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Abstract. Medical image segmentation presents significant challenges
due to the high cost of acquiring precise annotations. The task becomes
even more difficult when using weak annotations, such as scribbles, as
these annotations provide only limited information about the region of
interest. Scribble annotations, however, are easier to acquire in practice,
making them a more feasible option. Despite this, training neural net-
works for segmentation based solely on scribble annotations remains com-
plex. We propose an innovative Expansion and Modification (ExMod)
neural network architecture to tackle the challenges inherent in weakly
supervised medical image segmentation. While scribble-based supervi-
sion has been explored in prior works, ExMod introduces a unique set of
enhancements tailored to overcome the limitations of existing methods.
Built upon the U-Net framework, our architecture stands out by incorpo-
rating multiple advancements designed to boost segmentation accuracy
under weak supervision. ExMod introduces additional convolutional lay-
ers for richer feature extraction and batch normalization layers to im-
prove training stability and convergence. These modifications lead to su-
perior segmentation performance, particularly when using only scribble
annotations. Compared to existing scribble-based methods, ExMod cap-
tures intricate image structures more effectively, offering better accuracy
with fewer annotations and setting a new benchmark for weakly super-
vised segmentation. The proposed method was tested on two datasets,
i.e., MSCMRseg and ACDC.

Keywords: Machine learning · deep learning · weakly supervised learn-
ing · medical image segmentation · scribble.

1 Introduction

Weakly supervised learning requires labeling only a subset of pixels, making it
suitable for various domains, including medical image analysis. This approach
has gained attention in recent years due to the challenges of fully supervised
learning, which demands extensive pixel-wise annotations that are time-consuming
and labor-intensive. Over the past decade, weakly supervised neural networks
have been proposed for semantic segmentation in various domains using bound-
ing boxes, scribbles, points, image-level labels, and multiple instance learning
(MIL). However, few are tailored for medical imaging. Advancements in neural
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networks focus on improving efficiency, interpretability, and performance. Fine-
tuning pre-trained models on new data is common. Hardware acceleration with
GPUs and TPUs enables faster training, though it is costly. Alternatively, model
expansion and modification by adding layers or altering architecture can enhance
performance without expensive hardware.

To address these challenges, we propose a model expansion and modification
designed for medical image segmentation using only scribble annotations. Our
novel framework under weak supervision demonstrates promising results and
includes the following contributions:

• A new weakly supervised segmentation framework relying solely on scribble
annotations, expansion of neural network capabilities with updated architecture
incorporating the latest advancements.

2 Related Work

Scribble annotations represent one of the key approaches in weakly supervised
learning, which has been developed to leverage weak forms of supervision, such
as noisy annotations, image-level labels, and sparse annotations. Among these,
the scribble annotation method has emerged as one of the most widely utilized
due to its simplicity and the reduced burden it places on annotators [2]. However,
the effectiveness of scribble annotations in achieving optimal image segmenta-
tion performance depends on several factors, including the complexity of the
segmentation task [22], the capabilities of the segmentation algorithm [10], and
the required level of accuracy. In general, superior segmentation results are more
likely to be obtained when the scribble annotations are both detailed and precise.

Model expansion refers to enhancing or extending an existing machine learn-
ing or deep learning model. This can include increasing the model’s capacity
by adding more layers or parameters to the neural network architecture. An-
other approach is transfer learning, where a pre-trained model is adapted and
fine-tuned for a specific task. For example, [21] extended the U-Net architec-
ture to develop UNet++, specifically designed for medical image segmentation.
Their method involves incorporating U-Net models of different sizes into a sin-
gle framework to improve segmentation accuracy. Similarly, [6] introduced the
AMO-Net architecture, which follows an encoding-decoding structure. In their
model, the singular encoder-decoder structure was extended to two layers, result-
ing in improved performance and more effective outcomes. Data augmentation
prevents model overfitting and enhances neural network generalization. Mix-up
augmentation, introduced by [18], combines two images and their labels using a
blending procedure, expanding the training dataset [4, 7, 8, 18]. This method,
similar to traditional techniques like flipping and rotation, creates mixed data
samples through linear interpolation. [8] proposed Puzzle Mix, which leverages
saliency and local statistics for better augmentation, extending the process to
multiple images for increased diversity. This extended method, Co-Mixup, gen-
erates varied mixed images. Despite appearing unrealistic, these mixed labels
provide additional information, improving model training [3]. Consistency reg-
ularization is commonly applied in weakly supervised segmentation to improve
performance [16]. This technique leverages the advantage of maintaining consis-
tent segmentation results despite variations or perturbations in the input images.
By enforcing consistency, the model ensures that segmentation predictions re-
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main stable, even when the images undergo transformations or augmentations,
thereby enhancing the overall robustness of the segmentation process [13].

