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A B S T R A C T

Maritime transport research, including emissions estimation, shipping network design, and bunker management
relies on complete high-quality data. Incomplete ship static data often lead to bias and misleading conclusions.
Existing imputation methods either depend on small data samples with poor imputation accuracy or are
overly complex with practical limitations. This study addresses these issues by evaluating existing methods
and proposing a new imputation approach to enhance the quality of ship static data. First, we introduce
a stepwise multiple nonlinear regression method to simplify the imputation process and improve accuracy.
Second, we propose a novel evaluation metric, the coverage rate, to assess the model performance. Finally,
from a total of 14 models, we use a decision matrix to select the optimal model for imputing missing ship
static data. These models are applied to a real dataset with missing values and cross-validated using multiple
databases to ensure robustness. The proposed method maximizes the coverage rate, approaching nearly 100
percent for missing data. The most significant improvement was observed in main engine RPM imputation,
where the average adjusted R-squared increased by at least 20.74%. Based on a large training dataset of 38,018
ships, this method can be directly applied to other maritime transport studies.
1. Introduction

Missing data presents a significant challenge in quantitative re-
search, and maritime research is no exception. Similar to other indus-
tries, the use of big data and machine learning (ML) offers diverse so-
lutions for data-driven decision-making in the maritime industry (Jeon
et al., 2021; Yu et al., 2022b). Big Data Analytics (BDA) and Artificial
Intelligence (AI) have gradually shaped decision-making processes in
maritime operations (Yang et al., 2019; Munim et al., 2020; Yu et al.,
2022a). Alongside these emerging technologies, Operations Research
(OR) in maritime also relies on accurate and high-quality data. Opti-
mization problems such as port berth allocation, liner network design,
bunker management require clean and sufficient data to validate so-
lutions (Ksciuk et al., 2023). The integration of BDA and OR can
effectively address data uncertainty and further enhance data qual-
ity (Raeesi et al., 2023). While managing smaller datasets allows for
more straightforward cleaning and procession, large databases intro-
duce greater complexity. The increased prevalence of missing data
in such large databases further complicates the process, making it
more time-consuming and reducing the accuracy of data processing
outcomes (Cheliotis et al., 2019; Cammin et al., 2020; Peng et al.,
2020).
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Quantitative research in maritime transport, covering areas such
as emissions estimation, shipping network design and bunker manage-
ment depends on the analysis of comprehensive high quality datasets.
Which can be broadly classified into two categories: ship activity data
and ship static data. The distinction between these categories is based
on whether the data change over time (Yan et al., 2021). Ship activity
data are primarily collected through Automatic Identification Systems
(AIS), which automatically transmit messages via very high frequency
(VHF) signals. Each AIS entity actively monitors the VHF medium to
find available time slots for data transmission (Liang et al., 2024; Kelly,
2022). However, in regions with a dense concentration of AIS entities,
network overloading can occur, leading to AIS data loss. Consequently,
areas with a high volume of ships are particularly susceptible to data
loss. VHF signals are also susceptible to environmental factors such as
rain or fog, which can cause further data loss. Additionally, physical
obstructions such as land or other vessels can diminish signal reception
rates (Shepperson et al., 2018). Apart from environmental conditions
and physical obstructions, AIS message loss can also arise from network
overloads and timeouts within the AIS system (Last et al., 2014).
These factors lead to data gaps and affect the completeness of ship
activity data used in maritime transport research. Ship static data are
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similar prone to data loss. Ship static data include information such
as ship dimensions (e.g. overall length, beam), engine specifications
(e.g. main engine power), and other parameters (e.g., service speed)
that remain constant over time and operating conditions (Kim et al.,
2020). Detailed information on each vessel within a fleet can be col-
lected from various sources, including ship owners, shipbuilders, and
ort authorities (Wang et al., 2016). However, the collection standards

of these databases sources may not be fully consistent, and the uploaded
static data for ships may not be entirely compatible with one another.
This issue can be exacerbated by factors such as increasing processing
costs and concerns over data confidentiality, leading to missing static
data from ships (Jeon et al., 2021; Gao et al., 2023; Skarlatos et al.,
2024).

Both types of data are essential to shipping research, yet most
xisting studies on missing data imputation have focused solely on
hip activity data (Nguyen et al., 2015, 2018; He et al., 2021; Duan

et al., 2022). The research in ship static data remains limited. For
nstance, in studies estimating ship or port emissions, missing ship static
ata can lead to a significant underestimation of ship emissions, by
s much as 49% in some cases (Zhang et al., 2019; Gutierrez-Torre
t al., 2020; Huang et al., 2020; Peng et al., 2020). Low-quality real

data in maritime operations research can only provide a rough estimate
for parameter estimation (Umang et al., 2013; Wawrzyniak et al.,
2020). In berth allocation problems, ship network design and speed
ptimization, high-quality real data is critical. In ship or port emission
nventory studies, key ship static data include main engine power, main

engine revolutions per minute (RPM), and service speed (Tichavska and
ovar, 2015; Huang et al., 2018; Xu and Yang, 2020). Similarly, for
hip and port operations optimization, static data such as deadweight
onnage (DWT), length, breadth, draught and service speed are essen-

tial (Christiansen et al., 2020; Yan et al., 2020; Martin-Iradi et al.,
2024). As optimization studies increasingly incorporate environmental
impacts into their objective functions, the need for accurate ship static
data in emission studies grows (Du et al., 2011; Reinhardt et al., 2020;
Ksciuk et al., 2023). Consequently, this research focuses on seven key
tatic ship data parameters: main engine power, main engine RPM,
ervice speed, overall length, beam, draft, dead weight tonnage (DWT).

Our own observations from shipping databases (i.e. Refinitiv, Clark-
son) and evidence from the literature based on data from other shipping
databases (e.g., IHS Maritime & Trade, China Classification Society
and Lloyd’s Register) support the notion that a substantial amount
f ship static data is missing key variables. For example, one study

shows that main engine power, main engine RPM, and ship service
speed have missing rates ranging from 11% to 44% (Merien-Paul et al.,
2018; Zhang et al., 2019; Huang et al., 2020). When sufficient data are
vailable or only a few values are missing, these gaps can be solved by
stimating the missing values. However, failure to address these data

gaps lead to inaccurate analyses and poor decision-making (Sun et al.,
2025).

Shipping studies typically employ three main approaches to address
the challenge of missing ship static data: approximation methods, sta-
tistical models, and machine learning (ML) algorithms. Approximation
involves using static data from ships of similar size, age, manufac-
turer and operator when specific data is unavailable. Alternatively,
average static data from ships of the same type is often used (Chen
et al., 2021; Nguyen et al., 2022; Yang et al., 2023). However, these

ethods require access to extensive ship databases and are limited
by their inability to estimate data for ships outside the database’s
scope. Additionally, using average values fails to preserve the re-
lationships between variables, leading to poor imputation accuracy.
In contrast, statistical methods allow for modeling the relationships
between different variables, which is beneficial for maritime studies (Mi
et al., 2020). The most commonly applied statistical models in the
iterature, including those used in IMO reports, are multiple linear
egression and non-linear regression models (Abramowski et al., 2018;

Cepowski, 2019b; IMO, 2020, 2021; Schwarzkopf et al., 2021; Kim
 t

2 
et al., 2022). These models provide concise imputation formulas, mak-
ing the data substitution process more practical. However, they are
limited by significant errors due to small training samples and outdated
ata. Furthermore, some models require numerous input parameters,
estricting their applicability under certain conditions. Recently, sev-
ral studies have used ML algorithms to impute missing ship static
ata (Gao et al., 2023; Skarlatos et al., 2024). While ML models

generally outperform traditional methods in terms of accuracy, their
complexity often renders them as ’black boxes’ making it difficult to
understand how predictions or decisions are derived. This lack of trans-
parency hinders the interpretation of underlying relationships within
the data (Cheong et al., 2023). Additionally, ML models are prone to
overfitting, which reduces their effectiveness in real-world applications.
Therefore, a ship static data imputation method is needed that balances
accuracy, interpretability and practicality for effective use in maritime
operations.

