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A B S T R A C T

Early-stage 3D brain tumor segmentation from magnetic resonance imaging (MRI) scans is crucial for
prompt and effective treatment. However, this process faces the challenge of precise delineation due to the
tumors’ complex heterogeneity. Moreover, energy sustainability targets and resource limitations, especially in
developing countries, require efficient and accessible medical imaging solutions. The proposed architecture,
a Lightweight 3D ATtention U-Net with Parallel convolutions, LATUP-Net, addresses these issues. It is
specifically designed to reduce computational requirements significantly while maintaining high segmentation
performance. By incorporating parallel convolutions, it enhances feature representation by capturing multi-
scale information. It further integrates an attention mechanism to refine segmentation through selective feature
recalibration. LATUP-Net achieves promising segmentation performance: the average Dice scores for the whole
tumor, tumor core, and enhancing tumor on the BraTS 2020 dataset are 88.41%, 83.82%, and 73.67%,
and on the BraTS 2021 dataset, they are 90.29%, 89.54%, and 83.92%, respectively. Hausdorff distance
metrics further indicate its improved ability to delineate tumor boundaries. With its significantly reduced
computational demand using only 3.07 M parameters, about 59 times fewer than other state-of-the-art models,
and running on a single NVIDIA GeForce RTX3060 12 GB GPU, LATUP-Net requires just 15.79 GFLOPs.
This makes it a promising solution for real-world clinical applications, particularly in settings with limited
resources. Investigations into the model’s interpretability, utilizing gradient-weighted class activation mapping
and confusion matrices, reveal that while attention mechanisms enhance the segmentation of small regions,
their impact is nuanced. Achieving the most accurate tumor delineation requires carefully balancing local and
global features. The code is available at https://qyber.black/ca/code-bca.
1. Introduction

Brain tumors, particularly gliomas, are among the most lethal forms
of cancer due to their inherent complexity and high variability among
patients. Gliomas, classified into high-grade and low-grade, consist of
different tumor regions, including the enhancing tumor, necrotic core,
and surrounding edema [1]. Magnetic resonance imaging (MRI) is the
standard method for diagnosing gliomas, and precise segmentation
of these tumors is crucial for effective treatment planning. Accurate
segmentation helps clinicians differentiate tumor tissue from healthy
tissue, which directly influences diagnosis, treatment strategies, and
prognosis. However, manual delineation of tumor regions across MRI
slices is both time-consuming and labor-intensive, with the accuracy
highly dependent on the clinician’s expertise and subjective threshold-
ing. This subjectivity, combined with the effort involved, underscores

∗ Corresponding author at: School of Computer Science and Informatics, Cardiff University, Cardiff, CF24 4AG, UK.
E-mail addresses: AlwadeeEJ@cardiff.ac.uk (E.J. Alwadee), SunX2@cardiff.ac.uk (X. Sun), QinY16@cardiff.ac.uk (Y. Qin), frank@langbein.org

(F.C. Langbein).

the need for efficient and accurate automatic segmentation techniques
for brain tumors [2].

In this work we introduce a novel lightweight deep learning ar-
chitecture, LATUP-Net (Lightweight 3D ATtention U-Net with Paral-
lel Convolutions). It significantly reduces the computational resources
needed while maintaining state-of-the-art brain tumor segmentation
performance, as demonstrated on BraTS 2020 [1,3,4] and BraTS 2021
[1]. We incorporate parallel convolutions in the first encoder block
of a U-Net architecture, inspired by the inception block [5]. This
reduces feature redundancy and parameter count by sharing an initial
feature extraction stage across multiple convolutional paths, followed
by pooling operations to capture multi-scale spatial features. The de-
sign harnesses diverse features efficiently while maintaining a lower
parameter count than traditional inception blocks. We further add
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an extension mechanism, which generally yields smaller performance
improvements, but also does not add substantial computational costs.

Deep learning, particularly convolutional neural networks (CNNs),
as revolutionized medical image analysis by providing powerful tools
or segmentation, classification, and object detection. CNNs are widely
sed in medical imaging due to their ability to automatically extract
ierarchical features, making them well-suited for complex tasks like

brain tumor segmentation [6,7]. Among these architectures, U-Net
has become a leading model for medical image segmentation and
has demonstrated remarkable performance across various tasks. The
U-Net architecture has been widely adopted, receiving over 20,000
citations as of 2023, reflecting its profound impact on medical im-
ge segmentation research [8,9]. To meet the increasing demands of
linical applications, U-Net-based models have evolved by enhancing
heir network structures, incorporating new modules, and expanding
o 3D networks [10–12]. However, improving segmentation accuracy
ften comes at the cost of increased model complexity and param-
ters [13]. Existing networks require large numbers of parameters

and computational resources, which poses challenges for real-world
use in resource-limited environments [14]. To address this challenge,
lightweight networks have been developed to reduce model parame-
ters and computational resource requirements without compromising
performance [6,15]. These models employ strategies such as full con-
olution and deep separable convolution to achieve high segmentation
ccuracy while minimizing resource usage, making them more suitable
or deployment in resource-constrained environments. In our specific
pproach we exploit parallel convolutions to reduce computational
esources required for training and inference.

In particular, in MRI scans with small tumor lesions, attention
echanisms have been employed to improve results to focus on a

pecific region and its features. Such integrating can improve the accu-
acy of small tumor segmentation [16]. Common lightweight attention

methods for medical image semantic segmentation include BAM [17],
CBAM [18], and Squeeze-and-Excitation (SE) [19]. BAM uses atrous
convolution to achieve a larger receptive field, CBAM combines spatial
and channel attention separately, and SE focuses on channel attention
to address feature loss during convolutional pooling. However, using
both spatial and channel attention increases computational complex-
ity. The Squeeze-and-Excitation mechanism is chosen for its efficient
feature extraction through channel attention while maintaining com-
utational efficiency, making it suitable for small-scale segmentation
asks [19].

We explore the integration of attention mechanisms within LATUP-
Net to improve segmentation of tumor regions. While attention mech-
anisms effectively emphasize tumor-specific features, our investigation
highlights a trade-off: attention may focus too narrowly on these fea-
ures and overlook broader contextual information, which is also essen-
ial for accurate segmentation. By balancing local detail and global con-

text, LATUP-Net achieves performance comparable to state-of-the-art
models while drastically reducing computational demands.

In summary, the contributions of our work are:

• We introduce LATUP-Net, an efficient 3D U-Net variant that com-
bines parallel convolutions and attention mechanisms to achieve
high segmentation accuracy at a fraction of the computational
cost of existing models.

• We demonstrate the effectiveness of parallel convolutions in cap-
turing multi-scale features, resulting in a richer, more efficient
representation. They optimize feature diversity and computa-
tional efficiency by leveraging a shared initial convolution fol-
lowed by distinct paths and pooling operations.

• We critically examine the role of attention mechanisms in seg-
mentation, using Grad-CAM [20] and confusion matrix analysis
to assess their impact. Our findings show that while attention
enhances focus on tumor features, a balanced approach con-
sidering both local detail and global context improves overall
segmentation performance.
2 
The subsequent sections of this paper are structured as follows:
Section 2 presents an overview of previous research conducted on
the segmentation of brain tumors. Section 3 explains the LATUP-
Net architecture, encompassing its essential elements and their impact
n performance. Section 4 provides a comprehensive analysis of the

experimental configuration, encompassing the datasets used and the
evaluation metrics employed. Section 5 presents and analyses the ob-
tained results. Finally, Section 6 concludes the paper and provides
suggestions for further research.

2. Related work

To analyze existing methods for brain tumor segmentation, we
consider three perspectives: convolutional neural networks (CNN) and
their variants, lightweight models, and attention mechanisms

2.1. CNN and related models

Brain tumor segmentation using CNNs has been extensively studied
in the literature, with most methods employing either 2D or 3D convo-
lutions. Initially, 2D models dominated the field, where CNNs processed
individual 2D slices derived from 3D MRI scans. However, these 2D
slices inherently lack the volumetric context present in full 3D MRIs,
leading to the potential loss of important semantic features. This issue
is compounded by the fact that the resolution within the plane of 2D
lices is often higher than that across slices, and the presence of small
aps between slices further exacerbates the loss of spatial continuity.
o capture 3D feature information, 3D CNNs emerged as the preferred
pproach for analyzing MRI images of brain tumors, addressing the
imitations inherent in 2D slice-based analysis [21].