3 Method

This section details an enhanced U-Net method for segmenting medical images
using scribble annotations. Key improvements include adding convolutional lay-
ers in both the encoder and decoder paths to extract richer features and using
batch normalization to stabilize and speed up training. These structural changes
enhance the convergence rate and final segmentation performance, especially
with scribble annotations. Compared to existing scribble-based methods, ExMod
captures intricate structures more effectively, yielding more accurate results. The
overall framework is shown in Figure 2.

3.1 Mix Augmentation

In this study, we applied the Mix-up augmentation technique in two stages,
integrating it with scribble supervision to enhance the segmentation process.
The first stage involves augmenting the data by combining two images with their
annotations (x0, y0), (x1, y1). This step aims to maximize the saliency within
the mixed image and leverage a finer gradient flow across a larger portion of the
labeled pixels, thereby enriching the supervision provided by the scribbles.

xm
01 = M(x0, x1), ym01 = M(y0, y1)

Where x0, x1 The two input images. y0, y1 The corresponding labels (or
segmentation masks) for the images x0 and x1. xm

01 The resulting mixed image
obtained from combining x0 and x1 using the mixing function M . ym01 The mixed
label corresponding to the mixed image. M(x0, x1) The mixing function that
combines the two images pixel by pixel. Similarly, M(y0, y1) mixes the labels.

Here is how the mixed result transported from two images that were denoted
as (xm

01, y
m
01) and computed as:

M(a0, a1) = (1− z)⊙ΠT
1 a0 + z ⊙ΠT

2 a1

{Π0, Π1, z} = arg max
Π0,Π1,z

[
(1− z)⊙ΠT

0 s(x0) + z ⊙ΠT
1 s(x1)

]
Where a0, a1 two inputs being mixed. z a mask controlling the proportion of each
input that is mixed. ⊙ Element-wise multiplication. ΠT

0 , ΠT
1 Transportation

matrices performing spatial transformations on the inputs a0 and a1.

M(S(x0), S(x1)) = S(M(x0, x1))

After Applying a randomly rotated rectangular region to obscure part of the
image, converting the occluded scribbles into the background knowing that the
mask has dimension n× n. In our experiment, the size is set as 32×32, and the
previous equation becomes:

(1− 1O)⊙M(ŷ0, ŷ1) = S((1− 1O)⊙ xm
01)
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Where S(·) represents the segment and the corresponding segmentation is
denoted as ŷ = S(x). 1O denotes a binary mask representing the randomly
rotated rectangular region.

The second stage introduces random occlusion, where specific areas of the
mixed images containing scribbles are replaced with the background. This proce-
dure reduces the number of scribbles in the training data, simulating incomplete
annotations. As demonstrated by [17], this technique has been shown to improve
performance in object localization tasks. For the mixing strategy, we adopted the
Puzzle Mix method proposed by [8], which effectively augments images while pre-
serving critical structural information. This method was successfully integrated
into our framework, contributing to the overall performance of the segmentation
model.

3.2 Consistency Regularization

In this section, we adopt two consistency regularization methods in our exper-
iment, both of which have demonstrated strong performance in prior work [19]
and have proven effective in our proposed approach.

First, global consistency, designed to enforce mix-invariant features. This
process requires the segmentation of an image to remain consistent under two
conditions: (1) the original image and (2) the mixed image. Specifically, this
regularization applies consistency between the segmentations of the original im-
ages {x0, x1} and the segmentation of the mixed image {x1

0}. Additionally, the
random occlusion operation is considered during the mixing process, which is
explained earlier.

