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A B S T R A C T

For 0 < 𝜌 ≤ 1, a 𝜌-happy vertex 𝑣 in a coloured graph 𝐺 has at least 𝜌 ⋅ deg(𝑣) same-colour neighbours, and a
𝜌-happy colouring (aka soft happy colouring) of 𝐺 is a vertex colouring that makes all the vertices 𝜌-happy. A
community is a subgraph whose vertices are more adjacent to themselves than the rest of the vertices. Graphs
with community structures can be modelled by random graph models such as the stochastic block model (SBM).
In this paper, we present several theorems showing that both of these notions are related, with numerous real-
world applications. We show that, with high probability, communities of graphs in the stochastic block model
induce 𝜌-happy colouring on all vertices if certain conditions on the model parameters are satisfied. Moreover,
a probabilistic threshold on 𝜌 is derived so that communities of a graph in the SBM induce a 𝜌-happy colouring.
Furthermore, the asymptotic behaviour of 𝜌-happy colouring induced by the graph’s communities is discussed
when 𝜌 is less than a threshold. We develop heuristic polynomial-time algorithms for soft happy colouring
that often correlate with the graphs’ community structure. Finally, we present an experimental evaluation to
compare the performance of the proposed algorithms thereby demonstrating the validity of the theoretical
results.
1. Introduction

Graph colouring is a powerful technique for solving complex
network-related problems, with applications varying from engineering
to quantum physics and social science to cybersecurity. Depending on
the problem’s nature, various types of graph colouring have already
been introduced. From the conventional proper vertex colouring (Lewis,
2021) to the recently defined happy colouring (Zhang and Li, 2015)
(which is the subject of this paper), each of these versions appeared
to be seminal in both theoretical and practical research.

Happy colouring in graphs is proposed for detecting homophily
(McPherson et al., 2001) in social networks. For a 𝑘-coloured graph,
Zhang and Li (2015) defined a vertex to be happy if all its neighbours
have the same colour as its colour, and an edge is happy if both of
its ends have the same colour. It is well-known that homophily in
social networks can be expressed by their community structures (see
for example Fani and Bagheri, 2017; Solomon et al., 2019; Ye et al.,
2020), a structure that real-world networks often possess. In other
words, homophily can be translated to grouping vertices into some
sets in which they are connected with many edges to themselves and
substantially fewer edges to the rest of the vertices. Each group is called
a community, aka a cluster (Condon and Karp, 1999). A community is
then a subgraph whose vertices have most of their neighbours inside
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the community, and the problem has some similarities with finding the
minimum cut in the network (Newman, 2012). Hence, by a community,
we mean a group of vertices having an ample number of vertices
that are adjacent together more than they are adjacent to the vertices
of other communities. This way, singletons are not considered as a
community, while they are valid vertex cuts.

Zhang and Li in Zhang and Li (2015) devised algorithms for max-
imising the number of happy vertices (MHV or 𝑘-MHV) or maximising
the number of happy edges (MHE or 𝑘-MHE) in a graph with some
vertices already precoloured with 𝑘 colours. Additionally, they proved
that MHV and MHE problems are solvable in polynomial time if 𝑘 ≤
2, and they are NP-hard otherwise. Moreover, for 0 < 𝜌 ≤ 1, they
introduced 𝜌-happy colouring as follows: a vertex 𝑣 is 𝜌-happy if its
colour is the same as the colour of at least 𝜌 ⋅ deg(𝑣) of its neighbours.
The problem of maximising the number of 𝜌-happy vertices is called
soft happy colouring. Furthermore, they devised two algorithms for this
problem, namely Greedy-SoftMHV and Growth-SoftMHV.

To the best of our knowledge, the problem of soft happy colourings
has remained dormant. We focus on this problem and our motivation
to revisit this problem is its relation to the analysis of community
structure in networks. However, conventional happy colouring (which
is a special case of soft happy colouring when 𝜌 = 1) and its two related
https://doi.org/10.1016/j.cor.2024.106893
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Fig. 1. A graph with 3 communities, represented by three colour classes. Dashed lines
represent inter-community edges. Here the colouring is 0.5-happy.

problems, MHV and MHE, have already been the subject of several
studies. For example, Aravind, Kalyanasundaram, and Kare (Aravind
et al., 2016) proposed linear time algorithms for MHV and MHE for
trees. Meanwhile, Agrawal et al. (2020) studied the complexity of
(weighted) MHV and MHE based on the density measures of a graph.

A few studies have proposed exact, heuristic, metaheuristic and
matheuristic approaches to tackle the (conventional) MHV problem
(Lewis et al., 2019; Thiruvady et al., 2020; Thiruvady and Lewis,
2022). Lewis et al. (2019) proved bounds on the number of happy
vertices and introduced a construct, merge, solve, and adapt algorithm
— CMSA for short — for the MHV problem. Another study (Thiruvady
et al., 2020), devised a tabu search metaheuristic which proves superior
o other available algorithms, especially on very large networks. The
ater study by Lewis et al. (2021) explores a variant of the MHV

problem, specifically the maximum induced happy subgraph in a net-
ork. They proposed some heuristic and metaheuristic algorithms and
roved bounds on the maximum number of happy vertices. Thiruvady

and Lewis (2022) continued this direction of study by developing
approaches based on tabu search and evolutionary algorithms hybrid
CMSA-tabu search — CMSA-TS for short — and showed that CMSA-
TS is almost always the most effective approach for solving the MHV
problem among the methods they tried. More recently, Ghirardi and
alassa (2022) presented an algorithm to improve the quality of a
olution given by any another algorithm. Zhao et al. (2023) considered

the relation of 𝑘-MHV and 𝑘-MHE with the maximum 𝑘-uncut problem
and proposed an algorithm with the time complexity of (𝑘𝑛2).

Finding a connection between community structure and soft happy
colouring is straightforward. If the communities are non-overlapping
i.e., communities partition the vertex set), we can express them by
olour classes, which is the colouring induced by the graph’s communities.
onsequently, this paper is about how communities of a graph can be
onsidered as the 𝜌-happy colour classes. While the conventional happy
olouring (i.e. 𝜌 = 1) with more than one colour can never be achieved
or a connected graph (Lewis et al., 2019), we show that communities

can make the entire graph 𝜌-happy when 0 < 𝜌 < 1. Fig. 1 illustrates
this for a graph having 3 communities. As we see, here the communities
in the illustrated graph entirely match the 0.5-happy colour classes. On
he other hand, if a complete 𝜌-happy colouring is known for a graph
, then one may take its colour classes as an indication of the graph’s

communities.
Section 2 presents the required background and terminology for

he theoretical contribution of this paper. Specifically, we review the
stochastic block model, one of the simplest random graph models
for graphs with community structure. It should also be emphasised
 ⌈

2 
that although we build our theorems and experimental tests based on
this model, the relation between community structure and soft happy
colouring can be applied to any other community structure model.

The theoretical contribution of this paper is presented in Section 3.
Theorem 3.1 gives a sufficient condition on the model parameters of a
graph 𝐺 in the SBM so that the probability of its communities inducing
a 𝜌-happy colouring is greater than a function. This enables us to find
a threshold 0 ≤ 𝜉 ≤ 1 such that, with high probability, communities
of 𝐺 induce a 𝜌-happy colouring for 𝜌 ≤ 𝜉. Moreover, the asymptotic
roperty of the induced colouring is detected in Theorem 3.3 as the

probability of 𝜌-happiness of this colouring approaches 1 when the
number of vertices tends to infinity. The validity of these results is also
discussed by experimental analysis in Section 3 as well as in Section 5.

In Section 4, four heuristic algorithms are discussed for finding 𝜌-
appy colouring. One of them, Local Maximal Colouring, is new and

has shown a high correlation with the graphs’ community structure. We
report experimental results considering communities inducing colour
classes in Section 5 and carry out experiments on four algorithms for
several randomly generated graphs.

2. Nomenclature

In this paper we use ‘‘graphs’’ and ‘‘networks’’ interchangeably,
meaning simple unweighted finite graphs. Usually, a graph is denoted
y its vertex set and its edge set, i.e. 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)). When two
ertices 𝑢 and 𝑣 are adjacent, we write 𝑢 ∼ 𝑣 or 𝑢𝑣 ∈ 𝐸(𝐺). For 𝑘 ∈ N,

a 𝑘-colouring of a graph 𝐺 is a function 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘}. It
s well known that a 𝑘-colouring partitions the vertex set into 𝑘 parts
1,… , 𝑉𝑘 while conversely, every 𝑘-partition of the vertex set induces

a 𝑘-colouring which is unique up to permutation of colours. So, when
colour orderings are unimportant for us, we write 𝑐 = {𝑉1,… , 𝑉𝑘}. A
partial 𝑘-colouring is a function 𝑐 ∶ 𝑆 ⟶ {1,… , 𝑘} where 𝑆 ⊂ 𝑉 (𝐺).
By assigning another colour, say 𝑘+ 1, to the uncoloured vertices, every
artial 𝑘-colouring becomes a (𝑘 + 1)-colouring.

