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Cardiff University, Cardiff, United Kingdom CF24 3AA

(Dated: December 6, 2024)

Convolutional Neural Networks (CNNs) have demonstrated potential for the real-time analysis
of data from gravitational-wave detector networks for the specific case of signals from coalescing
compact-object binaries such as black-hole binaries. Unfortunately, CNNs presented to date have
required a precise model of the target signal for training. Such CNNs are therefore not applicable
to detecting generic gravitational-wave transients from unknown sources, and may be unreliable for
anticipated sources such as core-collapse supernovae and long gamma-ray bursts, where unknown
physics or computational limitations prevent the development of robust, accurate signal models.
We demonstrate for the first time a CNN analysis pipeline with the ability to detect generic signals
– those without a precise model – with sensitivity across a wide parameter space and with useful
significance. Our CNN has a novel structure that uses not only the network strain data but also the
Pearson cross-correlation between detectors to distinguish correlated gravitational-wave signals from
uncorrelated noise transients. We demonstrate the efficacy of our CNN using data from the second
LIGO-Virgo observing run. We show that it has sensitivity approaching that of the “gold-standard”
unmodelled transient searches currently used by LIGO-Virgo, at extremely low (order of 1 second)
latency and using only a fraction of the computing power required by existing searches, allowing our
models the possibility of true real-time detection of gravitational-wave transients associated with
gamma-ray bursts, core-collapse supernovae, and other relativistic astrophysical phenomena.

I. INTRODUCTION

Gravitational-wave (GW) astronomy is now an es-
tablished field of observational science. To date, the
LIGO [1] and VIRGO [2] collaborations have published
the details of approximately 90 detection candidates [3–9]
over their first three observing runs. The detected sig-
nals originate from the binary inspiral and merger of two
black holes [10], two neutron stars [11], or one object of
each type [12].

Low-latency detection of candidate signals offers ar-
guably the greatest potential scientific payoff, as the GW
observations can trigger followup observations in other
channels; i.e., multi-messenger astronomy. For exam-
ple, combined GW and electromagnetic observations of
GW170817 - GRB 170817A [13] have yielded novel in-
sights into the origin of heavy elements [14], neutron-star
structure [15], GRB astrophysics and host environments
[16], and the Hubble constant [17]. Electromagnetic fol-
lowup of gravitational-wave signals requires very low la-
tency analysis of the GW data - preferably at the second
scale to capture the highest energy emissions (e.g., the
prompt gamma and x-ray emission of GRBs). Current
low-latency GW analysis techniques rely on hundreds of
dedicated CPUs to achieve latencies of tens of seconds to
minutes for automated alerts [18].

Recent work by a number of authors [19–22] has shown
that a fundamentally different approach using CNNs has
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the potential to analyse detector data for GW signals in
real time (∼1 s latency) using a single dedicated GPU.
However, most CNNs demonstrated to date require a
specific signal model for training (e.g. an analytic signal
model for binary mergers [19–32], or catalogs of numeri-
cally computed signals for core-collapse supernovae [33–
36]), and are therefore only capable of detecting signals
matching that model. Many potential sources are gov-
erned by physics which is either unknown (e.g. the neu-
tron star equation of state [37, 38]) and/or computation-
ally intractable (e.g. the modelling of accretion-disk in-
stabilities [39–41]); their transient signals are commonly
known as gravitational wave bursts (GWBs). While the
unknown physics governing GWBs makes the study of
such signals exciting, it also poses a challenge: To fully
explore the new GW window we need to be able to de-
tect signals from the widest possible variety of sources
without relying on precise models for training.

We address this challenge by proposing a novel CNN
architecture that analyses not only the detector strain
data directly but also the cross-correlation timeseries be-
tween detectors. By training the CNN with ‘featureless’
randomised signals, we are able to construct a neural
network that detects coherence (amplitude and phase
consistency) between detectors rather than specific sig-
nal shapes in individual detectors. We test our resulting
analysis pipeline, which we name MLy (“Emily”), using
real data from the LIGO-Virgo network and show that it
is capable of detecting a variety of simulated GWB signal
morphologies without being specifically trained for them,
at sensitivities close to that of standard GWB searches,
but at much lower latency and a tiny fraction of the com-
putational cost.
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This paper is organised as follows. In Section II we
give a brief review of applications of machine learning in
gravitational-wave astronomy. In section III we present
the architecture of MLy’s CNNs and describe the analy-
sis procedure and training data. In Section IV we discuss
how we optimize the training to maximize performance.
In Section V we present the performance of MLy on both
simulated and real LIGO-Virgo data. We discuss the im-
plications of these results and next steps in Section VI.

II. MACHINE LEARNING IN
GRAVITATIONAL-WAVE ASTRONOMY

The fields of gravitational-wave astronomy and deep
learning have both advanced significantly in recent years.
As such, there has been a confluence of research into
their combination and a considerable body of work has
developed. Artificial neural networks, including CNNs,
autoencoders [42], generative adversarial networks [43],
recurrent neural networks [44], attention-based net-
works like transformers [45], and various other architec-
tures, have been applied to a variety of problems within
gravitational-wave astronomy [46]. In this section we
summarise a few of these efforts most closely related to
the present work; see for example [25, 47, 48] for wider
reviews.