The next loss function was applied to penalize inconsistent segmentations
and calculated using the negative cosine similarity between the segmentation of
the original image and the mixed image. The loss function for global consistency
is expressed as:

Lcon-g =
1

2
[Lncs(p01, q01) + Lncs(p10, q10)]

Here, p01 = (1 − 1O) ⊙ M(ŷ0, ŷ1) and q01 = S((1 − 1O) ⊙ x1
0) represent

the mixed segmentation and the segmentation of the mixed image, respectively,
with similar expressions for p10 and q10. The term Lncs(·, ·) denotes the negative
cosine similarity between the segmentations.

Second, local consistency, is introduced to eliminate disconnected results aris-
ing from unlinked regions in the mixed image. This loss function is also calculated
using negative cosine similarity, serving as a metric for the distance between the
predicted segmentation and its refined version after applying a morphological
operation. The morphological operation extracts the largest connected area for
each non-background class in the input image. We applied this operation when
computing the negative cosine similarity for images {x0} and {x1}, as proposed
by [19], which has proven effective in improving segmentation results during the
image mixing process.

The local consistency loss is defined as:

Lcon-l =
1

2
[Lncs(ŷ0, C(ŷ0)) + Lncs(ŷ1, C(ŷ1))]
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Where C(·) represents the morphological operation applied to the segmen-
tation result, which outputs the largest connected region for each class in the
image.

3.3 Model Expansion and Modification

In this section, we present the proposed enhancements to the U-Net architec-
ture, originally introduced in 2015 [12], which has been widely recognized for
its effectiveness in medical image segmentation. While the original design has
proven robust, the challenges associated with weakly supervised learning neces-
sitate modifications to enhance model predictions. Our updated U-Net structure
demonstrates significant improvements, surpassing state-of-the-art accuracy per-
formance.

Key modifications to improve accuracy performance by doubling the num-
ber of convolutional layers in the encoder and decoder paths, enhancing feature
extraction and segmentation accuracy [12]. We also incorporated batch normal-
ization layers, which stabilize and accelerate training, improving stability, ef-
ficiency, and generalization capabilities, making it more resilient to challenges
encountered during training [11]. Additionally, we replaced constant padding
with dynamic padding to prevent information loss and reduce computational
overhead. These adjustments resulted in smoother image outputs and less noise
compared to the CycleMix method [19]. Our method was tested against Cy-
cleMix using the same datasets and annotation types, demonstrating superior
performance.

Ultimately, our modifications resulted in smoother image outputs, facilitating
label generation with reduced noise compared to the CycleMix method [19] as
shown in Figure 1. We compared our proposed method and CycleMix, using the
same datasets and data annotation types to evaluate performance.

Fig. 1. Comparison between our proposed method and CycleMix method
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Fig. 2. The framework for the proposed method

4 Experiment

4.1 Dataset Explain

MSCMRseg dataset [23, 24] consists of late gadolinium enhancement (LGE)
MRI images from 45 patients with cardiomyopathy. It includes three segmenta-
tion classes: right ventricle (RV), left ventricle (LV), and myocardium (MYO).
Manually labeled scribble masks for this task, provided by [19]. The dataset was
randomly split into 25 training, 5 validation, and 20 test images. 35 images were
annotated with scribbles using the same approach as in the ACDC dataset.

ACDC dataset [1] consists of two-dimensional Cine-MRI images collected
from 100 patients, with manual annotations for the right ventricle (RV), left
ventricle (LV), and myocardium (MYO). The dataset was randomly divided into
70 training, 15 validation, and 15 test images. Of the 100 images, 35 received
scribble annotations, targeting key anatomical structures: RV, MYO, and LV.
The scribbles covered 27.7% of the RV, 31.3% of the MYO, 24.1% of the LV, and
3.4% of the background, reflecting sparse but strategically placed annotations
for effective segmentation.

4.2 Evaluation Metric and Implementation Details

This paper utilized the Dice Coefficient proposed by [5]. The Dice Coefficient cal-
culates the similarity between the ground truth masks and the predicted masks.
The proposed method was implemented in the PyTorch environment. The im-
plementation was conducted in Google Colab. The optimizer used is AdamW
[9], with a learning rate 1 ∗ 10−4.