While 3D convolutions make better use of spatial information, they
lso require more computational power and memory. To address this
ssue, Chen et al. [22] developed a memory-efficient solution, while

preserving most of the volumetric information, by introducing a de-
coupled 3D U-Net model. It relies on separating a 3D convolution into
sequential 2D and 1D convolutions and creating three parallel branches
f these separated convolutions, one for each orthogonal view (axial,

sagittal, and coronal) for the 1D convolution direction. The suggested
odel achieved competitive results while demonstrating high efficiency
hen tested on the BraTS 2018 dataset. While local and global features
re necessary for making decisions during segmentation, low-level fea-
ure gradients (such as those containing information about boundaries,
dges, lines, or dots) converge to zero as one proceeds deeper into
he model. To address this, Wang et al. [23] proposed a TransBTS

architecture that effectively embeds a transformer into a 3D U-Net
model. To begin with, local feature maps are extracted using a 3D CNN
encoder. The extracted features are transmitted through a transformer
to capture global features. Afterward, the decoder incorporates the
ocal and global features during the upsampling process to produce

the segmentation result. Zhu et al. [24] propose a BTS method that
ombines deep semantic features and edge features for semantic feature

extraction and fusion from multimodal MRI. The method uses the Swin
Transformer for semantic feature extraction, shifted patch tokenization
for training efficiency, and an Edge Spatial Attention Block (ESAB) for
feature enhancement. Though both models require more computational
resources, it has shown promising results on BraTS 2018 to BraTS 2020,
achieving competitive or higher Dice score performance compared with
state-of-the-art 3D models.

Traditional U-Net architectures perform exceptionally well on se-
antic segmentation tasks [8]. Nevertheless, such structures lack

strategies to extract global feature information [25,26]. To address this,
the inception module [5] and a densely connected module [27] were
added to the U-Net architecture by Zhang et al. [28]. Each inception

odule in the network uses 1 × 1, 3 × 3, and 5 × 5 convolution
kernels to acquire multi-scale information. Their method performs
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admirably in segmenting images of lung tissue, blood arteries, and
rain tumors. Meanwhile, the transformers’ self-attention mechanism
utomatically brings in global information but lacks the inductive

bias, so it does not obtain sufficient fine-grained features. Thereby,
combining transformers and CNNs may leverage the strengths of both.
However, this combination often neglects lesion boundaries, which are
essential for accurate segmentation. To address this issue, Xu et al. [11]
ntegrated the Swin-T network with a dual-path feature inference
odule to enhance the original Swin-T network, resulting in improved

dge segmentation performance for cranial tumors. Zhu et al. [10] used
kip connections to integrate multi-level edge fusion features, derived
rom the sparse dynamic encoder, into the decoder, therefore improving

the transmission of spatial edge information and further refining the
network’s segmentation performance.

While these approaches improve the representational power of the
models, they also increase the number of parameters, heightening the
risk of overfitting and limiting effectiveness in scenarios with limited
training data. Therefore, given the constraints of low resource funding
in many hospitals, it is crucial to strike a balance between processing
efficiency and network size through the development of lightweight
networks.

2.2. Lightweight models

U-Net variants have demonstrated satisfactory segmentation results
for medical images. However, 3D networks require significantly more
GPU memory than 2D networks with the same convolutional net-

ork structure and depth. Consequently, hardware requirements limit
mprovements in segmentation. Researchers have proposed a series
f lightweight models to reduce network complexity and overcome
ardware limitations. By reducing the number of network parameters

and achieving highly accurate segmentation, Chen et al. [29] created
a dilated multi-fiber (DMF) network that replaces convolutions with
ilated convolutions of varying sizes as the fundamental unit. Although
ilated convolutions, which modify the convolution’s field of view by
ntroducing gaps in the convolutional kernel, can capture features at
arious scales, they do not necessarily increase the diversity of features
aptured. Luo et al. [30] proposed a lightweight hierarchical decoupled
onvolution (HDC) unit by replacing 3D convolutions with pseudo-3D
onvolutions. However, the model’s final segmentation precision is not
ery good, despite its ability to explore multi-scale, multi-view spatial
ontexts rapidly with a large reduction in computing complexity. In ad-
ition, Magadza et al. [31] utilized depth-wise separable convolutions
o reduce computational complexity without sacrificing performance.
owever, this method cannot handle diverse and fundamental features

n multiple, independent directions and orientations.
In a recent study, Zhu et al. [32] proposed a CNN-based model for

rain tumor segmentation. Their approach combines three modules that
se multimodal, spatial, and boundary information. This method exam-
ned the overall spatial aspects of the image allowing it to accurately
cquire the tumor’s location and how it relates to other tissues in MRI
cans. The proposed model proved to be more effective and efficient

than other existing state of the arts methods.
In summary, while traditional 3D U-Net models and their variants

offer high segmentation accuracy, they are often resource-intensive and
rone to overfitting in limited data scenarios. In contrast, lightweight
odels like the DMF network [29], HDC unit [30], and depth-wise

eparable convolutions [31], although less precise, provide a viable so-
ution for environments with computational constraints. Our proposed
ightweight 3D network addresses these concerns by employing a spe-
ific version of parallel convolutions which enhances feature extraction
nd segmentation performance with significantly fewer parameters,
ffering a balanced solution between computational efficiency and
egmentation precision. We further incorporate an attention mecha-
ism into our model, which addresses the overfitting issue typically

ssociated with complex models.

3 
2.3. Attention mechanism

Traditional U-Nets give equal importance to all features within the
eature maps. Given the notable class imbalance in brain tumor segmen-
ation, some features are more crucial than others for accurate results.
ttention mechanisms have emerged as effective tools to emphasize

hese crucial features and downplay less significant ones. Generally,
ttention mechanisms are bifurcated into two main types: channel
ttention and spatial attention. Channel attention enables the network
o adaptively weigh the importance of different channels based on
pecific features in the image. This can potentially prioritize channels
hat are crucial for tumor detection [19]. Spatial attention, instead,

fine-tunes the spatial feature maps adaptively, allowing the network
to concentrate on specific regions with significant features [33]. In
this study, we explore various lightweight attention mechanisms, all
recognized for their capacity to enhance model expressiveness and
boost overall performance.

3. The LATUP-Net architecture

Here, we explain the components of our LATUP-Net architecture,
llustrated in Fig. 1 and Table 1, a lightweight variant of the original U-

Net [21] with fewer parameters intended for the semantic segmentation
of 3D brain tumors. Moreover, LATUP-Net utilizes multi-scale parallel
convolutions (see Section 3.1) and channel attention on multi-modal
data fusion (see Section 3.2).

Our encoder consists of three down-sampling blocks with 32, 64,
nd 128 filters, respectively. Only the first encoder block contains our
arallel convolution block. The remaining two encoder blocks consist of
 squeeze and excitation attention block [19] followed by two consec-

utive convolutions with instance normalization [34], and LeakyReLU
activation with a negative slope of 0.1. The resulting tensor is passed
through a dropout layer at a rate of 0.2. For each encoder block, an
identity skip connection is added to map the encoder blocks onto their
orresponding decoder blocks. All convolutions have a kernel size of

3 × 3 × 3, and down-sampling is achieved by 2 × 2 × 2 max-pooling
to reduce the spatial resolution of the feature maps.

The decoder takes the feature maps of the encoder and doubles
heir spatial resolution using 3D trilinear up-sampling. It has three up-
ampling blocks, each consisting of two 3 × 3 × 3 convolutions with
28, 64, and 32 filters respectively, followed by instance normalization,
nd LeakyReLU. A squeeze and excitation attention block has been
dded between the two convolutions. This is followed by a dropout
ayer, implemented with a rate of 0.2 to mitigate overfitting by ran-
omly deactivating a portion of the neural connections during training.
fter the dropout layer, an additional 3 × 3 × 3 convolutional layer is

ncorporated. This layer is pivotal for refining the feature representa-
ions post-dropout, ensuring the restoration of spatial dimensions, and
nhancing the network’s ability to learn detailed, spatially coherent
eatures essential for accurate segmentation.

The last two blocks of the encoder and decoder use an L2 regular-
zer. Finally, a 1 × 1 × 1 convolutional layer with softmax activation
s applied to the output of the decoder, which generates a probability
ap for each voxel indicating its likelihood of belonging to one of the

umor region classes to be segmented.
The LATUP-Net architecture is intentionally designed to minimize

he dependence on complex ensembling or additional computational
resources. In alignment with best practices outlined in [9], we focus
n delivering an efficient, lightweight model that demonstrates its
nnovations without depending on confounding performance boosters.
his approach ensures fair comparisons and highlights the true im-
act of our architectural choices. By combining proven techniques,

such as multi-scale parallel convolutions and lightweight attention
mechanisms, LATUP-Net balances the need for high segmentation per-
formance with reduced computational complexity, making it suitable

35].
for resource-constrained environments [
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Fig. 1. The LATUP-Net architecture.
In line with findings by Rajamani et al. [36], integrating an atten-
tion block at the network’s bottleneck — specifically, an SE block in our
case — facilitates the capture of longer-range dependencies within the
lowest-resolution activation maps. This adjustment boosts performance
with only a slight increase in model complexity.