Deep-learning studies in gravitational-wave astronomy
have most commonly focused on signals from the inspi-
ral, merger, and ringdown of binaries consisting of black
holes and/or neutron stars. A number of groups have
demonstrated such methods for the detection of binary
merger signals [19–32, 49–55], as well as for parameter
estimation - determining the source properties from a
detected signal [23, 27, 28, 56–59]. Deep learning has
also been used for fast binary waveform generation [60],
which could greatly reduce the time required by tradi-
tional Bayesian parameter estimation techniques, and for
denoising data around signals [42, 61].

In each of these deep-learning studies, the training of
the network has relied on the availability of highly ac-
curate models for gravitational wave signals from binary
mergers [62]. The application of deep learning methods
to more general types of gravitational-wave signals has
been more limited, with core-collapse supernovae being
the most prominent example. These studies have made
use of either catalogs of gravitational-wave signals from
numerical simulations of core collapse or phenomenolog-
ical waveform models fit to such catalogs. For exam-
ple, Chan et al. [33] trained a CNN using simulated
gravitational-wave timeseries with core collapse super-
novae signals drawn from a range of published catalogs
covering both magnetorotational-driven and neutrino-
driven supernovae, and measured the ability to both de-
tect the signal and correctly classify the type. Iess et
al. [34] considered the problem of distinguishing true sig-
nals from noise fluctuations (“glitches”) that are com-
mon in real detectors. They used signals drawn from nu-

merical catalogs combined combined with a simple phe-
nomenological models for two glitch types to train CNNs
to distinguish supernova signals from noise glitches.

Cavaglià et al. [63] uses supernova simulated mor-
phologies to differentiate them from glitches in individ-
ual detectors. This work show a clever application of
decreasing the false alarm rate when multiple detectors
are observing.

Lopez et al. [36] (building on [35]) used a phenomeno-
logical model mimicking gravitational-wave signals from
non-rotating core-collapse supernovae to train a complex
mini-inception resnet neural network [64] to detect su-
pernova signals in time-frequency images of LIGO-Virgo
data.

Sasaoka et al. [65] [66] use gradient-weighted feature
maps to train CNNs to recognise supernovae spectro-
grams. They utilised core-collapse supernovae waveforms
from a number of catalogues.

Moreno et al. [67] use recurrent autoencoders for
anomaly detection. Autoencoders attempt to learn a
function to project elements drawn from an input dis-
tribution into a dimensionally reduced latent space and
then reconstruct the original input element from this re-
duced latent space. Since the encoder and decoder are
trained on a specific distribution, if they are fed an ele-
ment from outside the distribution, there will be a larger
difference between model input and output, indicating
an anomaly. In a later work the same group [68] has de-
veloped this work into a potential offline search (GWAK)
for anomalous detection.

We note that all of these examples, both for binary
mergers and for supernovae, rely on having a signal model
to train the deep network. As a consequence, their ap-
plicability is restricted to signals that are similar to the
training data. While not an issue for binary mergers, this
may be very important for supernovae where the simula-
tions used for training rely on uncertain physics and nu-
merical approximations and simplifications [69, 70]. And
they are clearly not applicable to the more general prob-
lem of detecting gravitational-wave transients from as-yet
unknown sources.

Shortly after the release of an early version of this
work [71], Marianer et al. [72] presented a deep-learning
algorithm that avoids relying on a signal model by in-
stead using outlier detection. The authors trained a mini-
inception resnet network [64] on the Gravity Spy data
set [73, 74], which contains spectrograms of known noise
glitches classified into categories. They then applied the
CNN to spectrograms of LIGO data and used two meth-
ods of outlier detection to identify possible signals. This
search was applied to a subset of public LIGO data from
the first two observing runs; no signal candidates were
found. To our knowledge this is the only other case to
date of a deep-learning method capable of searching for
generic gravitational-wave transients.

In a special category Szczepańczyk et al. [75] use CWb
search as a base and independently enhance the search
using a machine learning model. Although this is signif-
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icantly different from our approach which uses machine
learning as the base of the search.

In this paper we present a deep-learning technique that
is capable of detecting generic transient gravitational-
wave signals. Our approach differs from previous ap-
proaches in a key way: rather than training a CNN
to recognise specific signal morphologies in the data
streams, we construct CNNs that are designed to recog-
nise coherence in amplitude and phase between two or
more data streams. We then train the CNNs using simu-
lated signals and noise glitches that both consist of ran-
dom timeseries with properties drawn from the same dis-
tributions. Using the same waveform distributions to
simulate both the signals and glitches prevents the CNNs
from using the signal morphology to the classify input.
Instead, the CNNs are forced to learn to measure consis-
tency between detectors.

In the next section we describe the architecture of
MLy’s CNNs and the training procedure. We then eval-
uate MLy by analysing data from the second LIGO-
Virgo observing run. We will see that our trained
pipeline has a detection efficiency approaching that of
the standard LIGO-Virgo pipeline for detecting unmod-
elled gravitational-wave transients [76], but with higher
speed and lower computational cost.

III. A CNN FOR UNMODELLED BURST
DETECTION

Our goal is to be able to detect sub-second-duration
GWBs in data from the three detectors of the LIGO-
Virgo network, without prior knowledge of the signal
morphology. A significant challenge is to distinguish real
signals from the background noise transients, “glitches”,
that are common in these detectors [77–79]. Typical
GWB detection algorithms [80–83] do this by requiring
candidate signals to be seen simultaneously in multiple
detectors (simultaneously up to the light travel time be-
tween the detectors) and to be correlated between de-
tectors. We follow this logic in our analysis by using a
network architecture for MLy that combines the outputs
of two different CNNs: one that detects coincident sig-
nals in multiple detectors (Coincidence Model - Model 1),
and a second that detects correlation in phase and am-
plitude between the detectors (Coherence Model - Model
2). Model 1 takes as input the band-passed, whitened
timeseries data from each detector. Model 2 takes the
same band-passed whitened timeseries data as well as
the Pearson correlation between each pair of band-passed
whitened timeseries data [equation (1)]. Each model out-
puts a score on [0, 1], where values near 1 indicate a signal
and values near 0 indicate noise. The scores from the two
models are multiplied together to give a combined score
on [0, 1].