For a vertex 𝑣, the set of its neighbours is denoted by 𝑁(𝑣). The
degree of a vertex 𝑣, denoted by deg(𝑣), is the number of edges incident
on it, i.e. deg(𝑣) = |𝑁(𝑣)|. The minimum and maximum degrees are
respectively denoted by 𝛿 and 𝛥. When we speak about a vertex 𝑣 in a
set, a colour class, or a community of vertices, we define the degree of
𝑣 inside that set, which we denote here by deg𝑖𝑛(𝑣). Further, standard
graph theoretical notations and definitions can be found in Diestel
(2017) by Diestel.

2.1. Happy colouring

We now formally define a 𝜌-happy colouring of a graph. It should
be said that these definitions have their origins in the very first paper
n the subject of happy colourings (Zhang and Li, 2015).

Definition 2.1. Let 𝐺 be a graph, 0 ≤ 𝜌 ≤ 1 and 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘}
for 𝑘 ∈ N be a vertex colouring. A vertex 𝑣 ∈ 𝑉 (𝐺) is called 𝜌-happy
if at least 𝜌 ⋅ deg(𝑣) of its neighbours have the same colour as 𝑐(𝑣). The
colouring 𝑐 is called 𝜌-happy if every vertex of 𝐺 is 𝜌-happy.

Immediately, we can see that 1-happy colouring is the conventional
appy colouring, while every vertex colouring is a 0-happy colouring.
or practical purposes, we may assume 𝜌 ≠ 0. Moreover, because
he number of vertices having the same colour in any neighbourhood
s integral, a vertex 𝑣 being 𝜌-happy is equivalent to having at least

Fig. 2.
𝜌 ⋅ deg(𝑣)⌉ same-colour neighbours, see
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Fig. 2. An example of a 𝜌-happy colouring problem using 𝜌 = 0.5. (a) The vertex 𝑢 is
0.5-happy because its degree is 8 and at least ⌈0.5 × 8⌉ = 4 of its neighbours have the
same colour as its colour (black). (b) The vertex 𝑣 is not 0.5-happy because its degree
is 9 and ⌈0.5 × 9⌉ = 5, but only 4 of its neighbours have the same colour as its colour
(black).

2.2. Stochastic block model

For modelling general networks on 𝑛 nodes, random graphs are
ften used. They are probability spaces consisting of 𝑛-vertex graphs.
ee Bollobás (2001) by Bollobás for further details on random graphs.
here are several random graph models such as the Erdős-Rényi model
Erdős and Rényi, 1959), the hierarchical network model (Ravasz and
arabási, 2003), the Watts–Strogatz model (Watts and Strogatz, 1998),

and the stochastic block model (SBM) (Jerrum and Sorkin, 1998). It
should be noted that graphs with high probability in the Erdős-Rény
model seldom have community structure. One reason is that in this
model, the expected number of edges between any pair of vertices are
qual. Consequently, this model is not suitable for studying graphs with
ommunity structure. In contrast, other mentioned models are designed
o that their graphs, whose probabilities in their spaces are the highest,
ossess community structures.

One of the most popular random graph models for generating and
modelling networks with community structure is the Stochastic block
model which is introduced by Holland et al. (1983). The model is also
nown as the planted partition model (Condon and Karp, 1999, 2001),

and is considered in numerous research papers (Abbe, 2018; Abbe
et al., 2016; Abbe and Sandon, 2015; Jerrum and Sorkin, 1998; Lee
and Wilkinson, 2019; Nadakuditi and Newman, 2012; Zhang et al.,
2012). The model itself has also been subject to further generalisation
such as the degree-corrected stochastic block model (Karrer and Newman,
2011) and the Ball et al. model (Ball et al., 2011). In this paper, we
limit ourselves to the conventional form of the stochastic block model
for our theoretical results (see Section 3) and experimental tests (see
ection 5). We now summarise the main concepts and terminology.

In the simplest form of the SBM, denoted by (𝑛, 𝑘, 𝑝, 𝑞), a graph has
𝑛 vertices and 𝑘 communities. Each vertex belongs to exactly one of the
𝑘 communities, hence the communities are not overlapping. Moreover,
ommunities are also assumed to be of nearly the same size ≈ 𝑛

𝑘 , where
if 𝑛 is not divisible by 𝑘, some communities have only one additional
ertex compared to the others.

In the general case of the SBM, the probability of the existence of
n edge 𝑢𝑣 depends on community membership of 𝑢 and 𝑣. If 𝐶1,… , 𝐶𝑘

are the communities and 𝑢 ∈ 𝐶𝑖 while 𝑣 ∈ 𝐶𝑗 for 𝑖, 𝑗 ∈ {1,… , 𝑘}, then
the probability of 𝑢𝑣 ∈ 𝐸(𝐺) is 𝑃𝑖𝑗 . In the simplest form of (𝑛, 𝑘, 𝑝, 𝑞),
however, each 𝑃𝑖𝑗 is considered to be either 𝑝 or 𝑞 for 0 < 𝑞 < 𝑝 < 1. In
other words, we assume

𝑃𝑖𝑗 =

{

𝑝 if 𝑖 = 𝑗
𝑞 otherwise.

(1)

As a result, the expected degree of every vertex 𝑣 ∈ 𝐶𝑖 is
( 𝑛 ) 𝑘 − 1
𝑑 = E[DEG(𝑣)] =
𝑘
− 1 𝑝 +

𝑘
𝑛𝑞 , (2)

3 
where DEG(𝑣) represents the random variable giving deg(𝑣) for each
𝑣 ∈ 𝑉 (𝐺). When 𝑛 is sufficiently large, we can assume 𝑑 ≃ 𝑛

𝑘 𝑝 +
𝑘−1
𝑘 𝑛𝑞.

It is evident that when 𝑝 and 𝑞 are very close to each other, the SBM
becomes indistinguishable from the Erdős-Rény model and we might
be unable to identify any community structure in the graph. For 𝑘 = 2,
Decelle et al. (2011) have also conjectured that detecting communities
in large networks in the SBM is possible if and only if (𝑎− 𝑏)2 > 2(𝑎+ 𝑏)
or 𝑎 = 𝑛𝑝 and 𝑏 = 𝑛𝑞. It is shown afterwards that when (𝑎 − 𝑏)2 >
(𝑎 + 𝑏) for a large enough positive integer 𝐶, the communities can
e revealed by the spectral clustering algorithm (Coja-Oghlan, 2010).
he conjecture was finally proven in Mossel et al. (2015). For the
eneral case (when 𝑘 ≥ 2), there is a — distinguishability of community
tructure — phase transition result worth noting (Abbe and Sandon,

2015). In any case, the larger the value for 𝑝
𝑞 , the more distinguishable

the community structure. Therefore, we assume, especially in our tests,
that 𝑝

𝑞 is large enough so that the communities are distinguishable.
Further information about recent developments on the SBM can be
found in Abbe (2018) by Abbe.

3. Soft happy colouring of graphs in the SBM

For any pair of vertices 𝑢 and 𝑣 of a graph 𝐺 in the SBM, the adja-
ency probability is known. If 𝑢 and 𝑣 belong to the same community,
he probability of 𝑢 being adjacent to 𝑣 is 𝑝 while if they belong to
ifferent communities, they are adjacent with the probability 𝑞. Using
his fact, one might like to know that in the induced colouring by
ommunities, what the probability 𝜌-happiness of a vertex is. In other
ords, given an 0 < 𝜀 < 1, we are interested in finding a condition that

he probability of 𝜌-happiness of a vertex is at least 1 − 𝜀. Knowing this
condition enables us to increase the probability of 𝜌-happiness of the
nduced colouring by the communities. The following theorem gives
his condition.

Theorem 3.1. Suppose that 𝐺 is a graph modelled by the SBM, i.e., 𝐺 ∈
(𝑛, 𝑘, 𝑝, 𝑞), 𝑛 is a sufficiently large integer, 2 ≤ 𝑘, 0 < 𝑞 < 𝑝 < 1, and
< 𝜌 ≤ 1. Then, for 0 < 𝜀 < 1, at least with the probability of (1 − 𝜀)𝑛 the

ommunities of 𝐺 induce a 𝜌-happy colouring on 𝐺 if

𝑞(𝑘 − 1)(𝑒𝜌 − 1) + 𝑝(𝑒𝜌 − 𝑒) < 𝑘
𝑛
ln(𝜀). (3)

Proof. Let the communities of 𝐺 be 𝐶1,… , 𝐶𝑘 and let 𝑣 be an arbitrary
vertex of the 𝑗th community of 𝐺. For 𝑖 ∈ {1,… , 𝑘}, let 𝑋𝑖 be the
random variable which gives the number of adjacent vertices to 𝑣 in
𝐶𝑖. In other words,

𝑋𝑖 =
∑

𝑢∈𝐶𝑖

𝐴𝑢𝑣, (4)

where 𝐴𝑢𝑣 ∈ {0, 1} are independent random variables denoting the
umber of edges between 𝑢 and 𝑣. Then 𝑋𝑖 have a binomial distribution
nd

E[𝑋𝑖] =
{

𝑝 𝑛
𝑘 if 𝑖 = 𝑗

𝑞 𝑛
𝑘 otherwise.

