combined
with the CMB and noise simulations, and are not subjected
to bandpass integration. The choice of working with delta-
function bandpasses simply aims to reduce computational
costs here and does not significantly affect the results. (The
analysis pipeline is also equipped to deal with realistic SO
bandpasses.)
Finally, note that the foreground templates described

above are informed by real data and are therefore only

THE SIMONS OBSERVATORY: COMBINING CROSS-SPECTRAL … PHYS. REV. D 110, 043532 (2024)

043532-11



available in one realization. In order to evaluate the fiducial
covariance matrix required to compute the likelihoods in
Eqs. (20) and (A6), 500 random Gaussian foreground
simulations are generated using the angular power spectra
mentioned in Sec. II B 1 with reference parameters
obtained from the d0s0 dust and synchrotron maps.
The best-fit power-law parameters depend on the consid-
ered masking scheme, and thus exhibit slight variations
with the value of Alens in the optimal weights of Eq. (25). As
the shifts observed in our case do not exceed 10%, we use
the same set of Gaussian simulations with and without
delensing, and average the best-fit parameters obtained
with Alens ¼ 1 and Alens ¼ 0.35. The resulting reference
values are Ad ¼ 44.6, αd ¼ −0.16, As ¼ 1.07 and
αs ¼ −0.78. The suitability of Gaussian simulations for
covariance matrix estimation has been verified through χ2

tests in Appendix A of Ref. [24]; furthermore, Ref. [73]
showed that modifying the covariance matrix to account for
dust non-Gaussianity did not impact constraints on r for an
experiment with SO’s characteristics.

B. Workflow

The general working principle and successive stages
of the analysis pipeline are summarized in Fig. 2. When

running the algorithm, one input map with either d0s0,
d1s1 or dmsm foregrounds is selected as mock data to run
the parameter inference on, and the 500 simulations with
Gaussian foregrounds are only used to compute the fiducial
covariance matrix.
In the first stage, a binary mask based on the hit counts in

Fig. 1 and apodized by 5 deg is applied to all LAT-like
simulations. The masked maps at 93, 145 and 225 GHz are
then converted to harmonic space and E-mode coefficients
are combined with inverse-noise-variance weighting.
Finally, these E-modes are diagonally Wiener filtered as
indicated in Eq. (7), where the coadded noise power
spectrum NEE

l is obtained from noise-only simulations
over the observed area.
The internal lensing convergence reconstruction process

uses unfiltered E- and B-modes as well as temperature
information extracted from the same LAT-like input maps.
Diagonal inverse-variance filtering is directly incorporated
in Eq. (10), which is applied to four pairs of observed fields
(ΘΘ, ΘE, EE and EB) in order to compute the QEs.
Correlation coefficients between the minimum-variance

combination of QEs and the external mass tracers, as well
as between each tracer and the input lensing convergence
are evaluated for all simulations. These values are averaged
over the 500 CMB realizations and used in Eq. (12) to
coadd our internal reconstruction with the masked external-
tracer maps. Convolving this combined estimator with the
Wiener-filtered E-modes as indicated in Eq. (3) yields the
harmonic coefficients of the lensing B-mode template,
which we then convert into real-space Q and U maps.
Note that the method used here to estimate the optimal
coaddition of mass tracers will not be applicable to real
data, for which only one realization is available and the true
lensing convergence is not known. Instead, we obtain the
coefficients of Eq. (12) by fitting theoretical models to the
measured auto- and cross-spectra of our tracers.
Uncertainties on these spectra were investigated in
Ref. [18] and found not to have a significant impact on
σðrÞ at SO’s sensitivity level.
Throughout the second stage of the pipeline, both the

SAT-like maps and the real-space Q, U template are
weighted according to Eq. (25), with the lensing and noise
variance estimated as described in Sec. IV. Furthermore, the
analysis region is restricted to the overlap between the SAT
and the LAT survey areas, and an apodization length of
10 deg is applied. This additional smoothing is necessary
for the B-mode purification process described below.
In the usual pseudo-Cl formalism, the presence of such a

mask/weighting leads to a mixing of the E- and B-modes as
well as to the appearance of a coupling between different
multipoles when computing auto- and cross-spectra
between the observed SAT B-modes and the lensing
template. Let us define the masked polarization vector
Pw
lm ¼ ðEw

lm; B
w
lmÞT , which contains the harmonic coeffi-

cients of the sky maps multiplied by the weights wi at the

FIG. 2. Flowchart of the three main pipeline stages: lensing
template construction, computation of power spectra, and com-
ponent separation. Inputs are listed in the white boxes. The same
CMB realizations are used to generate the LAT and SAT maps,
and the Gaussian realizations of external LSS tracers are
appropriately correlated with the CMB lensing convergence.
Orange boxes represent stages carried out on both the mock data
and the 500 fiducial simulations, while the blue-colored oper-
ations are only applied to the mock data.
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pixel level. The power spectrum estimator then corresponds
to Ĉw

l ¼ ð2lþ 1Þ−1 Pm Pw
lmP

w†
lm , and the relation to the true

spectrum (for statistically isotropic signals) is given by [74]

vecðĈw
l Þ ¼

X
l0
M22

ll0 vecðĈl0 Þ; ð39Þ

where the notation vecðClÞ refers to the vector of auto- and
cross-power spectra. The mode-coupling matrix M22

ll0 ,
which can be computed directly from the pixel weights
wi, is generally not invertible due to the loss of information
resulting from masking. This issue is resolved by grouping
sets of Δl multipoles into bandpowers and inverting the
smaller binned form of M22

ll0 . A bin width of Δl ¼ 10 is
used in the present work.
As a consequence of the CMB E-mode power being

significantly larger than that of B-modes, the aforemen-
tioned decoupling technique remains suboptimal. Indeed,
E-mode leakage increases the variance of ĈBB

l , and this
additional source of uncertainty needs to be mitigated at the
map level [30]. This process, referred to as B-mode
purification, is described in Ref. [75] and implemented
in the NaMaster package [76]. The Master algorithm [74]
also allows to perform beam deconvolution and invert the
mode-coupling matrix M22

ll0 , whose expression for purified
pseudo-B-modes is derived in Ref. [76].
After mitigating all mask-related artifacts, we still need

to remove significant noise biases from our SAT B-mode
autospectra (and, to a lesser extent, from cross-spectra
between different frequency channels where noise may be
at least partially correlated, for example due to atmospheric
and instrumental systematic residuals). Our pipeline is
designed to estimate the noise component directly from
the data instead of relying on an instrumental model which
might not be sufficiently precise. As briefly mentioned in
Sec. VA, this is facilitated by the use of data splits, i.e.,
maps assembled from nonoverlapping observations such
that they do not share the same instrumental white noise
realization. The final ĈBB

l estimator between frequencies ν
and ν0 is then obtained by averaging the cross-spectra
measured over all pairs of unequal splits si, sj:

ðĈBB
l Þνν0 ¼

1

NsplitsðNsplits − 1Þ
X
i≠j

ðĈBB
l Þsisjνν0 : ð40Þ

Due to the use of Wiener-filtered E-modes and lensing
convergence tracers, noise-dominated multipoles are down-
weighted in the power spectra (14) and (15) involving the
lensing template, and no significant noise biases are
observed for our simulations. Our template is therefore
built from full-survey maps instead of being subdivided
into data splits, and its cross-spectrum with SAT B-modes
at frequency ν is averaged as follows:

ðĈBBt
l Þν ¼

1

Nsplits

X
i

ðĈBBt
l Þsiν : ð41Þ

Template splits may, however, have to be introduced when
working with real data, similar to their use in the recent
ACT DR6 lensing analysis [77].
Once all cross-spectra are calculated for the 500 fiducial

model simulations, they are used to compute the sample
covariance matrix Mf required for the likelihood in
Eq. (20). This matrix is conditioned to be block-diagonal,
with all correlations between multipoles separated by more
than the bin widthΔl being set to zero. Such a precaution is
necessary in order to remove spurious off-diagonal ele-
ments related to Monte Carlo noise, a consequence of
estimating the covariance from a finite number of simu-
lations, which has been shown to result in bias and
underestimated uncertainties when inferring r [78].
Example power spectra are displayed in Fig. 3 for one

specific CMB realization with d0s0 foregrounds, using
optimal pixel weights. The 1σ standard deviation on the
spectra, represented by the blue shaded areas, is given by
the square root of the diagonal covariance elements. In the
two left-hand columns, corresponding to the 23 and
39 GHz bands, large noise fluctuations appear at high
multipoles. This amplified variance is a consequence of
beam deconvolution in the frequency channels with the
lowest resolution. The shape of the lensing B-mode
spectrum (dotted line) is mostly recognizable at 93 and
145 GHz, while the two highest frequency bands are
heavily dominated by dust emission. For l > 40, all panels
display a good agreement between the measured power
spectra and the fiducial model described in Sec. II B 1 (with
the best-fit parameters cited at the end of Sec. VA). The
steepening of the power spectra on large scales, which is
not observed in Ref. [24], is a consequence of the less
conservative survey mask used in the present work. With
narrower Galactic cuts, the foregrounds contained in our
simulations are brighter and more complex, deviating from
our simple power-law fiducial model. A curvature term
may be added to the exponent in future work in order to
obtain a better fit. Alternatively, assumptions regarding the
shape of the power spectrum may be removed by using an
l-wise parametrization, or by working with empirically
determined spectral templates. When working with real
data, different combinations of Galactic cuts and model
parametrizations will be tested in order to determine the
optimal analysis settings. While a more conservative mask
may end up being selected at this stage, we intentionally
keep the wider survey area here in order to demonstrate the
proper functioning of our pipeline in the presence of
complex foreground features.
In the subplots in Fig. 3 involving the lensing template,

the black continuous line represents the mean of ĈBtBt
l over

the 500 CMB realizations. This closely matches the mean
of the cross-spectra of the template with SAT B-modes
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ĈBBt
l , thus explicitly verifying that the equivalence dis-

cussed in Sec. III still holds in the presence of inhomo-
geneous LAT noise. This conclusion is further supported by
the highlighted subplot in the top-right corner of Fig. 3,
where correlated fluctuations are visible between ĈBtBt

l and
ĈBBt
l at 93 GHz. We therefore use the mean of ĈBtBt

l ,
computed for the fiducial simulations using the apodized
optimal weighting mask, as our model for all spectra
involving the lensing template.
In the final stage of the pipeline, the measured cross-

spectra, their covariance matrix and our parametric model
are substituted into the likelihood function, which can

either be the Gaussian likelihood in Eq. (20) or the
Hamimeche and Lewis approximation (A6). Note that
we only select multipoles between 30 and 300; this range
targets the scales at which primordial B-modes are expected
to be the most significant while preventing our analysis
from being affected by effective large-scale noise induced
by timestream filtering. A Markov chain Monte Carlo
(MCMC) algorithm implemented in the emcee package is
then run for 8000 iterations in order to sample the posterior
distributions of r and our foreground model parameters.
The number of walkers is set to 24 for d0s0 input
simulations, and increased to 48 for the more complex
d1s1 and dmsm models. In order to ensure convergence,

FIG. 3. Power spectra computed for one realization of SAT B-modes in all frequency channels and the corresponding lensing template,
withDl ¼ lðlþ 1ÞCl=2π. The input maps include the CMB signal, SAT-like noise at goal/optimistic levels and d0s0 foregrounds. The
blue shaded areas represent the 1σ standard deviation calculated over 500 simulations with Gaussian foregrounds. The lensing template
autospectrum and its cross-spectrum with SAT B-modes at 93 GHz are highlighted in the top-right corner.

TABLE II. Parameter priors for our MCMC analysis. The numbers listed here correspond to the center value and standard deviation in
the Gaussian (G) case, or the lower and upper bounds for top-hat (TH) priors. Note that Bd, Bs, γd and γs only appear in the model when
performing the moment expansion for spatially varying foregrounds.