This paper proposes a Stepwise Multiple Nonlinear Regression
(SMNLR) method to estimate missing values in ship static data. The
approach begins by categorizing ship static parameters into two groups:
independent and dependent variables, based on the extent of missing
data. First, ship static data are grouped by ship type and deadweight
tonnage (DWT), as the literature supports the existence of a non-
inear relationship among these static parameters (Cepowski, 2019a;

Cepowski and Chorab, 2021; Papanikolaou, 2014; Piko, 1980), and
correlation analysis and nonlinear regression techniques are employed
to identify the best relationship among these parameters. In this study
these relationships form the basis for multiple nonlinear regression
models (Cepowski and Chorab, 2021). Independent parameters are
nitially imputed based on the best nonlinear relationships identified.
onlinear functions of the independent variables are incorporated as
arameters in a multiple linear regression model to estimate the coef-

ficients of multiple nonlinear regressions. Simultaneously, the stepwise
regression is used within the multiple regression models to select
independent parameters that correlate with the dependent variables.
This study compares the performance of six models from the litera-
ture (Abramowski et al., 2018; Cepowski, 2019a; Schwarzkopf et al.,
2021; IMO, 2020, 2021; Kim et al., 2022) as well as two ML models,
against the proposed method for imputing missing ship static data. The
two ML models are used as benchmarks. Additionally, six new models
are proposed under the SMNLR method, based on the proposed group-
ing rules and regression parameters. In total, 14 models are tested, and
based on the results, a decision matrix is generated. All models are
applied to a real dataset with missing values and cross-validated using
different databases.

This paper makes four significant contributions. Firstly, it introduces
an alternative approach to improve data completeness for maritime
transport research, which also enhances the model’s imputation accu-
racy. Additionally, using complete training data and basic formulas,
this method can be directly applied to impute ship static data. Sec-
ondly, the paper introduces the coverage rate indicator, an innovation
addition to the evaluation of model performance for imputing ship
static data. The coverage rate provides a quantifiable measure of the
imputation model’s success, offering a comprehensive assessment of its
effectiveness. Thirdly, the paper presents the development of a deci-
sion matrix specifically designed for imputation across various missing
data scenarios. This matrix facilitates precise, case-specific imputations,
further enhancing data completion accuracy. The application of this
decision matrix allows the coverage rate to reach 100%, delivering
a high-quality ship static dataset to use for maritime research. Fi-
nally, the proposed approach can be applied to impute other types of
cross-sectional data.

The rest of the paper is structured as follows. Section 2 provides a
brief literature review. Section 3 outlines previously proposed methods
for imputing missing data in the shipping industry. Section 4 introduces
he SMNLR method for imputing missing ship static data, while Sec-
ion 5 presents the results of the proposed model, including a validation
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case study on container ships from the Clarkson database. This section
also compares the performance of the proposed model with that of
reviously studied models. Finally, Section 6 concludes the paper and

outlines direction for future research.

2. Literature review

Missing data refers to the absence or incompleteness of data points
within a dataset. It is a common issue encountered in various fields,
including maritime transportation, where data are collected from var-
ious sources and may be subject to various factors that result in
missing values. In maritime transportation research, missing data poses
a significant challenge as it can hinder accurate analysis and decision-
making processes. Understanding the extent and nature of missing data
is crucial for conducting comprehensive studies on energy efficiency,
emissions estimation, and other aspects of maritime operations. To ad-
dress the issue of missing data, researchers in maritime transport have
explored different methods and techniques for data imputation. There-
fore, this section offers a brief overview of the missing data concept
discussed in the literature and its relevance in maritime research.

2.1. The concept of missing data

According to Rubin (1976) and Rubin and Little (2019), three types
of missing data situation can occur during data collection: missing
completely at random (MCAR), missing at random (MAR), and missing
not at random (MNAR). In the case of MCAR, data loss is equally
likely in all cases, indicating that there is no discernible relationship
or pattern with missing values. Analyzing only the available data
without estimation does not introduce bias into the results. However,
the assumption of MCAR is often regarded as strict and unlikely to hold
in practical scenarios (Muthén et al., 1987; Raghunathan, 2004). MAR
refers to data loss that occurs in a systematic and predictable manner
based on other information that is also missing. The missingness in
MAR is partially or completely predictable. For instance, the likelihood
of data being missing may depend on certain observed variables (Rubin
nd Little, 2019). MNAR, on the other hand, is a common type of

lost data. It is assumed that the probability of losing a value is due
to unknown reasons or for reasons for which there is no relevant
information (Santos et al., 2019). MNAR implies that the missingness
cannot be attributed to randomness or predictability.

These causes of data loss are neither systematic nor predictable
based on other information, yet they are not entirely random either.
Since assumptions about the causes of data loss can significantly influ-
ence the assumptions underlying statistical modeling techniques, it is
essential to distinguish between different types of missing data. When
the missing data deviate from the assumption of MCAR and indicate
a potential pattern of missingness, it is feasible to develop models for
estimating missing data (Stead and Wheat, 2020).

Little (1988) introduced a multivariate test to determine whether
he data are MCAR. This test examines the variation in means among
ubgroups with the same missing data patterns for each variable in
he dataset. By contrasting the mean of the observed variable for
ach missing data pattern with the overall expected mean (estimated
sing the Expectation Maximization Estimation (EM) algorithm), one
an assess whether the data are MCAR. The test statistic is derived
rom the sum of squares of the standardized differences between the
eans of the subsample and the expected overall mean. This is further
eighted by the estimated variance–covariance matrix and the count of
bservations in each subgroup (Enders, 2010). Under the null hypoth-

esis that the data is MCAR, this test statistic asymptotically follows a
chi-square distribution. A statistically significant outcome of this test
suggests that the data may not be of the MCAR type. Methods for
handling missing data can be classified into two broad categories based
on their approach. The first category comprises methods that rely on

discarding sample portions with incomplete information. The second

3 
category encompasses methods that replace missing data with values
imputed based on the estimates of the models. A detailed decision-
making process implemented in this study to select appropriate missing
data handling methods is illustrated in Fig. 1.

The proportion of missing data is a critical metric used to assess
the extent of information loss within a dataset. Generally, missing data
rates below 5% or 10% are considered insignificant (Lee and Huber,
2011). However, when the missing data rate surpasses 50%, the study’s
indings should be interpreted as hypothesis-generating rather than
onclusive (Dong and Peng, 2013; Jakobsen et al., 2017). High rates

of missing data can compromise the validity and reliability of a study’s
results.

2.2. Missing data research in maritime transport

Technological advancements have led to a substantial increase in
the diversity and volume of collectable data in the maritime sector.
However, the expansion of database sizes does not necessarily translate
to improved data quality, and new challenges related to data omissions
continue to emerge (Batini et al., 2009). Maritime research has primar-
ily concentrated on two types of missing data: ship activity data and
ship static data. Most studies on missing ship data have focused on
utilizing AIS data to reconstruct missing ship trajectories or identify
behavioral patterns of ships (Sang et al., 2015; Nguyen et al., 2015;
Dobrkovic et al., 2018; Nguyen et al., 2018; Guo et al., 2021).

In contrast to ship activity data, research on inferring missing ship
tatic data is relatively limited. There are three commonly preferred
ethodologies for handling missing static data, multiple liner regres-

ion, nonliner regression, and ML algorithms. As early as 1980, Piko
(1980) conducted a regression analysis using the Lloyd’s Register ship
service database to explore the correlation between deadweight ton-
nage (DWT) and service speed with parameters such as length, width,
draft, gross tonnage, and power. This seminal work laid the foundation
for subsequent studies. Numerous research efforts have since employed
linear regression to identify relationships among key ship design indica-
tors, providing general guidance for establishing basic hull dimensions
and total engine power during the preliminary stages of container ship
design. McArthur and Osland (2013) identified a linear relationship
between a ship’s main engine power and gross tonnage to impute miss-
ng data, using essential design variables like DWT and TEU as input

variables. While these models are broadly applicable, their accuracy is
often limited (Charchalis and Krefft, 2009; Charchalis, 2013, 2014). For
xample, Huang et al. (2020) use a polynomial regression to develop
odels for estimating missing main engine power data across different

ypes of ships. Similarly, Peng et al. (2020) adopts a stratified random
sampling method to impute missing ship static data by categorizing
ships based on size, type, main engine power, and other factors, thereby
reducing the uncertainty in emission estimation caused by missing data.