For an arbitrary 𝑡 > 0, we can now easily find the moment generating
function

E
[

𝑒𝑡⋅𝑋𝑖
]

=

{

(

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡
)

𝑛
𝑘 if 𝑖 = 𝑗

(

1 − 𝑞 + 𝑞 ⋅ 𝑒𝑡
)

𝑛
𝑘 otherwise.

Note that

DEG(𝑣) =
𝑘
∑

𝑖=1
𝑋𝑖

while

DEG𝑖𝑛(𝑣) = 𝑋𝑗

are random variables giving deg(𝑣) and deg (𝑣), respectively.
𝑖𝑛
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Now, by the Chernoff bound, for 𝑡 > 0 we have

Pr (𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣) > 0) ≤ E
[

𝑒𝑡(𝜌DEG(𝑣)−DEG𝑖𝑛(𝑣))
]

.

Therefore,

Pr (𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣) > 0) ≤
(

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡𝜌
)

𝑛
𝑘 ⋅

(

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡
)− 𝑛

𝑘

⋅
𝑘−1
∏

𝑖=1

(

1 − 𝑞 + 𝑞 ⋅ 𝑒𝑡𝜌
)

𝑛
𝑘 ,

which means that
Pr (𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣) > 0) ≤

(

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡𝜌
)

𝑛
𝑘 ⋅

(

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡
)− 𝑛

𝑘

⋅
(

1 − 𝑞 + 𝑞 ⋅ 𝑒𝑡𝜌
)

𝑘−1
𝑘

𝑛

≤ 𝑒
ln
(

(1−𝑝+𝑝⋅𝑒𝑡𝜌)
𝑛
𝑘 ⋅(1−𝑝+𝑝⋅𝑒𝑡)−

𝑛
𝑘 ⋅(1−𝑞+𝑞⋅𝑒𝑡𝜌)

𝑘−1
𝑘 𝑛

)

≤ 𝑒
𝑛
𝑘
⋅(ln(1−𝑝+𝑝⋅𝑒𝑡𝜌)−ln(1−𝑝+𝑝⋅𝑒𝑡)+(𝑘−1)⋅ln(1−𝑞+𝑞⋅𝑒𝑡𝜌)).

Since 𝑒𝑥 ≥ 1 + 𝑥 for 𝑥 ∈ R, we can deduce that

1 − 𝑝 + 𝑝 ⋅ 𝑒𝑡𝜌 = 1 + 𝑝 ⋅
(

𝑒𝑡𝜌 − 1) ≤ 𝑒𝑝⋅(𝑒
𝑡𝜌−1).

Consequently, using similar inequalities, we have
Pr (𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣) > 0) ≤ 𝑒

𝑛
𝑘 ⋅(𝑝⋅(𝑒𝑡𝜌−1)−𝑝⋅(𝑒𝑡−1)+(𝑘−1)𝑞⋅(𝑒𝑡𝜌−1))

≤ 𝑒
𝑛
𝑘 ⋅(𝑝⋅(𝑒𝑡𝜌−𝑒𝑡)+(𝑘−1)𝑞⋅(𝑒𝑡𝜌−1)).

Hence, for Pr (𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣) > 0) < 𝜀, it is sufficient to have

𝑒
𝑛
𝑘 ⋅(𝑝⋅(𝑒𝑡𝜌−𝑒𝑡)+(𝑘−1)𝑞⋅(𝑒𝑡𝜌−1)) < 𝜀, (5)

or

𝑝 ⋅
(

𝑒𝑡𝜌 − 𝑒𝑡
)

+ (𝑘 − 1)𝑞 ⋅ (𝑒𝑡𝜌 − 1) < 𝑘
𝑛
ln(𝜀).

The inequality also holds when 𝑡 = 1, resulting in the inequality we
anted to prove.

On the other hand, when Inequality (3) holds, the probability of
𝑣 being 𝜌-unhappy is less than 𝜀, and therefore, with the probability
1 − 𝜀, the communities of graph 𝐺 induce a colouring on vertices of
𝐺 in which 𝑣 is 𝜌-happy. Since the values of 𝐴𝑢𝑣 are independent for
all pairs 𝑢, 𝑣 ∈ 𝑉 (𝐺), it can be inferred that DEG(𝑣) and DEG𝑖𝑛(𝑣)
re independent from DEG(𝑢) and DEG𝑖𝑛(𝑢), respectively. Consequently,
DEG(𝑣) − DEG𝑖𝑛(𝑣) and 𝜌DEG(𝑢) − DEG𝑖𝑛(𝑢) are independent too, which
eans that when Inequality (3) holds, with the probability of at least

(1 − 𝜀)𝑛, the communities of 𝐺 induce a 𝜌-happy colouring on 𝐺. □

We now need additional notation to consider the implications of
Theorem 3.1. Suppose that 𝐺 is a graph modelled by the SBM, 𝑣 is
a vertex, 0 ≤ 𝜌 ≤ 1, and 𝑐 is the vertex colouring induced by the
communities of 𝐺. If 𝑐 makes 𝑣 𝜌-happy, we write 𝑣 ∈ 𝐻𝜌 and, if it
makes the entire graph 𝜌-happy, we write 𝐺 ∈ 𝐻𝜌. By Theorem 3.1, we
know that Pr (𝑣 ∈ 𝐻𝜌) ≥ 1 − 𝜀, while Pr (𝐺 ∈ 𝐻𝜌) ≥ (1 − 𝜀)𝑛. Since this is
ependent on the choice of 𝜀, using Eq. (5) we define

𝜀̃ = 𝑒
𝑛
𝑘 ⋅(𝑝⋅(𝑒

𝜌−𝑒)+𝑞(𝑘−1)⋅(𝑒𝜌−1)). (6)

Therefore, it can be seen that Pr (𝑣 ∈ 𝐻𝜌) ≥ 1 − 𝜀̃ and Pr (𝐺 ∈ 𝐻𝜌) ≥
(1 − 𝜀̃)𝑛, where 𝜀̃ can be determined by 𝜌 and the model’s parameters,
as per Eq. (6).

For a graph 𝐺 in the SBM, i.e. 𝐺 ∈ (𝑛, 𝑘, 𝑝, 𝑞), we can expect to find
a 𝜌 such that the communities of 𝐺 present 𝜌-happy colour-classes for
𝐺. This is not always possible in the general case. For instance, the star
graph 𝐾1,𝑚 admits no 𝜌-happy colouring for 0 < 𝜌 ≤ 1 with more than
one colour. However, for a graph in the SBM, we can find a 𝜉 such
that for 0 < 𝜌 ≤ 𝜉, the graph’s communities induce a colouring that
makes almost all vertices 𝜌-happy. Of course, to have a high probability
for happiness of an arbitrary vertex 𝑣 in the colouring induced by
communities of 𝐺, we must have

E
[

𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣)
]

= 𝑛
𝑘
(𝜌(𝑝 + (𝑘 − 1)𝑞) − 𝑝) < 0,

because otherwise, more than half of all vertices are 𝜌-unhappy. There-
ore,
 s

4 
𝜌 (𝑝 + (𝑘 − 1)𝑞) < 𝑝.
Consequently, we have

𝜉 ≤ 𝑝
𝑝 + (𝑘 − 1)𝑞 . (7)

The following theorem gives another upper bound for 𝜉.

Theorem 3.2. Given 𝑛, 𝑘, 𝑝, and 𝑞, there exist a 0 ≤ 𝜉 ≤ 1 such that, for
𝜌 ≤ 𝜉, with high probability the communities of 𝐺 ∈ (𝑛, 𝑘, 𝑝, 𝑞) induce a
𝜌-happy colouring.

Proof. We need a 0 < 𝜌 ≤ 1 so that Eq. (3) holds. Then, by Theorem 3.1,
the probability of the existence of a 𝜌-happy colouring of 𝐺 is at least
1 − 𝑛𝜀 ≤ (1 − 𝜀)𝑛, which will be close to 1 if 𝜀 is small enough. Hence,
we choose a small 𝜀 > 0 for example 𝜀 ≤ 1

𝑛2
.

We can find a bound on 𝜌 based on Eq. (3) as follows. Since we
want

𝑝 ⋅ (𝑒𝜌 − 𝑒) + (𝑘 − 1)𝑞 ⋅ (𝑒𝜌 − 1) < 𝑘
𝑛
ln(𝜀),

we can separate terms that contain 𝑒𝜌 from the left-hand side of the
bove inequality to have

𝑒𝜌 ⋅ (𝑝 + (𝑘 − 1)𝑞) < 𝑘
𝑛
ln(𝜀) + 𝑝𝑒 + (𝑘 − 1)𝑞 .

