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DREE-RF: A Radar-Based Rainfall Energy 

Estimation Model Using Random Forest 
 

Jingxuan Zhu, Qiang Dai, Yuanyuan Xiao, Jun Zhang, Lu Zhuo, and Dawei Han 
 

  Abstract—Current radar techniques focus on rainfall 

observations, leaving a research gap in rainfall energy (E) 

involving the interaction of raindrops and land surface processes. 

E is defined as the accumulated kinetic energy per unit rainfall and 

is a key parameter in the understanding process of the rainfall 

impact on the land surface. Utilizing the capability of dual-

polarization radar to detect the rainfall microphysics 

characteristics, this study proposes the first computational model 

for estimating E from radar signals. The model investigates the 

mechanistic correlation between the radar dual-polarization 

parameters and E, and finds that specific differential phase (KDP) 

and horizontal reflectivity (ZH) have the strongest correlation with 

E. Therefore, the study develops radar-based empirical regression 

and random forest (RF) models for E estimation, where RF models 

consider whether the sensitive KDP is available. The results show 

that the RF models improve the accuracy of estimating E and has 

a Pearson coefficient greater than or equal to 0.97 with station 

measured E, and their spatially extensive capability of the models 

is further validated. In addition, the Pearson values of daily E 

estimated from radar data based on TRM and RF are 0.85 and 

0.92, respectively, indicating that RF is better than TRM when 

using real radar. This study contributes to enhancing the 

understanding of rainfall processes in the context of climate 

change and have great potential for applications in hydrological 

modeling, flood forecasting, and agricultural planning. 

 
Index Terms—dual polarization; radar; random forest (RF); 

raindrop size distribution (DSD); rainfall energy 

 

I. INTRODUCTION 

ADAR is essential for quantifying rainfall with high 

spatial and temporal resolution by measuring 

reflectivity, providing crucial support for estimating 

water exchanges between the atmosphere and the land surface 

[1], [2]. However, the interaction between rainfall and land 

surface hydrology processes involves more than just the amount 

of rainfall. It also encompasses the impact of raindrops on 

surface elements, which is determined by the energy carried by 

raindrops upon reaching the ground. For instance, raindrops 

impact the surface with kinetic energy, breaking up soil 

aggregates and displacing soil particles [3], [4], [5]. These 

droplets also generate turbulence on water surfaces, changing 
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the gas exchange rates between the interfaces and affecting the 

carbon and oxygen concentrations and pH levels of the water 

surface [6], [7]. Moreover, drop energy has a significant impact 

on the spread of diseases and pests in plants, as well as the 

cycling of soil nutrients, which are essential for the ecosystem 

[8], [9]. These energy-driven impacts are challenging to 

accurately capture using traditional radar estimates alone. 

The most precise estimates of rainfall energy (E) come from 

disdrometers that can directly measure drop size distribution 

(DSD) and speed of raindrops. However, deploying such 

instruments on a large scale is often cost prohibitive and 

logistically challenging. To address this, previous research 

established empirical relationships between rainfall kinetic 

energy per depth (KE) and rainfall intensity (I) for specific 

locations and climatic conditions, including power-law [2], [10], 

linear [11], polynomial [12], logarithmic [13], [14], and 

exponential [15], [16] relationships. The exponential form is the 

most commonly used today because it has ability to yield a 

positive value at zero intensity and an asymptotic limit at higher 

intensities. In particular, the exponential KE–I relationship 

recommended in the RUSLE2 manual [5] has been widely used 

in various studies related to rainfall erosivity and water-induced 

soil erosion [17], [18], [19], [20]. However, these empirical 

methods derived from site observations suffer from the 

difficulty of limited spatial representation [1], [21]. 

With the advancement of remote sensing technology, ground 

radars offer the possibility of large-scale E estimation. Ground-

based weather radar, with its high measurement accuracy and 

wide coverage, has become a valuable tool for large-scale 

rainfall measurements, playing a crucial role in in applications 

such as precipitation forecasting and meteorological research 

[22]. Decades of research have significantly improved the 

quality control techniques applied to radar data, enhancing their 

accuracy and reliability [23], [24], [25], [26]. One of the main 

advantages of ground-based radar is its ability to capture the 

intricate details of precipitation processes at the regional scale, 

allowing for comprehensive monitoring of rainfall pattern 

distribution. Dual-polarization radar can transmit and receive 

two polarized signals (typically horizontal and vertical 

polarization), and the differential information can provide 

additional characteristic parameters of observed objects. For 
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instance, commonly used dual-polarization parameters include 

horizontal reflectivity (ZH), differential reflectivity (ZDR) and 

specific differential phase (KDP). These parameters are closely 

associated with DSD [27], [28], indicating that radar data can 

provide an opportunity to calculate E directly. KDP is 

characterized by stability and reliability, being impervious to 

radar attenuation and beam blocking. However, there are 

uncertainties in using KDP to retrieve DSD parameters, as KDP 

is calculated based on the differential phase shift (φDP), which 

may contain noise, especially in cases of low rainfall intensities. 

To mitigate the effects of noise, φDP measurements are typically 

filtered within a certain range, often exceeding several 

kilometers [29]. Research often impose restrictions on KDP, for 

instance, Bringi et al. [30] only applies scenarios where KDP > 

0.3 deg km-1, while Rico-Ramirez [31] sets the threshold at KDP > 

0.1 deg km-1, and Huang et al. [32] defines the usable range of 

KDP as [0.3, 1]. 

Although radar-based rainfall estimation has made 

significant progress, there is still a research gap in radar E 

estimation. For instance, the relationship between horizontal 

reflectivity and rainfall intensity (ZH–I) proposed by Marshall 

and Palmer [33] has become the most widely used method to 

estimate rainfall intensity. Various quantitative precipitation 

estimation (QPE) techniques have also continued to evolve [34], 

[35], [36]. However, the direct relationship between ZH and E 

does not perform adequately due to the nonlinearity between 

raindrop size and velocity, offering a challenge in accurately 

estimating E using regression methods. Recognizing the 

limitations of fixed regression relationships, the study turns to 

the random forest (RF) algorithm to take full advantage of the 

large range and high spatial and temporal resolution of radar. 

Known for its adaptability and robustness in developing 

regression models [37], [38], RF has the potential to overcome 

spatial limitations by effortlessly handling high-dimensional 

datasets, making it possible in scenarios like estimating radar-

based E where dual-polarization variables interact in a complex 

manner. Furthermore, RF provides the benefit of mitigating 

overfitting, a frequently encountered issue in regression 

modeling, by merging the outputs of several decision trees, 

leading to an improved generalization of the model [39]. 

In order to improve E estimation more accurately and avoid 

reliance of intensity, we propose two kinds of large-scale Dual-

polarization radar-based Rainfall Energy Estimation models 

using RF (DREE-RF), considering whether KDP is available. 

The study utilized the distinction between different polarization 

radar electromagnetic echoes to retrieve E at large scales. This 

is the first comprehensive method for estimating E from radar 

signals, addressing the limitations of the current study and has 

important implications for our knowledge regarding the 

evolution of rainfall processes in the context of climate change. 

II. STUDY AREA AND DATA 

A. Study area 

The study area for our study is centered around the Hameldon 

Hill radar, which is located in the eastern part of Hameldon Hill 

in Lancashire, England, at a latitude of 53.75°N and a longitude 

of 2.29°W. This hill is part of the Pennines, a range of hills and 

mountains that stretches across northern England. Hameldon 

hill itself has a notable elevation, rising to approximately 409 

meters above sea level, providing an advantageous position for 

various observational purposes, including meteorological 

research. Due to its geographical location in the UK, Hameldon 

Hill experiences a typical maritime climate characterized by 

relatively mild temperatures, high humidity, and frequent 

precipitation year-round. These weather conditions make it an 

ideal location for studying rainfall patterns, storm systems, and 

atmospheric phenomena. Figure 1 identifies the location of 

weather radar station and its 50- and 80-km buffer ranges, as 

well as the locations of the two disdrometers around the radar. 