In the following subsections, we first review the anal-
ysis procedure and the choice of training data. We then
detail how the architecture for each model is selected.

A. Analysis Procedure

We analyse data from all three of the detectors in
the LIGO-Virgo network: LIGO-Hanford (H), LIGO-
Livingston (L), and Virgo (V). In our analysis we use
two types of background noise. For training we use simu-
lated Gaussian noise that follows the design curves for the
LIGO and Virgo detectors [84]; the motivation for using
simulated noise for training is explained in Section III B.
For testing we use real LIGO-Virgo data publicly avail-
able from the GW Open Science Center (GWOSC) [85].

The LIGO-Virgo data from GWOSC are sampled at
4096 Hz. We downsample to 1024 Hz, allowing us to de-
tect signals up to 512 Hz; this covers the most sensitive
frequency range of the detectors and is sufficient for the
purpose of demonstrating our CNN. (Since the trained
network can process data much faster than real time, we
could extend the analysis to higher sample rates. We
leave this to future work.) We chose to focus on signal
durations <1 s by analysing data in 1 s segments. This
covers many plausible signal models, including for ex-
ample core collapse supernovae [86], perturbed neutron
stars and black holes [12], and cosmic string cusps [87].
We could extend to longer durations as well, with a cor-
responding increase in latency.

The power spectral density (PSD) Sα(f) for each de-
tector α is computed using Welch’s method, and used to
whiten the corresponding data stream. We use 16 sec-
onds to calculate the PSD, whiten and then keep the
central second. Each data stream is also high-pass fil-
tered at 20 Hz, giving a search band of [20,512] Hz. The
Pearson correlation of each pair of detectors is given by

rαβ [n] =

∑N
i=1(dα[i]− d̄α)(dβ [i+ n]− d̄β)√∑N

j=1(dα[j]− d̄α)2
∑N
k=1(dβ [k]− d̄β)2

. (1)

Here dα[i] is the band-passed whitened data timeseries for
detector α, d̄α is the mean over N samples, and n is an
integer time delay between detectors. The correlation is
computed for all n corresponding to time delays of up to
±30 ms with respect to the first detector, which is slightly
larger than the maximum possible arrival time difference
(±27.3 ms) a GW signal can have in the three-detector
LIGO-Hanford, LIGO-Livingston, and Virgo network.

The band-passed whitened data series and the correla-
tion series are then fed into the two models. The scores
from the two models are multiplied together to give a
combined score on [0, 1]. In this way a candidate signal
needs to score highly for both models; i.e., showing both
coincidence in multiple detectors and correlation between
the detectors. In practice we find the scores of both mod-
els tend to be strongly peaked around 0 for noise and
weak astrophysical signals, and strongly peaked around
1 for strong astrophysical signals.

To estimate the distribution of scores of the back-
ground noise, we repeat the analysis many times after
time-shifting the data between detectors by an integer
number of seconds. Since the time shift is much larger
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than the longest possible time-of-light delay between de-
tectors, it prevents a real GW signal from appearing in
coincidence between multiple detectors. All coincident
events in the time-shifted series can therefore be assumed
to be uncorrelated and treated as background noise. This
is a standard procedure in GW analysis; see e.g. [77].

To estimate the sensitivity to GWBs, we repeat the
analysis after adding simulated signals to the data. In
General Relativity, a GW has two polarisations, denoted
h+(t) and h×(t). The received signal hα(t) of a given
detector α is the combination

hα(t) = F+
α h+(t) + F×α h×(t) (2)

where the antenna response functions F+,×
α are deter-

mined by the position and orientation of the source rela-
tive to the detector. We characterise the strength of the
received signal by its network signal-to-noise ratio

ρ =

√√√√∑
α

4

∫ ∞
0

|h̃α(f)|2
Sα(f)

df (3)

Generating simulated signals distributed isotropically
over the sky and rescaling to different ρ values allows us
to measure the distribution of CNN scores as a function
of the signal-to-noise ratio of the signal.

B. Training Data

The choice of data used to train a CNN is often a
critical factor for the CNN’s performance.

For the signal population we use white-noise bursts
(WNBs) [77, 82]; these are signals where the h+ and
h× polarisations are independent timeseries of Gaus-
sian noise that is white over a specified frequency range,
multiplied by a sigmoid envelope. We select these as
our training sample as they are effectively featureless.
The bandwidth of each simulated (or “injected”) sig-
nal is selected randomly and uniformly over the range
[40, 480] Hz. The duration of each injection is selected
randomly and uniformly over the range [0.05, 0.9] s.
Given their duration their central time is chosen ran-
domly inside this 1-second interval in a way that they
aren’t cropped. The injections are distributed uniformly
over the sky and projected onto the detectors using equa-
tion (2). Finally, the signal is rescaled to a desired net-
work signal-to-noise ratio ρ as defined in equation (3). In
the rest of this section we will discuss different aspects of
our training data and methods, that eventually gave us
the current best model.