Parameter r ϵds βd Bd γd Ad αd βs Bs γs As αs

Prior TH TH TH TH TH TH TH G TH TH TH TH
Bounds ½−0.1; 0.1� ½−1; 1� [1.3, 1.8] [0, 10] ½−6;−2� [20, 60] ½−0.5; 0.5� −3� 0.3 ½−5; 5� ½−6;−2� [0, 4] ½−3; 0�
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we estimate the integrated autocorrelation time (IAT) for r
and obtain 81 for the baseline analysis and 191 for the
moment expansion method, thus confirming that the length
of our chains is sufficient (between 40 and 100 times the
IAT). Table II lists the priors used for parameter estimation;
most of them follow Ref. [24], with the exception of βd for
which the Gaussian prior is replaced by a top hat. This
choice, physically motivated by the βd map extracted from
Planck data and shown in Ref. [79], was found to lead to
faster convergence in the presence of complex foregrounds.
It is worth mentioning that the prior on r will be restricted
to positive values when analyzing real data, but is delib-
erately kept open for now in order to check for potential
biases.

VI. RESULTS AND DISCUSSION

A. Lensing template

The lensing B-mode template obtained from one reali-
zation of our LAT-like simulations and the associated
(correlated) realization of the external LSS tracers is
displayed in the right panel of Fig. 4, and compared to
the input lensing B-modes in the same CMB realization.
Both subplots only contain a restricted set of large-scale
multipoles (20 ≤ l ≤ 128) for legibility purposes, and show
the region of overlap between the LAT and SAT surveys.
The mask is different from the one presented in Ref. [18] as
updated versions of the hit-count maps are used here. In
particular, Galactic cuts are less conservative in the present
work than in Ref. [18] in order to maximize the analy-
sis area.
The correlation between the template and the original B-

modes is clearly visible in Fig. 4, especially in the zoomed-
in rectangles. A certain degree of attenuation is noticeable
when comparing the two panels of the figure. This is a
direct consequence of the use of Wiener-filtered E-modes
and lensing convergence tracers in Eq. (3); indeed, Eqs. (7)

and (12) imply that any noise in the LAT maps results in a
decreased amplitude for ÊWF

lm and κ̂comb
LM .

The fractional lensing B-mode power residual after map-
level delensing with our template is displayed in Fig. 5.
Considering the minimum-variance delensed B-modes6 [18]

Bdel
lm ¼ Blm −

CBBt
l

CBtBt
l

Bt;lm; ð42Þ

the average of the ratioCBB;del
l =CBB

l over l corresponds to the
Alens parameter defined in Eq. (32). In practice, we evaluate
this quantity by computing the pseudo-Cl of the noise-free
input lensing B-modes (CBB

l ) and of the lensing template
(CBtBt

l ), aswell as their cross-spectrumCBBt
l , using the binary

SAT/LAToverlap mask with an apodization length of 5 deg.
Figure 5 illustrates the slight dependence of CB̃ B̃;del

l =CB̃ B̃
l

on angular scale, and is consistent with the results obtained
in Ref. [18] for LAT-only E-modes with the previous
version of the survey masks. The fraction of lensing B-
mode power remaining after delensing averages out at 35%.
As shown in Fig. 9 of Ref. [18] for an idealistic foreground-
free situation, including SAT E-modes in the template
construction stage may allow to bring this ratio further
down towards 30%. However, applying this operation to
real data would also require a careful treatment of fore-
ground residuals, which we leave for future work.

B. Pixel weighting

We now present a series of tests performed in order to
check the proper functioning of our pipeline and validate
the optimal pixel weights discussed in Sec. IV. The d0s0
foreground model is used in our input maps throughout this

FIG. 4. Left: lensing B-modes in one of the input CMB maps, projected as a scalar field onto the overlap area between the SAT and
LATmasks. Right: corresponding lensing B-mode template projected in the sameway. In both panels, we only show multipoles between
20 ≤ l ≤ 128 and include a zoomed-in region to highlight the visual correlation between the two maps.

6We give the general form here, involving the Wiener-filtered
template, although in our analysis the filter is very close to unity
since CBBt

l ≈ CBtBt
l .
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section, as it is simple enough to incur low computational
costs but realistic enough to provide informative results. We
use 500 simulations containing the CMB, SAT-like noise
and Gaussian foregrounds to evaluate the covariance matrix
in each variant of the analysis.
Our aim is to verify that the pixel weights in Eq. (25) do

lead to tighter cosmological constraints than the uniform or
inverse-noise-variance (∝ Nhit

i ) weights used in Refs. [18]
and [24], respectively. This is done by analyzing the same
input map with different weighting schemes and recomput-
ing all cross-spectra as well as the corresponding covari-
ance matrix each time. The apodization length is set to
10 deg for the optimized and hit-count weights; we increase
it to 25 deg for the uniform weights which do not otherwise
fall off smoothly near the edge of the survey area. We use

Alens ¼ 1 to compute the optimal weights without dele-
nsing, and change it to 0.35 when delensing is performed.
The marginal posterior distributions for r are obtained in

each case for one realization and are displayed in Fig. 6,
confirming that our optimal weights (solid lines) indeed
perform better than the inverse-noise and uniform cases.
The uniform weighting is clearly suboptimal, yielding the
MCMC standard deviation σðrÞ ¼ 2.9 × 10−3 before del-
ensing and 2.3 × 10−3 after. The larger statistical errors and
the modest improvement from delensing (only 21%) are a
consequence of the high effective noise level in the outer
regions of this mask, which leads Nl to dominate in Eq. (6).
On the other hand, the distributions obtained with the hit-
count mask and the optimal pixel weights are very similar.
Their respective standard deviations are σðrÞ ¼ 2.1 × 10−3

and 1.9 × 10−3 with the baseline analysis; once delensing is
applied, both values decrease to about 1.2 × 10−3. At SO’s
nominal sensitivity, the difference between the two meth-
ods is therefore not very significant. As expected, it is more
apparent without delensing and practically invisible in the
Alens ¼ 0.35 case, where instrumental noise still dominates
over lensing residuals. However, our new weighting
scheme will become increasingly relevant for future experi-
ments with lower noise levels [for which the lensing B-
mode variance in Eq. (25) will be comparatively more
important], and in particular for LiteBIRD where the
residual lensing B-modes will vary across the sky [45].
The derivation presented in Sec. IVassumes instrumental

noise to be well described by a white power spectrum. To
remove this assumption, we also investigated an alternative
technique inspired by the hybrid Cl estimator described in
Ref. [80], which combines power spectra obtained with
uniform and hit-count weights. Due to issues related to its
very high computational costs, this procedure is not yet
suitable for use in SO data analysis. A more detailed
discussion of the hybrid-weighting method and of the

FIG. 5. Ratio between the residual and input lensing B-mode
power, obtained as in Eq. (32) but without averaging over l, in the
overlap area between the SAT and the LAT surveys. Using LAT-
only E-modes combined with a multitracer κ estimator and
considering the goal LAT noise level, the delensing efficiency
of our template reaches approximately 65%.