 
Fig. 1. Map of disdrometers, Hameldon Hill radar and its 50- 

and 80-km buffer ranges, with terrain elevation in the 

background. 

B. Disdrometer data 

This study collected data from two Laser Precipitation 

Monitor (LPM) disdrometer stations including Holme Moss 

station (53.53°N, 1.86°W) and Lancaster station (54.01°N, 

2.77°W), both located within a 50 km radius of the radar site. 

The data source was the Disdrometer Verification Network 

(DiVeN) [40], which is a disdrometer dataset consists of 14 

Thies Clima LPMs deployed across the entire UK from 2017 to 

2019. Holme Moss station and Lancaster station are situated at 

distances of 42.94 km and 37.96 km from the radar center, 

respectively. The LPM operates by recording laser signal 

attenuation to determine DSD and can estimate particle fall 

velocity by considering the particle’s duration within the laser 

beam. Each LPM covers a measurement area of 45.6 cm2 with 

dimensions of 228 mm in length and 20 mm in width. It is 

capable of recording the quantity of raindrops passing through 

in each minute, encompassing 22 different diameter categories 

ranging from 0.125 mm to 8 mm, as well as 20 different velocity 

categories ranging from 0 to 10 m·s-1. 

The DSD data used in this study underwent quality control 

processes based on [41], which involved the removal of outliers 

and non-rainfall information. For the Holme Moss station, the 

DSD measurements were taken from March 10, 2017, to 

September 30, 2019, resulting in 52,105 usable records after 

processing. At the same time, for the Lancaster station, 
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measurements were recorded from February 22, 2017, to 

September 30, 2019, yielding 66,450 usable records after data 

processing. 

C. C-band radar data 

Nestled in the landscapes of Lancashire, UK, the Hameldon 

Hill radar serves as an essential component of the radar network 

of the UK Meteorological Office [42]. Capable of 

simultaneously transmitting and receiving horizontally and 

vertically polarized waves, this C-band radar uses a sampling 

scheme with a range bin length of 600 m at five elevations. 

Parameters including horizontal reflectivity (ZH), differential 

reflectivity (ZDR), differential phase shift (φDP), correlation 

coefficient (ρHV), and radial velocity (RV) are measured at all 

elevations. The radar has a maximum range of 255 km and a 

nominal beam width of 1 degree. It conducts multiple scans at 

various angles every 5 minutes. In this study, scan data at the 

lowest radar elevation angle (0.5°) were used to analyze the 

spatial distribution of E. 

The estimation of KDP involves three primary steps [29], [43]: 

1) φDP unwrapping, where, due to the wrapped nature of the 

measured φDP, a one-dimensional phase unwrapping process is 

employed; 2) φDP wavelet analysis filtering, used to reduce 

fluctuations induced by clutter, which tend to cause significant 

oscillations; and 3) KDP calculation, wherein the least squares 

method is utilized with a variable-distance approach to fit the 

unwrapped φDP data and derive the KDP values [44]. Then, the 

raw radar data were subjected to attenuation corrections [45], 

[46] and nonweather clutter removal [47] to achieve corrected 

ZH and ZDR. 

III. METHODOLOGY 

A. Framework 

The study framework encompasses several key steps aimed at 

constructing and evaluating a model for estimating E based on 

dual polarization parameters (Fig. 2). Initially, disdrometer data 

is utilized to extract minute-by-minute parameters of DSD 

parameters, which include the mass-weighted mean drop 

diameter (Dm), normalised intercept parameter (Nw), and shape 

parameter (μ). These parameters are subsequently used to 

compute the corresponding accumulated E for each minute. 

Following the DSD parameter derivation, the T-matrix method 

is utilized to calculate C-band dual-polarization radar 

parameters, which encompass ZH, ZDR and KDP. 

This study proposes two random forest (RF) models, denoted 

as RF1 and RF2, and compares them with the traditional 

regression model (TRM) and DSD-intermediated regression 

model (DIRM). RF1 incorporates ZH, ZDR, and KDP, while RF2 

omits KDP to cope with the possible unreliability of KDP data 

that does not fall within the interval [0.3,1]. All models are 

calibrated (or trained) and validated using an 80%/20% split, 

referred to as the datasets TRM-C, TRM-V, DIRM-C, DIRM-

V, RF-T, and RF-V, respectively. The E estimation results, 

ETRM, EDIRM, ERF1, and ERF2, are obtained and subsequently 

 
Fig. 2. The framework of this study for estimating E from dual-

polarization data using TRM, DIRM and RF models. 

 

evaluated against the reference Eo derived from disdrometer 

DSD observations using various statistical metrics. 

Furthermore, this study undertakes an evaluation of the spatial 

extension capabilities of the TRM, DIRM and RF models by 

utilizing data from a different disdrometer location. This 

assessment is pivotal in comprehending the reliability and 

adaptability of these models across diverse geographic regions. 

Finally, the study calculates the spatial distribution of 

precipitation energy using C-band radar data, providing insight 

into the microphysical mechanisms of rainfall. 

B. DSD model 

DSD model is conventionally described using a normalized 

three-parameter gamma model, a widely accepted approach in 

meteorology (Dai and Han, 2014; Ulbrich, 1983). The 

mathematical expression for this model is 

 

(4 )
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D D
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where N(D) represents the count of particles within each unit 

diameter interval, Dm (mm) signifies the mass-weighted mean 

drop diameter of the DSD model, Nw (mm−1 · m−3) is the 

normalised intercept parameter, Γ(n) denotes the gamma 

function, and f(μ) is a function associated with the shape 

parameter μ. 

Then, by summing the number of raindrops in each diameter 

and velocity range, N(D) can be calculated from disdrometer 

observations as shown below: 

 

,
,

1, 1
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I J

i j

i

i j j i
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N D

A tv D= =

=
 


. (3) 

In the provided equations, I and J correspond to the bin 

indices for diameter and velocity, respectively. Di (mm) 

signifies the mean diameter within the ith size bin, vj (m·s-1) 

represents the mean particle velocity associated with the jth 

velocity bin. The term nij denotes the number of particles found 
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within the specific diameter bin i and velocity bin j, Ai (m2) 

designates the sampling area, while Δt and ΔD refer to the 

sampling time and diameter interval, respectively. 

C. Parameter calculation from disdrometer observations 

Rainfall kinetic energy is the main factor that causes soil 

particles to be dislodged and splashed, and the physical 

structure of soil to be decomposed and eroded. Assuming that 

the drop is a uniform sphere, according to the generalized 

kinetic energy formula, its kinetic energy (e, unit: J) is related 

to the diameter (D, unit: mm), the terminal velocity (v, unit: m·s-

1) and the water density (ρ, 1 g·cm−3): 

 

2 6 2 31 1
10

2 12
i ie mv v D−= =

. (4) 

Then, the total kinetic energy of raindrops falling in the unit 

volume, or KE (J·m−2·mm−1), is generally used to express E, 

defined as: 

 

1e
KE n e

AP AP
= = 

 (5) 

 P I t=  . (6) 

 4 36 10 ( ) ( )I N D D v D dD −=   , (7) 

where e (J) and P (mm) are the total raindrop kinetic energy and 

rainfall depth in a specific time step t (h), and I is the rainfall 

intensity (mm·h−1) calculated from DSD data and drop velocity. 

Since the sampling interval of the disdrometer is 1 minute, the 

t value is set to 1/60. 

Therefore, the cumulative E at the mth minute, denoted as Em, 

is represented by the following equation, which is derived from 

the unit E for that minute, KEm, and the rainfall intensity, Im: 

 60

m m
m m m

KE I
E KE P


=  =

. (8) 

On an event scale, the accumulated E represents the sum of 

the storm energy over all time steps, which is expressed as 

follows: 

 
E KE P=  . (9) 

As for radar parameters at the C-band frequency, including ZH 

expressed in units of mm6·m-3, ZDR in dB, and KDP in deg·km-1, 

can be computed utilizing the T-matrix scattering technique 

[49], [50] from disdrometer data: 

 

4
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l
K f D f D N D D
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,
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where fH and fV (Di) represents the backscatter amplitude of a 

raindrop for horizontal and vertical polarizations, while fH (0, 

Di) and fV (0, Di) correspond to the standard forward scattering 

amplitudes. Kw (0.96) denotes the dielectric factor of water, and 

l (53 mm) signifies the radar wavelength. 