3.1. Parallel Convolutions (PC)

CNNs have demonstrated efficacy in feature extraction. However,
indiscriminate augmentation of network layers might precipitate over-
fitting and computational overheads [37]. A balance between network
depth and width remains paramount. Our strategy employs parallel
convolutions with varying kernel sizes, drawing inspiration from the
inception model [38]. This design allows the network to capture fea-
tures at different scales, yielding a more efficient model with enhanced
segmentation performance.

To improve the representation power of the network, which is a key
factor in improving its accuracy and reliability, parallel convolutional
layers can be added to different encoder and decoder blocks. However,
adding parallel convolutions to all blocks may result in overfitting
due to the large number of learnable parameters and limited training
data. Therefore, it is added only to the first block of the encoder
to extract the most fundamental and diverse features from the input
data. Parallel convolutions can capture these features at different scales
and orientations. This way, we improve representation power while
reducing the risk of overfitting.

The proposed PC block (see Fig. 2) is designed to process the input
through a series of convolutional layers with different kernel sizes,
each aiming to capture features at various spatial scales. Initially, the
input passes through a shared embedded layer of a single 3 × 3 × 3
convolution, which extracts a preliminary set of features from the input
data. Following this, the features are processed in parallel through
three distinct paths: one continues directly from the initial 1 × 1 × 1
convolution, another passes through an additional 3 × 3 × 3 convo-
lution, and the third through a 5 × 5 × 5 convolution. Convolutional
layers with smaller kernel sizes, such as 1 × 1 × 1 or 3 × 3 × 3,
are adept at detecting local patterns like edges and textures. Layers
with larger kernels, like 5 × 5 × 5, are suited for identifying broader
4 
spatial patterns and hierarchical structures within the data, thereby
providing an extended receptive field. Each path then concludes with a
max-pooling operation, reducing the dimensionality and computational
load of the subsequent layers. The outputs of these parallel paths are
concatenated, combining the multi-scale features into a unified feature
map that is richer and more informative than what could be obtained
from any single path.

This approach contrasts with the inception block [38], which typi-
cally includes multiple parallel paths starting from the same input, each
with different combinations of convolutions and sometimes pooling
operations, without a shared embedded convolution. The inception
block aims to capture multi-scale information by applying various-sized
convolutions (e.g., 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5) in parallel
and then merging their outputs. However, each path in an inception
block operates independently of the others, without a shared feature
extraction stage. This increases the number of parameters and may lead
to redundancy, as each path may learn similar features.

Our proposed PC block contributes to making the model lightweight
in several ways. Firstly, the shared embedded layer ensures that all
paths operate on a common set of features, reducing redundancy and
the need for each path to learn from scratch. This decreases the number
of parameters compared to having multiple independent paths, as seen
in inception blocks [38]. Secondly, by limiting each path to a single
convolution and a pooling operation after the shared convolution, the
model avoids the parameter growth associated with stacking multiple
convolutions in each path. This streamlined approach enables efficient
multi-scale feature extraction without the complexity and parameter
overhead typically associated with more elaborate multi-path designs.
Consequently, this design choice balances capturing diverse spatial
features and maintaining a compact, efficient model architecture.

3.2. SE attention block

The attention mechanisms explored in this study include Squeeze-
and-Excitation (SE) [19], the Convolutional Block Attention Module
(CBAM) [18], Efficient Channel Attention (ECA) [39], and Residual
Squeeze-and-Excitation (RSE) [40]. We further introduce a modified
variant of SE where the fully connected (dense) layers are replaced by
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Table 1
LATUP-Net model architecture details.

Layer Input shape Layer type Stride Output shape Parameters

Input layer (128, 128, 128, 3) Input – (128, 128, 128, 3) 0
Conv3D_1 (enc1_pc_embed) (128, 128, 128, 3) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 2624
Conv3D_2 (enc1_pc_1_conv) (128, 128, 128, 32) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 1056
Conv3D_3 (enc1_pc_2_conv) (128, 128, 128, 32) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 27 680
Conv3D_4 (enc1_pc_3_conv) (128, 128, 128, 32) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 128 032
MaxPooling3D_1 (enc1_pc_1_maxpool) (128, 128, 128, 32) MaxPooling3D (2,2,2) (64, 64, 64, 32) 0
MaxPooling3D_2 (enc1_pc_2_maxpool) (128, 128, 128, 32) MaxPooling3D (2,2,2) (64, 64, 64, 32) 0
MaxPooling3D_3 (enc1_pc_3_maxpool) (128, 128, 128, 32) MaxPooling3D (2,2,2) (64, 64, 64, 32) 0
Concatenate (enc1_pc_concat) (64, 64, 64, 32) Concatenate – (64, 64, 64, 96) 0
SE Layer_1 (enc2_SE_mult) (64, 64, 64, 96) Squeeze and excitation – (64, 64, 64, 96) 2304
Conv3D_5 (enc2_conv1) (64, 64, 64, 96) Conv3D (64 filters) (1,1,1) (64, 64, 64, 64) 165 952
InstanceNorm_1 (enc2_instance_norm) (64, 64, 64, 64) Instance normalization – (64, 64, 64, 64) 128
Conv3D_6 (enc2_conv2) (64, 64, 64, 64) Conv3D (64 filters) (1,1,1) (64, 64, 64, 64) 110 656
Dropout_1 (enc2_dropout) (64, 64, 64, 64) Dropout – (64, 64, 64, 64) 0
MaxPooling3D_4 (enc2_maxpool) (64, 64, 64, 64) MaxPooling3D (2,2,2) (32, 32, 32, 64) 0
SE Layer_2 (enc3_SE_mult) (32, 32, 32, 64) Squeeze and excitation – (32, 32, 32, 64) 1024
Conv3D_7 (enc3_conv1) (32, 32, 32, 64) Conv3D (128 filters) (1,1,1) (32, 32, 32, 128) 221 312
InstanceNorm_2 (enc3_instance_norm) (32, 32, 32, 128) Instance normalization – (32, 32, 32, 128) 256
Conv3D_8 (enc3_conv2) (32, 32, 32, 128) Conv3D (128 filters) (1,1,1) (32, 32, 32, 128) 442 496
Dropout_2 (enc3_dropout) (32, 32, 32, 128) Dropout – (32, 32, 32, 128) 0
MaxPooling3D_5 (enc3_maxpool) (32, 32, 32, 128) MaxPooling3D (2,2,2) (16, 16, 16, 128) 0
SE Layer_3 (bn_SE_mult) (16, 16, 16, 128) Squeeze and excitation – (16, 16, 16, 128) 4096
UpSampling3D_1 (dec3_upsample) (16, 16, 16, 128) UpSampling3D (2,2,2) (32, 32, 32, 128) 0
Conv3D_9 (dec3_conv1) (32, 32, 32, 128) Conv3D (128 filters) (1,1,1) (32, 32, 32, 128) 131 200
InstanceNorm_3 (dec3_instance_norm) (32, 32, 32, 128) Instance normalization – (32, 32, 32, 128) 256
Concatenate (dec3_concat) (32, 32, 32, 128) Concatenate – (32, 32, 32, 256) 0
Conv3D_10 (dec3_conv2) (32, 32, 32, 256) Conv3D (128 filters) (1,1,1) (32, 32, 32, 128) 884 864
UpSampling3D_2 (dec2_upsample) (32, 32, 32, 128) UpSampling3D (2,2,2) (64, 64, 64, 128) 0
Conv3D_11 (dec2_conv1) (64, 64, 64, 128) Conv3D (64 filters) (1,1,1) (64, 64, 64, 64) 65 600
InstanceNorm_4 (dec2_instance_norm) (64, 64, 64, 64) Instance normalization – (64, 64, 64, 64) 128
Concatenate (dec2_concat) (64, 64, 64, 64) Concatenate – (64, 64, 64, 128) 0
Conv3D_12 (dec2_conv2) (64, 64, 64, 128) Conv3D (64 filters) (1,1,1) (64, 64, 64, 64) 221 248
UpSampling3D_3 (dec1_upsample) (64, 64, 64, 64) UpSampling3D (2,2,2) (128, 128, 128, 64) 0
Conv3D_13 (dec1_conv1) (128, 128, 128, 64) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 16 416
Concatenate (dec1_concat) (128, 128, 128, 32) Concatenate – (128, 128, 128, 64) 0
Conv3D_14 (dec1_conv2) (128, 128, 128, 64) Conv3D (32 filters) (1,1,1) (128, 128, 128, 32) 55 328
Conv3D_15 (prob_map) (128, 128, 128, 32) Conv3D (4 filters) (1,1,1) (128, 128, 128, 4) 132

Total parameters 3,069,060
Fig. 2. Proposed parallel convolutions.
5 
a 3D convolutional layer. We also experiment with combined mecha-
nisms such as fusing CBAM and SE. The motivation behind combining
CBAM and SE is to leverage the strengths of both. CBAM’s ability
to focus on pertinent spatial and channel features and SE’s capacity
to recalibrate channel-wise features may enhance the model’s ability
to capture complex interdependencies in the data. Another approach
is designed to exploit the strengths of convolutions while adhering
to the principles of the SE mechanism. Replacing the dense layer in
SE with a 3D convolution layer (SE-3D) is aimed at maintaining the
spatial information of the input tensor and capturing local spatial
correlations, while simultaneously maintaining the ability to recalibrate
channel-wise features.