For the background population we find in practice that
the best CNN performance is obtained by training with
simulated detector noise and glitch-like instances, rather
than real glitching detector noise. The simulated glitch-
like instances are WNBs with parameters drawn from
the same distribution as for GWBs, but independently
between detectors (i.e., a different WNB is used for each

detector). Using simulated background allows us to con-
trol the glitch rate in the training set; as we will show in
Section IV C that we can vary this rate to improve the
performance at low false alarm rates. Furthermore, using
WNBs for the glitches prevents the CNNs from learning
to distinguish GWBs from glitches based on the mor-
phology; this is critical since we do not know the true
morphology of GWBs.

In the remainder of this section we detail the training
process for each model. All training data were generated
using the MLy package [88] and its generator function,
with elements of the PyCBC [89] and GWpy[90] pack-
age to project the signal onto the detectors and apply
time-of-flight differences to the signals arriving at the
various detector locations. For training the models we
used Keras [91]. More details and the codes are avail-
able at our repository [92] and the mly package [88].

1. Data types

We have two CNN models to train: the Coincidence
Model (model 1) and the Coherence Model (model 2).
Each model is trained with a dataset chosen to produce
the best performance of the model for its assigned task.

All training samples consist of stationary background
noise and optionally an injection into one of more of the
detectors. The stationary background is Gaussian noise
with power spectra that follow the design curves of the
LIGO and Virgo detectors [84]. For the non-stationary
glitch component we use the same WNB waveform family
as for the GWB signals but either do the injection into a
single randomly chosen detector or we inject into all three
detectors but select the WNB parameters independently
for each detector. We use a total of four types of samples:

• Type 0: Gaussian LIGO-Virgo noise, with no in-
jections. Labeled as noise.

• Type 1: Gaussian LIGO-Virgo noise with coherent
WNB injections in all detectors, simulating a real
GWB. Labeled as signal.

• Type 2: Gaussian LIGO-Virgo noise with different
(incoherent) WNB injections in each detector, sim-
ulating unrelated glitches or excess noise in each
detector. The injections may be simultaneous or
offset in time from each other to simulate simulta-
neous or nearly simultaneous glitches. Labeled as
noise.

• Type 3: Gaussian LIGO-Virgo noise with a sin-
gle WNB injection in a randomly chosen detector,
simulating a glitch in a single detector. Labeled as
noise.

The Coincidence Model (model 1) is trained using
Type 0 (stationary background), Type 1 (GWBs), and
Type 3 (single-detector glitches). The GWBs are injected
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with network SNR values in the range [12,30]. The lim-
its of this range are chosen based on the fact that lower
SNR values in training increase the false alarm rates dra-
matically, while training SNRs higher than 30 are not
required; we show later that the detection efficiency re-
mains high for SNR values larger than those in the train-
ing set. Single-detector glitches (Type 3) have SNR val-
ues over the range [6,70].

The Coherence Model (model 2) is trained using Type
0 (stationary background), Type 1 (GWBs), and Type
2 (incoherent multi-detector glitches). Experimentation
showed that training with GWB network SNRs in the
range [10,50] and glitch network SNRs in the range
[10,70] gives the best performance.

The Type 2 incoherent signals represent the extreme
cases where glitches are present in the same 1-second in-
terval in all three detectors. Real glitches occur indepen-
dently in different detectors and need not be simultane-
ous to within the light travel time between detectors. To
train our model to handle this case we define a quantity
called “disposition” which is the range of central times
of the glitches. For example, in the case of three detec-
tors and a disposition T the glitches will be centred at
times T0 − T/2, T0, and T0 + T/2 in the three detectors,
with the order selected randomly. The central time T0
is positioned randomly in the 1 second interval so that
no signal gets cropped, and the injection durations are
also restricted so that no signal gets cropped. We gen-
erate datasets for dispositions distributed uniformly over
three different ranges: Type 2a has range of [0.1,0.5] sec-
onds, Type 2b has range [0,0.1] seconds, and Type 2c has
zero disposition to challenge the Coherence Model with
coincident incoherent signals.

C. Network Architecture

1. Coincidence Model - Model 1

The first model is a single-input single-output residual
neural network whose goal is to identify coincident signals
that appear in at least two detectors. This model takes
as input the whitened timeseries data from each of the
three LIGO-Virgo detectors. The output is a score on
[0, 1], where high values indicate signal and low values
no signal.

Residual neural networks are proven to boost the per-
formance of simpler CNNs by reducing the effect of van-
ishing gradients; the latter make deep CNNs lose contri-
butions from their first layers and cause their efficiency
to saturate. We adapt a network from [93] that com-
pares different methods of using machine learning on
time-series data and we optimise it using a genetic al-
gorithm (see below). We find that the resulting residual
neural networks outperform “ordinary” deep CNNs in
our case. More specifically we optimise a simple CNN
model with a relatively good performance (overall accu-
racy >95%) and then use it as a “residual block”, where

we feed the output of the block to its input. To find the
hyper-parameters of the model we use a genetic algorithm
[94] that trains many generations of different randomly
initialised models and find which hyper-parameters in-
crease the performance. The two main differences from
the original model of [93] are a larger kernel size and the
reduction in our residual blocks from three layers to two.
We find that three residual blocks are optimal, as in [93].
Varying the number of filters has no obvious benefit so
we retain the original number to make the model less
computationally expensive.