 

D. TRM and DIRM using empirical relationships 

The TRM of estimating E using radar signals can be divided 

into three main steps. Firstly, the rainfall intensity is estimated 

from empirical relationships using the ZH parameter and the ZH–

I relationship. Subsequently, the E per unit depth (KE) is 

calculated by combining the KE–I relationship. Finally, the KE 

per time step is multiplied with the rainfall depth to determine 

the accumulative E for the specified time period. 

In the large-scale area, the exponential KE–I empirical 

relationship is widely used to estimate rainfall KE, 

recommended by (USDA-Agricultural Research Service [5] in 

RUSLE2: 

 
29[1 0.72exp( 0.082 )]KE I= − −

. (13) 

The radar reflectivity factor for ZH and I relationship is a 

fundamental concept in meteorology. This relationship 

provides a crucial tool for estimating precipitation rates based 

on radar observations. The typical form of the ZH–I relationship 

is expressed as: 

 
b

HZ aI=
, (14) 

where a and b are empirical constants that vary depending on 

factors such as the type of precipitation, radar wavelength, and 

geographic location. The ZH–I relationship helps meteorologists 

convert radar data into valuable rainfall information, enabling 

accurate rainfall estimation and weather forecasting. 

The DIRM employs dual-polarization radar parameters to 

regressively derive the DSD parameters, which are then used to 

calculate E. The following form is a widely used tool for 

regressing DSD parameters (including the drop median 

diameter D0, the generalized intercept parameter Nw and the 

shape parameter µ) on dual-polarization parameters [38]: 

 2 3

0 DR DR DRD a bZ cZ dZ= + + + , (15) 

 
2 3 4( )

10 DR DR DR DRbZ cZ dZ eZ

HLWC aZ
+ + +

= , (16) 

 
4

4

0

3.67
w

LWC
N

D
= , (17) 

 2a b c  = + + , (18) 

 = n

DRmZ , (19) 

where the liquid water content (LWC) is related to ZH and ZDR. 

E. RF-based E retrieval model 

RF is an ensemble learning method renowned for its 

versatility and accuracy. It operates by constructing multiple 

decision trees during RF-T and outputs predictions based on the 

ensemble average or mode. The distinctive feature of RF lies in 

its ability to mitigate overfitting and enhance generalization 

performance, making it well-suited for complex relationships 

between input variables. To initialize the RF model, essential 

parameters need to be configured. The initial parameters 

include the number of trees in the forest, the maximum depth of 

each tree, and the minimum number of samples required to split 

a node. These parameters play a pivotal role in determining the 

model’s performance, as determined by analyzing the out-of-

bag mean squared error (OOB MSE) of MATLAB’s 

TreeBagger tool. In a Random Forest, each decision tree is 

trained on a bootstrap sample of the original dataset, and some 
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data points are left out (out-of-bag) during the training process. 

The OOB MSE is calculated by comparing the predicted values 

for the out-of-bag data points to their actual values, providing a 

measure of how well the model generalizes to unseen data. A 

lower OOB MSE indicates better predictive performance. 

The construction of the RF model involves establishing 

relationships between dual-polarization parameters (ZH, ZDR, 

KDP) and E. The dataset, comprising 80% of the available 

observations, is utilized for training the RF model. Each tree in 

the RF ensemble captures distinct patterns and dependencies 

within the data. The model undergoes iterative refinement 

during the RF-T process, enhancing its ability to generalize 

across diverse datasets. After the RF-T phase, the remaining 

20% of the dataset serves as the TRM-V set for evaluating the 

model’s predictive accuracy. 

F. Evaluation methods 

To delineate the relationship between radar dual-polarization 

parameters and E, Pearson correlation coefficient is employed 

to calculate the respective correlation measures. It assesses the 

linear association between the dual-polarization parameters and 

E, providing information on the strength and direction of this 

relationship. In addition, five additional metrics—mean 

absolute error (MAE), mean bias error (MBE), root mean 

square error (RMSE), relative bias (BIAS), and Nash–Sutcliffe 

model efficiency coefficient (NSE)—are employed to evaluate 

the results of estimating E using the TRM, DIRM and RF 

models. MAE quantifies the average magnitude of errors, 

giving a measure of the overall accuracy. MBE highlights the 

bias or tendency of the model to overestimate or underestimate 

the E. RMSE provides information about the magnitude of 

errors on a root mean square scale, emphasizing larger errors. 

BIAS, as a relative measure, indicates the systematic tendency 

of the model to consistently overestimate or underestimate. 

Finally, NSE evaluates the efficiency of the model by 

comparing the predicted values with the observed ones, 

considering both the mean and variability. All of the metrics 

mentioned above are defined in Table I. 

  

TABLE I 

STATISTICAL EVALUATION METRICS IN THIS STUDY 

Evaluation Metrics Formulas Perfect 

value 

Pearson correlation 

coefficient 
( )( )

( ) ( )

i i

i i

E E O O
Pearson

E E O O

− −
=

− −



   

1 

Mean absolute error 

(MAE) 
i iO E

MAE
n

−
=


 

0 

Mean bias error 

(MBE) 
( )i iO E

MBE
n

−
=


 

0 

Root mean square 

error (RMSE) ( )
21

i iRMSE O E
n

= −
 

0 

Relative bias 

(BIAS) 
( )

100%
i i

i

E O
BIAS

O

−
= 


  

0% 

Nash–Sutcliffe 

model efficiency 

coefficient (NSE) 

2

2

( )
1

( )

i i

i

O E
NSE

O O

−
= −

−
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IV. RESULTS 

A. Responses of dual-polarized radar parameters to E 

Using the T-matrix method, C-band dual-polarization 

parameters, including ZH, ZDR, and KDP, were calculated from 

the DSD parameters obtained from the Holme Moss 

disdrometer. Fig. 3 displays an occurrence plot illustrating the 

relationships between the three radar parameters and the three 

DSD parameters. Previous studies have found notable 

relationships between the dual-polarization parameters and the 

DSD parameters [27], [28]. For example, D0 and ZDR have an 

apparent polynomial regression relationship (Fig. 3b), which is 

widely used to estimate D0 using radar signals, while Nw can be 

derived using ZH and ZDR co-inversion. 

  
Fig. 3. Occurrences of relationships between DSD parameters 

and dual polarization parameters. 

In order to more visually analyze the relationship between the 

radar dual polarization parameters and the E, the sampling 

occurrence distribution of the three relationships, which are 

obtained from the Holmes Moss disdrometer, are shown in Fig. 

4. It is noteworthy that the relationship between KDP and E is 

more centered on a straight line. In contrast, the dispersion of 

data points characterizes the connection between E and ZDR, 

reflecting a weaker correlation between the variables. The 

Pearson coefficient was used to compare the correlation 

between the radar bipolarization parameters and E. The 

strongest Pearson correlation was found between the KDP and 
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E, which was an astonishing 0.94. The ZH and ZDR had relatively 

low Pearson values of 0.70 and 0.36, respectively, in 

comparison with E. 

 
Fig. 4. Occurrences of relationships between radar dual-

polarization parameters ZH (a), ZDR (b), and KDP (c) with E. 

B. E estimation using TRM and DIRM 

At the Holmes Moss station, using the minute rainfall 

intensity data obtained from the disdrometer, and matching it 

with the disdrometer-derived C-band ZH results. The first 80% 

of the data points were selected as the TRM-C dataset and the 

last 20% of the records were selected as the validation dataset, 

with data amounts of 35,258 and 8,815, respectively. The TRM-

C dataset is used to fit a local ZH–I empirical formula, which 

results in a power-form relationship ZH=320.6I1.56, shown as the 

black line in Fig. 5. Then, taking disdrometer-derived ZH as the 

independent variable and combining it with the ZH–I regression 

relationship, the estimated rainfall intensity (ITRM) can be 

obtained based on TRM. Following this, using the KE–I 

empirical relationship recommended by RUSLE2 (Eq. 13), the 

corresponding unit E (KETRM) is determined. Ultimately, the 

product of ITRM and KETRM yields the accumulative E for each 

minute (ETRM). 