Therefore,

𝑒𝜌 <
𝑘
𝑛 ln(𝜀) + 𝑝𝑒 + (𝑘 − 1)𝑞

𝑝 + (𝑘 − 1)𝑞 ,

which means that

𝜌 < ln

( 𝑘
𝑛 ln(𝜀) + 𝑝𝑒 + (𝑘 − 1)𝑞

𝑝 + (𝑘 − 1)𝑞

)

. (8)

Using Eqs. (7) and (8), we now get

𝜉 = max

{

min

{

ln

( 𝑘
𝑛 ln(𝜀) + 𝑝𝑒 + (𝑘 − 1)𝑞

𝑝 + (𝑘 − 1)𝑞

)

,
𝑝

𝑝 + (𝑘 − 1)𝑞

}

, 0

}

, (9)

which has the desired property. □

Therefore, 𝜉 is a threshold so that communities of the graph induce
𝜌-happy colouring for 0 ≤ 𝜌 ≤ 𝜉. Note that we did not exclude

he 0-happy colouring in Definition 2.1 since 𝜉 can sometimes be
 and therefore 0-happy colouring must be defined. To increase the
robability that communities of the graph induce a 𝜌-happy colouring,
e may consider 𝜌 ≤ 𝜉

2 .
The threshold 𝜉 (Eq. (9)) has shown to be useful in our experiments.

We investigated whether 𝜉 is a meaningful threshold for communities
to induce 𝜌-happy colour classes, and for this purpose, we examined
100,000 graphs in the SBM with 500, 1000, 2000, 3000 and 5000
vertices with randomly chosen 𝑘 ∈ {2, 3,… , 20}, 0 < 𝑝 ≤ 1, 0 < 𝑞 ≤ 𝑝

2
and 0 < 𝜌 ≤ 1, When 𝜌 ≤ 𝜉

2 , the number of 𝜌-happy vertices — in
the colouring induced by the graph’s communities — is always high,
evidence of this is provided in Fig. 3. Moreover, as it can be seen in
Fig. 4, the minimum number of 𝜌-happy vertices in the same set of
raphs are almost always very high when 𝜉 > 𝜌 (yellow dots) while
ow numbers of 𝜌-happy vertices appear only when 𝜉 < 𝜌 (purple dots).
his tells us that 𝜉 presents a useful threshold so that we can expect to

have a complete 𝜌-happy colouring when 𝜌 < 𝜉.
Moreover, when we know that the probability of a vertex being

-happy by the community-induced colouring is at least 1 − 𝜀, then
he minimum probability of such colouring being 𝜌-happy depends not
nly on 𝑛 but also on 𝜀. If 𝑛 → ∞, then this probability goes to zero
hen 𝜖 remains constant. If 𝜀 decreases harmonically, the probability
oes to a positive number between 0 and 1. For example, if 𝜀 = 1

𝑛 ,
then (1 − 1

𝑛 )
𝑛 → 𝑒−1 ≃ 0.36787…. Meanwhile, since 𝑛 → ∞ results in

(1 − 1
𝑛𝑡 )

𝑛 → 1 for 𝑡 > 1, the probability approaches 1 when 𝑛 becomes
ufficiently large when 𝜀 drops sharply, for example when 𝜀 = 𝑛−2.
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Fig. 3. This graph shows the minimum ratio of 𝜌-happy vertices when 𝜌 ≤ 𝜉
2

in the induced colouring by graphs communities. Test were performed over 20,000 randomly generated
graphs with 𝑛 ∈ {500, 1000, 2000, 3000, 5000} (100,000 graphs in total) and parameters randomly selected from 2 ≤ 𝑘 ≤ 20, 0 < 𝑝 ≤ 1, and 0 < 𝑞 ≤ 𝑝

2
.

Fig. 4. The minimum ratio of 𝜌-happy vertices of the induced colouring by
communities of 100,000 randomly generated precoloured graphs with 𝑛 ∈
{500, 1, 000, 2, 000, 3, 000, 5, 000} (20,000 graphs for each of these numbers) while other
parameters are randomly chosen from 2 ≤ 𝑘 ≤ 20, 0 < 𝑝 ≤ 1, and 0 < 𝑞 ≤ 𝑝

2
. It can be

seen when 𝜌 < 𝜉, the probability of having a large number of 𝜌-happy vertices is high
(yellow areas).

To simplify the notations in Eq. (5), define

𝜑 = 𝜑(𝑘, 𝑝, 𝑞 , 𝜌) = 1
𝑘
⋅ (𝑝 ⋅ (𝑒𝜌 − 𝑒) + 𝑞(𝑘 − 1) (𝑒𝜌 − 1)) . (10)

Hence,

𝜀̃ = 𝑒𝑛𝜑.

It is evident that the lower the value of 𝑛 ⋅ 𝜑, the higher the following
probability

Pr (𝐺 ∈ 𝐻𝜌) ≥ (1 − 𝜀̃)𝑛. (11)

This probability has a direct relationship with 𝑝 and inverse relation-
ships with 𝑘, 𝑞 and 𝜌. Its relation with 𝑛 is not as straightforward
because sometimes increasing the fraction 𝑛

𝑘 results in a higher proba-
bility of a vertex being 𝜌-happy, but reduces the probability that all
the vertices remain 𝜌-happy. Our intention here is to consider the
asymptotic interpretation of the relation of the number of vertices with
𝜌-happiness of the induced colouring of a graph in the SBM when other
parameters remain constant. This is expressed in the following theorem.

Theorem 3.3. Let 0 < 𝑞 < 𝑝 < 1, 𝑘 ∈ N ⧵ {1} be constants, and

𝜉 = min
{

ln
(

𝑝𝑒 + (𝑘 − 1)𝑞)
,

𝑝
}

.

𝑝 + (𝑘 − 1)𝑞 𝑝 + (𝑘 − 1)𝑞

5 
Then, for 0 ≤ 𝜌 < 𝜉 and 𝐺 ∈ (𝑛, 𝑘, 𝑝, 𝑞), we have Pr (𝐺 ∈ 𝐻𝜌) → 1 when
𝑛 → ∞. In other words, the probability that the communities of 𝐺 induce
a 𝜌-happy colouring on its vertex set approaches 1 when 𝑛 becomes large
enough.

Proof. For any 0 < 𝜀 < 1 we have

lim
𝑛→∞

ln

( 𝑘
𝑛 ln(𝜀) + 𝑝𝑒 + (𝑘 − 1)𝑞

𝑝 + (𝑘 − 1)𝑞

)

= ln
(

𝑝𝑒 + (𝑘 − 1)𝑞
𝑝 + (𝑘 − 1)𝑞

)

.

As a result, lim𝑛→∞ 𝜉 = 𝜉. And for 𝜌 < 𝜉, we not only have
E
[

𝜌DEG(𝑣) − DEG𝑖𝑛(𝑣)
]

< 0, but also

𝑒𝜌 <
𝑝𝑒 + (𝑘 − 1)𝑞
𝑝 + (𝑘 − 1)𝑞

⟹ 𝑒𝜌(𝑝 + (𝑘 − 1)𝑞) − 𝑝𝑒 − (𝑘 − 1)𝑞 < 0

⟹ 𝜑(𝑘, 𝑝, 𝑞 , 𝜌) < 0.

Therefore, as 𝑛 grows, 1 − 𝜀̃ also increases (see Eq. (6)). In particular,
since

lim
𝑛→∞

𝑛 ⋅ 𝜑(𝑘, 𝑝, 𝑞 , 𝜌) = −∞,

by Eq. (11), we have
lim
𝑛→∞

Pr (𝐺 ∈ 𝐻𝜌) ≥ lim
𝑛→∞

(1 − 𝜀̃)𝑛

= lim
𝑛→∞

(1 − 𝑒𝑛𝜑)𝑛

= lim
𝑛→∞

𝑒−𝑛𝑒
𝑛𝜑

= EXP
(

lim
𝑛→∞

−𝑛𝑒𝑛𝜑
)

= EXP
(

− lim
𝑛→∞

𝑛
𝑒−𝑛𝜑

)

.

Therefore, by l’Hospital’s rule, we have

lim
𝑛→∞

Pr (𝐺 ∈ 𝐻𝜌) ≥ EXP
(

− lim
𝑛→∞

1
−𝜑𝑒−𝑛𝜑

)

= 𝑒0 = 1.

Consequently, when 0 ≤ 𝜌 < 𝜉, we have lim𝑛→∞ Pr (𝐺 ∈ 𝐻𝜌) = 1. □

Fig. 5 illustrates how increasing the number of vertices 𝑛 affects the
number of 𝜌-happy vertices of the colouring induced by the communi-
ties of graphs in (𝑛, 20, 0.7, 0.06) (i.e, 𝑘 = 20, 𝑝 = 0.7 and 𝑞 = 0.06). For
𝜌 < 𝜉, where

𝜉 = min
{

ln
(

𝑝𝑒 + (𝑘 − 1)𝑞
𝑝 + (𝑘 − 1)𝑞

)

,
𝑝

𝑝 + (𝑘 − 1)𝑞
}

= min{ln(1.6547), 0.3804} = 0.3804,
we must have lim𝑛→∞ Pr (𝐺 ∈ 𝐻𝜌) = 1. The phase transition of trends is
obvious when 𝜌 ≈ 0.38 (see the almost flat trend in Fig. 5(a)).
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Fig. 5. The charts show the effects of increasing the number of vertices on the average number of 𝜌-happy vertices in the colouring induced by communities for graphs in the
SBM. Here, 𝑘 = 20, 𝑝 = 0.7 and 𝑞 = 0.06. The chart (a) shows an image of these effects when 200 ≤ 𝑛 ≤ 20,000 and 0.31 ≤ 𝜌 ≤ 0.4. Part (b) shows these effects when 0.1 ≤ 𝜌 ≤ 1.
When 𝜌 ≤ 0.37 and 𝑛 grows, the average number of 𝜌-happy vertices in the colouring induced by communities also grows, while the graphs are entire 𝜌-happily coloured by their
communities when 𝜌 ≤ 0.35 and 𝑛 ≥ 10,000. Interestingly, this number decreases when 𝜌 > 0.38. When 𝜌 = 0.38, the chart is still increasing, but at a very slow rate.
4. Algorithms

In this section, we propose four heuristic algorithms to tackle the
problem of maximising the number of 𝜌-happy vertices and examining
the correlation of this problem and theoretical results from the previous
section. In the proposed algorithms, we denote the number of 𝜌-happy
vertices in a colouring 𝑐 of a graph 𝐺 by 𝐻(𝐺 , 𝑐 , 𝜌).