Beyond linear regression, there has been a shift towards exploring
onlinear regression. Schwarzkopf et al. (2021) developed various

curve fits to estimate absent ship attributes crucial for modeling ship
emissions, such as gross tonnage, main or auxiliary engine power,
engine rating, and service speed. These attributes are frequently miss-
ing in current datasets. Cepowski (2019b) used nonlinear regression
o estimate total engine power based on the deadweight or speed
or tankers, bulk carriers and container ships from 2000 to 2018.
lthough the model aligns well with core indicators such as GT and
EU, its precision in estimating the total engine power is compromised.
o address this, Cepowski (2019a) refined the approach, categorizing
hips by size and conducting distinct nonlinear regressions for each
roup. The results showed that the method had the highest accuracy
ompared to the ungrouped regression. Building on this, a 2021 study
y Cepowski and Chorab (2021) integrated nonliner regression with
 stochastic search function, marking a 44% surge in model accuracy
ompared to using solely nonlinear regression (Cepowski and Chorab,

2021). Notably, the primary focus of these methodologies has been on
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Fig. 1. Decision-making process for selecting missing data handling methods.
parameters such as main engine power and other fundamental indica-
tors (i.e., LOA, LBP). They do not encompass ship speed, main engine
RPM or other variables pivotal for maritime transport research. More
recently, Kim et al. (2022) applied a model-based computation method
using regression analysis for estimating missing ship data, enhancing
the goodness-of-fit by 15.6% over several regression models alone.
However, this method requires large datasets for effective training and
depends on a large number of input variables. As a result, we need a
model that balances its complexity and accuracy.

ML algorithms have been adopted alongside traditional regression
techniques to impute missing data. ML algorithms often outperform
conventional models in terms of accuracy. Gurgen et al. (2018) im-
plemented an artificial neural network, and the findings revealed that
the primary details of the chemical tankers were deduced with greater
precision than the data from the sample vessels. To the best of our
knowledge, many of these studies have employed ML methods to
impute missing AIS data. The rationale lies in AIS data being time-series
in nature with ample data available for model training. Conversely,
when addressing ship static data, which are static and interconnected
during ship design, regression models have been the go-to for missing
data imputation. While they may not be as accurate as ML models, their
interpretability is commendable, elucidating the relationship between
parameters (Gilpin et al., 2018). It is noteworthy that research on
missing AIS data far outpaces that on missing ship static data. This can
be attributed to the versatility of AIS data, which finds applications
ranging from maritime rescue and accident prediction to route opti-
mization (Yang et al., 2019). Historically, the datasets of sampled ships
exhibited high completeness with modest volume, thereby sidelining
concerns of missing parameters. Yet, with the contemporary focus on
carbon neutrality and BDA in shipping, there is an increased demand
for extensive ship datasets. After all, a model, regardless of its accuracy,
loses its utility if it addresses only a minuscule fraction of missing
data instances. A comprehensive comparison of the models is shown
in Table 1, with Table 2 describing the notation used in the literature
and Table 1.

Table 1 offers a comparative analysis between the methodologies
highlighted in the literature review discussion and the method pro-
posed in this paper. In particular, this study uses the largest data sample
for training. The proposed method leverages the ship’s fundamental
parameters to infer its attributes. These parameters are categorized
as ‘‘independen’’ and ‘‘dependent’’ according to the technical charac-
teristics of the ship. Independent parameters cover mainly the static
dimensional data of the ship, such as the DWT and its total length,
4 
while dependent parameters considers the ship’s capabilities, including
attributes like main engine power and ship service speed.

Estimating dependent parameters is more challenging due to their
involvement of multiple design parameters, resulting in higher rates
of missing data. Although employing fewer parameters, the SMNLR
method presented in this paper maintains or surpasses the accuracy
of other methods. Using only the low missing rate parameters also
implies a higher model coverage rate. In addition, the number of model
comparison benchmarks used in this study is greater than in previous
studies. More indicators were also used to evaluate the models, giving
a more complete understanding of the performance of the model.

3. Methodological approaches for imputing missing data

This paper utilizes known ship static parameters to deduce the
missing data. In the following sections we explore and discuss the eight
methods proposed in the literature.

3.1. Imputation methods from the literature

In this paper, eight representative missing data imputation methods
are considered from the literature, which is shown in Table 3. Method 1
is the Random Forest, which is a ML algorithm that consists of decision
trees. The final output category or value is determined by the major-
ity score of individual decision tree prediction categories (Breiman,
2001). Without dimensionality reduction, it can handle high dimen-
sional data (Pantanowitz and Marwala, 2009; Tang and Ishwaran,
2017). Method 2 is a Generalized Additive Model (GAM). It is a type
of Generalized Linear Model (GLM) where the linear response variables
are assumed to have a linear relationship with an unknown smoothing
function of the predictor variables. GAMs were first formulated by
Hastie (2017) with the intention of integrating the characteristics of
GLMs with additive models. However, it is important to note that this
increased flexibility may come at the cost of reduced interpretabil-
ity (Ravindra et al., 2019). Method 3 is based on nonlinear regression
method. The method presents regression equations to estimate the
latest data on ship static data based on various parameters, including
the container ship load weight, the number of containers and their com-
binations at the preliminary design stage. These regression formulas
are generated based on an evolutionary algorithm to find an optimal
combination. Method 4 is a multivariate nonlinear regression method.
A set of regression equations for ships according to their ship types such
as tankers, bulk carriers and container ships is created. Method 5 use
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Table 1
A summary of different imputation models in literature review.

Reference Segment focus Sample size The number of
methods compared

Input parameter Output parameter Model performance
evaluation indicator

Charchalis
(2013)

Tankers, Bulk,
Containers

3200 Ships None LWL, BEAM, DRA, CB,
CWP, SSP, H

MEP Absolute error, Relative
error, Correlation
coefficient

Charchalis
(2014)

Container 17 Containers None TEU DWT, LBP, LBP/DRA,
BEAM/DRA,
DRA/BEAM

SE

Abramowski
et al. (2018)

Container 3573 Containers None DWT, TEU LBP, BEAM, DRA, D,
GT, SP, CB, CWL, MEP,
LV, Disp, SSP, LBD,
LBT, TEU, DWT

SE, R-squared

Gurgen et al.
(2018)

Chemical Tanker 100 Tankers None DWT, SSP LOA, LBP, BEAM, D MAPE, Correlation
coefficient

Cepowski
(2019a)

Tanker 1723 Tankers 3 DWT, SSP LBP, BEAM, DRA SE

Cepowski
(2019b)

Tankers, Bulk,
Containers

1710 Tankers, 1248
Bulkers, 442 Containers

2 DWT, SSP MEP SE, R-squared

Cepowski and
Chorab (2021)

Container 215 Containers 2 DWT, SSP LBP, BEAM, DRA, D RMSE, Correlation
coefficient

Kim et al.
(2022)

Container 6278 Containers 2 AEP, BEAM, DRA,
DWT, GT, LDT, LOA,
LBP, MEC, MEP, MER,
MES, SSP, TEU

AEP, BEAM, DRA,
DWT, GT, LDT, LOA,
LBP, MEC, MEP, MER,
MES, SSP, TEU

MSE, MAE, RMSE,
Adjusted-R-squared

This paper Tankers, Bulk,
Containers

17 980 Tankers, 12 374
Bulkers, 7664
Containers

8 DWT, LOA, DRA, BEAM MEP, MER, SSP, DWT,
LOA, DRA, BEAM

MAE, RMSE,
Adjusted-R-squared,
Friedman-Nemenyi test,
Model coverage rate
Table 2
Technical parameter notations for ships.
Notation Description Notation Description