 
Fig. 5. Occurrences of the C-band ZH–I relationship in colored 

dots and the fitting formula in the black line within the TRM-C 

dataset. 

Fig. 6 shows the comparison of the three DSD parameters 

(including D0, log10Nw and µ) obtained using the disdrometer-

derived DSD regression relationship with the measured DSD 

parameters of the disdrometer. D0 is best fitted for small 

raindrops, log10Nw is not exactly symmetrically distributed 

along the diagonal, and the regression results for µ are very 

different from the measured values. In fact, it is difficult to 

estimate µ accurately using conventional regression methods, 

especially in the presence of measurement errors [51]. 

 
Fig. 6. Comparison of D0 (a), log10Nw (b) and µ (c) using DIRM 

with the DSD-derived true value (black dashed line is 

diagonal). 

Fig. 7 (a, b) displays a scatterplot comparison between the 

minute accumulative E (ETRM) calculated by the TRM model 

and the accumulative E (Eo) computed from disdrometer 

observed DSD information. Considering Eo as the true value, 

the black dashed line in the graph represents the diagonal of the 

plot, which then indicates that points closer to this line represent 

better estimation results. It is evident from the graph that both 

the TRM-C and TRM-V datasets exhibit some degree of 

dispersion in TRM results. There are instances of 

overestimation in E using TRM-C set at the Holmes Moss 

station, with some ETRM values exceeding 15 J m-2 min-1, and 

even approaching 30 J m-2 min-1, while DSD-derived Eo shows 

almost no values exceeding 15 J m-2 min-1. 

   
Fig. 7. Comparison of minute accumulative E obtained from 

TRM-C (a), TRM-V (b), DIRM-C (c), DIRM-V (d) dataset 

using TRM with the DSD-derived true value (black dashed line 

is diagonal). 

Similarly, Fig. 7 (c, d) presents a scatterplot comparing the 

cumulative E in minutes (EDIRM) calculated by the DIRM model 

with the Eo from the disdrometer. As can be seen from the 

figure, the DIRM results are all very scattered, with a large 

number of samples far from and below the diagonal line, 

indicating that the EDIRM values are large compared to the true 

values, although most of the EDIRMs do not exceed 5 J m-2 min-

1. 

Table II presents several evaluation metrics for the TRM and 

DIRM results for both the calibrated and validated datasets. It 

is noticeable that all datasets exhibit relatively low Pearson 

correlation coefficients with observed values, for the DIRM 

results. In fact, the Pearson coefficient for the TRM-C dataset 
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is as low as 0.69, which is even lower than the TRM-V dataset. 

In terms of errors, the TRM-V results display higher MAE, 

MBE, and RMSE compared to the TRM-C results. The MBE, 

in particular, exceeds the TRM-C results by a factor of two. The 

fact that the TRM-V has better results may be due to the 

insufficient amount of data and the different time coverage of 

the two datasets, indicating large uncertainties of the TRM. 

Additionally, the NSE for the TRM-C dataset is -1.85, falling 

below zero, indicating a poor simulation accuracy for the TRM 

model. The TRM-C set for TRM displays a bias higher than 12, 

whereas the TRM-V set shows a bias result of less than -1. The 

contrast between the two sets is significant, and with opposing 

signs, reveals that TRM carries a level of uncertainty. The 

Pearson coefficient of DIRM, on the other hand, is much 

smaller than that of TRM, which is 0.39 for both datasets, and 

the MAE is almost twice as large as that of TRM, and the 

absolute value of BIAS is also very high, suggesting that DIRM 

has a much larger uncertainty than TRM. However, its RMSE 

is lower, which may be due to the small range of values in 

EDIRM.  

TABLE II 

EVALUATION METRICS FOR THE TRM RESULTS FOR THE 

TRM-C,  TRM-V, DIRM-C AND DIRM-V DATASETS 

  Pearson MAE MBE RMSE BIAS NSE 

TRM-C 0.69 0.35 -0.08 1.41 12.24 -1.85 

TRM-V 0.75 0.31 0.01 1.12 -1.61 -0.23 

DIRM-C 0.39 0.61 0.54 0.96 -69.53 -0.41 

DIRM-V 0.39 0.62 0.49 0.99 -59.79 -0.51 

C. E estimation using RF models 

During practical radar observations, KDP values below 0.1 deg 

km-1 are vulnerable to the radar inherent noise and other factors, 

which leads to low data reliability. Consequently, this study 

created two RF models to address available and unavailable KDP 

scenarios. RF1, the first model, includes RF[ZH, ZDR, KDP], 

while RF2, the second model, uses RF[ZH, ZDR]. The data used 

in this section is the same as section 4.2, again divided into a 

RF-T dataset and a RF-V dataset. Before constructing the RF 

models, it was essential to determine the number of leaf nodes 

and trees for the model using the RF-T dataset. In this study, the 

MATLAB TreeBagger tool was employed to build the RF. 

Initially, different values for the number of leaf nodes (5, 10, 

20, and 50) were considered. Both models with 5 leaf nodes 

exhibited the lowest mean squared error, and all curves almost 

reached a plateau after 100 trees. Therefore, we set the number 

of trees in the model to 100 and obtain each RF model with 

dual-polarization parameters to retrieve E. 

After establishing the RF models, the input parameters from 

both the RF-T and RF-V datasets were fed into the RF models 

to obtain the respective minute E ERF1 and ERF1, as shown in 

Fig. 8. In Fig. 8 (a, b), it is evident that the scatterplot of ERF1 

versus Eo closely aligns with the diagonal line, indicating that 

the ERF1 value of the RF model closely matches the Eo value 

with a small difference. Likewise, the comparison of ERF2 and 

Eo displayed in Fig. 8 (c, d), as well as the outcome of RF1 

presented in Fig. 8 (a, b), exhibit considerable similarity. 

  
Fig. 8. Comparison of minute accumulative E obtained from 

RF1-T (a), RF1-V (b), RF2-T (c) and RF2-V (d) dataset with 

the DSD-derived true value (black dashed line represents the 

diagonal). 

To quantify the performance of the two RF models, Table III 

presents a total of six statistical metrics. The superiority of the 

RF1 model, which incorporates KDP data, over the RF2 model, 

which does not, is worth noting. Both RF models demonstrate 

remarkable Pearson correlation coefficients of over 0.97, with 

RF1 achieving 0.98 for both the RF-T and RF-V sets. The NSE 

values for RF1 are marginally higher than those for RF2, even 

reaching 0.97 in the RF-T set. In terms of error metrics, the 

MBE values for all the data set are close to zero, except for the 

RF1 RF-V data. Despite a slightly lower performance on the 

RF1 validation dataset compared others, the RF1-V results are 

still acceptable. Furthermore, the validation set of RF1 and RF2 

demonstrates significantly enhanced performance in 

comparison to the TRM model, with an RMSE that is only 

20.54% and 23.21% of the TRM model, respectively. 

TABLE III 

EVALUATION METRICS FOR THE RF RESULTS FOR THE RF-T 

AND RF-V DATASETS 

  Pearson MAE MBE RMSE BIAS NSE 

RF1-T 0.98 0.06 0.00 0.16 -0.23 0.96 

RF1-V 0.98 0.09 0.03 0.23 -3.67 0.95 

RF2-T 0.98 0.06 0.00 0.17 -0.30 0.96 

RF2-V 0.97 0.09 0.03 0.26 -4.15 0.93 

D. Spatial prediction capabilities of TRM and RF model 

In order to assess the spatial predictive capability of the 

models, data from the Lancaster station (located within the 

scanning range of the radar), were fed into the TRM, DIRM and 

RF models built at the Holmes Moss station to assess their 

spatial simulation performance (Fig. 9). In Fig. 9a, the 

comparison results between TRM and the ground truth remain 

wide scattered, mostly concentrated below the diagonal line, 

indicating a clear tendency to overestimate E. EDIRM, on the 

other hand, is lower than the reference value, and the red high-
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density region is concentrated in the lower left part of the plot 

with no distribution along the diagonal (Fig. 9b). In contrast, 

the RF models perform much better (Fig. 9c, d), with most of 

the scatterplot points still closely match the diagonal. 

