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Abstract
State‐of‐the‐art model‐based predictive control techniques for AC motor drives are
reviewed in this paper. A plethora of MPC algorithms with vast number of complex ideas
has emerged in the last decade and this work makes an attempt to present those concepts
in an intuitive, comprehensive and hierarchical manner. More emphasis is laid on finite
control set model predictive control (FCS‐MPC) methods, especially predictive torque
control (PTC) and predictive current control (PCC) because of their emergence as the
prime focus of ongoing research in energy efficient drive control. The main focus of this
review is to analyse the most recent work, signpost the future research directions, identify
the core challenges and consolidate the ideas into a coherent and concise reference. A
comprehensive classification based on actuation signals is presented and reviewed in
detail. Then, the important challenges in MPC implementation, such as computational
complexity reduction and delay compensation, weighting factor selection for multi‐
objective cost functions, steady state performance and ripple reduction, parameter vari-
ations/model mismatching and achieving extended prediction horizons, are surveyed and
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most relevant solutions are reviewed. A detailed analysis of the last five years related work
is given at the end and it is concluded that the future course seems to be diverting towards
voltage vector selection with optimised phase, magnitude and duty ratios. Computational
burden is still one of the main hurdle towards MPC proliferation and adaptation in AC
drive control at the industrial level. However, with advent of high speed and cheaper
signal processors and development of efficient algorithms, MPC is rapidly becoming the
control method of choice for energy‐efficient drive control.
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1 | INTRODUCTION

More than 70% of the equipment used by end users is
motorised in the majority of industrialised and emerging
countries [1]. Motor‐driven systems account for 65% of energy
consumption in the European Union [2]. Given their extensive
use across several sectors, optimising the efficiency of motors
is crucial for enhancing the overall efficiency of end‐user ap-
plications. Implementing efficient control methods may
enhance motor performance, leading to a remarkable reduction
in energy losses by up to 70% [3]. Additionally, it can sub-
stantially lower energy consumption and the production of
harmful greenhouse gases by up to 30% [4]. Over 85% of
motors utilised in industrial applications are AC motors, which
encompass both induction and synchronous motors [5].
Therefore, enhancing the efficiency of AC motors will signif-
icantly influence energy consumption, the environment, and
the fulfilment of future energy requirements. Consequently,
there has been a surge in interest in this field of study to create
efficient control methods and variable speed control
techniques.

Due to the continuous advancement and reduction in the
size of semiconductor technology, current DSP processors
have become affordable and efficient, computing systems with
high‐speed capabilities. Because of this, the focus of control
research in power electronics has shifted from traditional ap-
proaches to more sophisticated control methods, such as
model predictive control (MPC). This has made it possible to
redirect emphasis away from conventional procedures. Despite
the increased computing cost, MPC presents several benefits,
including its straightforward and systematic approach to
managing constraints, system non‐linearities, and multivariable
systems [6]. Integrating these characteristics into traditional
control methods like direct torque control (DTC) and field‐

oriented control (FOC) not only adds complexity to the
controller but also decreases the effective bandwidth. An anti‐
windup mechanism is employed in conventional cascaded
control systems to enforce limitations and mitigate overshoots
by saturating the output of the controller. In cascaded systems,
the outer loop exhibits a much greater time constant compared
to the inner control loop, and it also varies in terms of satu-
ration limits. The combination of these loops results in a
decrease in the total bandwidth of the controller.

MPC was classically used for slow varying process control
applications [7]; however, with the availability of faster DSP
processors, it is being applied to power electronics with larger
sampling frequencies. It has been successfully employed for
uninterruptable power supplies (UPS), power converters/rec-
tifiers and energy efficient AC drives [8, 9]. In fact, MPC
research has exponentially increased in the last decade as
shown in Figure 1 [10–12].

Many good reviews on the applications of MPC to elec-
trical drives have been done in the past five years. In [13], MPC
strategies that achieve longer prediction horizons for medium
voltage (MV) applications are reviewed. Special attention is
given to extrapolation and event‐based horizon methods for
achieving longer prediction horizons to ensure MPC controller
stability and better steady state performance. A performance
comparison of model predictive direct torque control
(MPDTC) and model predictive direct current control
(MPDCC) to forced machine current control (FMCC) in terms
of torque and current distortions in MV drives is presented in
[14] and it is concluded that MPC methods outperform FMCC
for extended switching horizons. In [15, 16], four areas of
MPC application in power electronics are identified, namely
grid connected converters, motor drives, and inverters with the
LC filter and RL load. The authors in [17] describe in detail
how MPC has played an important role in the evolution of

F I GURE 1 Research trends on MPC for motor
drive control: number of publications by year.
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power electronics in terms of better control performance. In
[18], fundamental principles and formulations MPC are
covered. The most recent review of FCS‐MPC for electrical
drives is presented in [19].

The key research areas in MPC for electric drives can be
classified into the following categories: (1) improving MPC
steady state performance and reduction of torque and current
ripple, (2) reducing computational burden by developing effi-
cient optimisation algorithms, (3) formulating and solving
MPC problems for multi‐level converter topologies used in
industrial drives, (4) sensorless operation and dynamic MPC
with the observer, and (5) handling model mismatch and
parameter variations.

This paper is organised as follows: Section II describes in
detail how the MPC algorithms can be classified in different
ways. Section III discusses the most important control and
performance challenges and their solutions associated with
MPC. Section IV identifies current and future research hot
spots and directions of MPC. Finally, the paper is concluded in
section V.

2 | CLASSIFICATION OF MPC
ALGORITHMS

The theory of model predictive control as an application of
optimal control was developed in the 1960s and later in the
1970s. It was used in the process industry, where time con-
stants are long enough to perform all the calculations within
the sampling interval. The early ideas of its use in power
electronics were developed in the 1980s for applications, where
switching frequencies were very low and there was ample time
available to compute the control signals. It could not be used
for high‐frequency applications because of the unavailability of
fast microprocessors at the time. However, with the advent in
microprocessor technology and DSP processors, the interest in
MPC has increased in recent decades.

2.1 | MPC for electrical drives

Model predictive control incorporates a range of controller types
used in power electronics systems. The commonalities among
these controllers are as follows: (1) a system model is used to
predict the controlled variables future behaviour up to a certain
timewindowcalled the ‘prediction horizon’; (2) a cost function is
employed to obtain an optimal control signal for a certain time
window called the ‘control horizon’; and (3) the first element of
this control signal is applied. The procedure is iterated for
equivalent durations of time intervals and is referred to as the
‘receding horizon’ policy. The controller's model is derived from
the physical system by determining the parameters through
various experiments. Stator and rotor resistances as well as in-
ductances are parameters of AC motors that are ascertained
through no‐load and blocked rotor tests. It is necessary to have
an understanding of mechanical properties such as inertia and
viscous friction. Given that MPC is a model‐dependent control

approach, the precision of these parameters and their fluctua-
tions during operation significantly impact the steady‐state
performance and stability. The discrete state space form of the
system model can be expressed as follows:

xðkþ 1 Þ ¼ AxðkÞ þ BuðkÞ

yðkÞ ¼ CxðkÞ þDuðkÞ
ð1Þ

where A;B 2R. In its most generic form, the cost function
may be expressed and includes references, future inputs, and
system states as follows:

J ¼ f
�
x∗ðkÞ; xðkÞ; xðkþ 1Þ;⋯x

�
kþ Np

�
; uðkÞ ; uðk

þ 1Þ;⋯uðkþNcÞ
� ð2Þ

In (2), both the prediction horizon (NP) and the control
horizon (NC) are often set to one in power electronics appli-
cations due to the low computing requirements. The optimal
control signal can be defined as follows:

uðkÞ ¼ ½ 1 0 0 ⋯ 0 �argðminuJÞ ð3Þ

To reduce errors, the entire optimisation procedure is
repeated once the system has received the ideal control signal.
The outputs are then measured and compared with the ref-
erences. Figure 2 graphically illustrates the operational concept
of MPC.

Figure 3 shows the standard MPC block diagram used in
electrical motors. It has a power converter that can produce
voltages to the stator windings with variable amplitude and
frequency. The control objective, dependent on the control
method, determines how these voltages, called voltage vectors
(VVs), are generated. A rectifier, not included in the image for
brevity, is typically used to connect the line voltage supply to a
constant DC voltage source, which supplies the converter.
Metal Oxide Semiconductor Field Effect Transistors (MOS-
FETs) and Insulated Gate Bipolar Transistors (IGBTs) are
used in the power converters. It is possible to regulate the
stator voltages that minimise the inaccuracy between the ref-
erences r∗ðkÞ and controlled variables like torque, speed, or
currents by adjusting the ON/OFF position and/or duty ratios
of these switches. The MPC controller applies the switching
signals, denoted as S, directly or indirectly through a modu-
lator. Figure 4 also includes a list of other power converters
frequently used to control AC motors.