AEP Auxiliary engine power [kW] LDT Light displacement tonnage, LDT [t]
BEAM Breadth [m] LOA Length overall, LOA [m]
CB Block coefficient [–] LV Light vessel mass [t]
CWL Waterplane area coefficient [–] LWL Length at waterline [m]
CWP Waterplane coefficient [–] MEC Main engine cylinder, [–]
D Depth [m] MEP Main engine power [kW]
Disp Displacement mass [t] MER Main engine RPM, [–]
DWT Deadweight capacity [t] MES Main engine stroke, [–]
GT Gross tonnage [–] SP Final price [$ million]
H Height [m] DRA Draft [m]
LBD the result of L⋅B⋅D [m3] TEU Number of containers [–]
LBP Length between perpendiculars [m] SSP Ship service speed [knot]
LBT the result of L⋅B⋅T [m3]
a

a

a

n

a nonlinear regression model with asymptotic behavior to explain the
correlation between predicted and input parameters. The main differ-
ence between this model and the previous model is that the exponential
model can be used to simulate the asymptotic patterns observed at
SSP and MER. Larger ships install larger marine diesel engines with
aster ship speed and lower MER. This is because of the assumption that
arger ship marine diesel engines typically drive larger diameter, lower

pitch propellers. Therefore, asymptotic behavior is implemented as the
ER cannot be reduced below zero. Although ultralow-speed cylinder

iesel engines can run at approximately 60 RPM, lower ratings are very
are. The allowed MER value is therefore capped at this point and the
maller estimate is corrected to 60 RPM. Method 6 is presented in the

fourth IMO GHG study (2020), a new algorithm implemented to impute
missing ship static data. The algorithm is based on a multiple linear
regression created for each ship type, considering the known design
parameters of each ship (IMO, 2020). Method 7 is taken from another
IMO report. In this method, there is a power function relationship
between the ship static data and DWT (IMO, 2021). This method fits
he relationship between the known static data and the DWT using

a power function to obtain the corresponding coefficients. Method 8
is a model-based approach with regression analysis calculations and
 t

5 
is applicable to estimate missing values (Kim et al., 2022). First, it
identifies the fitted function for each parameter using curve fitting
and chooses the best function according to the R-square value. After
getting a complete data set, this method performs a multiple regression
nalysis with backward elimination to make a prediction model for

each parameter.
Table 3 shows the difference between the selected eight methods

nd the gap that exists among them. These methods can be divided into
two categories, ML model and statistical model. The application can be
categorized into two types that need to train or provide formulas in
the literature that can be used directly, which reflects the practicality
of the method. The size of the training data set is also a parameter
worth comparing and determines the performance of the method. The
type and number of input parameters determine whether the model
is limited in its use. This is because the input parameters can also be
missing, making the model unusable. Methods 1 and 2 are ML models,
nd both need to be trained using a large amount of data before they

can be used. They are also prone to overfitting and perform worse
on new datasets. In addition, the models lack transparency and are
ot easy to interpret. Since these two ML models have high accuracy,
hey are used in this paper as upper bound performance benchmarks
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Table 3
Comparative table for literature method.

Methods
name

Reference Methods
classification

Methods
application

Training
dataset size

Input
parameter

Advantages Gap

Method 1 Breiman
(2001)

Machine
Learning

Need to train \ DWT, LOA,
Draft, Beam

-High accuracy
-Robustness to noise
point

-Lack of Interpretability
-Computational
complexity
-Propensity to overfit
-High data
requirements

Method 2 Hastie (2017) Machine
Learning

Need to train \ DWT, LOA,
Draft, Beam

-Moderate accuracy
-Flexibility
-Moderate
interpretability

-Propensity to overfit
-High data
requirements
-Sensitivity to
smoothing parameters

Method 3 Abramowski
et al. (2018)

Statistical model Input data
directly

3573 DWT -Easy to use
-High interpretability
-Only need DWT
information

-Small training sample
-Low accuracy
-Sensitive to noise point

Method 4 Piko (1980),
Cepowski
(2019b)

Statistical model Input data
directly

3400 DWT, SSP -Easy to use
-Simple input
parameter

-Small training sample
-Low accuracy
-Sensitive to noise point

Method 5 Schwarzkopf
et al. (2021)

Statistical model Input data
directly

Not
mentioned

GT -Easy to use
-Consider the
asymptotic character of
the data
-Only need GT
information

-Low accuracy
-Outdated coefficient

Method 6 IMO (2020) Statistical model Need to train \ LOA, MEP,
DWT, SSP

-Moderate accuracy
-High interpretability

-High data
requirements
-Not fit nonlinear data
well
-Limited application
scenarios

Method 7 IMO (2021) Statistical model Input data
directly

Not
mentioned

DWT -Easy to use
-Only need DWT
information

-Low accuracy
-Outdated coefficient

Method 8 Kim et al.
(2022)

Statistical model Need to train 6278 DWT, LOA,
MEP, MER,
SSP, DRA,
Beam, GT

-Moderate accuracy
-High interpretability

-Computational
complexity
-High data
requirements
-Reliability of input
parameter not
considered

Proposed
method

\ Statistical model Input data
directly

38,018 DWT, LOA,
Draft, Beam

-High accuracy
-High interpretability
-Easy to use
-Simple input
parameter
-Considers the impact
of different sized ships
a

for other statistical models (Thiyagalingam et al., 2022). Statistical
ethods also have some gaps. Methods 3, 4,5 and 7 provide formulas

or direct use. However, these formulas are based on smaller training
amples and older data, which affects the accuracy of the model.
ethods 3 and 4 also do not address how to impute the MER. Method 6

rovides regression parameters but not regression coefficient and there-
fore needs to be fitted based on the case study data. Method 6 requires
he use of SSP to impute MEP and MEP to impute SSP, so when the ship
s missing both SSP and MEP the data cannot be imputed. In addition,
ER requires the imputed MEP and SSP parameters, but these two

arameters have a high missing rate on their own, leading to limitations
n the scenarios in which the method can be used. Method 8 provides
ormulas and parameters, but the model requires a large number of
nput parameters. SSP, MEP, and MER require 11 parameters to be
mputed. These parameters include AEP, MEP, MER, and LDT which
ave very high missing rates of their own. Although Method 8 can avoid
issing input parameters by two-round imputation. However, if the
issing rate of input parameters is high, then it may result in the model

eing trained based on a large number of estimated values instead of
eal values. This can introduce bias in model training. Therefore, the
6 
method proposed in this paper is improved based on the above gaps,
and the specific steps are shown in detail in Section 4.

3.2. Measuring the output accuracy

This study employs various metrics, such as root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and adjusted R2, to thoroughly assess the effectiveness
of the predictions. RMSE is particularly effective for evaluating a
model’s sensitivity to outliers and large errors, as it emphasizes these
by squaring the residuals. In contrast, MAE and MAPE offer insight
into the overall error performance of the model. While MAE is scale-
dependent, allowing for the observation of error magnitudes across
individual variables, MAPE is scale-independent, making it useful for
ssessing model performance across different variables. R-squared and

adjusted R-squared measure the model’s ability to explain the vari-
ance in the data. The adjusted R-squared account for the number of
predictor variables, providing a more accurate and reliable evaluation,
especially in models with multiple predictors. Together, these metrics
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offer a comprehensive assessment of model performance, balancing
error magnitudes, robustness to outliers, and the model’s explanatory
ower. Their formulas are shown in Eq. (1)–(5). In these formulas, 𝑦𝑖
nd �̂�𝑖 are the actual value and predicted value, respectively. �̄�𝑖 is the

mean of actual value. 𝑁 is number of records in the data set, and 𝑝 is the
number of independent variables. These metrics are used to gauge the
numerical precision of models. In the case of RMSE, MAE, and MAPE,
lower values indicate more accurate model estimations. For R-squared
and Adjusted R-squared, the values usually range from zero to one.
When these values are close to one, it means better performance.

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

𝑁
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2∕𝑁 (1)

𝑀 𝐴𝐸 =
𝑁
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖|∕𝑁 (2)

𝑀 𝐴𝑃 𝐸 = 100 ×
𝑁
∑

𝑖=1
|�̂�𝑖 − 𝑦𝑖|∕|(𝑦𝑖 ×𝑁)| (3)

𝑅2 = 1 −
𝑁
∑

𝑖=1
(�̂�𝑖 − 𝑦𝑖)2∕

𝑁
∑

𝑖=1
(�̄�𝑖 − 𝑦𝑖)2 (4)

𝐴𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 𝑅2 = [(1 − 𝑅2)(𝑁 − 1)]∕(𝑁 − 𝑝 − 1) (5)

3.3. Measuring the output coverage rate

The model coverage rate refers to how much percentage of data can
e imputed by the model’s output variables based on the missing rate of

model’s input variables. It is the ratio of the size of complete data after
eing imputed to the total sample size and can be calculated as shown
n Eq. (6). In this formula, 𝐶𝑟𝑎𝑡𝑒 is coverage rate, 𝑁𝑖𝑚𝑝𝑢𝑡𝑒𝑑 is the sample

size of dataset can be imputed by models. 𝑁𝑡𝑜𝑡𝑎𝑙 is the total sample
size of dataset. The model coverage rate is a very important metric
or imputing missing data and possesses similar concepts in other areas
f missing data research (Blankers et al., 2010; Enders, 2022). This is

because if the model introduces too many parameters or if the input
parameters themselves have a high missing rate, this can lead to a
limited number of scenarios in which the model can be used, such
as Methods 6 and 8. Introducing more parameters can improve the
model’s accuracy performance, and the coverage rate can provide a
reference for which parameters to introduce to balance the practicality
and accuracy of the model.