Based on rigorous evaluation of attention mechanisms in Section 5,
we incorporate an SE block [19] into our final model, which is il-
lustrated in Fig. 3. This block is recognized for its efficiency and
lightweight nature. The SE block is composed of two distinct opera-
tions: Squeeze and Excitation. In the squeeze phase, input images of
size 𝐻 ×𝑊 ×𝐷 ×𝐶 are transformed to a 1 × 1 × 1 ×𝐶 format through a
Global Average Pooling (GAP) layer, which compresses the spatial res-
olutions, retaining only channel-centric information for the subsequent
excitation operation. The excitation phase employs a series of layers,
beginning with a fully connected layer complemented by a reduction
factor 𝑟. This is then subjected to ReLU activation, succeeded by another
fully connected layer, culminating in a sigmoid activation to produce
the final output of the Excitation operation. A scaling transformation
is executed to assimilate the channel-specific data, yielding an output
enriched with channel-level information.
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Fig. 3. Squeeze and excitation block.

4. Data and implementation details

4.1. Data and pre-processing

The proposed model is trained and validated using the Brain Tumor
Segmentation (BraTS) benchmark datasets: BraTS 2020 [1,3,4] and
BraTS 2021 [1]. BraTS 2021, a superset of BraTS 2020, encompasses
1251 patients, including high-grade gliomas (HGG) and low-grade
gliomas (LGG). The BraTS 2020 dataset contains 369 patients, of which
76 have been diagnosed with LGG, with the remainder having HGG.

The BraTS 2020 and BraTS 2021 datasets are used for efficiency
and sustainability, with initial testing on the smaller dataset allowing
for algorithm refinement and model selection before deployment on
the larger dataset. It conserves computational resources and time, and
aligns with iterative development best practices, where initial test-
ing on a subset of the data can provide quick feedback, critical for
early-stage model tuning and optimization [41].

Each dataset consists of 3D scans with 155 individual ‘‘slices’’ or
images, each having 240 × 240 pixels. These scans capture four MRI
modalities — T2, T1, T1ce, and FLAIR — crucial for brain tumor
segmentation, offering distinct insights. T1-weighted images illustrate
anatomical structures, distinguishing between gray and white matter.
T2-weighted images aid in visualizing edema, by emphasizing water
content. T1ce images, with contrast enhancement, focus on blood vessel
imaging, a key component in identifying active tumor growth. Con-
versely, FLAIR images suppress cerebrospinal fluid signals, illuminating
anomalies in intensity and subtle lesions indicative of tumor expansion.
Ground truth segmentation masks are meticulously annotated by one to
four expert neuroradiologists per case. The scan has been segmented
into four primary classes: background (BG, Label 0), necrotic and
non-enhancing tumor (NCR/NET, Label 1), edema (ED, Label 2), and
enhancing tumor (ET, Label 4) as exemplified in Fig. 4. Following com-
mon practices in the literature, we classify these into three main tumor
regions for segmentation: whole tumor (WT) encompassing NCR/NET,
ED, and ET (Labels 1, 2, 4), tumor core (TC) consisting of NCR/NET
and ET (Labels 1, 4), and the sole ET (Label 4).

The BraTS datasets have been meticulously preprocessed by their
developers, including co-registration to a consistent anatomical tem-
plate, interpolation to a unified resolution (1 mm3), and skull stripping.
However, MRI scan intensity values often display inconsistencies and
6 
Table 2
Hyperparameters for the LATUP-Net model.

Hyperparameter Value

Input size 128 × 128 × 128 × 3
Batch size 1
Hidden layer activation Leaky ReLU(𝛼 = 0.1)
Optimizer ADAM (𝛽1 = 0.9, 𝛽2 = 0.999)
Learning rate 1 × 10−4
Number of epochs 200
Loss function Weighted Dice score loss (see Section 4.3)
Dropout 0.2
Regularization L2 (factor 0.02)
Output layer activation Softmax
Output size 128 × 128 × 128 × 4

may fluctuate due to many factors. To mitigate this, we normalize the
intensity range to the interval [0, 1] using the min–max scaler [42]. This
adjustment not only enhances data consistency but also optimizes it for
deep learning algorithms.

We further crop the images to a standard size of 128 × 128 × 128
voxels, centered on the MRI scans. Preliminary tests suggested that in-
cluding T1 images with T1ce, T2, and FLAIR only marginally improves
segmentation results. Since T1ce is essentially a contrast-enhanced
derivative of T1, and T1 mainly contributes to identifying a small
fraction of the edema, which FLAIR can effectively detect as well,
we chose to exclude T1 from our inputs to conserve computational
resources.

4.2. Implementation details

We implemented our network via Keras in Tensorflow 2.15. Com-
putations are executed on a single NVIDIA GeForce RTX3060 12 GB
GPU, which is considered a relatively low-end consumer card. For
training, we employed the ADAM optimizer [43], setting the learning
rate to 1 × 10−4. Training proceeds with a batch size of 1, a choice
primarily dictated by GPU memory constraints. We used a constant
number of 200 epochs. To mitigate the risk of overfitting and enhance
the model’s generalization capabilities, L2 regularization was applied
to the convolutional kernel parameters with a factor of 0.02. This
regularization factor was selected based on experimentation during the
model selection process, as detailed in the supplementary material.

Leaky ReLU with a leak factor of 𝛼 = 0.1 was used as the ac-
tivation function for the hidden layers. This value is widely used in
deep learning and was chosen based on its effectiveness in similar
tasks, such as image segmentation, where it helps regularize the model
by allowing gradient flow for negative inputs, contributing to stable
training. Studies, including nnU-Net [44] and the original leaky ReLU
paper [45], have shown that 𝛼 = 0.1 works well in practice.

During preliminary experimentation, we evaluated the ReduceL-
ROnPlateau callback for dynamic learning rate adjustments. How-
ever, observations indicated a predisposition towards overfitting when
it was employed. As such, it was excluded from the final training (see
Section 5.1.1).

The specific hyper-parameter settings we adopted during model
training are detailed in Table 2. Detailed results with a discussion are
in Section 5 with additional information about the parameter selection
process available in the supplementary material. The source code is
available at [35] with final models and analysis results at [46].

4.3. Loss function

Loss function selection is a critical factor in contemporary deep-
learning network designs, especially in the field of brain tumor seg-
mentation. Recent studies indicate that no single popular loss function
consistently offers superior performance across various segmentation
tasks [47].
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Fig. 4. MRI scan of a brain tumor featuring ground truth segmentation masks: blue represents necrotic and non-enhancing tumor areas (NCR/NET, Label 1), green highlights
edema regions (ED, Label 2), and red indicates areas of enhancing tumor (ET, Label 4).
Compound loss functions, which combine two or more types of loss
functions, have emerged as the most robust and competitive in different
scenarios [47]. In our experiments, we aim to enhance segmentation
performance and address the severe class imbalance in the BraTS
datasets by combining Dice loss with Binary Cross Entropy (BCE) [48]
and Dice loss with focal loss [49]. However, based on our experi-
ments, these compounded loss function approaches did not significantly
outperform Dice loss alone. Therefore, to boost the segmentation per-
formance and solve the class imbalance problem, the loss function used
during the final training process is the Weighted Dice score Loss (WDL).