The following is a concise description of the drive's
operation: (1) Measurements: the current sensor and the speed
encoder, respectively, are used to determine the motor's speed
and current simultaneously. (2) Approximation: While fluxes
are not directly measurable, these values are estimated from the
measurements. Measurements are also used to determine speed
in sensorless operation. (3) Predictions: A mathematical model
of the motor is used to account for all potential future inputs
and to forecast how the controllable variables (such as torque,
flux, currents, etc.) will behave. Based on the control algo-
rithms, these inputs could be a limited number of switch
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actuations or an unlimited number of duty ratios. (4) Optimi-
sation: In the following sample period, the optimal input is
applied based on the comparison between the reference and
forecast values of the controlled variables, which were used to
determine which future input would provide the smallest cost
function [20].

In [15], the authors identify four key areas of MPC appli-
cations in power electronics: (1) power quality control utilising
various converters, (2) electric drives, (3) power converters

connected to the grid, and (4) adjustable power supplies. These
are the four areas that are discussed in A. The converter/
inverter topologies that are utilised in these applications are
distinct from one another, and the MPC controllers are
developed specifically for each situation. These are some of the
areas in which MPC has received a great deal of favourable
reviews [20, 21].

2.2 | CCS versus FCS MPC

Continuous control set (CCS) and finite control set (FCS)
MPC are the two primary types of motor control MPC algo-
rithms, which are based on the controller's signal application to
the motor drive. By adjusting duty ratios during a sample
period in order to activate switches, CCS‐MPC creates control
or gating signals using a modulation strategy like Pulse Width
Modulation (PWM) or Space Vector Modulation (SVM). In
contrast to CCS, FCS‐MPC applies switching states continu-
ously throughout the sample time. In CCS, the best control
signal is found by making the cost function's partial derivative
equal to zero; in FCS, testing all control vectors is typically
done by enumeration. Finding the best answer in very short
sample periods is a computationally demanding problem since
CCS synthesises actuation signals using a modulator. Due to its
elimination of modulation and cheap computing effort for

F I GURE 3 A comprehensive MPC setup for
electric motor drives.

F I GURE 4 Commonly used power converters with ac motor drives.

F I GURE 2 The general operating concept of
the MPC.
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short horizons, FCS is chosen over CCS in this regard, even
though CCS provides fixed‐frequency operation and relatively
a low steady‐state error.

Consider the simplified motor drive circuit depicted in
Figure 5 in order to acquire a deeper comprehension of the
distinction between CCS‐MPC and FCS‐MPC, as well as the
idea behind the control set that is being discussed. The circuit
includes a two‐level, three‐phase inverter, a DC source Vdc,
and a controller (not illustrated) that controls the inverter's
operation by generating gating signals. To prevent ‘shoot‐
through’ failures, which could cause a DC source terminal
short circuit, the switches are controlled in a complimentary
manner. For a control period that is equal to sampling time Ts,
is shown in Figure 6, that is an example control signal for
switch Sa. During the control interval, the switch Sa stays ON
for ta seconds and OFF for the remaining duration ðTs − taÞ
between Ts and ta seconds. Figure 6 shows that the lower
switch bar Sa functions in the opposite way; the total effect of
these two switches complimentary operations is to apply a
voltage to the first stator phase of the motor, which is called
Van voltage.

It is possible to determine the average vaN voltage as
follows:

vaN ¼
1
Ts

Z ta

0

Vdcdt ¼
ta
Ts
Vdc ¼ daVdc ð4Þ

The duty ratio of switch Sa is defined by the term da.
Likewise, the voltages at point b and c may be expressed as
follows:

vbN ¼ dbVdc ð5Þ

vcN ¼ dcVdc ð6Þ

The voltage space vector can be expressed as follows:

v¼
2
3

�

vaN þ vbNe
j2π3 þ vcNe j

4π
3

�

¼
2
3
Vdc

�

da þ dbe
j2π3 þ dce j

4π
3

�

ð7Þ

In equation (7), the duty ratios determine the magnitude
and angle of the complex quantity. During the control period,
the switches in FCS‐MPC are either turned ON or OFF;
hence, duty ratios can only be 1 or 0. When the duty ratios are
limited to 1 and 0 (FCS), this inverter design has eight potential
voltage vectors. These vectors can be presented in Figure 7.

If all the upper inverter switches are set to the ON v7ð111Þ
state or the OFF v0ð000Þ state, the resultant voltages in the
stator will be zero. The vectors referred to as ‘null vectors’ have
identical effects; hence, just a single null vector is utilised in the
optimisation process. The remaining voltage vectors are
referred to as ‘active vectors’, and they constitute a ‘finite
control set’ in conjunction with a single null vector.

A control space is referred to as a ‘continuous control set
(CCS) ’, when duty ratios can take on continuous values instead
of being limited to discrete values of 1 and 0. Figure 8 illus-
trates a voltage vector with da ¼ 0:1; db ¼ 0:45; dc ¼ 0:8. The
magnitude of this vector is 0.404 times the value of Vdc, and
this vector has an angle of 26:5o degrees. However, including a
modulator is essential for generating these voltage vectors,
leading to an increased cost. Moreover, identifying the optimal
voltage vector for CCS (duty ratios) is challenging because of
the many possible voltage vectors. In contrast, FCS entails

F I GURE 5 Two‐level three‐phase inverter.

F I GURE 6 An example control signal for a given switch and resulting
output voltage at point ‘a’.
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conducting tests on a restricted range of voltage vectors with
pre‐determined magnitude and angle (enumeration) to get the
minimum cost function value. Table 1 briefly describes the
essential attributes of CCS and FCS [22, 23].

Generalised Predictive Control (GPC) is the most often
used version of CCS in drive applications. GPC utilises a
transfer function model of the machine known as the
Controlled Auto‐Regressive Integrated Moving Average

(CARIMA) model [24]. GPC employs long horizons for pre-
dicting and is a more computationally demanding technique.
Consequently, it is deemed undesirable in several applications
[25]. Additional CCS‐MPC techniques encompass deadbeat
MPC as well as functional MPC methods such as Laguerre‐
based and functionally weighted predictive control [26].
These methods employ a linearised model of the machine,
ignoring the non‐linear nature of the system and posing higher
computational demands on the hardware. The dynamical
response of the drives must be accelerated by a sampling time
that is adequately short in CCS‐MPC. Nevertheless, the model
prediction accuracy decreases as the sampling time increases,
which leads to a decrease in control performance and increases
the current and torque ripples [10, 27]. In the same way, the
continuous control signal generated in the CCS‐MPC system
must be converted to discrete switching signals by the modu-
lator. In order to accurately represent the continuous control
signals and prevent excessive THD, the modulator frequency
must be adequately high. The drive's control performance is
considerably compromised by the discretisation error caused
by the small modulator frequency. In [28, 29], hybrid CCS‐
MPC schemes with predictive switching sequence optimisa-
tion techniques and additional modulators were proposed.

Exploring the potential of using non‐linear models in
electric motor systems within the context of CCS‐MPC pre-
sents a compelling research opportunity. The non‐linear motor
models in electric drive systems, such as induction motors or
PMSM, display non‐linear behaviour as a result of complicated
electromagnetic processes, saturation effects, and rotor dy-
namics. Linear models may lack the capacity to incorporate all
non‐linear elements necessary for achieving optimal control
performance. However, the inclusion of non‐linearities adds
further intricacy and makes the optimisation process more
computationally demanding. This difficulty can be addressed
by (i) enhancing the non‐linear model formulations and opti-
misation methods to improve efficiency and (ii) establishing a
hybrid strategy that integrates CCS‐MPC with other control
techniques such as gain scheduling or adaptive control. Uti-
lising non‐linear models in CCS‐MPC offers several advan-
tages, including enhanced control performance, effective
tracking of reference signals, expanded operating conditions,
greater efficiency resulting in reduced harmonics and

TABLE 1 Key characteristics of CCS and FCS MPC.

Feature CCS‐MPC FCS‐MPC

Model of the machine Linear Non‐linear

Modulation Yes No

Actuation Indirect Direct

Optimal solution
technique

Analytical (Unconstrained) quadratic programming (constrained) Enumeration (Unconstrained) non‐linear programming
(constrained)

Examples Generalised predictive control (GPC), deadbeat MPC,
functional MPC

Predictive torque control (PTC), predictive current
control (CCS)

Prediction horizons Longer Short: Normally 1 or 2

Switching frequency Fixed Variable

F I GURE 7 Two‐level three‐phase converter voltage space vectors for
FCS‐MPC.

F I GURE 8 An example voltage vector for CCS.
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disturbances [30]. Consequently, FCS has gained significant
popularity in recent times.