𝐶𝑟𝑎𝑡𝑒 = 𝑁𝑖𝑚𝑝𝑢𝑡𝑒𝑑∕𝑁𝑡𝑜𝑡𝑎𝑙 (6)

4. Stepwise Multiple Nonlinear Regression (SMNLR) method

Different approaches can be employed to address missing data,
hich can vary depending on the nature of the data or the type of

missingness. The outcomes obtained from these methods may also
iffer accordingly. This research introduces an alternative method for
ata imputation, namely SMNLR. The primary objective in imputing
hip static parameters is to develop a model that possesses broad

applicability, strong interpretability, and high accuracy. Most previous
research solely relied on regression analysis to estimate ship static
parameters. However, the limited size of their training samples com-
promises the accuracy of their models. Conversely, hybrid methods
and ML models proposed in other studies necessitate a sufficiently
large sample size to be effective. The SMNLR method is based on the
latest commercial database of global ships and uses a combination
of grouped regression, multiple nonlinear regression and step-forward
linear regression to obtain a series of imputation formulas. With SMNLR
method, it is possible to impute ship static data for small sample sizes.
Fig. 2 illustrates the flowchart of SMNLR method.
 d

7 
4.1. Data preparation

As discussed earlier, there are seven target ship static parameters to
be imputed in this paper. These include MEP, MER, SSP, LOA, BEAM,
DRA, DWT. Firstly, we obtain the raw static data of global merchant
fleet in service from the Refinitiv database. From this dataset, parame-
ters with a missing rate less than 10% missing rate were identified and
considered as independent parameters. These independent parameters
include the target parameters (LOA, BEAM, DRA, DWT). The reason for
categorizing based on missing rate is that using these low missing rate
parameters as input parameters to the model expands the applicability
of the model and increases model stability. Existing models with high
accuracy require a large number of input parameters. However, these
input parameters can also have missing rates. Increasing the number
of input parameters also increases the probability of missing input
parameters, thus limiting the scenarios in which the model can be used.
Therefore in this paper, choosing parameters with low missing rates can
effectively improve this situation. In addition existing models also have
the situation of avoiding the missing input parameters of the model by
two rounds of imputation. However, if input parameters have a high
missing rate then it may lead to the input to the model are estimated
values, which will bias the results (Lin and Tsai, 2020). Subsequently,
the remaining target parameters were used as dependent parameters,
including MEP, MER, SSP.

4.2. Grouping data

Both ship type and DWT significantly influence the distribution of
other ship static data (Piko, 1980; Barrass, 2004; Cepowski, 2019b).
hips of different sizes and functions are designed according to distinct
rinciples, which result in notable variations in their static parameters.

For example, the main engine power of a large ship increases with size,
but its service speed may increase only slightly or remain constant. Ad-
ditionally, LNG tankers typically have higher service speeds compared
to oil tankers of similar size. By grouping the data and performing
regressions individually for each group, the model is better able to
capture the specific characteristics of different ship types. This grouping
approach is crucial to improving the accuracy of the model (Prais and
Aitchison, 1954; Cepowski, 2019b). We first classified the data into
three categories based on ship type: bulk carriers, container ships, and
tankers. Then, we further subdivided the data within each category
based on DWT (Kanamoto et al., 2021). The specific DWT classification
rules are provided in Table 7. Each grouped dataset is then used to
train the models individually, followed by the identification of the best
nonlinear relationship between the parameters within each group.

4.3. Choose best nonlinear relationship

There is a well-established nonlinear relationship between
static parameters (Papanikolaou, 2014; Cepowski, 2019b; Cepowski
and Chorab, 2021; Rinauro et al., 2024). Therefore, in this paper, mul-
tiple nonlinear regressions are applied to fit the static parameters of the
hips. To efficiently derive the multiple nonlinear regression equation,
t is crucial to determine the relationship between the parameters.
onlinear regression estimates the functional association between a
ontinuous curve and a discrete set of data points representing the
oordinates on a surface. In simpler terms, an analytic function 𝑦 = 𝑓 (𝑥)
s derived to approximate or pass through a sequence of data points
𝑥, 𝑦) (O’Hagan, 1978).

We fit the observed data for each parameter by least squares using
linear, quadratic, cubic, power, logarithmic and exponential functions.
These six functions are the basic nonlinear function (Arlinghaus, 2023).

ssuming the data has 𝑚 independent and 𝑛 dependent parameters, this
tep generates (𝑚+𝑛− 1) × (𝑚+𝑛) × 6 nonlinear functions. The best function
o describe the nonlinear relationship between the independent and
ependent variables is selected based on the R-squared values of the
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Fig. 2. A flowchart of the Stepwise Multiple Nonlinear Regression (SMNLR) method.
functions. The number of nonlinear functions can be filtered to (𝑚+𝑛−
1) × (𝑚+ 𝑛). Based on these nonlinear functions, we get a dataset inside
which are nonlinear regression estimates �̂�𝑖𝑗 of independent parameters
𝑦𝑗 on dependent parameter 𝑥𝑖. Using these estimates, we can further
perform a step-forward multiple nonlinear regression on them to obtain
the final imputation value.

4.4. Nonlinear regression

Independent variables also have missing values. For the indepen-
dent parameters with low missing rate, this paper first imputes these
parameters using the best nonlinear relationship obtained from pre-
vious section. If both parameters which had the best nonlinear re-
lationship were missing then the second-best parameter is used to
impute, and so on. Since the missing rate of these variables is less
than 10%, replacing them with estimates from the nonlinear regression
cannot affect the performance of the model, when the stepwise multiple
nonlinear regression is trained. This makes SMNLR more stable and
avoids missing input variables.

4.5. Stepwise multiple nonlinear regression

Stepwise regression serves as a method for constructing a regression
model, where the selection of predictor variables is done automati-
cally (Shen and Ren, 2014). Stepwise regression serves as a method for
constructing a regression model, where the selection of predictor vari-
ables is done automatically. The primary objective is to autonomously
choose the most essential variables from a broad range of options,
enabling the creation of a regression model used for prediction or
8 
explanation (Hocking, 1976). Its essence is to establish the optimal
multiple linear regression equation (Jenelius, 2019).

To conduct multiple nonlinear regression, this paper substitutes
the nonlinear function into a multiple linear regression. The forward
selection method is used to build multiple nonlinear regression model.
This method involves adding one regression variable at a time until
no more variables can be introduced in the process as follows. In the
previous step, a one-variable nonlinear regression model is built for
each of the independent variables 𝑥𝑖 and the dependent variable 𝑦𝑗 .
It could get the estimates �̂�𝑖𝑗 for each 𝑥𝑖. Now we create a one variable
linear regression model for each �̂�𝑖𝑗 (Eq. (7)) and calculate the value of
the F-test statistic for the regression coefficient of each �̂�𝑖𝑗 . 𝐹𝑚𝑎𝑥_1 is the
maximum of these values. 𝐹1 is a corresponding critical value, based
on given significant level. If 𝐹𝑚𝑎𝑥_1 > 𝐹1, then �̂�1𝑗 is introduced into the
regression model, and this is the first independent variable selected.