FIG. 6. Marginalized posterior distributions for the tensor-to-scalar ratio r obtained by sampling the Gaussian likelihood (20) for a
single input realization. The input simulation has r ¼ 0 and d0s0 foregrounds, and cross-spectra are computed using uniform (dotted
lines), hit-count (dashed lines) and optimal (solid lines) pixel weights, respectively. Left: no delensing is applied. Right: cross-spectral
delensing is performed using the template characterized in Sec. VI A.
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problems arising when testing it on SO-like simulations can
be found in Appendix B. The optimized weights in Eq. (25)
are systematically used for all results that follow in the
main text.
All final outputs of our analysis for a given input

simulation are shown in Fig. 7, where posterior dis-
tributions for r and the foreground parameters can be

seen with and without delensing. As the d0s0 foreground
map used here does not include SED spatial variability,
we consider the simplest form of our parametric model
and do not perform the moment expansion. The r
distribution visibly tightens as a result of delensing,
with σðrÞ dropping from 1.9 × 10−3 to 1.2 × 10−3 (37%
improvement).

FIG. 7. Triangle plot displaying the posterior distributions obtained for all model parameters with (blue) and without (red) delensing,
using one input map realization with d0s0 foregrounds. The moment expansion is not performed here. For r, ϵds, βd and βs, the dashed
lines and dots represent the true values used to generate our simulations. The inferred parameters for the foreground angular power
spectra depend on pixel weights (as visualized by the shift of the Ad posterior); therefore we do not plot ground truths for Ad, αd, As
and αs.
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The only foreground parameter whose posterior signifi-
cantly changes after delensing is the dust amplitude Ad; this
is easily explained by the dependence of the weights in
Eq. (25) on Alens. Indeed, without delensing, the optimized
mask is slightly closer to uniform than with Alens ¼ 0.35.
Pixels near the Galactic plane are then weighted more
heavily, resulting in a higher effective dust amplitude. The
d0s0 best-fit estimates are respectively Ad ¼ 47.2 without
delensing and 42.1 with, averaging to 44.6. The observed
shift of the Ad maximum posterior by about 5 units is
therefore consistent with our expectations. The synchrotron
amplitude and the power-law exponents exhibit less sig-
nificant shifts; in all cases, priors are chosen wide enough
to hold for both values of Alens.
Note that the αs posterior in Fig. 7 peaks significantly

lower than the reference value mentioned in Sec. VA
(αs ¼ −0.78); this is due to the fact that the synchrotron
angular power spectrum is not a perfect power law and has
a steeper slope on large scales. As the noise level is strongly
amplified by beam deconvolution above l ≈ 200 at 27 and
39 GHz, where synchrotron emission dominates, the SATs
are mostly sensitive to αs at low multipoles. This results in
our pipeline inferring a steeper power-law index than the
best-fit value obtained from the s0-only map over the full
30 ≤ l ≤ 300 range (which is how the fiducial value is
obtained). Figure 7 does not indicate any significant
degeneracy between r and αs; our cosmological constraints
are therefore unlikely to be affected; however a more
complex synchrotron model including a curved power-
law index may be used in future work.

C. Delensing performance with realistic foregrounds

Having demonstrated the pipeline on the simplest of our
sky models, we now assess the impact of delensing in the
presence of more complex foregrounds as well as nonzero
tensor modes. In each case considered, we also check for
biases and verify the robustness of our statistics by
computing the maximum-posterior estimate r̂ and the width
of the distribution σðrÞ for 100 different input maps. These
simulations correspond to random realizations of the
CMB and noise, with a fixed PySM foreground template.
For d1s1 and dmsm, we perform the moment expansion

described in Sec. II B 2 in order to account for the spatially
varying SEDs. Following Ref. [24], we use the same
fiducial covariance matrix when changing the foreground
model; however it must be modified to account for the
variance of tensor modes in the r ¼ 0.01 case.
As a first sanity check, we verify (using our r ¼ 0

simulations) that the standard deviation (SD) of the 100
best-fit estimates r̂ is broadly consistent with the average
σðrÞ obtained from the SD of the MCMC samples for each
realization (see Table III). Note that the 100 simulations
used as mock data contain the same foreground map; we
therefore expect the SD estimated from this set of inputs to
be lower than the MCMC σðrÞ value determined by the
covariance matrix, which accounts for the effects of fore-
ground variance. For this reason, we choose the latter as the
preferred statistic (it is also the only one wewill have access
to when working with real data).
We then check that σðrÞ does not scatter significantly; its

SD over the 100 simulations is of the order of 10−5 for
d0s0 and 10−4 for d1s1 and dmsm. This result is
expected, as error bars are mostly determined by the
covariance matrix (which remains unchanged) and should
not strongly depend on the input realization. Finally, we
compare the SD of the mean of the posterior rmean to that of
r̂. With a difference of less than 2.5% in all foreground
cases, the two values are in good agreement both with and
without delensing, as expected for Gaussian posteriors.
The mean r̂ and σðrÞ values quoted in Table III are

summarized in Fig. 8, which also displays results for input
maps with r ¼ 0.01. We do not observe any significant
biases compared to the statistical error for a single
realization. The small fluctuations in r̂ appearing with
the spatially varying foregrounds are related to volume
effects in the distributions of the moment expansion
parameters, and will be mitigated by using different priors
in future work (see Sec. VII).
The key point of Fig. 8 is the comparison between the

results obtained with and without delensing. For all fore-
ground models and input r values, the average of r̂ remains
consistent in both cases, thus explicitly verifying that our
implementation of delensing does not introduce any addi-
tional bias into the parameter estimates. This does not

TABLE III. Tensor-to-scalar ratio statistics averaged over 100 simulations for three increasingly complex foreground models and
r ¼ 0. The moment expansion of the SEDs is performed for d1s1 and dmsm. The quantities r̂ and σðrÞ refer to the maximum of the r
posterior distribution and the SD of the corresponding MCMC samples, respectively. Values in the last column are obtained by
decreasing the lensing B-mode power in the input simulations and running the original pipeline (without cross-spectral delensing).