2.3 | PTC and PCC

Figures 9 and 10 illustrate two commonly employed FCS‐MPC
techniques for induction motors: predictive torque control
(PTC) [31] and predictive current control (PCC) [32]. The
images illustrate the presence of two control loops in both
schemes: an outside speed control loop and an inner torque
control loop, also known as a current control loop. The sym-
bols depicted in the picture are as follows: is, vs, ψ s, and ψ r
correspond to stator current, stator voltage, stator flux, and
rotor flux space vectors, respectively. Additionally, ω∗ repre-
sents the reference rotor speed, while the measured rotor
speed is denoted as ω. In the context of torque, the symbol p
with a superscript represents the predicted value at time instant
k. θ refers to the rotor flux angle, while iα and iβ represent the
stator currents in a stationary reference frame. Stator current
and stator or rotor flux are commonly selected as state vari-
ables in both PTC and PCC. The dynamic model of an in-
duction motor can consist of [14]

d
dt

�
is
ψ r

�

¼

2

6
6
6
6
4

−
1
τσ

kr
Rστσ

�
1
τr

− jω
�

Lm

τr
−
�
1
τr

− jω
�

3

7
7
7
7
5

�
is
ψ r

�

þ

2

6
4

1
Rστσ

0

3

7
5vs

ð8Þ

where Rs and Rr are stator and rotor resistances, Ls, Lr and Lm

are stator, rotor and mutual inductances; τσ ¼
LsLr−L2m

LrðRsþRrk
2
rÞ
rep-

resents the time constant of the stator transient, τr ¼ Lr
Rr
rep-

resents the time constant of the rotor, and kr ¼ Lm
Lr
represents

the coupling factor of the rotor. In order to employ (8) in
MPC, it is necessary to have a discretised version of the model,
often produced by utilising Euler's technique.

xðkþ 1Þ ¼ xðkÞ þ TsðAxðkÞ þ BuðkÞÞ ð9Þ

The variable Ts represents the sampling time, typically
expressed in microseconds. The selection is also with regards
to the computational delay that it will infer.

PI

F I GURE 9 Block diagram of predictive torque
control (PTC) for the induction motor.

PI
Sabc

F I GURE 1 0 Block diagram of predictive current control (PCC) for the induction motor.
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Both PCC and PTC employ the induction motor's dis-
cretised state space model for the estimate, prediction, and
optimisation phases. The following is a description of these
equations:

ψ̂ s ðkþ 1Þ ¼ ψ sðkÞ þ TsvsðkÞ − TsRsisðkÞ ð10Þ

T̂ ðkþ 1Þ ¼ 1:5pIm
�

ψ̂ sðkþ 1Þ
∗ îsðkþ 1Þ

�
ð11Þ

g ¼ jT∗ðkÞ − Tp
ðkþ 1Þj þ λ

�
�ψ∗

s ðkÞ − ψp
s ðkþ 1Þ

�
� ð12Þ

ψ̂ s , T̂ , and îs are terms used to denote estimates of stator
flux, torque, and current, respectively. The objective function is
represented by the symbol g. Similarly, in the case of PCC,

îs ðkþ 1Þ ¼
�

1 −
Ts
τσ

�

isðkÞ þ
Ts

Rστσ

�

kr
�
1
τr

− jωðkÞψ rðkÞ

þ vsðkÞ
��

ð13Þ

i∗dðkÞ ¼

�
�ψ rðkÞ

�
�∗

Lm
ð14Þ

i∗qðkÞ ¼
2LrT∗ðkÞ
3Lm

�
�ψ rðkÞ

�
�∗

ð15Þ

g ¼
�
�i∗αðkÞ − ipαðkþ 1Þ

�
�þ

�
�
�i∗βðkÞ − ipβðkþ 1Þ

�
�
� ð16Þ

These techniques use a PI controller and dq trans-
formations (in PCC only) to produce the inner‐loop torque or
current references from the outer speed loop, whether it has an
encoder or not. The characteristics of the inner and outer
loops vary in terms of bandwidths and time constants. The
time constant of the outer speed loop exceeds that of the
inner‐loop, resulting in a slower production of torque refer-
ence. There have been several attempts to eliminate the outer
loop in order to prevent this variations in dynamic perfor-
mance [20]. During the implementation phase, the fluxes,
speeds, and angles are estimated (sensorless operation). Then,
potential voltage vectors are forecasted for future currents,
torques, and fluxes using dynamical machine models. The
difference (error) between these predictions and references is
then computed. The errors are ultimately evaluated using a cost
function (optimisation) in order to identify the voltage vector
that yields the lowest value. The computational load increases
in direct proportion to the number of FCS voltage vectors that
need to be verified, and this number is influenced by the sys-
tem's architecture. PTC is more complex but more robust,
responsive, and energy‐efficient than PCC, while PCC is
simpler and more accurate at low speeds and torques but less
responsive and robust than PTC. The choice between PTC and
PCC depends on the specific requirements of the application
and the available computational resources.

3 | CHALLENGES IN MPC

Although MPC has many advantages over traditional control
techniques, it still has some performance problems. These
problems include steady state error, computational burden,
variable switching frequency disturbance reduction and stabil-
ity. Currently, MPC is in the evolving stage for high frequency
power electronics applications and faces certain challenges.
These challenges and most recent proposed solutions are
discussed below.

3.1 | Modelling challenges

In most of the MPC algorithms, a linearised discrete state
space model xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ of the ac motor is
used for the prediction and estimation of flux, current and
torque. In this model, motor parameters such as inductances
and resistances are assumed to remain constant during the
operation. In reality, however, these parameters do change with
changes in motor temperature. The actual model parameters
can be represented as time‐dependent quantities marked cðtÞ in
Figure 11. Therefore, due to the model mismatching, the
values estimated and predicted by the MPC controller do not
represent the actual values. This might lead to an erroneous
response by the controller and must be tackled carefully. This
difference can also occur due to the modelling error during
inaccurate machine tests conducted to determine machine
parameters.

Different machine models are used in different MPC al-
gorithms; for example, GPC uses linear transfer function
model (CARIMA) for predicting the response [33]. Linear and
non‐linear state space models are also employed in CCS‐MPC
and FCS‐MPC. In [34], the discrete space model of an in-
duction machine is suggested for implementing non‐linear
direct model predictive torque control. The authors in [35]
also use non‐linear state space models of PMSM to enhance
the dynamic performance of model predictive torque control
in low‐speed and high‐speed regions using Maximum Torque
per Ampere (MTPA) and Field Weakening (FW) concepts.
However, the stator voltage model of the machine is mostly
used for predictions [36, 37].

AC machines are complex non‐linear systems and the
modelling error also occurs when these models are linearised.
Most of the indirect MPC controllers use linearised models,

F I GURE 1 1 Importance of the accurate model for MPC operation.
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while direct MPC is based on non‐linear models. Since MPC is
implemented on modern high‐speed DSP processors, there-
fore, these models are discretised before they can be used for
prediction. Different discretisation methods are available to
convert differential equations of the machine to difference
equations such as the Euler method. However, in low sampling
frequency applications such as MV and HV, Euler approxi-
mation does not give good results and higher order approxi-
mation methods (e.g. Tustin approximation) should be used
[38]. Other methods are also used for better accuracy; these
include Bilinear Transformation or Tustin method [39], second
order Euler approximation [40], exact discretisation [41] and
Runge–Kutta method [42]. Discretisation is achieved with
constant sampling frequency; however, variable sampling for
discretisation is also reported in [43] to produce better results.
The concept of oversampling is introduced in [44] to increase
the performance of direct MPC. These methods tend to
improve the drawbacks of MPC. However, they also increase
the complexity and order of the prediction model, resulting in
high computational demands which is the main reason for
using simple and low order approximation methods such as the
Euler forward rule.

3.2 | Parameter variations and estimation

The system can still be efficiently controlled by MPC even
when there are small changes to the parameters or a model

mismatch
�

ẋact − ẋmodel ≈ Δx
�

[45]. Dynamic performance,

however, degrades significantly for large errors. Other vari-
ables, such as the drive's operating point, the objective function
optimisation, and the delay compensation system, influence
this degradation. There is no guarantee that the controller will
remain stable when faced with extreme parameter fluctuations.
When trying to estimate the stator flux for use in torque
control applications, the impact of resistance change is very
important. A machine's stator flux may be approximated using
either its voltage or the current model. Using the existing
model might lead to inaccurate flux estimates since it is
vulnerable to changes in rotor resistance at higher switching
frequencies. The voltage model is also quite sensitive to low‐
frequency fluctuations in stator resistance [46].

Parameter accuracy is crucial for robust MPC functioning,
as previously mentioned. The impact on PTC and PCC op-
erations of varying mutual inductance Lm and stator resistance
Rs is addressed in [47]. Even if Lm is altered 20 times the initial
value, the controller remains stable, and changes in Lm do not
significantly affect PTC. Nevertheless, a 10% change in
inductance might cause the controller to become unstable
since PCC is extremely sensitive to variations in Lm. Compared
to the mutual inductance effect, the effect of stator resistance
Rs on PTC and PCC is the inverse. PCC maintains its stability
regardless of changes in Rs, but PTC starts to destabilise once
Rs is altered by more than 2.5 times its initial value.