5 Results

The performance of our proposed segmentation method is summarized in Table
1 the Dice Similarity Coefficient for MSCMRseg and ACDC datasets.
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5.1 Class-Specific Performance

The RV class achieved a maximum Dice score of 0.94 a mean score of 0.88 on
the MSCMRseg dataset, and a maximum score of 0.97 and a mean score of
0.89 on the ACDC dataset. Despite its small size, our method demonstrates
high accuracy in segmenting the RV class. For the MYO class, the MSCMRseg
dataset showed a maximum Dice score of 0.90 and a mean score of 0.84, while the
ACDC dataset showed a maximum score of 0.94 and a mean score of 0.88. This
underscores the robustness of our method in accurately segmenting the MYO
class, particularly on the ACDC dataset. The LV class exhibited the highest
performance, with a maximum Dice score of 0.97, a mean score of 0.93 on the
MSCMRseg dataset, and a maximum score of 0.98 and a mean score of 0.93 on
the ACDC dataset. These results highlight the effectiveness of our method in
segmenting larger anatomical structures.

5.2 Average Performance Metrics

The average Dice scores across the three classes (RV, MYO, and LV) indicate
that the MSCMRseg dataset achieved an overall mean score of 0.88, while the
ACDC dataset achieved a mean of 0.90. This distinction suggests that our
method performs particularly well on the ACDC dataset, contributing to its
overall efficacy in medical image segmentation.

5.3 Qualitative Analysis

Figure 3 presents visual comparisons of the segmentation results from our pro-
posed method against the ground truth masks. The qualitative assessment high-
lights our method’s accuracy and reliability in delineating anatomical structures,
supporting the quantitative results in Table 1.

Our findings show that our method excels in segmenting both small and large
anatomical structures, particularly the MYO and LV classes. The consistently
high Dice scores across both datasets demonstrate the robustness and adapt-
ability of our approach, essential for clinical applications where precision and
accuracy are crucial.

Table 1. The performance indicates in Dice Scores of the proposed method on
MSCMRseg and ACDC datasets

MSCMRseg ACDC
Maximum Mean Maximum Mean

RV 0.94 0.88 0.97 0.89
MYO 0.90 0.84 0.94 0.88
LV 0.97 0.93 0.98 0.93
Avg 0.94 0.88 0.96 0.90
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Fig. 3. Results on ACDC dataset compared with the ground truth

Table 2. The performance of Dice Scores on ACDC dataset of proposed results com-
pared with state-of-the-art weakly-supervised methods using Scribble annotation

Method LV MYO RV Avg
UNet_CRF 0.76 0.66 0.59 0.67
UNet_wpce 0.78 0.67 0.56 0.67
UNet_pce 0.84 0.76 0.69 0.76
CycleMix 0.88 0.79 0.86 0.84

Ours (ACDC) 0.93 0.88 0.89 0.90

5.4 Comparison With other Weakly Supervised Methods

The performance of our proposed method was evaluated against various state-
of-the-art weakly supervised learning techniques using scribble annotations. As
summarized in Table 2, the results demonstrate the effectiveness of our approach
on the ACDC dataset. Table 2 presents the Dice scores achieved by our method
alongside those from several notable weakly supervised learning approaches, or-
ganized in ascending order for clear comparison. The methodologies included are
referenced from previous studies [14, 15, 19, 20]. Notably, the CycleMix method
[19], previously regarded as the benchmark, achieved an average Dice score of
84% on the ACDC dataset, while our method attained a significantly higher av-
erage score of 90%. This improvement highlights the effectiveness of our model
in accurately segmenting cardiac structures.

In summary, our method outperformed previous state-of-the-art results, set-
ting new benchmarks for average Dice scores on the ACDC dataset. Improve-
ments in model architecture and the use of weakly supervised learning signifi-
cantly advanced segmentation accuracy in medical image analysis.

6 Conclusion

In conclusion, this paper introduces an enhanced U-Net framework using scrib-
ble annotations for medical image segmentation, significantly improving perfor-
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mance. Key modifications include increased network depth, batch normalization,
and dynamic padding, enhancing both accuracy and efficiency. The proposed
method outperforms current weakly supervised techniques, setting a new bench-
mark and demonstrating the potential of using scribble annotations in clinical
settings where detailed annotations are impractical. Future work will explore
data augmentation techniques and the integration of various weak annotations
to further improve robustness and generalizability, ultimately enhancing medical
image analysis outcomes.
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