The Dice score loss for each class 𝑖, corresponding to the network
output channels BG, NCR/NET, ED, and ET, is

𝐷 𝑆 𝐿𝑖 = 1 −
2
∑

𝑛

(

𝑦𝑡𝑟𝑢𝑒𝑖,𝑛 ⊙ 𝑦pred
𝑖,𝑛

)

+ 𝜖

∑

𝑛

(

𝑦𝑡𝑟𝑢𝑒𝑖,𝑛

)2
+
∑

𝑛

(

𝑦pred
𝑖,𝑛

)2
+ 𝜖

. (1)

𝑦𝑡𝑟𝑢𝑒𝑖 and 𝑦pred
𝑖 represent the ground truth and predicted segmentation

masks for class 𝑖, respectively; 𝑛 iterates over all elements of 𝑦𝑡𝑟𝑢𝑒𝑖
and 𝑦pred

𝑖 ; ⊙ signifies point-wise multiplication; and 𝜖 is a negligible
constant introduced to avoid division by zero. In our experiments, we
set 𝜖 = 0.00001. Note that here the network output masks are the
original BG, NCR/NET, ED, and ET regions in the ground truth (see
Section 4.1).

The WDL weights 𝑤𝑖 for class 𝑖 are computed according to the ENet
paper [50],

𝑤𝑖 =
1

log(𝐶 + 𝑐𝑖
𝑇 )

(2)

where 𝐶 = 1.02, 𝑐𝑖 is the voxel count for class 𝑖, and 𝑇 is the total
count of voxels across all classes. This formula ensures that classes
with fewer voxels receive higher weights to balance the loss during the
training process. Here we use the WT, TC and ET regions instead of the
individual output channels above to compute the weights, and we get
𝑤WT = 1.64, 𝑤TC = 2.55, and 𝑤ET = 3.40.

Overall this gives our Weighted Dice score Loss (WDL),
WDL = 𝑤WT ⋅ (𝐷 𝑆 𝐿NCR/NET +𝐷 𝑆 𝐿ED +𝐷 𝑆 𝐿ET)

+ 𝑤TC ⋅ (𝐷 𝑆 𝐿NCR/NET +𝐷 𝑆 𝐿ET)

+ 𝑤ET ⋅𝐷 𝑆 𝐿ET,

(3)

which is equivalent to
WDL = (𝑤WT +𝑤TC +𝑤ET) ⋅𝐷 𝑆 𝐿ET

+ (𝑤WT +𝑤TC) ⋅𝐷 𝑆 𝐿NCR/NET

+ 𝑤WT ⋅𝐷 𝑆 𝐿ED.

(4)

In this expression, the dice score loss (DSL) for each class 𝑖 ∈
{NCR/NET,ED,ET} is computed separately and weighted according to
the importance of the corresponding tumor region (WT, TC, and ET)
and then summed up to compute the total weighted Dice score loss for
the segmentation task. This loss function links the clinical relevance of
each tumor region with the network’s output channels, ensuring that
the segmentation process prioritizes the most clinically significant areas
which is crucial for achieving optimal segmentation performance. Using
7 
the ENet weights helps in addressing the class imbalance by assigning
higher weights to smaller but more important tumor regions.

It is also important to note that while the network output channels
include the background class (BG), it is not included in the loss and
weights calculation. We found its presence improves the segmentation
performance of the model. We also explored the use of different output
channels, weights, and manual adjustment of the weights. However, it
did not yield satisfactory results.

4.4. Evaluation metrics

We measure the effectiveness of the proposed model using the
Dice similarity coefficient (DSC), and the 95t h percentile Hausdorff
distance (HD95). DSC and HD95 are widely accepted as the primary
performance evaluation metrics in image segmentation tasks. The DSC
quantifies the spatial overlap between the ground truth and the pre-
dicted segmentation region. HD95 calculates the 95t h percentile of the
distances between the points in the ground truth and the predicted
set. This is akin to the conventional symmetric Hausdorff distance but
reduces the impact of outliers by focusing on the 95t h percentile. HD95
in particular indicates the accuracy of boundary prediction, revealing
the model’s precision in delineating the tumor margins.

The metrics are defined as

DSC = 2|𝑃 ∩ 𝑇 |
|𝑃 | + |𝑇 |

, (5)

HD95 = max
(

max
𝑝∈𝑃95%

min
𝑡∈𝑇

‖𝑝 − 𝑡‖,

max
𝑡∈𝑇95%

min
𝑝∈𝑃

‖𝑡 − 𝑝‖
)

,
(6)

where 𝑝 and 𝑡 are voxel coordinates for the predicted and ground truth
regions respectively; 𝑃 is the predicted region, and 𝑇 is the ground
truth region. The corresponding 95t h percentile regions are represented
by 𝑃95% and 𝑇95%.

We employ different metrics for evaluating our model based on the
data partitioning approach used. For model selection (see Sections 5.1,
and 5.2), we employ an 80∕20 training-testing holdout split, and we
report the mean and standard deviation of the per-sample (per-patient)
metrics to gain insights into the model’s performance under controlled
conditions. Once the optimal model (LATUP-Net) is determined, and
for comparison to the state-of-the-arts models (see Section 5.5), five-
fold cross-validation is applied to consider any data dependencies and
ensure a comprehensive evaluation of the model’s performance across
varied data scenarios. During cross-validation, we calculate the mean
and standard deviation of the mean DSC and HD95 across all folds to
assess the model’s robustness and general performance.

5. Experimental results and discussion

This section covers four main analyses. Firstly, we analyze the
performance of some variants of our architecture and the influence of
learning rate optimization on the segmentation performance. Then, we
investigate which attention mechanism gives the best performance. We
also evaluate the effectiveness of the attention mechanism. Finally, we
compare the performance of our LATUP-Net to the state-of-the-art on
BraTS 2020 and 2021.
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Table 3
Comparative analysis of model architectures for brain tumor segmentation using the BraTS 2020 dataset: This table illustrates the mean and standard
deviation (indicated by ±) for the per-sample Dice similarity coefficient (DSC) and the 95t h percentile Hausdorff distance (HD95). Results are segmented
into whole tumor (WT), tumor core (TC), and enhancing tumor (ET) categories, based on an 80/20 train/test set split.

Model DSC (%) HD95 (mm)

WT TC ET WT TC ET

U-Net 83.22 ± 9.29 77.13 ± 18.34 60.65 ± 27.44 18.50 ± 22.17 15.38 ± 22.91 19.34 ± 30.24
Inception 87.53 ± 7.49 80.91 ± 18.64 69.28 ± 29.05 10.87 ± 15.72 6.58 ± 7.78 14.94 ± 29.06
PC 88.13 ± 7.14 84.19 ± 16.74 70.23 ± 28.40 4.99 ± 4.00 5.63 ± 6.71 12.86 ± 26.39
PC + SE 88.52 ± 7.10 83.26 ± 17.18 71.86 ± 27.02 5.98 ± 7.88 5.51 ± 5.20 12.96 ± 26.55
PC + WDL 𝟖𝟗.𝟓𝟖 ± 𝟓.𝟕𝟎 𝟖𝟓.𝟑𝟓 ± 𝟏𝟓.𝟒𝟗 73.21 ± 27.18 𝟒.𝟕𝟖 ± 𝟒.𝟒𝟏 5.25 ± 6.38 11.65 ± 26.33
PC + SE + WDL 88.72 ± 6.33 84.71 ± 15.65 𝟕𝟒.𝟒𝟗 ± 𝟐𝟓.𝟗𝟖 5.76 ± 4.41 𝟓.𝟏𝟓 ± 𝟔.𝟐𝟖 𝟏𝟎.𝟔𝟓 ± 𝟐𝟓.𝟑𝟑
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5.1. Overall performance analysis

To find the best variant of our proposed model and training, we
ompare the following architectures:

U-Net: The baseline U-Net model trained using Dice loss.

Inception: Modified U-Net model with inception module trained using
Dice loss.

PC: Modified U-Net model with parallel convolutions trained using
Dice loss.

PC + SE: Modified U-Net model with parallel convolutions and chan-
nel attention trained using Dice loss.

PC + WDL: Modified U-Net model with parallel convolutions trained
using weighted Dice score Loss.

PC + SE + WDL: Modified U-Net model with parallel convolutions,
and attention trained using weighted Dice score Loss.

The models are initially selected based on a single 80∕20 split using
he same training hyperparameters (see Table 2) on the BraTS 2020
ataset. Table 3 shows the segmentation results of the test set from

these training runs. The performance is assessed by employing two key
metrics: per-sample DSC and HD95.

In the Inception model, we replace the first U-Net block with an
nception module. This modification improves the segmentation results

compared to the U-Net, with DSC improvements of 4.31, 3.78, and
.63 for whole tumor (WT), tumor core (TC), and enhancing tumor
ET), while reducing the HD95 by 7.63, 8.8, and 4.44 for WT, TC,
nd ET, respectively. However, despite these performance gains, the

Inception model significantly increases memory usage during training,
likely due to the module’s more complex structure, which combines
multiple convolutional and pooling operations.