The problem of parameter variation can be addressed by
including an online parameter estimation strategy into the
control algorithm. It is the machine model that determines
how the parameter estimator is designed. Low operating fre-
quency stator flux estimations are unsatisfactory when using a
voltage model for predictive torque control (PTC) because the
model is sensitive to variations in stator resistance. In [48], a
simulation based research is provided that aims to create a
resistance estimator using optimum vector selection‐based flux
estimations. The rotor's resistance fluctuates significantly dur-
ing operation because of the heat it generates. The change in
resistance greatly impacts the performance of the MPC, as the
rotor time constant also varies. The Unknown Input Observer
(UIO) is employed in [49] to forecast the load torque and in-
duction motor rotor resistance solely from the input and
output measurements.

The observer's most significant advantage is the ability to
estimate the system's states and parameters all at once. So far,
only research based on simulations has been carried out
because of the computing challenges associated with the real‐
time implementation of the suggested observer. To get over
the problems caused by parameter volatility and model
mismatch, the author in [50] use Sliding Mode Observer to
estimate Rs, Rr and rotor flux concurrently. Model‐free pre-
dictive control is advised for the Interior Permanent Magnet
Synchronous Motor (IPMSM) in ref. [51]. This is done to
remove MPC's reliance on the system model and, therefore, on
the parameters. This method relies on the fact that there are
current variations in the intervals between samples. Various
other research have also addressed the issue of model
mismatch and parameter fluctuations [52, 53].

In [54], parameter mismatch and prediction error correc-
tion has been proposed by decoupling between the flux
observer and speed estimation using dual reference frame‐
based. Another solution to compensate lumped disturbance
and parameter mismatch has been proposed by disturbance
feed‐forward compensation technique in [55, 56]. A Luen-
berger observer‐based parameter estimation has been designed
to increase the robustness of the predictive control; however,
the effect of computational burden has not been considered in
[57]. Reference model‐based stator resistance estimation has
been proposed in [58] for the six‐phase induction motor. The
stator flux estimation and stator resistance mismatch have been
analysed in [59] using the current model observer.

Algorithmic‐level concerns and challenges have an impact
on the performance of MPC controllers for AC drives.
Recently, numerous significant methods have evolved to
enhance energy efficiency, mitigate dynamic losses, minimise
steady state error, and decrease computing complexity.

3.3 | Cost function

Cost function is an essential part of MPC and usually repre-
sents the main objective of the controller. Since most of the
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MPC formulations are reference tracking problems, therefore
the cost function will represent some norm of error between
the reference value of the controlled signal and its predicted
values up to the instant that defines prediction horizon. The
general form of the cost function can be represented as
follows:

g ¼
XNp

i¼1
λj
�
�
�y∗

j ðkþ iÞ − ypj ðkþ iÞ
�
�
�
n
f or j ¼ 1; 2;⋯q ð17Þ

where y∗
j ðkþ iÞ represents the reference value of the jth output

at ith instant into the future; ypj ðkþ iÞ is the predicted value of
the jth output at ith instant into the future and the prediction is
made at current instant k; Np is prediction horizon; q is the
total number of outputs to be tracked; n represents the norm
which might be absolute, infinity or quadratic norm; λj is the
relative weighting factor of jth output.

Reference generation is also an important aspect of MPC.
In most AC drive applications, reference is generated by the
outer speed loop which employs conventional PI controllers.
This reference is usually torque (flux reference is considered
constant) which can be transformed to corresponding current
references in PCC. Prediction horizon is normally taken equal
to one in high frequency power electronics applications due to
computational requirements, and variables are predicted using
the discrete model of the system. Weighting factors decide the
relative importance of the controlled variables. The selection of
weighting factors becomes challenging if the variables in the
cost function have different units of measurement, for
example, torque and flux in PTC. Cost functions and their
characteristics are summarised in Table 2 for PTC, PCC and
predictive speed control (PSC).

The cost function can capture many control objectives in a
single equation but the challenge of the weighting factor se-
lection becomes a major hurdle for satisfactory controller
performance. Other than the objectives used in PTC and PCC,
these might include speed control [60], DC balancing in the
NPC converter in industrial drives [61, 62], reactive power
control in matrix converter drives [63, 64], load current spec-
trum shaping [65], switching frequency reduction [66], and
most recently switching instant optimisation [44].

Constraints define bounds on various system variables and
constitute an important part of the cost function to ensure safe

operation of the drives. In traditional PI controllers, con-
straints are implemented through the anti‐windup mechanism.
Since cascaded loops have different time constants, therefore
anti‐windup controllers need to be tuned individually, which
becomes a challenging task because individual tuning does not
always guarantee the good performance of the overall cascaded
structure. One of the most important feature of MPC is easier
handling of constraints. In general, constraints can be imple-
mented on four variables, namely system input variable, output
variable, state variables and differential inputs [20, 67]. In AC
machines, these constraints could relate to currents, voltages,
torque, flux, duty ratio, switching states and dynamic losses.
However, implementing constraints also increases the
complexity of the optimisation problem and finding a feasible
solution becomes more challenging especially in the FCS‐MPC
case since the formulation translates to a constrained non‐
linear programming problem.

Constraints can be hard or soft, meaning they cannot be
violated in any case or can be violated within certain bounds.
Constraints can also be constant, variable and stochastic.
Constraints in AC machines can be implemented as simple
magnitude limits, restricted within offline MPC or online
optimisation. Magnitude limits are defined in the cost function
to constrain the motor starting currents and applied voltages
[68]. A logical operator is used to trigger the limit. As an
example, consider the following amplitude limiting the cost
function:

g ¼
�
�i∗s − isðkþ 2Þ

�
�þ ηðjωj > ωlimÞ ð18Þ

It implements a constraint on the rotor speed ω and the
restricting value is defined as ωlim and the constant η is taken as
a large value. If the rotor speed is within the safe limits, that is,
the logic condition jωj > ωlim is ‘false’, the cost function only
involves the stator current error for optimisation, that is,
g ¼

�
�i∗s − isðkþ 2Þ

�
�. Whenever the rotor speed crosses that

limit, the logic condition jωj > ωlim becomes ‘true’ and the
cost function takes the form g ¼

�
�i∗s − isðkþ 2Þ

�
�þ η which

puts almost negligible emphasis on the current error due to the
presence of a large constant, and the inputs which caused this
condition to occur are effectively excluded from the feasible
set. The controller selects inputs which try to avoid this con-
dition and the speed is brought back to its safe limits.

TABLE 2 Motor parameters.
Parameter Value Parameter Value

Rated Torque,Tnom 9 N:m. Stator resistance, Rs 3 Ω

Rated stator flux, ψ s−nom 0.954 Wb Rotor resistance, Rr 4.1 Ω

Rated voltage, vs−rat 160 V Stator inductance, Ls 342 mH

Base speed, ωbase 60 rad=sec Rotor inductance, Lr 351 mH

Inverter DC source, Vdc 240 V Mutual inductance, Lm 324 mH

Total number of pole pairs, p 2 Total inertia, J 0.0031 kg − m2

Sampling time, Ts 40 μs Total viscous friction, B 0.0019 N:m:s
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3.4 | Weighting factors

The selection of weighting factors for MPC is still seen as an
unresolved topic despite several attempts to find a solution.
The performance is directly affected by the weighting factor's
suitable selection since it allocates relative priority to the
numerous control objectives in a single objective function.
Look at PTC for induction motor drives as an illustration of
how weighting factor selection affects MPC performance.
There is a description of the PTC cost function in Table 2, and
the motor parameters are provided in Table 2.

Figures 12 and 13 illustrate the impact of the weighting
factor selection on stator currents, flux, and torque for an in-
duction motor with no load and a step change in rotor speed
from 80 rad/sec to −80 rad/sec at time t ¼ 1 sec. Flux regu-
lation takes precedence over torque reference tracking when
the weighting factor's value is raised. Stator flux is maintained
at 0.954 Wb for a weighting factor of 100 regardless of the
speed reversal state, and the present THD is quite low at 0.08.
However, more ripples are seen with larger λ values since
torque is less important here. A poor flux response and greater
THD in stator currents are found with a drop in λ, which also
lessens the emphasis on flux management. Additionally, at
smaller amounts of λ, torque reference tracking becomes more
important, reducing torque ripples. The importance of
choosing a weighting factor for achieving appropriate torque
and flux management as well as high‐quality current in PTC is
clearly demonstrated by this example.

Some general guidelines are given in [69, 70] for the
weighting factor selection in PTC, but no simple solution or
analytical method is defined for its adaptation in other appli-
cations. In recent literature, two methods to deal with it have
evolved; MPC without the weighing factor and the online
adaptation of the weighting factor.