  
Fig. 9. Comparison of minute accumulative E based on TRM 

(a), DIRM (b), RF1 (c) and RF2 (d) with the DSD-derived true 

value (black dashed line is diagonal) at Lancaster station. 

Table IV shows that the Pearson of ETRM and EDIRM compared 

to the reference values are only 0.73 and 0.32 respectively, and 

their NSEs are even lower than -2. In contrast, Pearson of the 

RF model is 0.97, and the NSE is 0.95, which is slightly lower 

than that of its performance at the Holmes Moss station, but it 

is still significantly better than that of the TRM model. In terms 

of error metrics, the MAE, MBE and RMSE of the RF model 

results are significantly better than those of the TRM and DIRM 

models. In addition, the very high positive BIAS values of the 

TRM model results suggest that there is a greater tendency to 

overestimate E values at Lancaster station. Meanwhile, the very 

poor Pearson and NSE of DIRM indicate that this method of 

introducing DSD as an intermediate variable introduces more 

errors and is not suitable for E estimation, especially cross-

station estimation. 

TABLE IV 

EVALUATION METRICS FOR THE RF RESULTS FOR THE TRM, 

DIRM AND RF DATASETS IN LANCASTER STATION  

  Pearson MAE MBE RMSE BIAS NSE 

TRM 0.73 0.34 -0.21 1.70 35.59 -2.96 

DIRM 0.32 0.30 -0.10 0.66 32.61 -3.48 

RF1 0.97 0.07 0.00 0.21 -0.83 0.94 

RF2 0.97 0.08 0.01 0.23 -1.24 0.93 

E. Spatial prediction capabilities of TRM and RF 

Within the 50 km scanning range of the Hameldon Hill radar, 

two disdrometers are located, as highlighted in black squares in 

Fig. 10. The radar data underwent preprocessing steps, 

including attenuation correction and clutter removal. Non-

rainfall information with ρhv less than 0.98 was eliminated. The 

TRM and RF models, developed using data from the Holme 

Moss station, were applied to estimate E within the radar 

scanning scope. Fig. 10 depicts the Plan Position Indicator (PPI) 

scan of estimated ETRM and ERF at 1139 UTC on August 26, 

2018 and 1605 UTC on September 20, 2018. In the RF 

computations, two models, RF1 and RF2, are used based on 

whether KDP falls within the [0.1,3] range.  The DIRM results 

are not shown in this section due to their poor performance. 

 
Fig. 10. Estimated ETRM (a) and ERF (b) for 11:39 UTC 26 Aug 

2018 and ETRM (c) and ERF (d) for 1605 UTC 20 Sep 2018. The 

black squares show the locations of the two disdrometers in this 

study. 

In Fig. 10, It can be seen that the ERF is overall higher than the 

ETRM, which is in line with the pattern found in Fig. 9 that TRM 

has a tendency to be underestimated. At this time, most of the 

intense rainfall (ZH>40 dBZ) was concentrated northeast of 

Holme Moss station, with ETRMs and ERFs exceeding 200 J m-2 

min-1
 and 400 J m-2 min-1, while the center of the intense rainfall 

was excluded from the E calculations due to the mixing of 

hailstones that created gaps in the graph. It is noteworthy that 

the RF-estimated E is overall higher than the TRM-estimated E 

in Fig. 10, which is in difference to the TRM-estimated bias 

derived from the two disdrometers. However, the BIAS results 

with opposite signs for the RF-T and RF-V sets and the Pearson 

values consistently below 0.80 in Table II also illustrate the 

unreliability of the TRM. In addition, due to radar sensitivity 

limitations, low intensity rainfall is less frequently identified, 

again likely to elicit a different pattern than the disdrometer. 

Fig. 11 compares the cumulative daily E estimated from radar 

data and disdrometer data at Lancaster station. The study 

selected the minute-scale times when the two types of data 

overlap and accumulated to the daily scale. Using the 

disdrometer-derived daily E as the reference, it can be seen that 

all the daily E values estimated using radar data are lower. 

Among them, the RF-based radar samples are closer to the 

diagonal, showing that the values are taken closer to the real 

values. The Pearson values of 0.85 and 0.92 for the TRM and 
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RF, respectively, indicate that the RF outperforms the TRM in 

the case of using real radar. 

 

 
Fig. 11. Comparison of daily cumulative values of E using radar 

data (based on TRM and RF) and disdrometer data (black 

dashed line is diagonal) at Lancaster station in 2018. 

V. DISCUSSION 

The significance of E cannot be underestimated, especially in 

the study of raindrop interaction with land surface processes. 

Disdrometers provide a method to observe DSD parameters, 

allowing for precise estimation of E. However, the station-

based disdrometer makes it challenging to apply this method on 

a large scale. On the other hand, ground-based radar systems 

offer broad scanning coverage, and previous research [27], [28] 

have revealed a strong correlation between dual-polarization 

radar parameters and rainfall microphysical characteristics, 

presenting a potential solution for large-scale E estimation. 

While current radar-based QPE methods have made significant 

strides in providing accurate measurements of rainfall amounts, 

there remains a research gap in estimating E, which reflects the 

impact of raindrops on surface elements. 

Traditional methods for calculating E often rely on empirical 

functions of rainfall intensity. These methods are widely used 

and appreciated for their simplicity. However, they come with 

certain limitations. They tend to oversimplify the complex 

relationship between rainfall microphysical characteristics and 

rainfall intensity, overlooking the diversity and intricacies of 

precipitation [1]. In many cases, these methods calculate E 

primarily based on rainfall intensity, which may not accurately 

reflect the true impact of the rainfall on the surface. Another 

issue is that these methods are typically based on 

meteorological conditions specific to particular regions, 

limiting their applicability to different geographical areas. They 

often disregard regional differences and fail to fully account for 

the geographical and meteorological variations in rainfall 

characteristics. Using the same empirical formula in different 

geographical environments may lead to inaccurate estimations, 

especially in applications where higher precision is required. 

Furthermore, researchers have paid close attention to the choice 

of the forms of the empirical relationship, such as exponential, 

logarithmic and power functions, which have a significant 

effect on the estimation results. Even though empirical methods 

of estimating E are useful in certain situations, they cannot 

comprehensively meet the requirements of different regions and 

various meteorological conditions. Therefore, there is a 

necessity to explore more accurate and widely applicable 

estimation methods to better understand and harness the 

potential of E. 

The DIRM approach, which employs the DSD parameters as 

intermediary variables, is theoretically capable of achieving a 

high degree of accuracy in the E estimation. However, the 

relatively straightforward inversion of the aforementioned DSD 

parameters with the dual-polarization parameters often yields 

unsatisfactory results, introducing a considerable uncertainty 

that significantly impairs the E estimation. This is particularly 

evident when compared to the TRM method, which is based on 

the intensity regression relation and offers a more robust 

estimation of E. It should be noted that there have been some 

studies that have proposed methods for estimating DSD with 

dual-polarization parameters with high accuracy [e.g., 52-56]. 

However, these methods are more complicated and are not 

considered in this study. Future studies will also further 

consider these methods to improve the estimation of DSD by 

dual-polarization radar, thus optimizing the estimation 

capability of E by dual-polarization radar. 

The DREE-RF models, which utilize radar dual-polarization 

parameters, offer an alternative method for estimating E. This 

model capture the interactions between radar signals and 

microphysical information of E, which could yield more precise 

and adaptable results. This approach is particularly 

advantageous in large-scale regions that exhibit diverse rainfall 

patterns and microphysical properties. The utilization of radar 

dual-polarization parameters has the potential to enhance 

comprehension of subtle variations in rainfall microphysics and 

their impact on E. This is due to the association of these 

parameters with microphysical information, as represented by 

DSD information, which drives E through raindrop 

microphysical processes. In addition, radar scans cover a wider 

range of areas compared to station devices, enabling more 

accurate rainfall microphysical information to be extended to 

larger geographic regions. Moreover, this research proposes 

that the RF model, which concentrates on microphysical 

mechanisms, provides a marked benefit for spatial forecasts. 