4.1. Greedy-SoftMHV

Algorithm 1 is a straightforward update of GreedyMHV from Zhang
and Li (2015), the only difference being the change from ‘‘happiness’’
to ‘‘𝜌-happiness’’. It turns a partial colouring into a 𝑘-colouring, where
6 
only one colour is assigned to all the uncoloured vertices, ensuring
the chosen colour makes as many vertices 𝜌-happy as possible. The
algorithm is polynomial, i.e., (𝑘𝑚) (Carpentier et al., 2023) where 𝑚
is the number of edges and 𝑘 is the number of permissible colours.

The algorithm works as follows. As input, it takes a graph 𝐺,
the parameter that determines the proportion of happiness 𝜌 and a
partial colouring 𝑐. The initialisation takes place in Lines 1–2, including
assigning precolours to vertices in 𝑉 , the set of uncoloured vertices
𝑈 and 𝑀 𝑎𝑥 ← 0 which records the maximum number of happy
vertices. Between Lines 3–11, each colour is selected and assigned to
the uncoloured vertices, and the total number of happy vertices is
computed (Line 6). If an improvement is found, it is recorded via the
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variables 𝑀 𝑎𝑥 and 𝑖𝑀 𝑎𝑥. The output of the algorithm is a complete
olouring 𝑐.

Algorithm 1 (Greedy-SoftMHV) Approximating the optimal solution
of 𝜌-happy colouring (Zhang and Li, 2015)

Input: 𝐺, 𝜌, 𝑐 ∶ 𝑉 ′ ⟶ {1,… , 𝑘} ⊳ 𝑉 ′ ⊊ 𝑉 (𝐺)
Output: 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘} ⊳ a complete colouring of 𝐺

1: ∀𝑖 ∈ {1,… , 𝑘}, 𝑉𝑖 ← {𝑣 ∶ 𝑐(𝑣) = 𝑖}
2: 𝑈 ← 𝑉 (𝐺) − 𝑉 ′, Max ← 0 and 𝑖Max ← 0 ⊳ 𝑈 = uncoloured vertices

3: for 𝑖 = 1,… , 𝑘 do ⊳ try all colours
4: Append members of 𝑈 to 𝑉𝑖
5: 𝑐 ← {𝑉1,… , 𝑉𝑘}
6: Calculate 𝐻(𝐺 , ̃𝑐 , 𝜌) ⊳ the number of 𝜌-happy vertices in 𝑐
7: if Max < 𝐻(𝐺 , ̃𝑐 , 𝜌) then
8: Max ← 𝐻(𝐺 , ̃𝑐 , 𝜌) and 𝑖Max ← 𝑖
9: end if

10: Remove members of 𝑈 from 𝑉𝑖
11: end for
12: Append members of 𝑈 to 𝑉𝑖Max
13: Return 𝑐 = {𝑉1,… , 𝑉𝑘}

4.2. Neighbour Greedy Colouring (NGC)

At the cost of increased computational time, we propose NGC, in
which, unlike the previous approach, all uncoloured vertices do not
lways receive the same colour. Its initialisation and colour assignment
re exactly like Greedy-SoftMHV. The only difference is that at each

step, it only colours neighbours of already coloured vertices.
Like the Greedy-SoftMHV, the NGC takes a graph 𝐺, 0 ≤ 𝜌 ≤ 1,

nd a partial colouring 𝑐. Then, it initialises variables 𝑈 as the set of
ncoloured vertices, 𝑀 𝑎𝑥 as the maximum number of 𝜌-happy vertices
ntil now, and 𝑖𝑀 𝑎𝑥 as the colour that makes this maximum. In Lines

3–12, it colours all the uncoloured vertices to see for which colour, say
𝑖𝑀 𝑎𝑥, the number of 𝜌-happy vertices is the largest. Afterwards in Lines
13–14, only the uncoloured neighbours of already coloured vertices by
𝑖𝑀 𝑎𝑥 receive the colour 𝑖𝑀 𝑎𝑥. The procedure runs until all uncoloured
vertices receive a colour, and then reports the complete colouring 𝑐.

The time complexity of the NGC is 𝑑 = diam(𝐺) times the time
omplexity of Greedy-SoftMHV, or (𝑑 𝑘𝑚). This is because in the

worst case, it has to repeat 𝑑 times the processes of Greedy-SoftMHV
in Lines 4–12 to colour all the vertices.

Moreover, the solution quality of the NGC is at least as good as that
f Greedy-SoftMHV. This is because if the NGC ends with assigning

only one colour to all non-precoloured vertices, then it gives the exact
output as Greedy-SoftMHV. If NGC ends with assigning more than two
olours to non-precoloured vertices, the number of 𝜌-happy vertices is
igher than that of the output of the Greedy-SoftMHV.

4.3. Local Maximal Colouring

Our third proposed heuristic algorithm, Local Maximal Colouring
LMC), finds 𝜌-happy colour classes by examining local neighbourhoods
f the uncoloured vertices, identifying the most frequently appearing
olour, and assigning this colour to all uncoloured vertices in this
eighbourhood.

The LMC’s inputs are a graph 𝐺 and a partial colouring 𝑐. Then,
t employs two variables in Lines 2–3, namely 𝑈 and 𝐶, as the set of
ncoloured vertices and the set of coloured ones, respectively. After-
ards, an uncoloured vertex 𝑣, adjacent to at least one coloured vertex,

s chosen. Then in Lines 6–7, 𝑞 is the most frequent colour in 𝑁(𝑣), and
receives the colour 𝑞. The vertex 𝑣 is now coloured, which is added
7 
Algorithm 2 (Neighbour Greedy Colouring) Approximating the
ptimal solution of 𝜌-happy colouring

Input: 𝐺, 𝜌, 𝑐 ∶ 𝑉 ′ ⟶ {1,… , 𝑘} ⊳ 𝑉 ′ ⊊ 𝑉 (𝐺)
Output: 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘} ⊳ a complete colouring of 𝐺

1: ∀𝑖 ∈ {1,… , 𝑘}, 𝑉𝑖 ← {𝑣 ∶ 𝑐(𝑣) = 𝑖}
2: 𝑈 ← 𝑉 (𝐺) − 𝑉 ′, Temp ← ∅, Max ← 0 and 𝑖Max ← 0 ⊳ 𝑈 =

uncoloured vertices

3: while 𝑈 ≠ ∅ do
4: for 𝑖 = 1,… , 𝑘 do ⊳ try all colours
5: Append members of 𝑈 to 𝑉𝑖
6: 𝑐 ← {𝑉1,… , 𝑉𝑘}
7: Calculate 𝐻(𝐺 , ̃𝑐 , 𝜌) ⊳ the number of 𝜌-happy vertices in 𝑐
8: if Max < 𝐻(𝐺 , ̃𝑐 , 𝜌) then
9: Max ← 𝐻(𝐺 , ̃𝑐 , 𝜌) and 𝑖Max ← 𝑖

10: end if
11: Remove members of 𝑈 from 𝑉𝑖
12: end for
13: Temp ← 𝑈 ∩𝑁(𝑉𝑖Max )
14: Remove members of Temp from 𝑈 and Append members of

Temp to 𝑉𝑖Max
15: end while
16: Return 𝑐 = {𝑉1,… , 𝑉𝑘}

to the set of coloured vertices 𝐶 and removed from the uncoloured
vertices. This procedure continues until no uncoloured vertex remains.

Algorithm 3 (Local Maximal Colouring) Approximating the optimal
solution of 𝜌-happy colouring.