The PC model, using parallel convolutions, demonstrates superior
fficiency compared to both U-Net and Inception. It achieves faster

convergence during training and reduces the need for computational
resources. Additionally, PC provides substantial improvements in seg-
mentation performance compared to U-Net, with DSC gains of 4.91,
7.06, and 9.58 and HD95 reductions of 13.51, 9.75, and 6.48 for WT,
TC, and ET, respectively.

When comparing our proposed parallel convolutions (PC) with the
Inception module, PC offers a strategic advantage. By replacing the
conventional 1 × 1 × 1 × 1 convolution with a 3 × 3 × 3 × 3 convolution,
C achieves a more spatially compact and contextually rich representa-
ion, while effectively reducing memory consumption. In contrast, the
nception module with its complex configuration faced a surge in model
emory usage during training. Furthermore, our design’s judicious
ositioning of pooling operations optimally condenses feature map
imensions, ensuring efficient memory usage without compromising
apturing features. The PC model outperforms the inception model with
.6, 3.28, and 0.95 DSC increment and 5.88, 0.95, and 2.08 HD95
ecrement for WT, TC, and ET, respectively, which proves PC’s ability
o segment difficult tumor regions such as TC.
8 
The addition of SE attention to the PC model (PC + SE) further
enhances segmentation performance, particularly for smaller tumor
regions, as evidenced by DSC improvements of 0.39 for WT and 1.63
for ET. However, a slight reduction in TC performance (0.93 decrease
in DSC) suggests that while attention mechanisms provide benefits in
some areas, they may introduce trade-offs for certain tumor regions.
Several lightweight attention modules are compared in Section 5.2.

Notably, our investigations reveal a significant performance en-
hancement upon employing the WDL with the PC model. Specifi-
cally, the DSC for WT, TC, and ET increased by 1.45, 1.16, and 2.98
respectively and HD95 reduced by 0.21, 0.38, and 1.21 respectively.

This improvement underscores the utility of the WDL in case of a
egmentation region size imbalance. However, we notice that when
dding the attention mechanism, the result of WT and TC decreased
lightly in both DCS and HD95, which leads us to check whether atten-
ion is needed. Nonetheless, we chose to include SE because there is a

1.28% improvement in the ET segmentation result and enhancements
in HD95 for TC and ET. This is further investigated in Section 5.4.

Fig. 5 depicts qualitative comparisons between the various net-
works in segmenting the distinct tumor regions. The qualitative re-
sults demonstrate that our LATUP-Net which consists of PC and SE
rained with WDL, outperformed all other models, consistent with the
uantitative results in Table 3.

5.1.1. The influence of learning rate decay on the segmentation perfor-
mance

Training neural networks necessitates careful control of conver-
gence and prevention of overfitting. Traditional models typically utilize
learning rate schedulers alongside stochastic gradient descent. How-
ever, with the introduction of advanced optimizers such as ADAM,
which integrates momentum and regularization, there has been a shift
to strategies like ReduceLROnPlateau. This approach adjusts the
learning rate in response to training plateaus by monitoring valida-
tion loss, akin to early stopping criteria [51]. Despite the recognized
benefits of ReduceLROnPlateau in contemporary optimization sce-
narios, our experimentation yielded nuanced insights. While training
models with and without learning rate decay, a small performance
improvement was observed, but the associated learning curves exhibit
clear signs of overfitting (see Fig. 6(a)). In contrast, models trained

ithout learning rate decay did not display such overfitting tendencies
see Fig. 6(b)). These observations are likely attributed to our model’s
lready minimal learning rate. Consequently, in our final model con-
iguration, we opted to forgo the learning rate decay to circumvent the
bserved overfitting tendencies.

5.2. Comparison of different attention mechanisms

In our approach so far, we have used the SE attention mechanism.
In this section, we explore whether alternative attention mechanisms
see Section 2.3) may yield improved performance within the confines
f our model. For a uniform evaluation, we incorporate all attention
echanisms after the parallel convolutions (PC). It is also important to

note that the model is trained using Dice loss and the results presented
here are derived from configurations that do not include the weighted
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Fig. 5. Segmentation results from the test set that are typical of those produced by the various networks. The results for a single patient from each network are shown in each
row. The enhancing tumor is depicted in blue, the necrotic and non-enhancing tumor in red, and the edema in green (after extracting the distinct regions from the partially
overlapping segmentation results).
Fig. 6. Modified U-Net with PC: Dice score curves for all tumor regions (a) with and (b) without learning rate decay.
Dice score loss (WDL). This choice was made to isolate the impact of
the attention mechanisms themselves, allowing for a clear comparison
of their effectiveness in the absence of the WDL’s influence.

Table 4 summarizes our findings, detailing the performance met-
rics of residual SE, CBAM, ECA, and their combinations. While all
mechanisms enhance the model’s accuracy, SE stands out as the most
effective.

CBAM, despite its comprehensive design, might be limited by its
complexity, which could result in computational overhead, potentially
affecting efficiency, especially in real-time scenarios. On the other
hand, while ECA is designed to be lightweight and computationally
efficient, it may not capture the intricate inter-channel dependencies
as effectively as SE. This trade-off between computational complexity
and attention performance suggests that CBAM and ECA may be better
suited for specific tasks or resource-constrained environments where
accuracy can be sacrificed for speed or memory efficiency.

The SE mechanism’s advantage lies in its ability to efficiently high-
light enhanced tumors, which is crucial for tasks involving small yet
important regions like the tumor core (TC) and enhancing tumor (ET).
Additionally, the reduced number of parameters in SE makes it partic-
ularly advantageous for large-scale medical image segmentation tasks,
where model size and efficiency are important factors. The residual
SE mechanism further boosts performance, particularly in terms of
Dice similarity coefficient (DSC), as shown by its slightly higher values
across all tumor regions.

Analyzing the standard deviation values, the variance in DSC scores
appears minimal, which suggests that the choice of attention mecha-
nism might not drastically affect the accuracy. However, in practice, a
more streamlined model with fewer parameters (such as PC+SE) may
9 
offer competitive or even superior performance due to its balance of
effectiveness and computational efficiency.

In contrast, the HD95 metric highlights more prominent differ-
ences across the methods, suggesting that attention mechanisms have
a varying impact on capturing spatial discrepancies in segmentation,
such as outliers or irregularly shaped tumors. For example, CBAM
exhibits lower HD95 values for the whole tumor (WT), indicating
that its spatial attention might better capture large-scale spatial varia-
tions, while SE-based models perform better on smaller, enhancing tu-
mors (ET), where channel-wise attention is more effective at capturing
fine-grained details.

Given the observed performance trade-offs, the choice of attention
mechanism may depend on the specific task requirements, includ-
ing segmentation accuracy, computational resources, and the need to
balance spatial and channel-wise attention.

5.3. Lightweight model validation

To demonstrate the lightweight nature of LATUP-Net, Table 5
presents a comparison with other models on the floating-point oper-
ations (FLOPs) required to evaluate the model once, the number of
parameters, and the inference times. Fewer FLOPs indicates a more
efficient training process, as less computational power is required.
Similarly, a lower number of trainable parameters not only reduces
training time but also minimizes memory usage during deployment.
Additionally, shorter inference times further highlight the lightweight
characteristics of the model. It is important to note that there are
various methods for estimating FLOPs. In our study, we used the Ten-
sorFlow profiler [52] function from the TensorFlow package, ensuring
consistency and accuracy.
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Table 4
Efficiency analysis of various attention mechanisms for brain tumor segmentation on the BraTS 2020 test set. This table illustrates the mean and standard
deviation (indicated by ±) for the per-sample Dice similarity coefficient (DSC) and the 95t h percentile Hausdorff distance (HD95). Results are segmented
into whole tumor (WT), tumor core (TC), and enhancing tumor (ET) categories, based on an 80/20 train/test set split. Additionally, the table includes
the number of trainable parameters for each model.