The DREE-RF results shows potential for improving large-

scale spatial estimations of E accuracy when compared to 

traditional empirical formula methods. This emphasizes the 

possibility of significantly enhancing our comprehension and 

application of E, particularly in areas with diverse rainfall 

patterns and microphysical properties. 

Despite the promising performance of DREE-RF models in 

estimating E, it is vital to consider certain uncertainties. First, 

the disdrometer data itself carries inherent uncertainties, despite 

undergoing quality control. It is challenging to eliminate all 

recording errors entirely, and the instrument itself may 

introduce systematic errors. Second, the amount of disdrometer 

data utilized to construct the model may be limited. This study 

is limited by the use of data from a single disdrometer over a 

period of no more than three years, which may hinder the ability 

of the model to capture variations in rainfall microphysical 

characteristics across diverse regions and over extended time 

periods. Third, due to data constraints, terrain and 

environmental factors that may impact the microphysical 

processes of raindrops were not considered in this research. 

Limitations of the modeling process should be acknowledged 

as important parameters such as elevation, temperature, 
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pressure, and aerosol conditions, among others were not taken 

into account. Additionally, radar data can also introduce 

uncertainty into the E estimation, especially in the spatial 

analysis, where the calculated E still has many gap regions in 

space due to the sensitivity of radar scanning, clutter and beam 

blockage interference, especially over complex terrain. These 

limitations could impact the accuracy and applicability of the 

model under different conditions. Further research need 

broaden the dataset (including radar and disdrometer data), 

integrate supplementary environmental factors, and account for 

extended time scales, in order to optimize the functionality of 

models, and further, to eliminate the gap region of radar using 

suitable means of spatial interpolation. Additionally, future 

studies will consider incorporating more existing regression 

methods and other machine learning techniques to enhance the 

performance and robustness of the model. 

VI. CONCLUSION 

E plays a vital role in comprehending the interaction between 

rainfall and various surface elements. This study presents the 

first comprehensive method for estimating large-scale E using 

dual-polarization parameters. Results were compared with 

empirical regressional relationship and applied to actual radar 

data. The primary objectives of this research were to resolve 

two key issues. First, empirical relationships rely on localized 

observations from disdrometers, hindering estimation of E on a 

larger scale. Second, empirical relationships that are based on 

rainfall intensity demonstrate geographic limitations, making 

them less useful in regions with unique terrain or 

meteorological conditions. The following outlines the specific 

conclusions. 

1. The relationship between dual-polarization parameters 

and E was explored in this study, with Pearson 

coefficients of 0.70 for ZH, 0.36 for ZDR, and 0.94 for KDP. 

2. The results of the TRM based on regression formulas at 

the Holmes Moss station show instances of overestimated 

E, with Pearson correlation coefficients falling below 0.80 

compared to disdrometer results. 

3. The results based on the RF models outperform the TRM 

in terms of Pearson and error indices. All the Pearson 

values with disdrometer results for RF are not lower than 

0.97, and RF1 using the KDP performing slightly better 

than RF2. 

4. RF exhibits superior spatial extension capabilities 

compared to TRM, with Pearson values of 0.73 and 0.97, 

respectively. 

5. In the validation of real radar, the Pearson values of daily 

E estimated from radar data based on TRM and RF are 

0.85 and 0.92, respectively, indicating that RF is better 

than TRM in the case of using real radar. 

By revealing a strong association between dual-polarization 

parameters and E, the research has advanced our understanding 

of the intricate dynamics governing rainfall processes. 

Furthermore, the demonstrated superior performance of the 

DREE-RF over the traditional approaches underscores the 

potential for improved E estimation. This model has great 

potential for use in hydrological modeling, flood forecasting, 

and agricultural planning, and significantly advance the 

understanding of precipitation processes in the context of 

climate change. 

REFERENCES 

[1] Q. Dai et al., “Radar remote sensing reveals potential underestimation of 

rainfall erosivity at the global scale,” Science Advances, vol. 9, no. 32, p. 
eadg5551, Aug. 2023, doi: 10.1126/sciadv.adg5551. 

[2] D. T. Meshesha, A. Tsunekawa, M. Tsubo, N. Haregeweyn, and F. 

Tegegne, “Evaluation of kinetic energy and erosivity potential of simulated 
rainfall using Laser Precipitation Monitor,” CATENA, vol. 137, pp. 237–243, 

Feb. 2016, doi: 10.1016/j.catena.2015.09.017. 

[3] Q. Dai, J. Zhu, S. Zhang, S. Zhu, D. Han, and G. Lv, “Estimation of 
rainfall erosivity based on WRF-derived raindrop size distributions,” 

Hydrology and Earth System Sciences, vol. 24, no. 11, pp. 5407–5422, Nov. 

2020, doi: 10.5194/hess-24-5407-2020. 
[4] K. G. Renard, Predicting Soil Erosion by Water: A Guide to Conservation 

Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. 

Department of Agriculture, Agricultural Research Service, 1997. 
[5] USDA-Agricultural Research Service, RUSLE2 Science Documentation. 

Washington, D.C., 2013. 

[6] L. Gutiérrez-Loza et al., “Air–sea CO2 exchange in the Baltic Sea—A 
sensitivity analysis of the gas transfer velocity,” Journal of Marine Systems, 

vol. 222, p. 103603, Oct. 2021, doi: 10.1016/j.jmarsys.2021.103603. 
[7] D. T. Ho, L. F. Bliven, R. Wanninkhof, and P. Schlosser, “The effect of 

rain on air-water gas exchange,” Tellus B, vol. 49, no. 2, pp. 149–158, 1997, 

doi: 10.1034/j.1600-0889.49.issue2.3.x. 
[8] S. Alt and A. Kollar, “Hydrodynamics of raindrop impact stimulate 

ascospore discharge of Venturia inaequalis,” Fungal Biology, vol. 114, no. 4, 

pp. 320–324, Apr. 2010, doi: 10.1016/j.funbio.2010.01.009. 
[9] T. Gilet and L. Bourouiba, “Fluid fragmentation shapes rain-induced foliar 

disease transmission,” Journal of The Royal Society Interface, vol. 12, no. 

104, p. 20141092, Mar. 2015, doi: 10.1098/rsif.2014.1092. 
[10] S. W. Park, J. K. Mitchell, and G. D. Bubenzer, “Splash erosion 

modeling: physical analyses,” Transactions of the ASAE, vol. 25, no. 2, pp. 

357–361, 1980. 
[11] J. Nyssen et al., “Rainfall erosivity and variability in the Northern 

Ethiopian Highlands,” Journal of Hydrology, vol. 311, no. 1, pp. 172–187, 

Sep. 2005, doi: 10.1016/j.jhydrol.2004.12.016. 
[12] C. E. Carter, J. D. Greer, H. J. Braud, and J. M. Floyd, “Raindrop 

Characteristics in South Central United States,” Transactions of the ASAE, 

vol. 17, no. 6, pp. 1033–1037, 1974. 
[13] D. T. Meshesha, A. Tsunekawa, M. Tsubo, N. Haregeweyn, and E. Adgo, 

“Drop size distribution and kinetic energy load of rainfall events in the 

highlands of the Central Rift Valley, Ethiopia,” Hydrological Sciences 
Journal, vol. 59, no. 12, pp. 2203–2215, Dec. 2014, doi: 

10.1080/02626667.2013.865030. 

[14] W. H. Wischmeier and D. D. Smith, “Rainfall energy and its relationship 
to soil loss,” Eos, Transactions American Geophysical Union, vol. 39, no. 2, 

pp. 285–291, 1958, doi: 10.1029/TR039i002p00285. 

[15] L. C. Brown and G. R. Foster, “Storm erosivity using idealized intensity 
distributions,” Transactions of the ASAE, vol. 30, no. 2, pp. 379–386, 1987. 