A proposed strategy for multi‐objective optimisation in-
volves the use of a ranking system to eliminate the need for a
weighting element [71, 72]. While the process is effective for
situations involving the selection of a single weighting factor, it
becomes intricate and computationally burdensome for cases
involving the selection of numerous weighting factors. Imple-
menting the fuzzy‐based multi‐objective technique in [73] is
computationally demanding and presents challenges for real‐
time execution when dealing with cost functions that involve
many weighting elements. The authors in [74, 75] have recently
provided an alternative approach that converts the torque
reference into an equivalent flux reference, thereby eliminating
the torque error from the cost function. The resultant cost
function exclusively encompasses the discrepancy in flux and is
called Predictive Flux Control (PFC). However, this technol-
ogy is designed explicitly for PTC and cannot be used for other
applications with varying control requirements. An equal tor-
que effect approach is also recommended in [76, 77] to remove
the weighting element from PTC.

Two separate cost functions have been developed
sequentially in [78, 79], first torque based voltage vectors
selected then from minimum torque vectors applied to flux‐
based cost function and minimum voltage vector chosen.

This technique removes the need of the weighting factor.
However, the flux response is distorted because of the re-
striction of the voltage vector available for flux prediction.
Similar technique with slight modification is used in [80, 81]. In
[72, 82], the multi‐objective sorting technique is proposed to
remove the need of the weighting factor. The lowest ranked
voltage vector is selected for the inverter. In [83, 84], torque
and flux control objectives are considered as separate cost
functions and evaluated with seven vectors. Among these
seven vector, optimal is selected for minimising both torque
and flux ripples.

An alternative method for addressing the tuning of
weighting factors is through online adaptation. The authors in
[85] propose the use of Multi‐Criteria Decision Making
(MCDM) methods, such as VIKOR and Simple Adaptive
Weighting (SAW). Although they have a tendency to improve
the computational complexity of MPC. An alternative method
involves dynamically adjusting the weighting factor in real
time by utilising torque or current ripples [86]. This technique
relies on the system parameters, which have the potential to
fluctuate throughout the operation. Hence, the solution re-
quires the inclusion of a parameter estimation method, hence
increasing its complexity [87]. In [88], the tuning of the
weighting factor is obtained by comparing torque and flux
errors with the minimum error; however, the selection of the
minimum error is needed to be determined and this method
will not work properly when using more than two control
objectives. Three control objectives have been tuned by the
multi‐objective genetic‐based algorithm in [89, 90]; however,
this has become computationally heavy. In [91, 92], NSGA‐II
with TOPSIS decision‐making criteria is used to tune the
weighting factor. However, this method required mathemat-
ical analysis and drive performance still depends on index
values that make the controller computationally inefficient.
Tuning of the weighting factor based on the principle of
variation has been proposed in [93, 94] by making different
cost functions. The process of variation applied to each cost
function is time‐consuming and therefore computationally
heavy. The weighting factor has been tuned based on state
normalisation and variable sensitivity balance in [95]; however,
the range of the weighting factor and their values were not
discuss according to the dynamic and transient response of
the system. Figure 14 [96–103] summarises various methods
reported in the literature.

3.5 | Optimisation

Once the cost function is formulated under certain system
constraints, the next step is to find an optimal and admissible
system input which minimises the value of the cost function.
This step is called optimisation which is repeated every sam-
pling time after receiving feedback. The optimal input signal is
calculated for a certain number of sampling steps (prediction
horizon). However, only the first element of this array is
applied to the system and the process is repeated at every
sampling time and is known as receding horizon policy. In
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most of the power electronics applications, the prediction
horizon is kept to one to avoid computational complexities.
The scale of the optimisation problem increases exponentially

as the prediction horizon increases, resulting in increased
computational requirements and processing time. Power elec-
tronics applications pose a significant challenge due to the need

F I GURE 1 2 Effect of the weighting factor on stator current (phase‐a).
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for rapid control updates to ensure system stability and per-
formance. Optimisation complexity and computational re-
quirements depend upon the converter topology, cost
function, prediction horizon and type of MPC (FCS or CCS).

In CCS, the optimised control signal is continuous in nature
and is applied in conjunction with some modulation scheme.

A longer prediction horizon can be utilised more efficiently
in CCS‐MPC due to two reasons. Firstly, CCS‐MPC operates

F I GURE 1 4 Various weighting factor selection techniques.

F I GURE 1 3 Effect of the weighting factor on the stator flux and torque response for the step change in speed at 1 s from 80 rad/sec to −80 rad/sec and
no load condition.
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directly with continuous control inputs such as voltage or
current references rather than discrete switching states. Sec-
ondly, the formation of CCS can decrease the number of de-
cision variables in the optimisation problem compared to
traditional FCS‐MPC [104]. Utilising specific optimisation
methods like quadratic programming or warm start strategies
allows CCS‐MPC to make better advantage of the longer
prediction horizon. Hence, these advancements in optimisation
strategies assist in diminishing the computational load caused
by the prolonged forecast timeframes and complex system
dynamics [105]. However, in FCS, the discrete nature of con-
verter switches is manipulated and calculated optimal signals
are directly applied. But in some cases, the time to apply the
optimal state is also calculated, which greatly increases the
complexity of the algorithm. As a rule of thumb, computa-
tional burden in FCS exponentially increases with prediction
horizon as the power of the total number of available voltage
vectors [106]. The number of voltage vectors depends upon
the converter topology. For example, in the two‐level three‐
phase voltage source inverter, there are 6 active voltage vec-
tors and two null or zero vectors. If the prediction horizon is 1,
we have seven voltage vectors, which are tested one by one in
the cost function and the voltage vector that produces the
minimum value of the cost function is chosen as the next
switching state. If the prediction horizon is increased to 2, the
computational effort will exponentially increase due to the
increased number of 49 voltage vectors, which need to be
tested for determining optimal inputs. The computational
complexity is further heightened in multi‐phase and multi‐level
systems due to the presence of greater available voltage vectors
(AVV) in comparison to traditional 2L‐3P systems. The
computational complexity of FCS‐MPC increases as the
number of voltage levels and phases increases [105, 107]. As an
example, a 3‐phase inverter operates at a voltage of 27 VV,
while a 5‐level, 3‐phase inverter operates at a voltage of 125
VVs. Despite the computational load, FCS‐MPC offers sub-
stantial advantages in multi‐level and multi‐phase systems
compared to conventional control methods like PWM, which
can be difficult to implement and need advanced modulation
techniques [108]. Several methods have been suggested in
literature to address the computational complexity, including
shortening the prediction horizon, employing advanced opti-
misation algorithms, and utilising parallel computing tech-
niques [109, 110].

To explain how the optimised voltage vectors can be
applied to the converter, consider Figure 15 where three
different ways are depicted for applying selected VVs for three
time instants, that is, k, kþ 1 and k þ 2. For simplicity, it has
been assumed that computational burden is negligible and
there are no delays associated with it. Figure 15a shows the
simple case of FCS‐MPC, where optimal voltage vector Vu is
selected at time instant k and is directly applied to the con-
verter for the entire sampling interval. Similarly, Vv and Vw are
the optimal selected VVs at time instants k þ 1, kþ 2 and
applied for the complete sampling interval. Applying an
optimal VV for the entire sampling time forces the torque and

flux to keep changing in the same direction for a longer time
which may result in undesired ripples.

The variable switching frequency or the sampling period is
used to overcome the limitations of using the optimal voltage
vector for the whole sampling period. The optimal voltage
vector (VV) is implemented by utilising a fraction of the
sample frequency and adjusting the sampling period accord-
ingly. This enables more frequent updates of the controlled
variables and helps to minimise fluctuations. This technique
enhanced the dynamic response and offered greater control
flexibility over the manipulated variable [111]. But it also leads
to concerns about robustness and stability and increases
complexity. Moreover, achieving precise tracking of the
controlled variables at a greater sample rate may need the use
of additional sensors, resulting in increased costs and system
complexity [19, 112]. In summary, the use of variable sample
periods in FCS‐MPC enhances the system's performance and
efficiency [113]. However, it necessitates a careful evaluation of
trade‐offs and handling of implementation issues. To over-
come this problem, the concept of VV application time or duty
ratio has been introduced [114] and is shown in Figure 15b.

First the appropriate vector Vu is selected at time instant k
through the normal FCS enumeration method and then certain
criterion, such as the minimisation of torque ripple, is used to
determine the suitable time to apply the selected voltage vector
[115] which is marked as t1 on the figure. A null vector V0 is
padded along with this active vector for the remaining time of
the sampling interval Ts − t1. Similarly, at the start of the next
sampling interval k þ 1, another optimal VV Vv along with
optimal duty ratio t2

Ts
is selected and applied for t2 seconds. For

the remaining time, a null vector is selected as before. In [116],
it is argued that the second padded vector needs not to be a

F I GURE 1 5 Multiple voltage vector‐based MPCs (a) FCS‐MPC
(b) Two vector based with zero vector padding (c) two vectors based with
the non‐zero second vector.
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zero vector; it could be another active vector. This concept
gives rise to multiple vector selection [117]‐based FCS‐MPC in
which not only two, but three or more vectors can be selected
along with their durations.