Method DSC (%) HD95 (mm)

WT TC ET WT TC ET

PC+SE 88.52 ± 7.10 83.26 ± 17.18 𝟕𝟏.𝟖𝟔 ± 𝟐𝟕.𝟎𝟐 5.98 ± 7.38 𝟓.𝟓𝟏 ± 𝟓.𝟐𝟎 𝟏𝟐.𝟗𝟔 ± 𝟐𝟔.𝟓𝟓
PC+CBAM 89.38 ± 6.53 𝟖𝟒.𝟑𝟔 ± 𝟏𝟓.𝟗𝟒 70.01 ± 29.39 𝟒.𝟕𝟖 ± 𝟒.𝟏𝟗 5.51 ± 5.65 14.12 ± 28.27
PC+CBAM+SE 88.91 ± 6.31 83.87 ± 15.63 70.25 ± 28.33 5.24 ± 5.07 5.58 ± 5.60 12.92 ± 26.42
PC+ (SE-3D) 89.05 ± 6.56 83.91 ± 16.97 69.83 ± 29.63 5.38 ± 6.89 5.72 ± 7.37 13.75 ± 28.14
PC+Residual SE 𝟖𝟗.𝟔𝟎 ± 𝟔.𝟓𝟎 84.06 ± 17.38 70.79 ± 29.42 5.40 ± 7.46 5.93 ± 8.16 13.19 ± 26.34
PC+ECA 84.47 ± 6.97 80.12 ± 18.21 63.19 ± 28.15 6.81 ± 4.01 7.08 ± 7.05 15.03 ± 28.13
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Table 5
Efficiency comparison of different models based on FLOPs (GigaFLOPs), parameter
ount (millions), and inference time (milliseconds) measured on an NVIDIA RTX3060
2 GB GPU.
Models Parameters (M) FLOPs (G) Inference time (ms)

U-Net 5.65 23.8 230
Inception 3.65 74.98 333
PC 𝟑.𝟎𝟔 𝟏𝟓.𝟎𝟖 227
PC + SE 3.07 15.79 𝟏𝟔𝟖
PC + CBAM 3.45 17.35 247
PC + CBAM + SE 3.26 16.08 240
PC + (SE-3D) 3.07 15.79 234
PC + Residual SE 3.07 15.80 238
PC + ECA 3.10 15.80 212

The baseline 3D U-Net, with 5.65 million parameters and 23.8
FLOPs, is one of the more complex models, particularly in terms of
arameters, reflecting its deeper and wider architecture. In contrast,
nception has fewer parameters (3.65 million) but a much higher
FLOP count (74.98), suggesting that while it has fewer parameters,

ts increased computational demand arises from its more intricate layer
onfigurations.

Compared to Inception, LATUP-Net (PC + SE) achieves a more
alanced and efficient design, with 15.79 GFLOPs, 3.07 million param-
ters, and an inference time of 168 ms, measured using an NVIDIA
TX3060 GPU. It is important to note that inference and training

imes are highly dependent on the hardware used, which is why these
imes are not compared with other state-of-the-art models in this study.
espite this, LATUP-Net is far more efficient computationally. The PC-
ased variants (PC, PC + SE, and PC + Residual SE) maintain a similar
arameter range (3.06 – 3.07 million) and low GFLOP counts (15.08 –
6.08), highlighting their efficiency. While models like PC + CBAM and
C + ECA slightly increase GFLOPs, they still maintain efficient infer-
nce times. Overall, LATUP-Net provides significant advantages over
nception by delivering better performance with fewer computations,
aking it a more efficient model, especially in terms of computational

omplexity and speed.

5.4. Evaluating the effectiveness of the attention mechanism

To understand the impact of the integrated attention mechanism
nd to determine if it operates as intended in our proposed architecture,
e conduct two primary experiments: gradient-weighted class activa-

ion mapping (Grad-CAM) visualizations [20] and confusion matrix
analysis.

5.4.1. Visual interpretation using Grad-CAM
In investigating the efficacy of attention mechanisms in brain tumor

etection, the question arises whether the local context is sufficient
for accurate segmentation. Traditional convolutions inherently capture
the local context without necessitating attention. Given the qualitative
ature of our experiments and the challenges of visualizing every data

point, it is crucial to strategically select representative samples for thor-
ugh analysis. To interpret and delve deeper into the model’s behavior,
 c

10 
Grad-CAM is applied to three distinct samples that are the same for
oth models, with attention (LATUP-Net) and without attention (PC +

WDL). These samples are selected based on their loss value with some
representative slice from the test set and represent the best-performing,
the median, and the worst-performing w.r.t. the WDL for comparative
analysis.

Grad-CAM [20] was applied to the layer preceding the softmax ac-
ivation used for generating the predictions. This layer was particularly
elected because it directly contributes to the decision-making process,
ffering a transparent view into how the model weighs different regions

in its segmentation task. Grad-CAM visualizations, as shown in Fig. 7,
demonstrate that both models focus primarily on tumor areas. While
the attention mechanism intensifies this focus, it does not always lead
o the most accurate predictions. In particular, the necrotic region tends
o be overemphasized, leading to misclassifications, as necrotic and
nhancing regions often share similar textures.

This observation suggests that while attention appears to work as
esigned by emphasizing certain regions, it may not contribute to
mproved performance due to its reliance on local features. Grad-CAM
urther reveals that the segmentation task is heavily driven by these

local features, like texture and boundaries, which attention does not
necessarily enhance in a meaningful way. Additionally, because Grad-
CAM tends to focus on the regions directly involved in segmentation,
it does not provide insights into global relationships, such as left–right
symmetry of the brain, which the attention mechanism might have been
xpected to capture.

Overall, the results indicate that the attention mechanism may have
limited impact on segmentation performance, as the task is largely
dependent on local feature extraction, and the attention mechanism
does not provide significant additional context in this particular use
case.

5.4.2. Confusion matrix analysis and implications
To provide quantitative evidence supporting the findings from Grad-

AM visualizations, we perform a confusion matrix analysis, as shown
n Fig. 8. This matrix details how pixels from one class are misclassified

as those from another, offering insights into the LATUP-Net model
ehavior. It is important to note that there were patients with no
nhanced tumor (ET) class in the ground truth. These cases have not
een considered for the confusion matrix, as including them would
istort the percentages. A primary observation is the misclassification
etween the necrotic and edema regions, a claim also derived from
he qualitative visuals (see Section 5.4.1). The model perceives textural

similarities between these areas, further complicated by nested tumor
structures. Additionally, the necrotic region is notably vulnerable to
misclassification, perhaps due to its texture and position within the tu-

or’s structure. When examining the standard deviation in Fig. 9, com-
ined with the average misclassification percentages, the classification

performance variability is clear. This variability might spotlight outliers
or deviations in model predictions, with classes like the necrotic region
nd enhancing region showing significant misclassification variability.
he variations imply that certain samples heavily influence averages. In

onclusion, the attention mechanism, while offering nuanced insights,
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Fig. 7. Visual interpretations of model predictions using Grad-CAM: For each of the three samples selected from the test set, representing the best, median, and worst predicted
cases, both the standard and attention-enhanced models. From left to right in each row we show the GradCAM for the BG, NEC/NET, ED, ET output channel, the ground truth
and the prediction, and finally the combined GradCAM for all output channels. The first row visualizes the standard model (PC + WDL), and the second row visualizes the
attention-enhanced model (LATUP-Net) per case.
can overly prioritize local features, causing the model to overlook
important topological relationships recognized by human experts. A
balance between local and global contexts seems important.

5.5. Comparison with state-of-the-art models

We perform five-fold cross-validation, with results shown in Figs. 10
and 11. These figures display the per-sample performance of our
LATUP-Net model, highlighting the distribution of DSC and HD95
metrics, as well as variability, including outliers. Unlike other studies
that report only average metrics, we provide a detailed analysis to
demonstrate the model’s consistency across test samples.

We then compare the average results of our five-fold cross-
validation with other high-performing models, as shown in Tables 6 and
11 
7. For these comparisons, we rely on the evaluation results reported in
related publications, a common practice in brain tumor segmentation
research. This approach is necessary because the source code for many
existing methods is unavailable, and it helps avoid the bias that could
be introduced by retraining models.

5.5.1. Comparison with BraTS 2020 results
We compare our LATUP-Net model with various state-of-the-art

models on the BraTS 2020 dataset. The evaluation focuses on three
key metrics: the Dice similarity coefficient (DSC), the 95t h percentile
Hausdorff distance (HD95), and the number of model parameters,
alongside GFLOPs to reflect computational complexity. For our LATUP-
Net model, we present the average performance across five-fold cross-
validation to ensure a robust and comprehensive assessment. In con-
trast, for the state-of-the-art models, we report the results as they
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Fig. 8. Confusion matrix illustrating the pixel-wise misclassification rates between
different tumor regions, normalized by the number of actual class instances in each
row and predicted class. These values are averaged over all samples in the dataset to
provide a comprehensive overview of the LATUP-Net model’s performance.