Input: 𝐺, 𝑐 ∶ 𝑉 ′ ⟶ {1,… , 𝑘} ⊳ 𝑉 ′ ⊊ 𝑉 (𝐺)
Output: 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘} ⊳ a complete colouring of 𝐺

1: ∀𝑖 ∈ {1,… , 𝑘}, 𝑉𝑖 ← {𝑣 ∶ 𝑐(𝑣) = 𝑖}
2: 𝑈 ← 𝑉 (𝐺) − 𝑉 ′ ⊳ 𝑈 = uncoloured vertices
3: 𝐶 ← 𝑉1 ∪ … ∪ 𝑉𝑘 ⊳ 𝐶 = coloured vertices

4: while 𝑈 ≠ ∅ do
5: Choose 𝑣 ∈ 𝑈 ∩𝑁(𝐶)
6: 𝑞 ← the colour which appears the most in 𝑁(𝑣)
7: Append 𝑣 to 𝑉𝑞 , Append 𝑣 to 𝐶 and Remove 𝑣 from 𝑈
8: end while
9: Return 𝑐 = {𝑉1,… , 𝑉𝑘}

The LMC has a time complexity of (𝑚), owing to the main loop
(Lines 4–10), where the colours of neighbours of 𝑣 are examined.
This happens at most 2𝑚 times, i.e., twice for each edge. Experiments
Section 5) show that LMC can detect community structures close to

the graphs’ true community structures. Moreover, its time complexity,
near-linear, is the lowest among the algorithms investigated. However,
since it does not rely on 𝜌, its output can occasionally have fewer
𝜌-happy vertices than other algorithms.

4.4. Growth-SoftMHV

Algorithm 4 has been adapted from the Growth-SoftMHV algo-
ithm of Zhang and Li (2015) to solve Soft happy colouring. The

main process of this algorithm is determining the vertex classifications
introduced in the following definition.

Definition 4.1 (Zhang and Li (2015, altered from Definitions 8 and 9)).
Let 𝐺 be a graph whose vertices are partially coloured by 𝑐 ∶ 𝑉 ′ ⟶
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{1,… , 𝑘}, 𝑉 ′ ⊊ 𝑉 (𝐺), 𝑉1,… , 𝑉𝑘 are colour classes, 𝑈 is the set of
ncoloured vertices, 𝑣 ∈ 𝑉 (𝐺) and 0 < 𝜌 ≤ 1.

1. 𝑣 is an H-vertex if it is coloured and 𝜌-happy.
2. 𝑣 is a U-vertex if

2.a. 𝑣 is coloured, and
2.b. 𝑣 is destined to be 𝜌-unhappy, (i.e., |𝑁(𝑣) ∩ 𝑉𝑐(𝑣)| +

|𝑁(𝑣) ∩ 𝑈 | < 𝜌 ⋅ deg(𝑣))

3. 𝑣 is a P-vertex if
3.a. 𝑣 is coloured,
3.b. 𝑣 has not been 𝜌-happy (i.e., |𝑁(𝑣) ∩ 𝑉𝑐(𝑣)| < 𝜌 ⋅ deg(𝑣)), and
3.c. 𝑣 can become an 𝐻-vertex (i.e., |𝑁(𝑣) ∩ 𝑉𝑐(𝑣)|+ |𝑁(𝑣) ∩ 𝑈 | ≥

𝜌 ⋅ deg(𝑣))

4. 𝑣 is an L-vertex if it has not been coloured.

4.1. 𝑣 is an Lp-vertex if it is adjacent to a P-vertex,
4.2. 𝑣 is an Lh-vertex if

4.2.a. 𝑣 is not adjacent to any P-vertex,
4.2.b. 𝑣 is adjacent to an H-vertex or a U-vertex, and
4.2.c. 𝑣 can become 𝜌-happy, that is,

|𝑁(𝑣) ∩ 𝑈 | + max{|𝑁(𝑣) ∩ 𝑉𝑖| ∶ 1 ≤ 𝑖 ≤ 𝑘} ≥ 𝜌 ⋅ deg(𝑣).

4.3. 𝑣 is an Lu-vertex if

4.3.a. 𝑣 is not adjacent to any P-vertex,
4.3.b. 𝑣 is adjacent to an H-vertex or a U-vertex, and
4.3.c. 𝑣 is destined to be 𝜌-unhappy, that is,

|𝑁(𝑣) ∩ 𝑈 | + max{|𝑁(𝑣) ∩ 𝑉𝑖| ∶ 1 ≤ 𝑖 ≤ 𝑘} < 𝜌 ⋅ deg(𝑣).

4.4. 𝑣 is an Lf -vertex if it is not adjacent to a coloured vertex.

The inputs of the Growth-SoftMHV algorithm are a graph 𝐺, 𝜌, and
a partial 𝑘-colouring 𝑐. It first generates the colour classes (Line 1) and
identifies all 𝑃 , 𝐿ℎ, and 𝐿𝑢-vertices in Line 2, where it assigns them to
sets 𝐿 = 𝑃 ∪ 𝐿ℎ ∪ 𝐿𝑢. Following this in Lines 4–8, it checks if there is
a 𝑃 -vertex 𝑣, it then chooses just enough neighbours of 𝑣 and colours
them by the colour of 𝑣 so that 𝑣 becomes 𝜌-happy. Then it recalculates
the vertex classes 𝑃 , 𝐿ℎ, 𝐿𝑢, and 𝐿. The above steps may generate other
𝑃 -vertices, hence, the procedure repeats until no 𝑃 -vertex remains.

After running out of 𝑃 -vertices, the algorithm checks in Lines 9–15
if there is an 𝐿ℎ vertex 𝑣 and chooses a colour 𝑖 that appears the most
among the neighbours of 𝑣. Then it colours 𝑣 and some of its neighbours
by the colour 𝑖 so that 𝑣 becomes a 𝜌-happy vertex. Next, because these
colour assignments might generate new 𝑃 or 𝐿ℎ-vertices, the vertex
classification of 𝑃 , 𝐿ℎ, 𝐿𝑢 and 𝐿 is updated. The algorithm repeats Lines
4–8 and 9–15 until no 𝑃 or 𝐿ℎ-vertex is left.

If a complete colouring has not yet been obtained, at least one 𝐿𝑢-
vertex must exist because the graph is assumed to be connected and
𝐿𝑓 -vertices have no coloured neighbours. The algorithm in Lines 16–
22 chooses an 𝐿𝑢-vertex 𝑣 and a colour 𝑖 that appears the most among
neighbours of 𝑣, then the colour of 𝑣 and some of its uncoloured vertices
turns into the colour 𝑖. After recalculating the vertex classifications
𝑃 , 𝐿ℎ, 𝐿𝑢, and 𝐿, the algorithm repeats Lines 4–22 until no 𝑃 , 𝐿ℎ,
r 𝐿𝑢 vertex is left. Now, Every vertex must have a colour, so the
lgorithm reports the complete colouring. The time complexity of

Growth-SoftMHV has been calculated by Carpentier et al. (2023) as
(𝑚𝑛).

5. Experimental evaluation

We conducted experiments on various graphs based on the SBM to
investigate the performance of the proposed algorithms and validate
8 
Algorithm 4 (Growth-SoftMHV) Approximating the optimal solution
of soft happy colouring

Input: 𝐺, 𝜌, 𝑐 ∶ 𝑉 ′ ⟶ {1,… , 𝑘} ⊳ 𝑉 ′ ⊊ 𝑉 (𝐺)
Output: 𝑐 ∶ 𝑉 (𝐺) ⟶ {1,… , 𝑘} ⊳ a complete colouring of 𝐺

1: ∀𝑖 ∈ {1,… , 𝑘}, 𝑉𝑖 ← {𝑣 ∶ 𝑐(𝑣) = 𝑖}
2: Calculate 𝑃 , 𝐿ℎ, 𝐿𝑢 and 𝐿 ⊳ Definition 4.1

3: while 𝐿 ≠ ∅ do
4: while 𝑃 ≠ ∅ do
5: Choose 𝑣 ∈ 𝑃
6: Choose ⌈𝜌 ⋅ deg(𝑣)⌉−|𝑁(𝑣) ∩𝑉𝑐(𝑣)| from 𝑁(𝑣) ∩𝐿 and Append

them to 𝑉𝑐(𝑣)
7: ReCalculate 𝑃 , 𝐿ℎ, 𝐿𝑢 and 𝐿 ⊳ Definition 4.1
8: end while
9: while (𝑃 = ∅ and 𝐿ℎ ≠ ∅) do

10: Choose 𝑣 ∈ 𝐿ℎ
11: Choose 𝑖 ∈ {1,… , 𝑘} such that ∀𝑡, |𝑉𝑖 ∩𝑁(𝑣)| ≥ |𝑉𝑡 ∩𝑁(𝑣)|
12: Append 𝑣 to 𝑉𝑖
13: Choose ⌈𝜌 ⋅ deg(𝑣)⌉− |𝑁(𝑣) ∩ 𝑉𝑖| from 𝑁(𝑣) ∩𝐿 and Append

them to 𝑉𝑖
14: ReCalculate 𝑃 , 𝐿ℎ, 𝐿𝑢 and 𝐿 ⊳ Definition 4.1
15: end while
16: while (𝑃 = ∅ and 𝐿ℎ = ∅ and 𝐿𝑢 ≠ ∅) do
17: Choose 𝑣 ∈ 𝐿𝑢
18: Choose 𝑖 ∈ {1,… , 𝑘} such that ∀𝑡, |𝑉𝑖 ∩𝑁(𝑣)| ≥ |𝑉𝑡 ∩𝑁(𝑣)|
19: Append 𝑣 to 𝑉𝑖
20: Choose ⌈𝜌 ⋅ deg(𝑣)⌉− |𝑁(𝑣) ∩ 𝑉𝑖| from 𝑁(𝑣) ∩𝐿 and Append

them to 𝑉𝑖
21: ReCalculate 𝑃 , 𝐿ℎ, 𝐿𝑢 and 𝐿 ⊳ Definition 4.1
22: end while
23: end while
24: Return 𝑐 = {𝑉1,… , 𝑉𝑘}

our theoretical results. We developed a problem generator, from which
we generated our sample graphs.1 The problem generator, the source
code for the algorithms and the graphs tested (stored in DIMACS
format) are available online.2 Here, we used a computer running 12 ×
3.60 GHz Intel™Xeon™CPUs, 32 GB of RAM, and 512 GB memory to
generate the problem instances and run all algorithms.