Without delensing With delensing Alens ¼ 0.35

FG model
Mean of
r̂ (×103)

Mean of
σðrÞ (×103) SD of r̂ (×103)

Mean of
r̂ (×103)

Mean of
σðrÞ (×103) SD of r̂ (×103) σðrÞ (×103)

d0s0 0.30 1.9 1.7 0.20 1.2 1.1 1.2
d1s1 −0.35 3.2 2.6 −0.53 2.2 2.1 2.4
dmsm −0.73 3.0 2.5 −0.34 2.2 2.0 2.3
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exclude small shifts in r̂ occurring for any single realiza-
tion, as expected given the shrink in the width of the
posterior for r. Figure 8 also illustrates the clear error
reduction after delensing, with the mean of σðrÞ decreasing
by 37%, 31% and 27% for d0s0, d1s1 and dmsm,
respectively, in the absence of primordial B-modes. In
the latter two cases, the four additional sampled parameters
result in wider distributions and a more modest delensing-
related improvement. Despite the degradation of uncertain-
ties associated with the use of the moment-expansion
method, SO’s goal precision of σðrÞ ¼ 0.003 is achieved
even with the most complex of our foreground models. Our
results without delensing are broadly consistent with
Ref. [24]; the slightly lower σðrÞ we obtain with the
d0s0 model can be attributed to the use of optimized
pixel weights, while the slightly higher uncertainties and
biases with spatially varying foregrounds are probably
related to the wider survey mask. As expected, delensing
improvements observed in the present work exceed the
Alens ¼ 0.5 forecasts in Ref. [24], due to our templates
achieving a delensing efficiency of 65%.
With r ¼ 0.01 and d0s0 foregrounds, the pipeline

successfully detects the primordial signal, and the addi-
tional cosmic variance due to the presence of tensor modes
leads to larger error bars. Without delensing, σðrÞ grows by
16% compared to the r ¼ 0 case, reaching a value of
2.2 × 10−3. This increase is consistent with the results of
Ref. [24]. After delensing, we obtain σðrÞ ¼ 1.5 × 10−3,
corresponding to a 32% improvement. Note that we do not
modify the pixel weights compared to the r ¼ 0 case [i.e.,
we do not add the primordial B-mode variance to the
denominator in Eq. (25)], as the value of r will not be

known when analyzing real data and the r ¼ 0weights will
be used by default.
The last column of Table III contains σðrÞ values

obtained after applying the foreground-cleaning pipeline
(without delensing) to r ¼ 0 input maps in which the
lensing B-mode power was artificially reduced by 65%.
This procedure approximately simulates the effect of
delensing at the map level. The good agreement observed
between these results and our average uncertainties after
cross-spectral delensing is consistent with the theoretical
development in Sec. III and attests to the robustness of our
forecasts.

VII. CONCLUSION

In this work, we implemented delensing in SO’s power-
spectrum-based foreground-cleaning pipeline and obtained
the first performance forecasts for this technique on
realistic SO-like maps including Galactic foregrounds
and inhomogeneous noise. Our lensing templates, built
by optimally coadding quadratic convergence estimators
with Gaussian external LSS tracer simulations, allowed to
remove 65% of the lensing B-mode power. By treating the
template as an additional input channel and including its
autospectrum as well as all its cross-spectra with the SAT-
like maps in the likelihood function, we observed no
significant bias and a clear tightening of the posterior
distributions for the tensor-to-scalar ratio r. An inverse-
variance weighting accounting for the lensing B-mode
power as well as for the noise level in each pixel was
applied when computing power spectra, and was shown to
outperform the uniform- and hit-count-weighting schemes
used previously.
Our parametric foreground model was adjusted to

account for the different levels of complexity present in
the input simulations. With r ¼ 0 and uniform dust and
synchrotron SEDs, errors on r decreased by 37% after
delensing. When introducing SED spatial variability, the
additional parameters required by the moment-expansion
method resulted in wider posteriors. Delensing then yielded
a 27% improvement in σðrÞ and a final value of 2.2 × 10−3

for our most complex model, well within SO’s target
sensitivity. Tensor modes at the r ¼ 0.01 level were
successfully detected by the pipeline and led to a 16%
increase in σðrÞ due to the additional sample variance. We
finally validated our results by comparing them to the
uncertainties obtained with artificially delensed input maps,
thus verifying the equivalence between map-based and
cross-spectral delensing.
The most exciting future prospect for this work is of

course the application to early SO data as it becomes
available within the next year. The main challenge at this
stage will be related to timestream filtering of the SAT data,
which we will need to account for at the power spectrum
level through the use of transfer functions. For the
LAT, maximum-likelihood maps will be obtained with a

FIG. 8. Comparison of the mean of r̂ and the MCMC standard
deviation σðrÞ (represented by the error bars) with and without
delensing. We average over 100 simulations for each case. The
moment-expansion method is used for d1s1 and dmsm fore-
grounds, resulting in larger error bars. The presence of tensor
modes is successfully detected by the pipeline and also leads to
increased uncertainties. Delensing causes the constraints to
tighten by 27% to 37% depending on the characteristics of the
input maps.
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weighting scheme proportional to the Fourier-diagonal
inverse detector-detector covariance matrix. This process
will also have to be considered in the first step of the
pipeline when working with real LAT data. However, as the
LAT’s first light is not expected to happen before 2025,
early demonstrations of delensing will likely be carried out
using B-mode templates built from external mass tracers
and preexisting ACT or Planck CMB maps. Finally,
another aspect we will need to be mindful of when
analyzing real data is the choice of cosmology used to
generate our theoretical model. An additional free param-
eter AL modulating the lensing B-mode power spectrum
amplitude may be introduced in order to avoid small biases
on r related to uncertainties on cosmological parameters. At
SO’s sensitivity level, the signal-to-noise ratio on the CMB
lensing power spectrum is expected to be greater than 100
[9] and such uncertainties should therefore be subpercent.
This could be used as a prior on AL and any inflation of the
errors on r should be negligible as a result.
Other future extensions of this paper will include the use