In training we use early stopping, which stops the
training when the loss does not improve for 20 consec-
utive epochs. We find that overall accuracy is further
improved by using a cyclical learning rate [95] with the
addition that the learning rate is halved when the loss
does not decrease for 5 epochs. Finally, we save the model
for every epoch in which the accuracy increases, so that
the final model saved is the best one encountered over
the training.

The final model is shown in Figure 1. It has three
residual blocks, the first with 64 filters and the others
with 128. At the end of each residual block we add the
output of the first layer to the block output. By doing
this the gradient can skip the intermediate layer reducing
the vanishing effect. Since we use convolution, all layers
are zero-padded to maintain the same size with the input
and make this addition feasible. At the end of each layer
we apply ReLU (rectified linear unit) activation followed
by batch-normalisation. After the last residual block we
flatten using global average pooling. We then use two
dense (fully connected) layers with batch-normalisation
before passing to the output layer, which uses softmax
activation. We use binary cross entropy to calculate the
loss.

2. Coherency Model - Model 2

The second model has two inputs and one output. The
first input is the same whitened timeseries data fed to
the first model, while the second input is the Pearson
correlation of each pair of detectors, equation (1). This
model has a binary classification output that is trained to
return a measure of coherency among detectors on [0,1].

Measurements of correlation between detectors have
long been a key ingredient of GWB detection pipelines;
see e.g. [76, 82, 96–98]. We have explored training net-
works to infer correlation information from the strain
data; however, this is not a natural operation for net-
works constructed from convolutional filters. Since the
Pearson correlation is simple to compute and easy to di-
gest by a feature-detecting algorithm, we choose to feed
the correlation as a input to the model.

The strain and correlation inputs have their own sep-
arate branches which are eventually merged as shown in
Figure 2. As for the first model, we use a genetic al-
gorithm to optimise the hyper-parameters. Due to the
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Figure 1. Coincidence model architecture (Model 1). The
input consists of three 1024-sample whitened data channels
from the H, L, and V detectors. This is passed through three
consecutive two-layer residual blocks, flattened, then passed
through two final dense layers. M × N indicates the size
of the filters in each convolutional layer and 64/128/256 is
the number of filters (convolutional layers) or nodes (dense
layers).

small size of the correlation input, we find that its branch
does not need to be as deep as the coincidence model, nor
does the strain branch. We find that the performance is
sensitive to the number of filters: increasing or decreas-
ing the number in any of the convolutional layers can
prevent the model from training. By contrast the kernel
size has no significant effect on performance, except for
some variation of the stability of training in some cases.
The choice of kernel size was made based on how often
those numbers appeared in the gene pool of the last gen-
eration of successful models in the genetic algorithm.

We use the same early stopping and cyclical learning
rate choices as used for model 1.

The final model is shown in Figure 2. We pass the

strain input through three convolutional layers and the
correlation data through two convolutional layers in a
separate branch. (We also explored residual neural net-
works for the strain branch of the model but these gave no
improvement in performance.) We flatten the outputs by
global average pooling, which increases the performance
slightly, and then combine the two branches with con-
catenation before passing through a dense layer.

Figure 2. Coherence model architecture (Model 2). The
model consist of two branches with separate inputs. The in-
put of the left branch consists of the same three 1024-sample
whitened data channels as the input to Model 1 (Figure 1).
This is passed through three consecutive convolutional layers
and flattened. The input of the right branch consists of the
60-sample Pearson correlation values [equation (1)] between
each pair of whitened data streams. This is passed through
two convolutional layers, flattened, then concatenated with
the output of the strain branch. The combined data is then
passed through a dense layer before the output layer. M ×N
indicates the size of the filters in each convolutional layer and
64/128/256 is the number of filters (convolutional layers) or
nodes (dense layer).

IV. OPTIMIZING THE TRAINING
PROCEDURE

A. Measuring performance

A standard means to assess the performance of a GWB
detection algorithm (see e.g. [77]) is to measure the detec-
tion efficiency for various signal morphologies as a func-
tion of the signal amplitude (e.g., signal-to-noise ratio)
at a fixed false alarm rate (FAR).
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We calculate the FAR as a function of score by
analysing background data samples that are independent
from those used in the training. For the final models
we measure the FAR using real LIGO-Virgo data from
the second observing run, O2 [78], during times when all
three detectors were operating (1 - 25 Aug 2017), with
time shifts applied as discussed in Section III A.

We calculate the detection efficiency for a selection of
different possible GWB signals, injected in real LIGO-
Virgo data from the second observing run. We generate
sets of signal injections (different from the ones used for
training data) and add them to noise randomly sampled
from the O2 observing run during times when all three
detectors were operating. We measure our sensitivity to
five distinct waveform morphologies:

WNB: These are the same type of signal as the Type I
used for training.

CSG: A circularly polarised sinusoidal signal with Gaus-
sian envelope. These ad hoc waveforms are stan-
dard for testing GWB analyses [77, 78].

CCSN: The N20-2 waveform of [99], from a 3D simu-
lation of a neutrino-driven core-collapse supernova
(CCSN) explosion.

Cusp: The GW emission expected from cosmic string
cusps [100].

BBH: The GW signal from a black-hole binary merger.
We use the IMRPhenomD waveform model [101,
102]. The black-hole masses and spins are se-
lected randomly and uniformly over the intervals
[10, 100]M� and [−1, 1], with the restriction that
the maximum signal frequency does not exceed
512 Hz.