[16] C. J. Rosewell, “Rainfall Kinetic Energy in Eastern Australia,” Journal of 

Climate & Applied Meteorology, vol. 25, no. 11, pp. 1695–1701, Nov. 1986, 
doi: 10.1175/1520-0450(1986)025<1695:RKEIEA>2.0.CO;2. 

[17] A. A. Fenta et al., “Improving satellite-based global rainfall erosivity 

estimates through merging with gauge data,” Journal of Hydrology, vol. 620, 
p. 129555, May 2023, doi: 10.1016/j.jhydrol.2023.129555. 

[18] P. Panagos et al., “Projections of soil loss by water erosion in Europe by 

2050,” Environmental Science & Policy, vol. 124, pp. 380–392, Oct. 2021, 
doi: 10.1016/j.envsci.2021.07.012. 

[19] P. Panagos et al., “Global rainfall erosivity assessment based on high-

temporal resolution rainfall records,” Sci Rep, vol. 7, no. 1, Art. no. 1, Jun. 
2017, doi: 10.1038/s41598-017-04282-8. 

[20] Y. Xie, S. Yin, B. Liu, M. A. Nearing, and Y. Zhao, “Models for 

estimating daily rainfall erosivity in China,” Journal of Hydrology, vol. 535, 
pp. 547–558, Apr. 2016, doi: 10.1016/j.jhydrol.2016.02.020. 

[21] J. Zhu, S. Zhang, Q. Yang, Q. Shen, L. Zhuo, and Q. Dai, “Comparison 

of rainfall microphysics characteristics derived by numerical weather 
prediction modelling and dual-frequency precipitation radar,” Meteorological 

Applications, vol. 28, no. 3, p. e2000, 2021, doi: 10.1002/met.2000. 

[22] J. Wang, L. Zhuo, D. Han, Y. Liu, and M. A. Rico-Ramirez, 
“Hydrological Model Adaptability to Rainfall Inputs of Varied Quality,” 

Page 32 of 34Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11 

 

 
Water Resources Research, vol. 59, no. 2, p. e2022WR032484, 2023, doi: 

10.1029/2022WR032484. 

[23] V. N. Bringi, M. A. Rico-Ramirez, and M. Thurai, “Rainfall Estimation 

with an Operational Polarimetric C-Band Radar in the United Kingdom: 

Comparison with a Gauge Network and Error Analysis,” Journal of 
Hydrometeorology, vol. 12, no. 5, pp. 935–954, Oct. 2011, doi: 10.1175/JHM-

D-10-05013.1. 

[24] Q. Dai, Q. Yang, D. Han, M. A. Rico-Ramirez, and S. Zhang, 
“Adjustment of Radar-Gauge Rainfall Discrepancy Due to Raindrop Drift and 

Evaporation Using the Weather Research and Forecasting Model and Dual-

Polarization Radar,” Water Resources Research, vol. 55, no. 11, pp. 9211–
9233, 2019, doi: 10.1029/2019WR025517. 

[25] Q. Dai and D. Han, “Exploration of discrepancy between radar and gauge 

rainfall estimates driven by wind fields,” Water Resources Research, vol. 50, 
no. 11, pp. 8571–8588, 2014, doi: 10.1002/2014WR015794. 

[26] Y. Song, D. Han, and J. Zhang, “Radar and rain gauge rainfall 

discrepancies driven by changes in atmospheric conditions,” Geophysical 
Research Letters, vol. 44, no. 14, pp. 7303–7309, 2017, doi: 

10.1002/2017GL074493. 

[27] V. N. Bringi, V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, 

and M. Schoenhuber, “Raindrop Size Distribution in Different Climatic 

Regimes from Disdrometer and Dual-Polarized Radar Analysis,” Journal of 

the Atmospheric Sciences, vol. 60, no. 2, pp. 354–365, Jan. 2003, doi: 
10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2. 

[28] M. Le and V. Chandrasekar, “Raindrop Size Distribution Retrieval From 

Dual-Frequency and Dual-Polarization Radar,” IEEE Transactions on 
Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1748–1758, May 2012, 

doi: 10.1109/TGRS.2011.2167683. 

[29] Y. Wang, J. Zhang, P.-L. Chang, C. Langston, B. Kaney, and L. Tang, 
“Operational C-Band Dual-Polarization Radar QPE for the Subtropical 

Complex Terrain of Taiwan,” Advances in Meteorology, vol. 2016, p. 

e4294271, Dec. 2015, doi: 10.1155/2016/4294271. 
[30] V. N. Bringi, G.-J. Huang, V. Chandrasekar, and E. Gorgucci, “A 

Methodology for Estimating the Parameters of a Gamma Raindrop Size 

Distribution Model from Polarimetric Radar Data: Application to a Squall-
Line Event from the TRMM/Brazil Campaign,” Journal of Atmospheric and 

Oceanic Technology, vol. 19, no. 5, pp. 633–645, May 2002, doi: 

10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2. 
[31] M. A. Rico-Ramirez, “Adaptive Attenuation Correction Techniques for 

C-Band Polarimetric Weather Radars,” IEEE Trans. Geosci. Remote Sensing, 

vol. 50, no. 12, pp. 5061–5071, Dec. 2012, doi: 
10.1109/TGRS.2012.2195228. 

[32] X. Huang et al., “Attenuation correction for C-band dual-polarization 

radar reflectivityfactor and the accuracy improvement of precipitation 
estimation,” Journal of the Meteorological Sciences, vol. 38, no. 2, pp. 237–

246, Apr. 2018. 

[33] J. S. Marshall and W. M. K. Palmer, “THE DISTRIBUTION OF 
RAINDROPS WITH SIZE,” Journal of the Atmospheric Sciences, vol. 5, no. 

4, pp. 165–166, Aug. 1948, doi: 10.1175/1520-
0469(1948)005<0165:TDORWS>2.0.CO;2. 

[34] M. Liao and A. P. Barros, “Toward Optimal Rainfall for Flood Prediction 

in Headwater Basins—Orographic QPE Error Modeling Using Machine 
Learning,” Water Resources Research, vol. 59, no. 11, p. e2023WR034456, 

2023, doi: 10.1029/2023WR034456. 

[35] T.-S. Yo, S.-H. Su, J.-L. Chu, C.-W. Chang, and H.-C. Kuo, “A Deep 
Learning Approach to Radar-Based QPE,” Earth and Space Science, vol. 8, 

no. 3, p. e2020EA001340, 2021, doi: 10.1029/2020EA001340. 

[36] J. Zhang et al., “A Dual-Polarization Radar Synthetic QPE for 
Operations,” Journal of Hydrometeorology, vol. 21, no. 11, pp. 2507–2521, 

Oct. 2020, doi: 10.1175/JHM-D-19-0194.1. 

[37] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of 
applications and future directions,” ISPRS Journal of Photogrammetry and 

Remote Sensing, vol. 114, pp. 24–31, Apr. 2016, doi: 

10.1016/j.isprsjprs.2016.01.011. 
[38] Q. Yang, Q. Dai, S. Zhang, K. Zhu, and L. Zhang, “Raindrop Size 

Distribution Retrieval Model for X-Band Dual-Polarization Radar in China 

Incorporating Various Climatic and Geographical Elements,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022, 

doi: 10.1109/TGRS.2022.3168586. 

[39] S. Zhou and L. Mentch, “Trees, forests, chickens, and eggs: when and 
why to prune trees in a random forest,” Statistical Analysis and Data Mining: 

The ASA Data Science Journal, vol. 16, no. 1, pp. 45–64, 2023, doi: 

10.1002/sam.11594. 

[40] B. S. Pickering, R. R. Neely III, and D. Harrison, “The Disdrometer 

Verification Network (DiVeN): a UK network of laser precipitation 

instruments,” Atmospheric Measurement Techniques, vol. 12, no. 11, pp. 

5845–5861, Nov. 2019, doi: 10.5194/amt-12-5845-2019. 