of more realistic LAT-like simulations containing Galactic
and extragalactic foregrounds, which have been shown to
impact the delensed B-mode power spectrum and lead to
biases on r, both when using internal [39,81] and external
[66] tracers of the lensing convergence. By performing
map-based foreground cleaning on the LAT-like mock data
and quantifying the remaining biases, we will check that
these effects can be successfully mitigated as described in
Refs. [39,66,81]. Furthermore, increasing the realism of our
analysis will require including more complexity in our
external mass tracers, which are currently only generated as
Gaussian realizations of theoretical power spectra assuming
linear bias.
We may also attempt to combine LAT and SAT E-modes

when constructing the lensing template, which was shown
to improve delensing efficiency by more than 5% in an
idealistic foreground-free situation [18]. With realistic
input maps, this will require a careful investigation of
SAT foreground residuals in the cross-spectra between the
lensing template and the observed B-modes. Regarding our
treatment of variable foreground SEDs, one possible
improvement would be the implementation of Jeffreys’
priors for the moment parameters in order to mitigate
volume effects in their posterior distributions. It would also
be interesting to implement delensing in the hybrid
component separation pipeline described in Ref. [82].
This technique, which starts by removing foregrounds at
the map level assuming spatially uniform SEDs and
subsequently models the power spectra of the residuals,
was found to lead to tighter constraints than the moment
expansion used here; upcoming efforts will be dedicated to
determining whether this conclusion remains true with
delensing.
Finally, it is important to note that all results presented

here assume the nominal SO design with three SATs;

however, three additional SATs are planned, which will
lead to lower noise levels in the sky maps and greater
delensing-related improvements on σðrÞ as indicated by
Eq. (6). Furthermore, efficient delensing will be essential
for upcoming projects such as CMB-S4 [12], which
requires removing more than 90% of the lensing B-mode
power to achieve its target constraints on the tensor-to-
scalar ratio. This will only be possible with dedicated high-
sensitivity, high-resolution polarization measurements and
more optimal, likelihood-based internal-reconstruction
techniques [57]. Delensing will thus be crucial in reaching
the full potential of these extremely sensitive future experi-
ments and hopefully unveiling the elusive physics of the
early Universe.
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APPENDIX A: HAMIMECHE AND LEWIS
LIKELIHOOD

In this Appendix we introduce an alternative likelihood
to the simple Gaussian approximation used in the main text,
following Ref. [55]. This improved approximation aims to
capture the non-Gaussian dependence of the likelihood on
the model power spectra. We briefly review the construc-
tion of the likelihood and present the results from applying
it to one of our simulations with d0s0 foregrounds.
The Hamimeche and Lewis likelihood approximation

takes as its starting point the exact likelihood for an ideal,
full-sky survey of several correlated Gaussian fields.
Considering n fields alm ¼ ða1lm;…; anlmÞT (typically seven,
with the B-modes from each SAT channel and the lensing
template), the log-likelihood is given by the matrix gen-
eralization of Eq. (5):

− lnPðfalmgjClÞ ¼
2lþ 1

2
½TrðĈlC−1

l Þ þ ln jClj� ðA1Þ

up to a constant, where Cl is the model covariance
depending on a set of parameters and Ĉl ¼
ð2lþ 1Þ−1Pl

m¼−l alma
†
lm. Note that alm contains noise

contributions that must be included in the model.
Equation (A1) is the log-likelihood at a given multipole
l; the full log-likelihood is obtained by summing over l.
In the ideal full-sky likelihood, Eq. (A1), the fields only

enter through their power spectra Ĉl. Integrating over the
alm at fixed Ĉl, gives the sampling distribution PðĈljClÞ
for the measured power spectra. The likelihood function for
the Cl given the measured Ĉl is LðCljĈlÞ ¼ PðĈljClÞ.

Normalizing the log-likelihood to zero at Cl ¼ Ĉl, we
have [55]

− lnLðCljĈlÞ ¼
2lþ 1

2
½TrðĈlC−1

l Þ − ln jĈlC−1
l j − n�:

ðA2Þ

Introducing a fiducial model with cross-spectra Cfl,
Eq. (A2) can be rewritten as

− lnLðCljĈlÞ ¼
2lþ 1

4
Tr½ðC−1=2

fl CglC
−1=2
fl Þ2� ðA3Þ

with Cgl ¼ C1=2
fl gðC−1=2

l ĈlC
−1=2
l ÞC1=2

fl . Here, the matrix
function g acts on symmetric, positive-definite matrices by
application of the function

gðxÞ ¼ signðx − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx − ln x − 1Þ

p
ðA4Þ

to its eigenvalues. We can now rearrange the upper
triangular portion of Cgl into a vector Xgl in order to
express Eq. (A3) as a quadratic form

−2 lnLðCljĈlÞ ¼ XT
glM

−1
fl Xgl; ðA5Þ

whereMfl is the covariance of the measured power spectra
in the fiducial model.
The exact full-sky likelihood function corresponds to the

sum of Eq. (A5) over all considered multipoles. While
exact on the full sky, it can also be used as an approximate
likelihood for an anisotropic survey substituting for mask-
deconvolved measured power spectra in the construction of
Xgl and their covariance for Mfl. Mask-induced couplings
between multipoles can be accounted for in the covariance,

FIG. 9. Marginalized posterior distributions for the tensor-to-scalar ratio r, obtained by sampling the full Hamimeche and Lewis
likelihood (A6) (dashed lines) and its Gaussian approximation (20) (solid lines) for a single input realization. The input simulation has
r ¼ 0 and d0s0 foregrounds, and cross-spectra are computed using the optimal pixel weights. Left: no delensing is applied. Right:
cross-spectral delensing is performed using the template characterized in Sec. VI A.
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leading to the following final result (known as the
Hamimeche and Lewis likelihood):

−2 lnLðfClgjfĈlgÞ ≈
X
ll0

½Xg�Tl ½M−1
f �

ll0 ½Xg�l0 : ðA6Þ

In Fig. 9, we compare Eq. (A6) to its Gaussian
approximation (20) for one realization of our input maps
with r ¼ 0 and d0s0 foregrounds. All cross-spectra are
computed with the optimal pixel weights in Eq. (25), and
500 SAT-like simulations with Gaussian foregrounds are
used to estimate the covariance matrix. The marginalized
posterior distributions obtained for r by sampling these two
likelihoods are in good agreement both with and without
delensing.