Sample waveforms of each type are shown in Figure 3.
We compute the efficiencies at SNR values ρ =

0, 1, 2, . . . , 50, where the ρ = 0 case corresponds to pure
noise (where we expect approximately zero efficiency).
For each SNR value we generate 100 injections. Each in-
jection is rescaled to the desired network SNR, added to
the background timeseries, and processed by the models
giving a score. The injection is considered to be detected
if the combined output score is larger than that of the
false alarm rate threshold.

B. Comparing models

It is crucial for a method to have reproducible results if
it is going to be compared with another. Machine learn-
ing models typically use random initialisation of their
trainable parameters, which can lead to different results
for repeated runs of the training. As a demonstration
of this effect, we train models 1 and 2 ten times each
using training data types 0–3, yielding 100 combinations
of trained models. Figure 4 shows the distribution of

Figure 3. Examples of testing signals: white noise burst
(WNB), binary black hole merger (BBH), core-collapse super-
nova (CCSN), circularly polarised sine-Gaussian (CSG) and
cosmic string cusp. All plots show the injection after whiten-
ing, but without background noise.

background scores for each trained version of each model
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separately and for all 100 model 1 – model 2 pairs. We
see that while the performance of each model is variable
between trainings, the average performance curves are
much smoother and more regular. In the following sec-
tions we follow this practice of averaging over repeated
trainings of the same model to make more robust com-
parisons of model performance across different versions
of training data.

Figure 4. False alarm test results for 10 different trainings of
model 1 (blue) and model 2 (red) and their 100 combinations
(magenta) of scores. The same 1 month of background noise
data was used for testing each trained model. We present here
the distribution of the 1000 highest background scores for each
model. We highlight with a bold line the mean result for each
model. The gray area represent one standard deviation for
each case.

C. Training sample ratios

In classification problems the training data often con-
tain the same number of examples in each class, giving
all classes equal importance. In our problem we priori-
tise the reduction of false alarms (false positives) and the
ability of the network to recognise noise features. This is
motivated by the low false alarm rate threshold adopted
by LIGO and Virgo for issuing GWB detection alerts
for unmodelled bursts during online running, currently
7.9×10−9 Hz (one per 4 years) [103]. Even with our best
model, using equal numbers of signal and noise samples
we do not get an acceptable performance. Furthermore
we have more than just stationary noise and GWB injec-
tions in our data types: we also try to simulate single-
and multi-detector glitches, so we need to investigate the
optimal proportions of each type. We therefore trained
both models with different numbers and ratios of the data
types to determine which provide the best performance.

For the Coincidence Model (model 1) we tested all
combinations of 3N and 6N instances each of Type 0
and Type 1, and 3N , 6N , and 12N instances of Type 3,
where N = 104, for a total of 12 different combinations.
For the Coherence Model (model 2) we tested all combi-
nations of 5N and 10N instances each of Type 0, Type 1,
Type 2a & b together, and Type 2c, for a total of 16 dif-
ferent combinations. This gives a total of 12 × 16 = 192
different combinations of training ratios.

For each combination we repeat the training of each
model 7 times and use the mean detection efficiency for
comparisons. We evaluate the detection efficiency at
fixed false alarm rate of 1/day, using a common set of
real background noise data from the second LIGO-Virgo
observing run [78] and a common set of GWB injections.
The resulting averaged efficiency curve for a given train-
ing ratio combination i and waveform w is characterised
by the SNRs at which the efficiency reaches 50% and
90%, denoted ρi,w50% and ρi,w90%. We choose as the best
training ratio combination that which minimises the fol-
lowing quantity:

χ2
i =

∑
w

∑
E=50%,90%

(
ρi,wE −minj [ρ

j,w
E ])

minj [ρ
j,w
E ]

)2

(4)

Minimising this quantity corresponds to achieving a best
average performance (lowest ρi,w50% and ρi,w90%) across all
waveforms. We find the best combination to be training
model 1 with Types 0, 3, 1 in the amounts 6N , 6N , 3N
and training model 2 with Types 0, 1, 2a&b, 2c in the
amounts 10N , 10N , 5N , 5N . This combination gives
amplitude sensitivities (ρi,w50% and ρi,w90% values) 10%–20%
better than training with equal numbers of each type of
data. We use these ratios for all training in the rest of
this paper.

D. Rescaled Virgo noise level

Up to this point we have trained with artificial Gaus-
sian noise that follows the design noise power spectral
density of the advanced LIGO and Virgo detectors [84].

As shown in Fig. 5, when considering the O2 data, the
ratio of the true noise level in Virgo to that in the LIGO
detectors is higher than the ratio for the design noise
spectra used in the training. This means that in the real
data we expect the SNR of a signal in Virgo relative to
LIGO to be systematically lower than the SNR used in
training, potentially resulting in sub-optimal model per-
formance on real data. To investigate this we retrain the
best model from the previous investigation (Section IV C)
after rescaling the Virgo PSD by the factors 0.5, 1, 2, 4,
8, 16, or 32. Rescaling by 1 is the same training as be-
fore, while the factor of 0.5 is for a sanity check on the
method. All other factors (> 1) lower the SNR of the
training signals in Virgo relative to LIGO. For each case
we repeat the training 7 times and repeat the false alarm
rate and efficiency measurements of the previous section
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Figure 5. Noise amplitude spectral densities for the LIGO and
Virgo detectors during the second observing run, O2 [78]. The
dashed lines show the design target sensitivities.

(using new time lags). We then use equation (4) to com-
pare the performance with the different rescalings.