�̂�𝑗 = 𝛽0 + 𝛽𝑖�̂�𝑖𝑗 + 𝜖 , 𝑖 = 1,… , 𝑛 (7)

In the second step, the unselected independent variables are introduced
into the regression equation separately to create a two variable regres-
sion model (Eq. (8)) of the dependent variable 𝑦𝑗 against the selected
and unselected independent variables. In total, there are a total number
of n-1 models. The value of the statistic for the F-test of the regression
coefficient of the variable is again calculated and its maximum value,
𝐹𝑚𝑎𝑥_2, is chosen. For a given significant level, the corresponding critical
value is noted as 𝐹2. If 𝐹𝑚𝑎𝑥_2 > 𝐹2, then �̂�2𝑗 is introduced into the
regression model, which is the second selected independent variable. If
there is no selected variable, then the variable introduction process is
terminated.
�̂�𝑗 = 𝛽0 + 𝛽1�̂�1𝑗 + 𝛽𝑖�̂�𝑖𝑗 + 𝜖 , 𝑖 = 1,… , 𝑛 − 1 (8)
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Table 4
Description of parameters.
Code Name Description

Name Ship name A proper noun chosen at the shipowner’s discretion
ID IMO number The seven-digit number of the IMO ship identification number assigned to

all ships when constructed.
TYP Ship Type The classification of ship
STYP Ship Sub-Type The sub classification of ship
SSTYP Ship Sub-Sub-Type The sub-sub classification of ship
DWT Dead weight tonnage Deadweight tonnage is a measure of how much weight a ship is carrying

or can safely carry.
GT Gross Tonnage Gross tonnage is a nonlinear measure of a ship’s overall internal volume.
LOA Overall Length Overall Length refers to the maximum length of a vessel from the two

points on the hull measured perpendicular to the waterline.
BEAM Beam The beam of a ship is its width at the widest point.
DRA Draught The draft or draught of a ship’s hull is the vertical distance between the

waterline and the bottom of the hull
Cubic Cubic Capacity Cubic capacity in cubic meters, the total capacity of goods a vessel can

handle in its holds or tanks.
SSP Service Speed The average speed maintained by a ship under normal load and weather

conditions
MEP1 Main Engine Power 1 The total power supplied by the main engine installed on a ship (Data

source 1)
MEP2 Main Engine Power 2 The total power supplied by the main engine installed on a ship (Data

source 2)
MEP Main Engine Power mixed The total power supplied by the main engine installed on a ship (All data

source)
MER Main Engine RPM The revolutions per minute of main engine
MEY Main Engine Built Year The year in which main engine was constructed
AEP Auxiliary Engine Power The total power supplied by the auxiliary engine installed on a ship
AER Auxiliary Engine RPM The revolutions per minute of auxiliary engine
AEY Auxiliary Engine Built Year The year in which auxiliary engine was constructed
SHY Ship Built Year The year in which ship was constructed
a
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The process is then repeated until all variables are selected, or the F-test
alue is greater than the critical value at a certain step, then the process
s terminated. We obtain the multiple regression model for 𝑦𝑗 as shown
n Eq. (9). �̂�𝑗 is the final imputed value of the entire model for 𝑦𝑗 and

is the serial number of the selected variable.

�̂�𝑗 = 𝛽0 + 𝛽1�̂�1𝑗 + 𝛽2�̂�2𝑗 +⋯ + 𝛽𝑚�̂�𝑚𝑗 + 𝜖 (9)

The SMNLR method proposed in this paper effectively addresses the
imitations of existing approaches. First, by selecting input parameters
ased on the rate of missing data, the model’s stability is significantly

improved. Second, by grouping the data according to ship types and
izes, the model can capture the unique characteristics of different
hips, leading to a better overall fit. Third, selecting the most suitable
onlinear function for each parameter, rather than applying a uniform
unction, enhances the model’s flexibility, allowing it to better capture
ariations in the data. Fourth, the use of multiple nonlinear regression
nables the model to account for more ship-specific features, result-
ng in a closer alignment with real-world data. Finally, due to the
vailability of ample training samples, the equations and regression
arameters generated by the statistical methods can be directly applied,
liminating the need for additional training, and thus enhancing the
odel’s practicality.

5. Computational experiments

This study uses data from Refinitiv database, which includes a
omprehensive set of 330 parameters per vessel. We have extracted
ata on bulk carriers, container ships and tanker from January 1982
o October 2023, encompassing 38,018 ships with capacities ranging
rom 152 to 400,000 DWT. This dataset includes most merchant ships
urrently in service as of October 2023, ensuring that the model derived
rom it could be directly used in most scenarios. Table 4 reports details
f the codes and descriptions of all the parameters used in this case

study. ’Main Engine Power mixed’ represents a combined dataset of
MEP from two distinct sources. Due to space constraints, we only detail
the imputation process for container ship. The results of other types of
hips are available in supplementary material.
9 
5.1. Case study analysis

This section outlines the selection of independent and dependent
parameters for imputation. Table 5 reports basic descriptive statistics
for container ship parameters, including the number of valid observa-
tions, number of missing observations and average value. Skewness and
kurtosis describe the state of data distribution. A skewness value of zero
nd kurtosis of three indicates a normal distribution. Our results suggest

that most parameters do not follow a normal distribution.
Fig. 3 classifies missing data rates into three groups: less than

0%, between 10% and 50%, and more than 50%. Initially, variables
ith a missing rate exceeding 50% and non-technical variables are
xcluded. For variables with a missing rate under 10%, we consider
hem as independent variables, as model based on these yields a higher
overage rate. This approach is explained in more detail in the results
ection. The independent variables selected for our study are DWT, GT,
OA, Beam, and Draft. The dependent variables selected are MEP, MER,
nd SSP. Fig. 4 illustrates missing rates in different DWT groups. Both
arge and small ships are more prone to missing data. The dependent

variables display similar missing rates in each group, making them
suitable for the next imputation step.

The quality of the data has a significant impact on the results of
the study. In the Refinitiv’s database, we found out that the quality
of most of parameters’ known value is relatively good. However, there
were some values in the data that defied common sense, such as ships
produced in 1917, 2000 m ship length. This paper based on the largest
merchant ship data and other literature (IMO, 2020) to derive the
xtreme value deletion rules, shown in Table 6.

A random selection of extreme values are also cross-checked with
Clarkson’s database to ensure that the rules are reasonable and practi-
al. As mentioned in the previous section, the data need to pass Little’s
CAR test to indicate that there is a potential missing pattern in the
issing data. The 𝑝-value is 0, which is less than 0.05. Therefore, it can

e deduced that the missing data is not MCAR and can proceed to the
ext step.

Before processing the missing data, we performed a Pearson cor-
relation analysis between the parameters. Figure S1 – Figure S3 (in
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Fig. 3. Missing rates for all parameters.
Fig. 4. Missing data distribution of ship static data.
Table 5
Descriptive statistics for container ships.

Parameters Valid data NA data Mean Std. dev Skewness Kurtosis

DWT 7664 0 41,488 46,517 1.66 2.36
GT 7663 1 41,221 44,704 1.74 3.17
LOA 7627 37 202 87 0.4 −0.6
BEAM 7536 128 30 11 0.58 1.25
DRA 7551 113 10 3 −0.11 −0.7
Cubic 656 7008 20,105 29,866 3.74 24.07
SSP 6568 1096 20 4 −0.49 −0.3
MEP1 5354 2310 28,564 21,939 0.67 −0.93
MEP2 3112 4552 25,673 21,653 0.88 −0.46
MER 6270 1394 26,370 21,546 0.81 −0.66
MEY 5337 2327 171 175 3.2 15.48
AEP 36 7628 1887 447 −4.05 15.25
AER 905 6759 1584 3181 14.66 260.85
AEY 512 7152 962 382 0.76 0.19
SHY 7664 0 2004 12 −1.1 1.24
MEP 7664 0 41,488 46,517 1.66 2.36

Table 6
Maximum container ship parameters.

Name Extreme value point

DWT 400,000 DWT
GT 410,000 GT
LOA 460 m
BEAM 75 m
DRA 25 m
SSP 30 knots
MEP 81,000 kW
MER 4000 round per minute
SHY Ship built year = 1982

the supplementary files) show three paired correlation matrices of
independent and dependent parameters. These matrices illustrate the
10 
relationship among parameters (i.e., SSP, MEP, MER). The bottom
left part of the figure shows the scatter plots between the parame-
ters, showing the nonlinear relationships between the independent and
dependent parameters. However, the exact relationship needs to be
determined by performing a nonlinear regression. The diagonal plot
illustrates the frequency distribution of each parameter. The correlation
between the parameters is shown at the top right of the figure. The
absolute correlation value between all parameters is greater than 0.4.
The correlation between the MEP and the dependent parameters is
around 0.9, which is the best. The correlation between the MER and
the dependent parameters is around 0.5, which is the worst, compared
with SSP and MEP. In addition, we observe that GT is highly linearly
correlated with DWT, which combined with the significance of these
two parameters, can be treated as one parameter. Hence, we exclude
the GT.

To allow the model to be applied for different ship characteristics,
the data was categorized and subjected to separate regression analyses
for enhancing the precision of the outcomes. We grouped the data
according to different DWT group and ship types (Kanamoto et al.,
2021), the detailed grouping results are shown in Tables 7 and 8. At
the same time, we test the effect of the number and type of parameters
on the results. One type of model introduces only four independent
parameters, while another type of model introduces all parameters into
the model except the target parameter. Based on our proposed model,
there are six test models as shown in Table 9.