The idea of a double VV selection along with duty ratio
optimisation is shown in Figure 15c. At time instant k, two
voltage vectors Vu and Vx are selected and applied for t1 and
Ts − t1 which represent their optimal duty ratios. Similarly, in
the next sampling interval, two optimal voltage vectors Vv and
Vy are selected along with their optimal duty ratios t2 and
Ts − t2. In this way, the prediction horizon is effectively
extended to two by applying two optimal vectors in a single
sampling interval. A double voltage vector selection technique
with direct flux control is discussed in [76]. In some research
works, dynamic programming has also been recommended.
See [94] for more details. The efficiency of electric drives uti-
lising MPC can be enhanced by implementing virtual vectors
and multi‐vector‐based methodologies, which have garnered
considerable attention among researchers. Enhanced control
can be attained by utilising virtual vectors that represent the
switching states of the power converters. The multi‐vector
technique can be employed to simultaneously enhance the
THD, torque, and flux ripples of the drive by utilising
numerous virtual vectors. The achievement of high‐
performance control of the drive is facilitated by the uti-
lisation of virtual vectors, as demonstrated in [118, 119]. The
highest level of performance was attained by creating a virtual
vector‐based MPC for PMSM drive [120]. While multi‐vector
approaches enhance drive performance compared to single‐
vector techniques, they do not reduce the sampling fre-
quency. The majority of multi‐vector approaches are compu-
tationally burdensome because of the intricate vector selection
and duty cycle algorithm. Furthermore, the multi‐vector‐based
technique often organises the four segment switching fre-
quencies using zero vectors, which do not effectively reduce
the THD. The limitations of the multi‐vector technique have
been resolved through the implementation of virtual vector‐
based techniques, as documented in [121]. In [122], the vec-
tor is discretised and divided into several components to create
virtual vectors. Similarly, the authors in [123, 124] partition the
vector amplitude into many components after the appropriate
vector is chosen. In [125], an increased number of virtual
vectors have been generated by utilising both vector direction
and vector amplitude. The virtual vector‐based MPC tech-
niques not only achieve optimum control performance com-
parable to multi‐vector‐based techniques but also
simultaneously reduce the sampling frequency [126, 127].

3.6 | Extended prediction

Longer prediction horizons are essential for guaranteeing the
closed loop stability of MPC. However, increasing the pre-
diction horizon exponentially increases the computational
effort. In AC drive applications, where sampling times are
already in micro‐seconds, achieving longer prediction horizons

becomes more challenging. In most of the research work to
date, the prediction horizon of one has been considered;
though some efforts have been made to achieve longer pre-
diction horizons, but it is still considered an open research area.

A prediction horizon of two with the weighting factor table
is constructed on the basis of torque ripple in [128]. Sampling
time is divided into two sub‐intervals. Time for applying active
voltage vector and time for applying null voltage vector
effectively increase prediction horizon to 2 without increasing
the computational effort.

The simulation study of enumeration‐based non‐linear
FCS‐MPC for the linear induction motor is considered in
[129]. The controller is formulated for speed tracking and
longer prediction horizons of up to 10 are analysed for ripple
reduction. A distinction is made on feasible and non‐feasible
switching states to reduce the computational effort and
redundant states are removed from enumeration.

Exponentially weighted functional model predictive con-
trol based on Laguerre coefficient is studied with the help of
simulations for longer prediction and control horizon in [130].
Extended prediction is considered in other related works as
well [13].

In MV and HV drive applications, sampling frequency is
much lower, and longer predictions are easier to achieve as
compared to higher sampling frequency applications. Three
dominant techniques are used for extended predictions in MV
and HV: move blocking strategy, extrapolation and event‐based
horizon [131]. In the move blocking strategy, prediction hori-
zon is divided into two sub‐horizons; first one with smaller
sampling time steps and second one with multiples of sampling
time without any considerable increase in the computational
effort. In extrapolation, controlled variables with hysteresis
bounds are considered and prediction horizon is divided into
so‐called switching horizon and prediction horizon. This
technique is mostly used with FCS‐MPC. A detailed review on
these techniques is given in [13]. Recent works on the extended
prediction for MV are included in [130].

3.7 | Computational burden & delays

Managing the computational demands of MPC is a significant
challenge in the implementation and expansion of MPC in
industrial power electronics applications. Although current
hardware for real‐time MPC implementation has significantly
advanced and become quicker, it remains challenging to handle
sophisticated algorithms such as MPC within a control interval
of microseconds. A significant amount of the sample interval is
dedicated to the computation of the ideal signal, resulting in
delays. These delays are referred to as computational delays,
which have an adverse impact on the performance of Model
Predictive Control (MPC) and result in disturbances.

A significant portion of the computational workload in
FCS‐MPC is dedicated to the optimisation and selection of the
voltage vector. If the number of possible voltage vectors is
greater, this operation gets more complicated. In a basic two‐
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level, three‐phase inverter, there are a total of 7 voltage vectors
(which includes the combination of two null vectors into one)
as shown in Figure 16. However, in a Neutral Point Clamped
(NPC) inverter, there are a total of 27 possible voltage vectors.
The computational load is also influenced by prediction
horizon.

Many other efforts have also been made to reduce the
computational burden; the most important of them is listed in
Figure 17.

The branch and bound algorithm is used in [132] to ach-
ieve longer prediction horizons for better steady state perfor-
mance of MV drives. Natural switching constraints (Bounds)
are taken into account in NPC to divide the admissible states
into sub‐optimal regions (Branch). Depending upon the cur-
rent state, certain branches are tested for optimisation under
the switching bounds. This method effectively reduces the
computational burden and only certain sets of VV are tested.
Normally, a bound on change in switch position ðΔxÞ is forced
which can be expressed as follows:

maxjΔxj ≤ 1 ð19Þ

This method can reduce the computational burden by an
order of magnitude. It is dependent upon the converter to-
pology and is mostly used for MV drives. Some efforts have
been made to use it for smaller sampling times [133, 134].

Graph algorithm can be considered a type of branch and
bound algorithm.

Another approach to alleviate the computational demands
is to employ the notion of ‘sectorisation’. The vector space is
partitioned into tiny sectors, often six in number, known as
DTC sectors, within the stationary α − β reference frame.
Every sector comprises ‘candidate vectors’ represented as a
lookup table. The assignment of these candidate voltage vec-
tors to a certain sector is determined by the location of the
stator flux θψs, the stator flux error

�
�ψ∗

s − ψ s
�
�, and the torque

error jT∗ − T j. In order to optimise the voltage vectors, the
first step is to estimate the sector based on Equation (10) for
estimating the stator flux.

θψs ¼ arctan

 
Im

�
ψ sðkþ 1Þ

�

Re
�
ψ sðkþ 1Þ

�

!

ð20Þ

ð2S − 3Þ
θsec
2

≤ θðSÞ ≤ ð2S − 1Þ
θsec
2

ð21Þ

where N sectors of the plane are represented by S ¼ 1; 2;⋯N
and θsec is the angular length of a single sector. If the plane is
partitioned into six sectors, denoted as N ¼ 6, θsec ¼ π

3 the
number of candidate vectors allocated to each sector is
decreased to three from a total of seven vectors in a two‐level,
three‐phase converter. Sectorisation involves additional calcu-
lations for determining flux location and sector selection, but it
ultimately reduces the computing load as compared to con-
ventional FCS‐MPC methods. Recent studies, ref. [135], have
reported that implementing sectorisation instead of the tradi-
tional enumeration approach in FCS‐MPC leads to an average
decrease of 25% in computing time.

The combination of MPC and the deadbeat method for
PMSM drive reduces voltage vectors to two in [136]. A
computational effort reduction of 48.3% is observed for a
prediction horizon of two. The non‐functioning candidate's
proposed voltage vectors and sectors are illustrated in
Figure 18 along with the corresponding table. In [137], a
concept called lookup table‐based model MPC is developed
for PMSM and induction motor drives. The study reports a
decrease of 40% and 20% in the overall calculation time for
PMSM and induction motor drives, respectively. The Lyapu-
nov function is employed in [138] to directly represent the cost
function in relation to voltage vectors rather than the current
error. This eliminates the need for intermediary computations
and enables the attainment of closed‐loop stability. The
computational load in [139, 140] has been alleviated by
reducing the number of voltage vectors in conjunction with
utilising the Kalman filter estimate method.

Aside from algorithmic advancements aimed at minimising
computing workload, field programmable gate arrays (FPGAs)
offer a hardware‐level option to attain the same outcome.
FPGAs have a parallel architecture that enables accelerated
processing. In [141–143], the utilisation of FPGAs to mitigate
computational workload.