APPENDIX B: HYBRID WEIGHTING METHOD

As an alternative to the pixel weights discussed in
Sec. IV, we investigated a hybrid masking method using
both uniform and inverse-noise-variance weighting
schemes. To do so, we generated two distinct sets of input
maps containing the same realizations of the sky signals
(CMB plus Galactic foregrounds) and noise, and then
applied the uniform mask to one set and the hit-count
mask to the other. The same treatment was applied to the
lensing B-mode template, and the cross-spectra between all
pairs of maps (including pairs with different masks) were
incorporated in the likelihood. With six frequency bands
and the lensing template, the number of coadded spectra
therefore increased to 105, compared to the 28 shown
in Fig. 3.
In Ref. [80], this approach was used to combine pseudo-

Cl estimators computed with uniform and inverse-noise-
variance weighting into a single hybrid estimator. The
advantage of this approach is that it effectively selects

different weights on different scales, where isotropic signal
or anisotropic noise may dominate. Applying this tech-
nique to our analysis would allow us to drop the assumption
of white noise, on which the argument in Sec. IV relies, and
potentially lead to better results on r.
However, issues related to the increased number of

cross-spectra appeared in practice: with a covariance
matrix obtained from 500 simulations, parameter distri-
butions for an input map containing d0s0 foregrounds
were unrealistically tight, indicating an inaccurate esti-
mation of the covariance. This problem was shown to
stem from the insufficient number of simulations com-
pared to the size of the data vector by performing a simple
test with foreground-free input maps (containing only the
CMB signal and noise). Restricting the analysis to the
three central frequency channels, we obtained a reason-
able SD of σðrÞ ¼ 0.0013 without delensing (21 cross-
spectra) for the hybrid method; using the optimal weights
of Sec. IV led to a nearly identical result. With the hybrid
method, including all six channels (78 cross-spectra)
nearly divided this value by 2, even though the low-
and ultrahigh-frequency bands are not expected to
contribute significant information in the absence of
foregrounds. To obtain accurate error bars with so many
cross-spectra, we would need to increase the number of
simulations to about 2000 for the covariance estimation.
As the results with both weighting methods were equiv-
alent in the simple three-channel test, we concluded that
there is little to be gained from the hybrid method for SO
over the optimal weights. Given the prohibitive computa-
tional cost of accurate covariance estimation for the
hybrid method, we decided not to pursue it further. It
might, however, be worth revisiting this technique if a
future experiment exhibits a clearly nonwhite noise power
spectrum.
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C. Bischoff, CMB-S4: Iterative internal delensing and r
constraints, Astrophys. J. 964, 148 (2024).

[58] J. Errard, S. M. Feeney, H. V. Peiris, and A. H. Jaffe, Robust
forecasts on fundamental physics from the foreground-
obscured, gravitationally-lensed CMB polarization, J. Cos-
mol. Astropart. Phys. 03 (2016) 052.

[59] R. Stompor, S. Leach, F. Stivoli, and C. Baccigalupi,
Maximum likelihood algorithm for parametric component
separation in CMB experiments, Mon. Not. R. Astron. Soc.
392, 216 (2009).

[60] A. Lewis, A. Challinor, and A. Lasenby, Efficient compu-
tation of cosmic microwave background anisotropies in
closed Friedmann-Robertson-Walker models, Astrophys. J.
538, 473 (2000).

[61] E. Calabrese et al., Cosmological parameters from pre-
Planck CMB measurements: A 2017 update, Phys. Rev. D
95, 063525 (2017).

[62] K. M. Gorski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, HEALPix—a
framework for high resolution discretization, and fast
analysis of data distributed on the sphere, Astrophys. J.
622, 759 (2005).

[63] QUIET Collaboration, The QUIET instrument, Astrophys.
J. 768, 9 (2013).

[64] R. W. Ogburn IV et al., BICEP2 and Keck Array operational
overview and status of observations, in Proceedings of SPIE
(2012), Vol. 8452, arXiv:1208.0638.

[65] M. Mallaby-Kay et al., The Atacama Cosmology Telescope:
Summary of DR4 and DR5 data products and data access,
Astrophys. J. Suppl. Ser. 255, 11 (2021).

[66] A. Baleato Lizancos, A. Challinor, B. D. Sherwin, and T.
Namikawa, Delensing the CMB with the cosmic infrared

background: The impact of foregrounds, Mon. Not. R.
Astron. Soc. 514, 5786 (2022).

[67] S. Aiola et al., The Atacama Cosmology Telescope: DR4
maps and cosmological parameters, J. Cosmol. Astropart.
Phys. 12 (2020) 047.

[68] B. Thorne, J. Dunkley, D. Alonso, and S. Næss, The Python
sky model: Software for simulating the Galactic microwave
sky, Mon. Not. R. Astron. Soc. 469, 2821 (2017).

[69] C. L. Bennett et al., Nine-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: Final maps and
results, Astrophys. J. Suppl. Ser. 208, 20 (2012).

[70] C. G. T. Haslam et al., A 408 MHz all-sky continuum
survey. I—Observations at southern declinations and
for the North Polar region, Astron. Astrophys. 100, 209
(1981).

[71] C. G. T. Haslam et al., A 408-MHZ All-Sky continuum
survey. II. The atlas of contour maps, Astron. Astrophys.
Suppl. Ser. 47, 1 (1982).

[72] N. Krachmalnicoff et al., The S-PASS view of polarized
Galactic synchrotron at 2.3 GHz as a contaminant to CMB
observations, Astron. Astrophys. 618, A166 (2018).