5.2. Independent parameter imputation

This section finds the best nonlinear relationship between each
parameter and the independent parameter is imputed. The results in
Fig. 5 were obtained after conducting a nonlinear regression between
each parameter, showing that the relationship between most variables
is the power function or the logarithmic function. The adjusted R-
square for the main engine power and the independent parameters were
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Table 7
Regression classification DWT group.
Code Tanker classification DWT Code Bulk/container classification DWT

T000 Small 0 – 25,000 B000/C000 Handysize + Minibulk 0 – 20,000
T025 Medium 25,000 – 50,000 B020/C020 Handymax 20,000 – 40,000
T050 Panamax 50,000 – 75,000 B040/C040 Panamax 40,000 – 65,000
T075 Aframax 75,000 – 120,000 B065/C065 Neo-Panamax 65,000 – 85,000
T120 Suezmax 120,000 – 200,000 B085/C085 Capesize 85,000 – 120,000
T200 VLCC + ULCC 200,000 + B120/C120 VLOC 120,000 +
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Table 8
Regression classification ship type group.

Tanker classification Container classification Bulker classification

LPG Tankers Reefers Minibulk
Oil Tankers Ro-Ros Handysize
Other Tankers Containers Handymax
Chemical Tankers Panamax
LNG OverPanamax
Other Dry Small Capesize

Capesize
VLOC

Table 9
Proposed test models.

Model name Grouping method Input parameters

Method 9a No group Independent
Method 9b No group All
Method 9c DWT Independent
Method 9d DWT All
Method 9e Ship type Independent
Method 9f Ship type All

both above 0.8, while the adjusted R-square for the speed and the inde-
pendent parameters were between 0.5 and 0.75. The adjusted R-square
values for the RPM of the main engine were generally low, around 0.5,
which is consistent with the results of the previous correlation analysis.
This chosen nonlinear relationship is used in stepwise multiple nonlin-
ear regression. Furthermore, the R-square of the nonlinear relationships
between the independent parameters is between 0.85 and 0.95. So, we
directly use these nonlinear regressions to impute missing independent
parameters.

5.3. Dependent parameter imputation

In this subsection, the best nonlinear relationship obtained in the
revious step is analyzed by multiple regression, using the step-forward
ethod. The K-Fold cross-validation method allows optimal utilization

f the limited training data and enables an evaluation process that
ssesses the model’s performance on the test dataset. This method
s widely accepted due to its simplicity and ability to provide more

objective and conservative estimates of model performance compared
to alternative approaches, such as a basic train/test split. The procedure
entails the random partitioning of the set of observations into k groups
or folds, each of which has an approximately equal number of elements.
The initial fold is designated as the validation set, while the approach is
trained using the remaining k-1 folds (James et al., 2013). In this study,
he value of k is determined as 10 due to empirical evidence indicating
hat this particular value produces test error rate estimates that remain
naffected by both excessive bias and excessive variance (Kuhn and
ohnson, 2013). After determining the training and test sets, the data
s substituted into step-forward linear regression model, which select
he optimal model based on the principle of minimum RMSE.

5.4. Results and discussion

After a series of calculations, the final model’s performance results
ere obtained as shown in Appendix B. Three tables representing the
11 
model’s performance on Bulk, Container and Tanker data. Each table
contains representations of 14 models, Method 1–8 are models from the
iterature and Method 9a–9f are test models from the SMNLR method
roposed in this paper. Method 1 undoubtedly performs best during

training. Method 2 is GAM model, which is somewhere between ML
and traditional regression models in terms of interpretation. We use it
s a second benchmark. Therefore, we take these two methods as the
enchmark for the performance of all training models. The metric for
valuating the model performance consists of two main components,
ne is the model accuracy, and the other is the model coverage rate.
he model accuracy metric is the RMSE, adjusted R-squared and MAE.
he ‘/’ in the table indicates that the method is not applicable to this
arameter or to this ship type.

The performance of the model varies for different ship type and
imputation parameters. From an overall perspective, excluding the

andom Forest model, the Method 9d has the highest accuracy in the
ost situation. Turning to the performance between six sub-models

n Method 9. We can see that the accuracy of the grouped model is
ignificantly higher than that of the ungrouped model. DWT group
ethods give the better results than ship type group methods. This can

e explained that the ship static data of the different ship subtypes do
ot differ much for dry bulks and containers. However, for tankers we
ind that the ship static data for LNG and LPG vessels are significantly
ifferent from the other vessel types. They are faster, wider, and longer
or the same tonnage. Therefore, for tanker’s SSP have an advantage
n being grouped by ship subtype. At the same time, the model with
ll parameters included has a higher accuracy than the model with
ndependent parameters. The accuracy of Method 9c is similar to as
ethod 9d. We use the high coverage rate Method 9c as a benchmark

or accuracy in Method 9 to compare with other methods. Method 6
s an IMO method, this paper uses its coverage rate as a benchmark to
ee how much the model’s coverage rate improves.

The performance of imputing the dependent parameters is different.
or SSP, Method 9c improves the imputation average accuracy by at
east 2.93% depending on different ship type and compared methods.
he coverage rate is improved from 0.95% to 1.99% depending on dif-
erent ship type. For MER, Method 9c improves the imputation average
ccuracy by at least 20.74%. The coverage rate is improved 14.30% to

27.34%. For MEP Method 9c improves the imputation average accuracy
by at least 2.52%, depending on different ship type. The coverage rate is
mproved 14.30% to 27.39%. By applying SMNLR method, MER has the
reatest improvement in imputation accuracy compared to the previous
ethod. But the SMNLR method also has a large gap compared with

he ML method. SSP also has a good improvement and the SMNLR
ethod has very little gap compared with the ML method. MEP has

the smallest improvement among three ship static data in accuracy.
However, the SMNLR method performs closest to the ML model. Ship
type also affects model performance. The SMNLR method has the best
performance for imputing the ship static data of container ships and has
also achieved impressive results on bulk carriers and tankers. Especially
considering the improvement in coverage rate of at average 13.84%
over the Method 6. In the case of choosing a single model the method
9c is the optimal option, considering both accuracy and coverage rate.
In addition to methods’ overall accuracy and coverage rate, this paper
also analyzes the effect of ship size and type on the accuracy of the
methods. Figs. 6–8 are the bar charts of the results for each model’s
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Fig. 5. Heat map for curve fitting results of dependent and independent variables (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic, E: Exponential).
Fig. 6. Method MAPE performance of bulk.
accuracy. The 𝑥-axis represents the method used, and the 𝑦-axis is the
MAPE value. The proportion of different ship sizes and ship types’
MAPE has been calculated, shown in different colors in the graph. The
methods that performed well in the table are selected for this analysis.
Small ships contribute the largest proportion of the imputation model’s
MAPE. Models grouped according to ship size effectively improve the
model’s accuracy. Effectively reduced imputation errors in main engine
RPM for larger ships. Models grouped according to ship type are only
valid for specific ship types like reefer and other tanker.

In order to test the stability of the methods, this paper measures the
performance of 14 methods with different missing rates of the data. The
complete data previously used to train the methods was divided into
two parts, 80% for training dataset and 20% for test dataset. Simulated
datasets with missing rates ranging from 10% to 90% were gener-
ated through the MNAR mechanism using the training dataset. These
simulated datasets will be applied to train the method and then the
method will be applied on the test data. This process will be repeated
12 
10 times and the MAE will be recorded for each time. Finally, the mean
value of MAE is then used to measure the performance of different
methods. The results are shown in Fig. 9. Only method 1, method 2,
method 8, method 9c and method 9d are included in the figure. This is
because methods with too large MAE will be excluded from the picture,
showing the trend of the remaining methods more clearly. Notable
among the excluded methods are method 9e and method 9f, which are
modeled based on ship sub type. In most cases their errors increase
dramatically when the missing data rate is higher than 40%, which is
due to the fact that the sample size becomes smaller for many ship sub
type leading to a decrease in model accuracy. It can be found in the
figure that with the increase of missing rate, the MAE error of each
method has a tendency to grow upward. Although the MAE error of
Method 1 is maintained at a low level at the beginning, the growth
rate of MAE error is obviously higher than that of the other methods.
The performance of Method 2, Method 8, Method 9c and Method 9d
is not affected much by the missing rate and basically maintains the
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Fig. 7. Method MAPE performance of container.
Fig. 8. Method MAPE performance of tanker.
similar level. Method 9d has the best performance among these four
methods, consistent with the results of previous experiments. Method
8 has a higher error in imputing the MEP and MER, and therefore does
not appear in these figures. The test results also demonstrate the impact
of dataset size on the performance of various imputation methods. As
the simulated data includes 10% to 90% missing values, the size of the
training dataset consequently ranges from 10% to 90%. As illustrated in
13 
the figure, the method proposed in this paper maintains its performance
even with a smaller training dataset size. Statistical methods are less
sensitive to data quality than machine learning methods, and it is also
verified that the method proposed in this paper is also effective for high
missing rate data.