F I GURE 1 6 Restricting the next switching state by allowing only one
switch position change.

F I GURE 1 7 Techniques to reduce the computational effort.

16 - SHAHID ET AL.



The main effect of the substantial computing cost of the
MPC is a notable delay in the time it takes for measurements to
be processed and for the converter switches to be activated. It
is required to offset this delay in order to prevent undesired
behaviour of the output, such as steady state errors.

Figure 19 illustrates the step‐by‐step procedure utilised
in the execution of MPC in most motor driving applications.
At the beginning of the sample period, load variables, pri-
marily currents are monitored. The values of the controllable
variables (torque, flux, or currents) are predicted at the next
sampling moment kþ 1 in the subsequent step. After

making the predictions, optimisation is done to evaluate the
available voltage vectors, and the resulting error is measured
at kþ 1 instant. This stage also requires choosing the most
suitable voltage vector and favourable switching moment
(duty ratio in CCS). Ultimately, the switching state selected is
implemented. Ideally, these computations should be instan-
taneous, and the chosen switching state is applied at the
start of the following sample period, denoted as k þ 1.
However, in practical terms, it necessitates a specific dura-
tion dependent upon the sampling frequency and the pro-
cessing velocity of the hardware.

F I GURE 1 8 MPC combined with the DB
method to reduce the number of voltage vectors.

F I GURE 1 9 Computational delay
compensation.
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A large ripple will result from the load variable rising to an
undesirable level during this period due to the prior switching
state continuing to be applied. A practical approach to mitigate
computational delay is using a two‐step ahead algorithm. This
approach suggests that the actuation step be performed
immediately after measurement and the prediction model be
adjusted one step ahead to compensate for delays. For a
comprehensive understanding of this approach is in [144].
Additional comparable methodologies are examined in [145,
146]. The paper [147] provides a detailed discussion of delay
compensation approaches for multi‐variable systems with low
sampling frequency. It focuses on two compensation tech-
niques: Initial State Projection and ‘Admissible Switching
Sequence Acceleration’. Most of the existing research uses a
two‐step ahead algorithm as the conventional way for delay
compensation. This method often decreases the total harmonic
distortion (THD) of the load variable by up to 5%.

In [148], the PTC‐DSVM‐based technique is proposed to
reduce sampling frequency and hence computational burden;
however, it required parameter‐dependent equation and rotary
coordinate transformation that reduces the robustness and
simplicity of the overall system. Another computational burden
reduction scheme based on discrete space vector modulation is
proposed in [149] however, the estimation of appropriate
reference voltage is a challenging task that is mandatory in
space vector modulation. A passivity‐based computational
burden reduction technique is proposed in [150]; however, it
uses a neutral point clamp converter that has a neutral voltage
balance problem.

3.8 | Sensorless MPC

As explained earlier, MPC algorithms in AC drives need
different feedback signals for prediction and optimisation.
These signals include currents, voltages, speed, position, flux
and torque. Speed, currents and voltages can easily be
measured and other quantities like electromagnetic torque,
rotor flux and stator flux are usually estimated from those
measurements. To reduce the complexity and cost of the drive,
sensorless operation is preferred. Various solutions have been
proposed in conjunction with MPC to remove mechanical
speed encoder/sensor for AC drives. Advantages of sensorless
operation include lower complexity and cost of the drive, easier
maintenance due to less hardware and cables, and rigid envi-
ronment operation. Figure 20 shows the block diagram of the
generalised sensorless operation of MPC. Measured currents
and voltages are used in an estimator/observer to obtain the
values of different signals. The design and mathematical

equations used in the observer/estimator depend on various
factors. These factors may include the range of operating speed
and controlled variables or type of MPC (PTC or PCC).

Sensorless techniques can be divided into three categories
depending upon the speed of operation: Low speed, medium
or high speed and all speed. Recently, more emphasis has been
put on the design of the sensorless algorithm which can work
in broader ranges of speed. In [151], for example, sensorless
predictive current control (PCC) of the induction motor is
studied. An Extended Kalman Filter (EKF) is used to achieve
broader speed operation to estimate load torque, speed, posi-
tion and rotor flux [53, 152]. Similarly, the authors in [153] also
consider EKF for estimating noise‐free stator currents, speed
and fluxes for predictive torque control (PTC). An analytical
estimation algorithm is introduced in [46] for IPMSM based on
PCC‐FOC with PWM to achieve a fixed frequency operation
of the drive. Many good review papers are available for sen-
sorless operation for direct control methods of AC drives; see
refs. [54, 154, 155] for further details. It is worth noting,
however, that adding sensorless feature to MPC controllers
significantly increases the computational burden, and different
techniques are considered to reduce this additional effort [144].

3.9 | Cascade‐free MPC

Most of the MPC algorithms are implemented in a cascaded
structure as shown in the block diagrams of PCC and PTC in
Figures 9 and 10, respectively. This structure consists of an
outer speed loop and inner current or torque loop. The outer
speed loop, which generates torque and current references for
the inner loop using simple PI controller, has larger time
constant than the inner loop's time constant. Cascaded control
structures always result in lower bandwidths or slower dynamic
response due to their decoupled nature. Moreover, speed
measurement noise will directly result in incorrect reference
torque which will severely affect the performance of the drive.
Most of the work in MPC is focused on inner control loops
and is dependent upon the dynamics of the reference gener-
ated by the outer speed loop.

Many proposals have been put forward for cascade‐free
MPC implementation. In [156], the idea of Direct Speed
Control (DSC) is introduced in an FCS‐MPC framework for
SMPM drives. Predictions are made for speed and currents,
and optimal output states are selected on the basis of the
minimum speed error. Low‐speed operation is also considered
to enhance the capabilities of the proposed algorithm to a
wider range of operating speeds. In [157], a double integrator
dynamic model is considered to form a combined optimisation
problem for cascade‐free speed control. Similar work is done
in [158], which is to control the speed of PMSM using a matrix
converter. However, due to multiple loop combinations,
cascade‐free formulations of MPC involve multiple control
objectives and multiple weighting factors, which makes it
difficult to achieve satisfactory performance. Tuning of mul-
tiple weighting factors and increased computational burden
make cascade‐free MPC less attractive.F I GURE 2 0 Sensorless MPC.
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3.10 | MPC for different speed regions

In most of the applications, MPC controllers are designed for
normal medium range speeds and balanced voltages. However,
there are certain problems associated with lower and higher
operating speeds, starting a free running motor [159] to a new
speed and considering the operation under unbalanced volt-
ages [160]. Flux estimation can be obtained either from the
current model or the voltage model. As mentioned previously,
the current model is sensitive to rotor resistance variations at
higher speeds, while the voltage model is sensitive to stator
resistance variations at lower speeds. In [161, 162], the concept
of Maximum Torque per Ampere (MTPA) is used with FCS‐
MPC to extend the controller stability and reduce ripple in
lower speed operation. Similarly at higher speeds, the so called
Field Weakening operation is considered with MPC in
[163, 164].

Parameter identification is an essential component of
ensuring the reliable and effective performance of the system
in FCS‐MPC during online adaptation. Precise system models
have significance for control systems to achieve optimal per-
formance [112]. Various methodologies have been utilised to
calculate and update model parameters in real‐time conditions,
including recursive least squares, Kalman filtering, and ma-
chine learning‐based systems. System model adaptation is a
crucial aspect in accurately capturing the dynamic response of
the drive [165]. This entails modifying the state‐space model,
cost function, and constraints in accordance with the observed
system response in order to enhance the overall efficiency of
the system. The rejection of disturbances in online adaptation
follows. FCS‐MPC can be built to mitigate disturbances by
using advanced techniques such as online disturbance estimates
and compensation methods like extended state observers,
disturbance observers, and adaptive control techniques [166,
167]. Ensuring the ability of FCS‐MPC to handle faults is an
essential consideration to consider while implementing online
adaptation. The control method can be modified by integrating
real‐time detection and identification of sensor failure or
malfunctions in FCS‐MPC [146]. Machine learning methods
are currently being extensively studied for their ability to adapt

to changing conditions and variations in system parameters in
online adaptation.

3.11 | Miscellaneous MPC challenges

One of the problems associated with direct control techniques
is variable switching frequency, which results in the spread
spectrum of the controlled variables. Spread spectrum gener-
ates undesired harmonics, noise, current and voltage ripples
and increases THD. To shape the frequency contents of load
currents, the idea of ‘frequency weighting’ is coined in [168].
The cost function is formulated with the frequency domain
weighting factor. The gain of this factor can be tuned to
achieve a filter like operation. However, this method is not
much effective to achieve fixed frequency operation. FCS‐
MPC can be combined with traditional PWM techniques and
the FOC method to achieve a concentrated spectrum with a
constant frequency. Most recent works on fixed frequency
operation are [42, 169, 170]. Miscellaneous issues related to
improving MPC performance include disturbance rejection
[46, 171], increasing controller bandwidth [20], stability issues
and robustness [172, 173] and frequency reduction for loss
minimisation [174, 175]. Irrespective of all the challenges dis-
cussed so far, MPC has played an important role in improving
the energy efficiency of the ac motor drives by providing an
intuitive and optimised control mechanism. The most impor-
tant contributions towards energy efficiency improvement are
summarised in Table 3 as compared to some of the well‐
established control methods.