[73] I. Abril-Cabezas, C. Hervías-Caimapo, S. von Hausegger,
B. D. Sherwin, and D. Alonso, Impact of Galactic dust non-
Gaussianity on searches for B-modes from inflation, Mon.
Not. R. Astron. Soc. 527, 5751 (2023).

[74] E. Hivon, K. M. Gorski, C. Barth Netterfield, B. P. Crill, S.
Prunet, and F. Hansen, MASTER of the CMB anisotropy
power spectrum: A fast method for statistical analysis of
large and complex CMB data sets, Astrophys. J. 567, 2
(2002).

[75] K. M. Smith, Pseudo-Cl estimators which do not mix E and
B modes, Phys. Rev. D 74, 083002 (2006).

[76] D. Alonso, J. Sanchez, and A. Slosar, A unified pseudo-Cl
framework, Mon. Not. R. Astron. Soc. 484, 4127 (2019).

[77] F. J. Qu et al., The Atacama Cosmology Telescope: A
measurement of the DR6 CMB lensing power spectrum and
its implications for structure growth, Astrophys. J. 962, 112
(2024).

[78] D. Beck, A. Cukierman, and W. L. Kimmy Wu, Bias on
tensor-to-scalar ratio inference with estimated covariance
matrices, Mon. Not. R. Astron. Soc. 515, 229 (2022).

[79] A. Zonca, B. Thorne, N. Krachmalnicoff, and J. Borrill, The
Python sky model 3 software, J. Open Source Softwaare 6,
3783 (2021).

[80] G. Efstathiou, Myths and truths concerning estimation
of power spectra, Mon. Not. R. Astron. Soc. 349, 603
(2004).

[81] D. Beck, J. Errard, and R. Stompor, Impact of polarized
Galactic foreground emission on CMB lensing
reconstruction and delensing of B-modes, J. Cosmol.
Astropart. Phys. 06 (2020) 030.

[82] S. Azzoni, D. Alonso, M. H. Abitbol, J. Errard, and N.
Krachmalnicoff, A hybrid map-Cl component separation
method for primordial CMB B-mode searches, J. Cosmol.
Astropart. Phys. 03 (2023) 035.

[83] A. Lewis, A. Challinor, and A. Lasenby, Efficient compu-
tation of CMB anisotropies in closed FRW models, As-
trophys. J. 538, 473 (2000).

[84] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset,
E. Hivon, and K. Gorski, healpy: Equal area pixelization

EMILIE HERTIG et al. PHYS. REV. D 110, 043532 (2024)

043532-24

https://doi.org/10.1051/0004-6361/201425034
https://doi.org/10.1051/0004-6361/201425034
https://doi.org/10.1051/0004-6361/201525967
https://doi.org/10.1051/0004-6361/201525967
https://doi.org/10.1051/0004-6361/201832618
https://doi.org/10.1051/0004-6361/202037629
https://doi.org/10.1103/PhysRevD.88.063527
https://doi.org/10.1103/PhysRevD.88.063527
https://doi.org/10.1103/PhysRevD.77.103013
https://doi.org/10.1103/PhysRevD.77.103013
https://doi.org/10.1103/PhysRevD.52.4307
https://doi.org/10.3847/1538-4357/ad2351
https://doi.org/10.1088/1475-7516/2016/03/052
https://doi.org/10.1088/1475-7516/2016/03/052
https://doi.org/10.1111/j.1365-2966.2008.14023.x
https://doi.org/10.1111/j.1365-2966.2008.14023.x
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.1103/PhysRevD.95.063525
https://doi.org/10.1103/PhysRevD.95.063525
https://doi.org/10.1086/427976
https://doi.org/10.1086/427976
https://doi.org/10.1088/0004-637X/768/1/9
https://doi.org/10.1088/0004-637X/768/1/9
https://arXiv.org/abs/1208.0638
https://doi.org/10.3847/1538-4365/abfcc4
https://doi.org/10.1093/mnras/stac1705
https://doi.org/10.1093/mnras/stac1705
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1093/mnras/stx949
https://doi.org/10.1088/0067-0049/208/2/20
https://doi.org/10.1051/0004-6361/201832768
https://doi.org/10.1093/mnras/stad3529
https://doi.org/10.1093/mnras/stad3529
https://doi.org/10.1086/338126
https://doi.org/10.1086/338126
https://doi.org/10.1103/PhysRevD.74.083002
https://doi.org/10.1093/mnras/stz093
https://doi.org/10.3847/1538-4357/acfe06
https://doi.org/10.3847/1538-4357/acfe06
https://doi.org/10.1093/mnras/stac1775
https://doi.org/10.21105/joss.03783
https://doi.org/10.21105/joss.03783
https://doi.org/10.1111/j.1365-2966.2004.07530.x
https://doi.org/10.1111/j.1365-2966.2004.07530.x
https://doi.org/10.1088/1475-7516/2020/06/030
https://doi.org/10.1088/1475-7516/2020/06/030
https://doi.org/10.1088/1475-7516/2023/03/035
https://doi.org/10.1088/1475-7516/2023/03/035
https://doi.org/10.1086/309179
https://doi.org/10.1086/309179


and spherical harmonics transforms for data on the
sphere in Python, J. Open Source Softwaare 4, 1298 (2019).

[85] T. Namikawa, cmblensplus: A tool to analyze cosmic
microwave background anisotropies, Astrophysics Source
Code Library, record ascl:2104.021 (2021).

[86] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.
Goodman et al., emcee: The MCMC Hammer, Astron.
Soc. Pac. Conf. Ser. 125, 306 (2013).

[87] C. R. Harris et al., Array Programming with NumPy, Nature
(London) 585, 357 (2020).

[88] P. Virtanen et al., SciPy 1.0: Fundamental algorithms
for scientific computing in Python, Nat. Methods 17, 261
(2020).

[89] J. D. Hunter, Matplotlib: A 2D graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

THE SIMONS OBSERVATORY: COMBINING CROSS-SPECTRAL … PHYS. REV. D 110, 043532 (2024)

043532-25

https://doi.org/10.21105/joss.01298
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55