Furthermore, we can generate a decision matrix based on the per-
formance of the model and choose which models to use for missing
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Fig. 9. MAE performance based on different data missing rate.
data. As shown in Table 10, we divided the missing data into two cases,
one is when the ship is missing only the target-dependent parameters,
then Method 9d and Method 9f can be used to impute the data. When
the ship has only independent parameters (missing rate under 10%),
Method 9c and Method 9e can be used. The selection of the imputing
model based on the decision matrix allows a maximum accuracy and
a 100% coverage rate. The decision matrix is applied to a missing
dataset of real ships to verify its performance. The dataset consists
of 3914 bulk carriers, 3353 container ships and 9021 tankers. These
ships are missing at least one of SSP, MEP, MER and partially missing
DWT, LOA, BEAM and DRA. Since the imputation results cannot be
verified using real values, this paper utilizes fitted images to observe the
performance of the decision matrix. The results are shown in Figs. 10–
12. The blue points in the figure represent the complete real data,
and the red points are the missing data imputed using the decision
matrix. After the missing data are imputed by the decision matrix, they
perfectly reproduce the characteristics of the different sizes of ships.
Observing the fit figure of Aframax Tanker (T075), it can be seen that
the model perfectly distinguishes the characteristics of two different
types of vessels: LNG tanker and oil tanker. The model is very stable
and there are no extreme values. All the imputed points are within
the range of the original data. The decision matrix has some error in
estimating the MER for the smaller vessels (B000, C000, T000), which is
consistent with the training results. The main reason is that there is less
complete data for small ships, which leads to underfitting of the model
after training. However, the decision matrix has good performance for
other ships.

5.5. Validation

The efficacy of the missing data estimates in this study is evaluated
based on the statistical characteristics of the replaced values. We col-
lected data on 1107 container ships with missing data from the Refinitiv
database and used the Clarkson database for validation. Of these, 810
had missing SSP data, 196 lacked MEP data, and 564 were missing
MER data. We applied 14 methods to the Refinitiv data for imputation
and compared the results with Clarkson database. Method 3, 4, and
14 
Table 10
Imputing method decision matrix.

Ship type Target
parameters

Only missing target
dependent parameter

Not missing
independent parameters

Bulk Speed Method 9d Method 9c
MER Method 9d Method 9c
MEP Method 9d Method 9c

Container Speed Method 9d Method 9c
MER Method 9d Method 9c
MEP Method 9d Method 9c

Tanker Speed Method 9f Method 9e
MER Method 9d Method 9c
MEP Method 9d Method 9c

5 were excluded from validation, which did not involve MER and
underperformed in imputing SSP and MEP. For quantitative assessment
of the significance of differences between methods, we employed the
Friedman-Nemenyi test. This test compares each algorithm’s average
ranking against other methods’ critical difference (CD) (Demšar, 2006).
If the CD ranges of the two methods do not overlap, it signifies a statisti-
cally significant difference. We input the absolute errors of all methods
and actual values to obtain model rankings, with the results illustrated
in Fig. 13. On the 𝑥-axis, the rankings reflect model accuracy, where
a lower score indicates higher accuracy and fewer errors. The middle
point of each line, marked in red, denotes the average ranking value,
while the top and bottom points represent the CD region boundaries.

The outcomes aligned with previous training performance, yet some
useful observations emerged. Method 9d surprisingly outperformed
Method 1 in the SSP validation dataset. For the MER, Method 9c
and 9d significantly surpassed other approaches. Regarding MEP, the
performance of each method was comparatively similar, with Method
9d matching the effectiveness of Method 1, showing no significant dif-
ferences between the two. The SMNLR method demonstrated practical
accuracy comparable to that of ML methods. In certain instances, it
even exceeded the performance of ML approaches. Additionally, these
methods offer greater interpretability, allowing for a clearer under-
standing of the relationships between different ship static parameters
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Fig. 10. Decision matrix performance on ship service speed.
Fig. 11. Decision matrix performance on main engine RPM.
through their equations. These equations can also be used to impute
missing data directly without additional training.

6. Conclusion

This study proposes the SMNLR method, using a sample of 38,018
vessels to estimate seven essential ship static parameters. For valida-
tion, k-fold cross-validation and Friedman-Nemenyi tests have been
applied to the final imputing model, derived from nonlinear regression
with forward stepwise selection. Unlike other methods, the SMNLR
method employs only four input parameters with a low missing rates to
effectively impute ship static data. Based on a large amount of complete
training data, the SMNLR method generates a series of equations and
regression coefficient matrices. Details and instructions for usage are
provided in the Supplemental Materials. These equations and coeffi-
cients can be directly applied to impute missing static ship data in other
maritime studies. For example, in port emission estimation, ship static
data such as SSP, MEP and MER are required to calculate emissions
15 
generated during ship activities. In maritime safety studies, ship size
and SSP data are used to calculate ship domains for safe navigation and
collision avoidance. Imputing missing data improves data completeness
and accuracy, enhancing the reliability of model results. In studies with
small samples of ship static data, the imputation can be done directly
using the training results provided in this paper, without the need to
collect large amounts of additional data to train the model. The SMNLR
method is also applicable for imputing missing data in other cross-
sectional datasets, such as vehicle characteristic data, across different
domains.

The SMNLR method demonstrated higher accuracy compared to
other methods introduced in previous research. The most notable im-
provement was in the imputation of the main engine RPM, with ad-
justed R-squared values increasing by at least 20.74% compared to
six other methods documented in the literature. Improvements were
also observed in the imputation of ship service speed and main engine
power, with increases of at least 2.93% for ship service speed and
2.52% for the main engine power, reaching precision levels compa-
rable to machine learning (ML) algorithms However, imputing data



R. Sun et al. Ocean Engineering 315 (2025) 119722 
Fig. 12. Decision matrix performance on main engine power.
Fig. 13. Friedman-Nemenyi test for container validation data.
for vessels under 25k DWT showed higher error rates, indicating the
need for specialized imputation techniques for small-sized vessels. The
coverage rate for three dependent parameters across three types of
ships improved by a minimum of 0.48% and a maximum of 27.39%
compared to six methods from the literature. The proposed model
demonstrated high accuracy and coverage rate across various types and
16 
sizes of ships, especially for container ships, and was validated against
different databases. The SMNLR method sometimes outperformed the
Random forest model in accuracy, highlighting the effectiveness of
size-based group regressions. A decision matrix derived from model
performance helps in selecting the most suitable method for achieving
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a coverage rate of 100%. Correlation analysis revealed strong rela-
tionships (around 0.9) between independent parameters and between
main engine power and other independent parameters, while basic
arameters showed moderate correlations (around 0.75). Nonlinear
egression indicate that ship static parameters primarily follow power

and logarithmic relationships.
The SMNLR model has several limitations. Firstly, the SMNLR

ethod is more suitable for ship static data, and this paper does not
est its performance on other types of maritime data. Secondly, while
he SMNLR method is applied in this paper to cross-sectional data, and
s theoretically valid for cross-sectional data outside the maritime do-
ain, it is not suitable for time series data. Thirdly, this paper tests the
ethod using container ship data from different sources, demonstrating

ood performance across datasets, however, it does not validate the
ethod with bulk carriers or tankers, which requires further research.

astly, for small ships, a specialized imputation method is needed.
uture research should focus on validating the datasets imputed by
he SMNLR method against actual maritime research data and consider
dditional target parameters in the regression analysis. The SMNLR
ethod should also be compared across other imputation methods

e.g., multiple imputation, hot-deck, expectation–maximization-based
mputation) across different data sizes and missing rates.
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