To test the algorithms, we generated partially coloured sample
graphs considering the following parameters: number of vertices 𝑛,
number of partitions (communities or colour classes) 𝑘, the edge prob-
bility inside communities 𝑝, the probability of inter-community edges

𝑞, the number of precoloured vertices per community 𝑝𝑐 𝑐, a random
eed for generating the graphs and the proportion of happiness 𝜌.
ecause increasing 𝑛 impacts the running time of the algorithms, we
plit the test into two parts. First, we check the algorithms on 19,000

partially coloured graphs with 1000 vertices on several combinations
of other parameters. This enables us to see the effects of changing other
arameters more clearly. Afterwards, 28,000 partially coloured graphs

on 200 ≤ 𝑛 < 3000 vertices are tested (10 graphs for each 𝑛), while
ther parameters are chosen at random. In both tests, we make sure
hat no two vertices in a community are precoloured with different
olours. This is to prevent the induced precolouring from contradicting
he community structure of the graphs. Otherwise, we cannot expect
hat the induced colouring by communities makes the entire vertex set
-happy. The settings for the two tests are as follows.

1 The graphs are generated using Python under the stochas-
ic_block_model from the package NetworkX.

2 At https://github.com/mhshekarriz/HappyColouring_SBM.

https://github.com/mhshekarriz/HappyColouring_SBM
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Fig. 6. The average number of 𝜌-happy vertices of the induced colouring by commu-
nities with respect to 𝜌 and the number of colours.

Test 1. Graphs for this test were generated with the settings 𝑛 = 1,000,
𝑘 = 2, 3,… , 20, 𝑝 = 0.1, 0.2,… , 0.9, 𝑞 = 0.01, 0.11, 0.21,… ,≤ 𝑝

2 .
For each combination of these values, four instances were gen-
erated. The number of precoloured vertices in each community
varied from 1 to 10. Each of the 19,000 graphs is then tested
for 𝜌 = 0.1, 0.2,… , 1. The time limit is set to 40 s. The results
of running each of the algorithms 190,000 times in total are
summarised in Section 5.1.

Test 2. For this test graphs are randomly generated with 200 ≤ 𝑛 <
3000 vertices. For each 𝑛, 10 instances are generated, which
makes it a set of 28,000 randomly generated graphs. For each
graph, other parameters are randomly chosen over the same
interval of the previous test i.e. 𝑘 ∈ {2, 3,… , 20}, 𝑝 ∈ (0, 1],
𝑞 ∈ (0, 𝑝2 ] and 𝜌 ∈ (0, 1]. The time limit for this test is 120 s.
The results from this test are summarised in Section 5.2.

5.1. Test 1: graphs on 1000 vertices

Perhaps one of the most important test results for us, as anticipated
by Theorem 3.1, is verifying that if 𝑘 and 𝜌 are small enough, then
communities of networks in the SBM induce a 𝜌-happy colouring. The
results of the first test fully supports this, see Fig. 6. On the other hand,
when 𝑘 or 𝜌 increases, the induced colouring by graph communities
cannot make all the vertices 𝜌-happy. Especially when 𝜌 = 1, the
induced colouring makes almost no vertex happy.

Fig. 7 illustrates how the average number of 𝜌-happy vertices in the
colouring induced by the tested graphs’ communities can be affected by
the fraction 𝑝

𝑞 . As expected, when 𝑝
𝑞 is large enough, the communities

of the graphs are more straightforward to detect. Consequently, the
average number of 𝜌-happy vertices in the colouring induced by the
communities is directly related to 𝑝

𝑞 .
Fig. 8 demonstrates how changes in parameters affect the average

number of 𝜌-happy vertices in the colouring induced by the graphs’
communities. Fig. 8(a) indicates that this number increases when 𝑝
increases. Fig. 8(b) emphasises how increasing 𝑞 makes the average
number of 𝜌-happy vertices drop. These two figures, and Figs. 6 and
8(f) as well, demonstrate the negative effect of increasing the number
of communities, 𝑘, on the average number of 𝜌-happy vertices induced
by these communities. Figs. 8(c) and 8(d), and Figs. 6 and 8(e) as well,
illustrate a similar trend for 𝜌. The insignificant relation of the average
number of 𝜌-happy vertices induced by graphs’ communities and the
9 
Fig. 7. The average number of 𝜌-happy vertices of colourings induced by communities
with respect to 𝑝

𝑞
. Here, the average is taken for all tested 𝜌s, including the case 𝜌 = 1

for which we almost always have a lot of unhappy vertices.

number of precoloured vertices per community can be seen in Figs. 8(e)
and 8(f). All these trends agree with the theoretical results in Section 3.

Figs. 9–11, respectively, show the average CPU runtime, the average
quality of performance and the average quality of community detection
of Algorithms 1 to 4. The measure of performance is the number of
𝜌-happy vertices in their outputs, and their measure of community
detection is the fraction of vertices whose colours in the output graph
agree with their communities in the generated graph. Detecting com-
munities is not explicitly an objective of these algorithms, nonetheless,
all algorithms (especially LMC) can effectively detect communities.

Increasing the number of precoloured vertices per community does
not significantly affect the run times, see Fig. 9(e). It negatively im-
pacts the number of 𝜌-happy vertices detected by the algorithms (see
Fig. 10(e)), while detecting communities improves (see Fig. 11(e)).

Interestingly, both algorithms Greedy-SoftMHV and NGC detect a
similar number of 𝜌-happy vertices (see Fig. 10, especially Fig. 10(a)).
However, they do not detect communities effectively (see Fig. 11, es-
pecially Fig. 11(a)). This is unsurprising since they assign only the one
colour to all uncoloured vertices. The run times for Greedy-SoftMHV
is substantially lower than NGC, and hence, using NGC cannot be
justified for real-world applications.

Growth-SoftMHV requires large run times, but to make fair com-
parisons, we limit its CPU run time to 40 s (see Fig. 9). In this setting,
all other algorithms find a higher number of 𝜌-happy colourings and
typically detect communities more accurately (see Figs. 10 and 11,
especially Figs. 10(d) and 11(c)).

LMC has the lowest run times. It does not detect 𝜌-happy vertices
as effectively as Greedy-SoftMHV and NGC, but detects communities
more accurately than the other algorithms (Figs. 10 and 11). For nearly
10% of the tests, it found a colouring where all the vertices are 𝜌-
happy, far greater than 1.41% of the Growth-SoftMHV algorithm (see
Fig. 12(a) and Table 1).3 For Greedy-SoftMHV and NGC, the percent-
age of complete 𝜌-happy colouring of their outputs are inconsiderable,
although NGC outperforms Greedy-SoftMHV. For certain instances,
only LMC detects communities accurately (Fig. 12(b) and Table 1),
despite not being an explicit objective.

Table 2 shows that LMC finds the highest number of 𝜌-happy
vertices, 987 out of 1000, when communities induce 𝜌-happy colour-
ing, i.e. when 𝜌 < 𝜉. The best average number of 𝜌-happy vertices

3 It should be noted that Growth-SoftMHV occasionally reached its time
limit of 40 s, and only reports its partial solutions. Hence, we may observe
improved performance if the time limit is not restricted.
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Fig. 8. These 3-dimensional charts show the average number of 𝜌-happy vertices when communities induce colour classes compared for (a) the parameters 𝑘 and 𝑝, (b) for 𝑘 and
𝑞, (c) for 𝜌 and 𝑝, (d) for 𝜌 and 𝑞, (e) for 𝜌 and the number of precoloured vertices per community and (f) for 𝑘 and the number of precoloured vertices per community.
across all the 190,000 runs belong to the NGC with 845 𝜌-happy ver-
tices. The LMC has the best accuracy of community detection whether
communities induce 𝜌-happy colouring or not.

5.2. Test 2: graphs on different numbers of vertices

The four algorithms in Section 4, especially Growth-SoftMHV, are
not designed to be run for large graphs. Therefore, if we are interested
to see their scalability, we need to limit the number of total runs. For
this, another test was necessary. We remind the reader again that we
ran the algorithms over randomly generated graphs on 200 ≤ 𝑛 < 3000
vertices for this test. Other parameters are randomly chosen over the
same interval of the previous test (with an insist on 𝑞 ≤ 𝑝 to make
2

10 
the communities distinguishable). For each 𝑛 we have generated 10
instances. The results of 28,000 runs of the algorithms are summarised
in the following paragraphs and figures.