We find a clear performance improvement when train-
ing model 1 with rescaling factors of 2 or 4 and model 2
with rescaling factors of 2 – 32. The best performance is
found using the rescalings (4,32) for models 1 and 2 re-

spectively, giving typical ρi,w50% and ρi,w90% values almost a
factor of 2 lower than training without rescaling. We use
these rescalings for all training in the rest of this paper.

We note with interest that the optimal scaling factor
for training model 2 is larger than that for model 1;. We
attribute this to the fact that the orientation of the Virgo
detector is very different from the near co-alignment of
the two LIGO detectors [104]; as a consequence, when
training with random timeseries, HV and LV correlations
tend to be smaller than HL correlations even for equal
PSDs.

Rescaling the Virgo noise level upwards lowers the SNR
of training signals in Virgo, causing the models to learn
to put less emphasis on the Virgo data. One might ques-
tion whether this rescaling means that the Virgo data
is not useful. As a test, we performed a series of in-
jections where each injection was done twice: once nor-
mally, with the signal added to all three detector data
streams, and again where the same injections were made
into Hanford and Livingston only. We found that while
the scores for most injections are largely unchanged, zero-
ing out the Virgo injection lowers the scores significantly
in some cases, particularly for high-SNR signals, while
the background distribution is not significantly affected.
This demonstrates that even with the rescaling of the
Virgo noise for training, the models can still extract use-
ful information from the Virgo data stream.

V. PERFORMANCE OF THE OPTIMALLY
TRAINED MODEL

Following our investigations into optimising the train-
ing procedure, we now evaluate the performance of
MLy’s optimally trained models on real LIGO-Virgo
data. For these tests we use models trained with the
optimal training sample ratios (Section IV C) and with
the optimal Virgo noise rescalings (Section IV D). We
use new time lags and new injection sets that haven’t
been used previously. Of the 49 combinations of model
1 and model 2 that are trained in this way, we choose
the one that has the best performance as measured by
equation (4). This best combination is then applied to
new time lags and injections for the assessments of per-
formance presented in this section.

Figure 6 shows the detection efficiency of the optimally
trained model for our test waveforms (Section IV A) at
a FAR of 1/year using real LIGO-Virgo O2 data. We
see that MLy is able to detect >50% (>90%) of all sig-
nals that have amplitudes ρ ≥ 19 (ρ ≥ 27), with the
exception of cusps for which the sensitivity is lower. The
performance for CCSN and BBH signals is very similar
to that for WNBs, even though the signal morphologies
are quite different (see Figure 3). The performance for
CSGs is even better, which we attribute to the very small
time-frequency volume that it occupies making the signal
louder. The performance for cusps is poorer; tests indi-
cate that this occurs because cusps are linearly polarised
(h× = 0) while the WNB training injections are unpo-
larised (|h×| = |h+|). In the next subsection we will see
a similar effect for linearly polarised sine-Gaussian sig-
nals. This is an interesting demonstration of where our
training could potentially be improved to handle a yet
broader range of signals.

A. Comparison with the LIGO-Virgo all-sky search
in O2

The LIGO-Virgo collaborations have already searched
the O2 data looking for generic short-duration GWB sig-
nals [78]. We compare the performance of MLy with that
of the LIGO-Virgo analysis by repeating the signal injec-
tions performed in the LIGO-Virgo search for all signal
types reported in [78] with maximum frequencies below
500 Hz; these signal types are listed in Table I and consist
of Gaussian pulses, sine-Gaussians, and WNBs (see [78]
for details).

The procedure to assess efficiencies is the same as that
used in previous sections except that, following LIGO-
Virgo convention, instead of using SNR, the injected
signal strength is characterised by the root-sum-square
value hrss:

hrss =

√∫ ∞
−∞

dt (|h+(t)|2 + |h×(t)|2) (5)
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Figure 6. Detection efficiency: the fraction of simulated sig-
nals that are detected at a false alarm rate of 1/year versus
the network SNR defined by equation (3). The waveform
morphologies are white noise burst (WNB), core-collapse su-
pernova (CCSN), circularly polarised sine-Gaussian (CSG),
cosmic string cusp (CUSP), and binary black hole merger
(BBH). The background noise is real LIGO-Virgo data from
O2.

Note that hrss is independent of the detectors or their
noise spectra. Hence for a given hrss, signals at frequen-
cies of higher detector noise will have a lower SNR. There
is therefore no one-to-one match between SNR and hrss.

Figure 7 shows the detection efficiency of MLy for the
tested waveforms, at a FAR threshold of 1/year. We
see that most waveforms have similar efficiencies, with
only G2D5 and to a lesser extent the SGL153 waveforms
having poorer performance. Like the cusp signals in the
previous test (Figure 6), the G2D5 and SGL153 wave-
forms are the only linearly polarised waveforms in the
set. Again we conclude that the lower performance is
due to training with exclusively unpolarized waveforms.

Table I reports the hrss values at which MLy achieves
a detection efficiency of 50% for each waveform. It also
shows the hrss values at which the coherent WaveBurst
(cWB) [105] pipeline used in the LIGO-Virgo O2 search
[78] achieves a detection efficiency of 50% [106]. We see
that MLy’s hrss limits are approximately 10% to 50%
higher than for cWB, corresponding to sensitivity to dis-
tances that are 65% to 90% as far as those of cWB. We
consider this to be a very promising first demonstration
of the power of machine learning for GWB detection, par-
ticularly when one considers the very low computational
cost and high speed of the MLy analysis (discussed next).