3.12 | Model free predictive control (MFPC)

The previous section clearly demonstrates that the perfor-
mance of the MPC algorithm is significantly influenced by the
understanding of the system model. Nevertheless, the param-
eters of the system typically undergo changes over time. Thus,
an effective model should be subject to change throughout
time. Nevertheless, acquiring such a model is unattainable due

TABLE 3 MPC comparison for energy efficiency.

MPC method Compared with Performance improvement

MP‐DTC for MV drive with NPC
inverter

Standard DTC MP‐DTC with N = 1 reduces switching frequency by an average of 16.5% while
maintaining the same quality of controlled variables at a sampling frequency of
350 Hz [176]

MP‐DCC for PMSM drive prototype Linear control (PI) with PWM MP‐DCC with N = 1 reduces switching frequency up to 70% at a sampling
frequency between 30 and 50 KHz [177]

MP‐DTC for MV Forced machine current control
(FMCC)

MP‐DTC with longer horizon gives 25% and 50% less current and torque
ripples [178]

FCS‐PCC CCS‐PCC Current ripple and THD increase linearly with the modulation index in CCS, while
it remains fairly constant in FCS. FCS also effectively handles delays [179]

PTC PFC PFC outperforms PTC by achieving 3 times less THD of load currents. PFC also
removes tuning of the weighting factor [180]
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to the huge computing load it entails, making it impractical for
the actual implementation of the control system. In addition,
the challenge of accurately identifying the beginning parame-
ters of an unknown plant is also a significant concern. An
inconsistency between the parameters of the model and the
controller can result in a decline in performance and, in certain
instances, the instability of the control [181, 182]. A different
strategy involves employing an on‐demand model to manage
predictions [183]. The fundamental concept involves storing
the performance data of the system in a database and utilising
it to forecast the behaviour of the system rather than relying on
a fixed model. Instead of estimating a huge global model
covering the full operating range, a local model of the system is
predicted using input–output information from a small
neighbourhood at the current operating point. Some MFPC
techniques substitute a lookup table with the control system's
input and output data for this data‐driven model [184].
Throughout the course of each sample, the data‐driven model/
lookup table is continuously updated. Subsequently, the data is
transformed into a linear form and employed to forecast the
behaviour of the system [185]. Figure 21 displays a compre-
hensive block schematic of the control system. Recently, there
has been a growing use of MFPC approaches in power elec-
tronics and drives. The MFPC technique has several advan-
tages compared to the typical MPC technique, such as the
absence of model identification, the capacity to handle model

uncertainty, adaptability to changes, and applicability to com-
plex systems [186, 187]. Nevertheless, MFPC still faces several
research challenges such as the need for a substantial amount
of input–output data, ensuring stability and addressing
convergence issues, the absence of interpretability, and dealing
with computational complexity [188]. Research into MFPCs is
expanding, particularly in the realm of electric drives and po-
wer converters [189, 190].

4 | RESEARCH TRENDS

After analysing more than 250 publications of the past five
years related to MPC for electric drives, seven key areas were
identified as the main focus of ongoing research. These areas
are summarised in Table 4. This classification is purely for
discussion purposes as one area cannot be entirely separated
from the other without having effective overlapping. For
example, reducing the computational effort will affect steady
state performance (ripple), changes in the optimisation algo-
rithms and it also will impact the switching frequency. Similarly,
while suggesting some structural changes such as cascade‐free
operation, it will greatly change the computational effort, dy-
namic performance of the controller and computational delays.
Therefore, these areas should be considered as interdependent
and affecting each other in complex manners.

Figure 22 shows the percentage distribution of the research
publications among these loosely divided areas. The major
focus of the work has been towards improving steady state
performance and reducing ripples in the torque and currents.
At the same time, almost equal attention was given in sug-
gesting structural changes in the controller. These changes
include sensorless operation, Maximum Torque per Ampere
(MTPA) operation for low‐speed region and Field Weakening
operation. The weighting factor has also been a major interest
under investigation. Different algorithms and methods were
suggested to its online adaptation, removal and tuning. Almost
equal importance was given to comparing the performance of
MPC with other control methods such as DTC and FOC. A
significant effort was also put in reducing computationalF I GURE 2 1 Block diagram of general model free predictive control.

TABLE 4 Key research areas in MPC for electrical drives.

Area code Area Related subtopics

A Steady state performance Ripple reduction, steady state error, delay compensation, extended prediction

B Computational burden Branch & bound, graph algorithms, FPGA implementation, sectorisation, voltage vector
reduction

C Optimisation Cost function formulation, weighting factor removal, tuning and online adaptation, dynamic
programming

D Switching behaviour Fixed frequency operation, duty ratio control, loss minimisation, sampling effects on switching
frequency

E Structural improvements Sensorless/encoderless operation, low‐speed and high‐speed operation, observer design and
estimation, cascade‐free operation,

F Machine models Parameter variations, model mismatch and uncertainties

G Comparative study Hybridisation of MPC with other techniques, benchmark study of MPC
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burden and tackling parameter variations during drive opera-
tion. Generally, good mathematical models are available in
power electronics, so this area is the one with minimum focus
in research. The overlapping work in these areas is indicated in
the column bar graph, as shown in Figure 23. As the chart
shows, most of the work has been in improving steady state
performance of MPC by suggesting changes at the optimisa-
tion level such as weighting factor selection and removal. The
other combinations in improving steady state performance or
reducing ripples include structural improvements (E), con-
trolling switching behaviour or duty ratio and reducing
computational effort. In fact, more emphasis in the past five
years seems to be concentrated on suggesting new MPC al-
gorithms for different converter topologies for AC drives such
as the matrix converter and multilevel converters (NPC),
sensorless operation with reduced voltage vectors, duty ratio
optimisation and controlling switching frequency for dynamic
loss minimisation. In the near future, more complex MPC

algorithms with extended predictions for servo drives at higher
sampling frequencies are expected to emerge. The reduction of
the computational burden without sacrificing the steady state
performance will also remain the main focus of interest. Better
voltage vector selection algorithms are also anticipated to
improve the duty ratio optimisation with minimum efforts.
There is still enough work to be done in solving weighting
factor selection, achieving extended prediction horizons and
reducing the computational effort. Consequently, there have
been compromises between the effectiveness of various per-
formance indicators [191]. Therefore, the Pareto front in
control system design represents the collection of optimal
solutions, where enhancing one control aim necessitates
compromising performance in another. Hence, it is worth
considering the exploration of optimal solutions on the Pareto
front using techniques like multi‐objective optimisation
methods or preference‐based approaches.

5 | CONCLUSION

This paper presents a comprehensive analysis of the latest
research on model‐based predictive control for AC electrical
motor drives and highlights the main obstacles that need to be
addressed. This text provides a thorough categorisation of
CCS‐MPC and FCS‐MPC algorithms based on several criteria.
It specifically focuses on two often utilised FCS‐MPC ap-
proaches, namely PTC and PCC, and provides a detailed re-
view of both. Predictive direct torque control (PDTC) and
direct current control (PDCC) algorithms are increasingly
preferred for medium‐ and high‐voltage drives due to their
various benefits compared to older control approaches. When
compared to direct torque control (DTC), these improvements
result in a 70% reduction in switching losses and the capability
to achieve up to a 50% drop in ripples. These benefits apply
not just to low‐frequency drive applications but also to high‐
frequency servo drives. The concept of voltage vector opti-
misation in terms of magnitude, phase and optimised switching
instant is explained. Parameter variations and model mis-
matching effects on MPC performance and recent solutions
are described. Factors having a significant impact on improving
the steady state performance of MPC are discussed at the
algorithmic and structural level. Sensorless techniques, flux
estimation, observer design and its effects on computational
cost and ripples and different optimisation solutions are also
presented in detail. A survey of relevant and most important
solutions on improving steady state performance, reducing
computational burden and modifying spread spectrum asso-
ciated with FCS‐MPC shows that the selection of weighting
factor in PTC algorithms is still open research challenge.
Similary obtaining optimised voltage vector with minimum
effort and mathematical complexity for duty ratio control and
achieving longer prediction horizons for lower ripples, con-
tinus to dominate the research in MPC for energy efficiency in
motor drives. Although 70% reduction in switching losses has
already been reported.

F I GURE 2 2 Key research areas in MPC for electrical AC drives
(2012–2023).

F I GURE 2 3 Research work combining different areas.
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