[41] Q. Yang, Q. Dai, D. Han, Y. Chen, and S. Zhang, “Sensitivity analysis of 
raindrop size distribution parameterizations in WRF rainfall simulation,” 

Atmospheric Research, vol. 228, pp. 1–13, Nov. 2019, doi: 

10.1016/j.atmosres.2019.05.019. 
[42] D. Harrison, S. Georgiou, N. Gaussiat, and A. Curtis, “Long-term 

diagnostics of precipitation estimates and the development of radar hardware 

monitoring within a radar product data quality management system,” 
Hydrological Sciences Journal, vol. 59, no. 7, pp. 1277–1292, Jul. 2014, doi: 

10.1080/02626667.2013.841316. 

[43] Y. Wang and V. Chandrasekar, “Algorithm for Estimation of the Specific 
Differential Phase,” Journal of Atmospheric and Oceanic Technology, vol. 26, 

no. 12, pp. 2565–2578, Dec. 2009, doi: 10.1175/2009JTECHA1358.1. 

[44] H. Huang, G. Zhang, K. Zhao, and S. E. Giangrande, “A Hybrid Method 
to Estimate Specific Differential Phase and Rainfall With Linear 

Programming and Physics Constraints,” IEEE Transactions on Geoscience 

and Remote Sensing, vol. 55, no. 1, pp. 96–111, Jan. 2017, doi: 

10.1109/TGRS.2016.2596295. 

[45] V. N. Bringi, V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, “An 

Examination of Propagation Effects in Rainfall on Radar Measurements at 
Microwave Frequencies,” Journal of Atmospheric and Oceanic Technology, 

vol. 7, no. 6, pp. 829–840, Dec. 1990, doi: 10.1175/1520-

0426(1990)007<0829:AEOPEI>2.0.CO;2. 
[46] T. Islam, M. A. Rico-Ramirez, D. Han, and P. K. Srivastava, “Sensitivity 

associated with bright band/melting layer location on radar reflectivity 

correction for attenuation at C-band using differential propagation phase 
measurements,” Atmospheric Research, vol. 135–136, pp. 143–158, Jan. 

2014, doi: 10.1016/j.atmosres.2013.09.003. 

[47] W. Hall, M. A. Rico-Ramirez, and S. Krämer, “Offshore wind turbine 
clutter characteristics and identification in operational C-band weather radar 

measurements,” Quarterly Journal of the Royal Meteorological Society, vol. 

143, no. 703, pp. 720–730, 2017, doi: 10.1002/qj.2959. 
[48] C. W. Ulbrich, “Natural Variations in the Analytical Form of the 

Raindrop Size Distribution,” Journal of Climate and Applied Meteorology, 

vol. 22, no. 10, pp. 1764–1775, 1983. 
[49] M. N. Anagnostou, E. N. Anagnostou, J. Vivekanandan, and F. L. Ogden, 

“Comparison of Two Raindrop Size Distribution Retrieval Algorithms for X-

Band Dual Polarization Observations,” Journal of Hydrometeorology, vol. 9, 
no. 3, pp. 589–600, Jun. 2008, doi: 10.1175/2007JHM904.1. 

[50] P. Barber and C. Yeh, “Scattering of electromagnetic waves by arbitrarily 

shaped dielectric bodies,” Appl. Opt., AO, vol. 14, no. 12, pp. 2864–2872, 
Dec. 1975, doi: 10.1364/AO.14.002864. 

[51] E. Gorgucci, V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 

“Estimation of Raindrop Size Distribution Parameters from Polarimetric 
Radar Measurements,” Journal of the Atmospheric Sciences, vol. 59, no. 15, 

Art. no. 15, Aug. 2002, doi: 10.1175/1520-
0469(2002)059<2373:EORSDP>2.0.CO;2. 

[52] E. Yoshikawa, V. Chandrasekar, T. Ushio, and Z. Kawasaki, “Raindrop 

size distribution (DSD) retrieval for X-band dual-polarization radar,” 2012 
IEEE International Geoscience and Remote Sensing Symposium, Munich, 

Germany, 2012, pp. 2411-2414, doi: 10.1109/IGARSS.2012.6351005. 

[53] A. Adachi, K. Takahisa, and Y. Hiroshi, “Estimation of raindrop size 
distribution and rainfall rate from polarimetric radar measurements at 

attenuating frequency based on the self-consistency principle,” Journal of the 

Meteorological Society of Japan. Ser. II 93.3, pp. 359-388, 2015, doi: 
10.2151/jmsj.2015-020. 

[54] V.Mahale, G. Zhang, M. Xue, J. Gao, and H. Reeves, “Variational 

Retrieval of Rain Microphysics and Related Parameters from Polarimetric 
Radar Data with a Parameterized Operator,” Journal of Atmospheric and 

Oceanic Technology, vol. 36, no. 12, pp. 2483-2500, 2015, doi: 
10.1175/JTECH-D-18-0212.1 . 
[55] H. Huang, K. Zhao, G. Zhang, D. Hu, and Z. Yang, “Optimized raindrop 

size distribution retrieval and quantitative rainfall estimation from 

polarimetric radar,” Journal of Hydrology, vol. 580, pp. 124248, 2020, doi: 
10.1016/j.jhydrol.2019.124248. 

[56] Y. Sun, H. Xiao, H. Yang, L. Feng, H. Chen and L. Luo, “An Inverse 

Mapping Table Method for Raindrop Size Distribution Parameters Retrieval 
Using X-band Dual-Polarization Radar Observations,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 58, no. 11, pp. 7611-7632, Nov. 2020, 

doi: 10.1109/TGRS.2020.2982687. 

 

Page 33 of 34 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 

 

 

 

 Jingxuan Zhu received the B.S. degree 

from Nanjing Normal University, 

Nanjing, China, in 2015, where she is 

currently pursuing the Ph.D. degree in 

cartography and geographical information 

system. 

Her research interests include rainfall 

estimation and prediction based on radar 

remote sensing and rainfall kinetic energy 

and rainfall erosivity estimation on large scale. 

 

 Qiang Dai (Member, IEEE) received the 

Ph.D. degree in civil engineering from the 

University of Bristol, Bristol, U.K., in 

2014. 

He is a currently Professor with the School 

of Geography, Nanjing Normal University, 

Nanjing, China. His research interests are 

meteorology, hazards risk assessment, 

radar hydrology, and numerical weather 

prediction model. His key expertise within the center exists in 

meteorology, hazards, radar hydrology, and numerical weather 

prediction model. 

 

 Yuanyuan Xiao received the B.S. degree 

from Jiangxi Normal University, 

Nanchang, China, in 2022. 

She is currently pursuing the Ph.D. degree 

in cartography and geographical 

information system from Nanjing Normal 

University, Nanjing, China. Her research 

interests include the relationship between 

rainfall and aerosols. 

 

 

Jun Zhang received the Ph.D. degree in 

civil engineering from the University of 

Bristol, Bristol, U.K., in 2017. 

She is currently an Associate Professor 

with the School of Geography, Nanjing 

Normal University, Nanjing, China. Her 

research interests are the simulation of 

water cycle in multiple scales and 

resolutions, groundwater simulations, 

urban flood. 

 

Lu Zhuo received the M.Eng. and Ph.D. 

degrees in civil engineering from the 

University of Bristol (UoB), Bristol, U.K., 

in 2011 and 2016, respectively. 

She is currently working as a Lecturer 

with Cardiff University, Cardiff, UK. Her 

research interests include multiple natural 

hazards modelling and monitoring (e.g., 

floods, landslides, and earthquake), 

remote sensing of environment, and disaster risk management.  

 

Dawei Han was born in Tianjin City, 

China, in 1961. He received the B.Eng. 

and M.Sc. degrees in water conservancy 

from the North China University of Water 

Conservancy and Electric Power, 

Zhengzhou, China, in 1982 and 1984, 

respectively, and the Ph.D. degree in 

radar hydrology from the University of 

Salford, Salford, U.K., in 1991. 

He is currently a Professor of hydroinformatics with the 

Department of Civil Engineering, Uniersity of Bristol, Bristol, 

U.K. His research interests include hydroinformatics, real-time 

flood forecasting, flood risk management, remote sensing and 

geographic information system, natural hazards, and water 

resources management. 

 

 

Page 34 of 34Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