Name +/× Parameters cWB MLy

(10−22 Hz−1/2)

Gaussian pulses

G2D5 L t=2.5 ms 2.8 3.2

Sine-Gaussian pulses

SGE70Q3 E f0=70 Hz, Q=3 1.5 1.9

SGE153Q8D9 E f0=153 Hz, Q=8.9 1.3 1.4

SGL153Q8D9 L f0=153 Hz, Q=8.9 – 1.7

SGE235Q100 E f0=235 Hz, Q=100 0.9 1.4

White-Noise Bursts

WNB100 U flow=100 Hz,
∆f=100 Hz, t=0.1 s

1.2 1.7

WNB250 U flow=250 Hz,
∆f=100 Hz, t=0.1 s

1.4 1.7

Table I. Comparison of the detection efficiencies of MLy and
cWB at a FAR of 1/year. The first column is the label used
for each waveform in Figure 7. The second column indicates
the signal polarisation: L (linear: h× = 0), E (elliptical:
|h×| ≤ |h+|), or U (unpolarised: |h×| = |h+|). The third col-
umn lists the waveform parameters; see [78] for definitions.
The two rightmost columns are the hrss values in units of
10−22Hz−1/2 at which the MLy and cWB pipelines achieve
50% detection efficiency for each waveform type. A ’–’ indi-
cates no data available for cWB for that waveform.

Figure 7. The detection efficiency of the MLy pipeline as a
function of the hrss amplitude for the burst signal types listed
in Table I. The efficiency is computed at a false alarm rate
threshold of 1/year.
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B. Inference and Training Times

We note that the CNN analysis of data is very fast:
we find that the average time required to process 1 sec-
ond of whitened data is 51 ms on a 3.5 GHz Xeon E3-
1240v5 quad-core CPU with 32 GB of RAM, or approxi-
mately 3.3 ms on a A100-SXM4-80GB GPU. This makes
second-scale-latency searches feasible, much faster than
the minute-scale latency typical of current LIGO-Virgo
low-latency unmodelled burst searches [18].

The overall computational cost is also very low com-
pared to traditional search algorithms. The domi-
nant computational cost of our analysis is in estimat-
ing the FAR. Approximately 103 time shifts is enough
to estimate accurately the threshold for FAR values of
O(1/year) with days to weeks of data; three or four A100-
SXM4 GPUs will therefore be sufficient to perform the
full analysis while keeping up with the data in real time.
This is in contrast to the several hundred dedicated CPUs
typically required by standard algorithms.

The models presented here are the basis of a new
pipeline called MLy-Pipeline, that is reviewed and ap-
proved to join the last half of the LIGO-Virgo-KAGRA
fourth observing run.

Finally, we note that the computational cost of training
is modest. A single training of one model on a Tesla
V100-SXM2-16GB GPU takes ∼ 1 hour, and training
both models 7 times each takes ∼ 12 hours.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel CNN-based analy-
sis pipeline, MLy, for the detection of transient
gravitational-wave signals. Unlike previous CNN-based
analyses, MLy is capable of detecting waveforms with
morphologies that are not included in the training set
while rejecting real detector noise glitches. The anal-
ysis is shown to be sensitive to a variety of waveform
morphologies at signal-to-noise ratios and false alarm
rates relevant for issuing rapid alerts to the astronom-
ical community, with very low computing requirements
and second-scale latencies possible.

The MLy pipeline uses a multi-component architec-
ture in which one CNN detects transients that are si-
multaneous in multiple detectors while a second detects
correlation between the detectors to eliminate coincident
background glitches. The second CNN takes as input
both the whitened detector timeseries data and the Pear-
son correlation between detectors computed for all phys-
ically allowed light travel time delays between detectors,
allowing the CNN to detect signal correlation rather than

signal shape. We suggest that using separate models to
identify different aspects or properties of the desired sig-
nal may be a useful approach generally for GW analysis
with machine learning methods.

While our model already has sensitivity approaching
that of standard low-latency analyses, we consider this in-
vestigation to be a promising first attempt with potential
for improvement. For example, we could use knowledge
of the morphology of common glitch types to reduce the
background. Our training used simulated glitches with
the same morphology as the simulated GWBs to force our
models to recognise GWBs by coincidence and correla-
tion between detectors rather than by signal morphology,
since the morphology of real GWBs is not known. How-
ever, the morphology of real glitches is known. Exami-
nation of the noise events in the background distribution
shows that many of them are due to known glitch types
recognised by Gravity Spy [73, 74, 107, 108]. Applying
a glitch classifier or an auto-encoder to candidate events
detected by MLy may allow us to identify false alarms
as glitches and thereby veto them in real time.

While we have demonstrated MLy’s ability to detect
GWBs, the characterisation of any detected signals (com-
monly referred to “parameter estimation”) is an open
problem for unmodelled GWBs, and is necessary for the
full exploitation of any detections. Existing machine-
learning based methods [23, 27, 28, 56–58] (see also [109])
are fast but rely on precise signal models for training. By
contrast the BayesWave algorithm [83] is applicable to
generic GWBs, estimating the waveform and providing
a map of the probability distribution of the source over
the sky, but typically requires hours to run for a single
event. Given our goal of using MLy for the low-latency
detection of GWBs to allow electromagnetic follow-up
observations, a natural next step is to explore how sky-
localisation pipelines such as [56] can be generalised to
the case of unmodelled GWBs. We leave examination of
this topic to a future work.
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