First, we note that the data for this test agrees with the former
test. For example, the average ratio of 𝜌-happy vertices in the induced
colouring by the communities is given in Fig. 13, which is consistent
with Fig. 6, especially when 𝜌 and 𝑘 are small enough, the induced
colouring by the communities can make the entire vertex set 𝜌-happy.

The time limit for this part is 120 s. The only algorithm that
occasionally reports incomplete solutions due to this time limit is
the Growth-SoftMHV, which experiences the sharpest increase in its
running time. As expected, increasing the number of vertices directly
relates to the running time of the algorithms, which is obvious from
Fig. 14(a). At the same time, LMC shows a small increase in its running
time in comparison to the other algorithms.
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Fig. 9. Comparing the average running time of the four algorithms concerning the parameters (a) 𝑘, (b) 𝜌, (c) 𝑞, (d) 𝑝 and (e) the number of precoloured vertices per community.
Like the former test for graphs on 1000 vertices, Greedy-SoftMHV
and NGC perform almost similarly in finding 𝜌-happy vertices, see
Fig. 14(b). The average number of 𝜌-happy vertices found by the
Growth-SoftMHV divided by the total number of vertices drops as
the number of vertices increases. This trend for LMC, which has the
highest correlation with communities, remains increasing as Fig. 14(b)
affirms. This complies with Theorem 3.3 that communities can find
more 𝜌-happy vertices when 𝑛 becomes larger.
11 
Accuracy of community detection of Greedy-SoftMHV, NGC and
Growth-SoftMHV drop sharply, according to Fig. 14(c). However,
LMC maintains its community detection accuracy between 0.4 and 0.5.

In general, according to Fig. 14, LMC is the most affordable algo-
rithm for finding 𝜌-happy vertices, especially when another objective is
community detection. In contrast, Growth-SoftMHV is costly and may
perform poorly when the number of vertices is large.
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Fig. 10. Comparing the average number of 𝜌-happy vertices in the output of the four algorithms to the parameters (a) 𝑘, (b) 𝜌, (c) 𝑞, (d) 𝑝 and (e) the number of precoloured
vertices per community.
5.3. Performance of LMC

In this section, we briefly investigate the performance of LMC.
As it can be seen in Line 5 of Algorithm 3, an uncoloured vertex is
randomly chosen from the neighbourhood of already coloured vertices.
12 
It is possible that choosing another vertex at a step affects the quality
of the final solution. To investigate this, we performed LMC 10 times
over each of the 28,000 graphs of the second test with 200 ≤ 𝑛 <
3000 vertices, introduced in Section 5.2. The result of running LMC
is reported in Fig. 15.
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Fig. 11. Comparing the average quality of community detection of the four algorithms to changes of the parameters (a) 𝑘, (b) 𝜌, (c) 𝑞, (d) 𝑝 and (e) the number of precoloured
vertices per community. The quality of community detection is the ratio of vertices whose colours in the output graph agree with their communities in the generated graph.
Fig. 15(a) shows the minimum, mean and maximum of the number
of 𝜌-happy vertices divided by the number of vertices. In this case,
the minimum is almost always 0 while the maximum is almost always
1. The mean, however, is between 0.5 and 0.8, and as 𝑛 increases,
the mean also shows a tendency to rise. Figs. 15(b)–15(d) are for the
same fraction with additional restrictions of 𝜌 > 𝜉, 𝜌 < 𝜉 and 𝜌 < 𝜉 ,
2

13 
respectively. When 𝜌 > 𝜉, the maximum and minimum do not change,
but the mean falls between 0.4 and 0.7. When 𝜌 < 𝜉 (and when 𝜌 < 𝜉

2 ),
the maximum is again 1, but the minimum increases to around 0.4
(resp. 0.75) and the mean increases to around 0.95 (resp. 0.98), which
again tends to be higher as 𝑛 increases.
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Fig. 12. (a) The number of times each algorithm generated a colouring that is 𝜌-happy out of 190,000 runs. It can be seen that LMC outperforms other algorithms in this regard.
(b) The number of times that each algorithm detects communities accurately.
Table 1
The number of times and their percentage that the algorithms find colourings that
make all the vertices 𝜌-happy versus the number of times and their percentage that
they accurately detect communities, out of 190,000 runs.

Algorithm # CHa % CHb # ACDc % ACDd

Greedy-SoftMHV 6 0.00 0 0.00
Neighbour Greedy Colouring 921 0.48 0 0.00
Local Maximal Colouring 19,475 10.25 18,562 9.77
Growth-SoftMHV 2688 1.41 3 0.00
Communities induced colouring 27,510 14.48 190,000 100.00

a # CH = ‘‘the number of times it finds a complete 𝜌-happy colouring’’.
b % CH = ‘‘the percentage of # CH across 190,000 runs’’.
c # ACD = ‘‘the number of times it accurately detects communities’’.
d % ACD = ‘‘the percentage of # ACD across 190,000 runs’’.

Table 2
Average number of 𝜌-happy vertices and average accuracy of community detection for
each algorithm are reported, in the entire test, when communities induce a 𝜌-happy
colouring and when they do not.

Algorithm Ha ACb NACc Cd ACDe NACDf

Greedy-SoftMHV 844 973 822 0.192 0.289 0.175
Neighbour Greedy Colouring 845 975 823 0.199 0.313 0.179
Local Maximal Colouring 671 987 617 0.594 0.840 0.553
Growth-SoftMHV 636 794 610 0.257 0.370 0.238

a H = ‘‘Average number of 𝜌-happy vertices across 190,000 runs’’.
b AC = ‘‘Average number of 𝜌-happy vertices when communities induce a complete
𝜌-happy colouring (𝜌 < 𝜉)’’.
c NAC = ‘‘Average number of 𝜌-happy vertices when communities do not induce a
complete 𝜌-happy colouring (𝜌 ≥ 𝜉)’’.
d C = ‘‘Average accuracy of community detection across 190,000 runs’’.
e ACD = ‘‘Average accuracy of community detection when communities induce a
complete 𝜌-happy colouring (𝜌 < 𝜉)’’.
f NACD = ‘‘Average accuracy of community detection when communities do not induce
a complete 𝜌-happy colouring (𝜌 ≥ 𝜉)’’.

6. Conclusion

This paper theoretically and experimentally establishes a connection
between the soft happy colouring of graphs and their community struc-
ture. Since conventional happy colouring is a special case of soft happy
14 
Fig. 13. The 3D chart of the average ratio of 𝜌-happy vertices in the induced colouring
by communities, with 𝜌 and 𝑘 as variables. The data is from the second test, where
the number of vertices is between 200 and 3000.

colouring, and the main intention of defining these sorts of colouring
was homophily (which is a property of social networks explainable by
community structures), soft happy colouring is a more powerful tool to
achieve the intended goal.

One of the achievements of this paper is to theoretically show that
for the induced colouring by communities of a graph in the SBM, almost
surely all the vertices are 𝜌-happy if 𝜌 is small enough. Another is
finding the threshold 𝜉 which indicates how small this 𝜌 should be.
The other is showing that if 𝜌 < lim𝑛→∞ 𝜉, then the communities almost
certainly induce a 𝜌-happy colouring on the vertices. Experimental
analysis of over large number of randomly generated graphs perfectly
verified the theoretical expectations.
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Fig. 14. Comparing (a) running time, (b) average number of 𝜌-happy vertices and (c) average accuracy of community detection of the four algorithms. The data is from the second
test whose graphs are on 200 ≤ 𝑛 < 3000 vertices.
Additionally, we developed algorithms to tackle the soft happy
colouring problem. We adopt two existing algorithms from Zhang and
Li (2015) and present a novel algorithm, Local Maximal Colouring.
The algorithm has no reliance on 𝜌, however, its output shows consid-
erable correlation with the communities of the tested networks while
it has an inexpensive running cost. Therefore, for practical purposes,
multiple runs of LMC are conducted to find the best possible result for
the both objectives of soft happy colouring and community detection.

There are numerous possibilities for future work. Further studies can
include considering the relations of (soft) happy colouring with com-
munities of random graph models other than the simplified stochastic
block model (𝑛, 𝑘, 𝑝, 𝑞). Looking at the induced colouring of detected
communities by algorithms, such as spectral clustering, for their num-
ber of 𝜌-happy vertices can also be interesting on its own because these
algorithms may find communities different from what graph generators
produce. Another area for future work can be maximising the num-
ber of 𝜌-happy coloured vertices using mathematical/constraint pro-
gramming, metaheuristics (tabu search and evolutionary algorithms),
and matheuristics (CMSA and CMSA-TS) for 𝜌-happy colouring similar
to Thiruvady and Lewis (2022) by Thiruvady and Lewis. Improving
known algorithms for soft happy colouring, similar to what Ghirardi
and Salassa (2022) suggest, is another possible study in future. Espe-
cially, one can think of improvements to the LMC because of its low
15 
time cost and its output’s correlation with the community structure of
its input.
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Fig. 15. The performance of LMC (a) when there is no constraints on 𝜌, (b) when 𝜌 > 𝜉, (c) when 𝜌 < 𝜉 and (d) when 𝜌 < 𝜉
2
. The data were collected by running LMC 10 times

for each of 28,000 randomly generated graphs with 200 ≤ 𝑛 < 3000 vertices of the second test.
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