Fig. 9. Confusion matrix of the standard deviation of misclassification rates for each
tumor region from Fig. 8 of the LATUP-Net model.

are presented in their respective original publications, which may
include their best-split results or cross-validation outcomes. Detailed
results of this comparative analysis are compiled in Table 6. Our
LATUP-Net model demonstrates significant improvements in HD95 for
all tumor regions (whole tumor, tumor core, and enhancing tumor),
suggesting accurate predictions of tumor boundaries. This precision is
of paramount importance in medical imaging since accurate bound-
aries can greatly impact clinical decision-making. However, it is worth
noting that in the final evaluation of the five-fold cross-validation, the
HD95 has been ignored for images that do not have clear boundaries,
12 
since having unclear, ambiguous ‘edges’ from which to measure the
distances may mislead the results.

Our model surpasses several others in DSC measurements for whole
tumor segmentation. Specifically, it outperforms Raza et al. [53],
Ballestar et al. [54], and Messaoudi et al. [55] by 1.81, 4.2, and
7.73 respectively. Additionally, it achieves a notable improvement in
efficiency, having only 3.07 M parameters compared to 181.56 [44],
32.99 [23], and 30.47 [53]. Moreover, while Wang et al. [23] model
requires 333 GFLOPs, and Raza et al. [53] use 374.04 GFLOPs, our
model operates with only 15.79 GFLOPs, highlighting its computational
efficiency which is a crucial factor in real-world clinical applications.

When comparing the latest study by Zhu et al. [10], which demon-
strates high performance with a DSC of 90.22 for the whole tumor,
our model’s 88.41 is still competitive. However, LATUP-Net surpasses
Zhu’s model in HD95, especially in tumor core and enhancing tumor
predictions, demonstrating that it excels in boundary accuracy—a crit-
ical aspect in segmentation tasks. Although Zhu’s model outperforms in
DSC across tumor regions, the computational complexity and parameter
count are not mentioned. However, by incorporating transformer into
the U-Net architecture, it is a moderately sized model compared to
LATUP-Net, considering its performance trade-offs.

It is important to note that LATUP-Net’s superior performance is not
due to common confounding factors, such as ensembling or leveraging
additional data. This aligns with the recent recommendations [9],
which cautions against practices that artificially inflate a model’s per-
formance. Our architecture’s innovations — parallel convolution strate-
gies and lightweight attention mechanisms — demonstrate genuine
advancements in segmentation tasks without introducing unnecessary
complexity or relying on inflated hardware resources. These results
underscore the efficacy of simpler, well-configured models in achieving
competitive performance in resource-constrained settings.

Although a deeper analysis is needed to fully determine the mech-
anisms behind this efficiency, the results from the earlier model com-
parison section provide concrete evidence of the effectiveness of our
approach. Specifically, our adoption of parallel convolutions in the
first encoder block seems to play a crucial role. This is evident as the
PC model has 2.59 million fewer parameters than U-Net, yet achieves
rapid convergence during the initial training epochs, leading to shorter
training times and reduced computational needs.

Brain tumor segmentation, particularly in the tumor core and en-
hancing tumor regions, poses significant challenges. While models like
nnU-Net exhibit strong results, our LATUP-Net model achieves similar
scores. It is critical to differentiate between DSC and HD95 scores. Al-
though our HD95 scores indicate highly accurate boundary predictions,
our DSC for the enhancing tumor (ET) is 73.67%, which is not the
highest, highlighting an area for improvement in volumetric overlap
with the ground truth.

In terms of the number of parameters, our model is remarkably effi-
cient, with only 3.07 million parameters, a stark contrast to nnU-Net’s
181.56 million parameters. This efficiency reduces both computational
costs and processing time, which is critical for real-time clinical ap-
plications, while maintaining comparable or even better performance
in some aspects, as seen in the HD95 results. Although Raza et al. [53]
has a parameter count closer to ours, their performance does not match
ours, underscoring the effectiveness of our architecture.

5.5.2. Comparison with BraTS 2021 results
Upon evaluating our LATUP-Net model on the BraTS 2021 dataset,

it continues to show promising results, particularly in segmenting the
tumor core, with a DSC of 89.54%, outperforming several models. Com-
pared to Hatamizadeh et al. [62], who also achieved competitive results
across tumor regions, LATUP-Net demonstrates a clear advantage in
computational efficiency. Our model has only 3.07 million parame-
ters and requires 15.79 GFLOPs, significantly less than Hatamizadeh’s
model, which requires 61.98 million parameters and 394.84 GFLOPs.
This efficiency underscores the suitability of LATUP-Net for practical
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Fig. 10. Boxplots of the DSC and HD95 metrics measured per sample (patient) on the BraTS 2020 five-fold cross-validation results with mean 𝜇 and standard deviation 𝜎 using
the LATUP-Net model. The orange line within each boxplot represents the median of the data. The green triangles represent the mean, and the circles denote the outliers. We also
show the average distributions over all five folds. This figure provides a detailed view of our model’s consistency and variability across samples.
Fig. 11. Boxplots of the DSC and HD95 metrics measured per sample (patient) on the BraTS 2021 five-fold cross-validation results with mean 𝜇 and standard deviation 𝜎 using
the LATUP-Net model. The orange line within each boxplot represents the median of the data. The green triangles represent the mean, and the circles denote the outliers. We also
show the average distributions over all five folds. This figure provides a detailed view of our model’s consistency and variability across samples.
clinical use, especially in environments where computational resources
may be limited.

In terms of HD95, LATUP-Net consistently achieves better results,
with scores of 3.03 for the whole tumor and 2.44 for the tumor
core. Zhu et al. [10], who achieved top DSC scores for the BraTS
13 
2021 dataset, also produced competitive results in HD95. Neverthe-

less, LATUP-Net’s reduced parameter count and GFLOPs stand out as

key differentiators, especially for real-time clinical applications where

faster processing times are essential.
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Table 6
Comparison of the performance and complexity of different methods on the BraTS 2020 test set. WT – whole tumor, TC – tumor
core, ET – enhancing tumor. Results highlighted in red indicate the best result, while those in blue represent the second best. The
symbol - indicates values not provided in the original paper (see [10,23,44,53–56]).

Study WT TC ET Parameters GFLOPs

DSC (%) HD95 (mm) DSC (%) HD95 (mm) DSC (%) HD95 (mm)

3D U-Net caseline 83.58 18.50 82.19 15.38 68.76 19.34 5.65 M 23.08
Isensee et al. [44] 88.95 8.498 85.06 17.337 82.03 17.805 181.56 M –
Tang et al. [56] 89.29 4.62 78.97 10.07 70.30 34.30 – –
Ballestar et al. [54] 84.21 20.40 75.03 12.92 61.75 48.76 – –
Wang et al. [23] 90.09 4.96 81.73 9.76 78.73 17.94 32.99 M 333
Messaoudi et al. [55] 80.68 – 75.20 – 69.59 – – –
Raza et al. [53] 86.60 – 83.57 – 80.04 – 30.47 M 374.04
Zhu et al. [10] 90.22 4.03 89.20 3.30 82.48 2.29 – –
LATUP-Net (proposed) 88.41 3.19 83.82 4.24 73.67 3.97 3.07 M 15.79
Table 7
Comparison of the performance and complexity of different methods on the BraTS 2021 test set. WT – whole tumor, TC – tumor
core, ET – enhancing tumor. Results highlighted in red indicate the best result, while those in blue represent the second best. The
symbol - indicates values not provided in the original paper (see [10,57–63]).

Study WT TC ET Parameters GFLOPs

DSC (%) HD95 (mm) DSC (%) HD95 (mm) DSC (%) HD95 (mm)

Peiris et al. [57] 90.77 5.37 85.39 8.5 81.38 21.83 – –
Akbar et al. [58] 89.07 11.78 80.73 21.17 78.02 25.8 – –
Jia et al. [59] 92.53 3.45 87.96 5.86 84.80 14.17 17.91 M 449.79
Li et al. [60] 90.18 6.15 81.61 16.65 76.89 30.21 – –
Ma et al. [61] 92.59 3.80 87.86 9.20 82.17 21.09 – –
Hatamizadeh et al. [62] 92.6 5.83 88.5 3.77 85.8 6.01 61.98 M 394.84
Roth et al. [63] 90.6 4.54 83.5 10.11 79.2 16.61 – –
Zhu et al. [10] 93.10 3.58 90.99 3.27 87.64 2.57 – –
LATUP-Net (proposed) 90.29 3.03 89.54 2.44 83.92 3.06 3.07 M 15.79
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Our model’s DSC for the whole tumor and the enhancing tumor
re 90.29% and 83.92%, respectively. When we state that these scores
re in line with leading models, we specifically refer to the work of
atamizadeh et al., Jia et al. [59], and Ma et al. [61] (see Table 7).

In summary, the LATUP-Net model offers a fine balance between
egmentation accuracy and computational efficiency. Despite its com-
act architecture, it delivers strong performance, particularly in HD95
etrics, which are crucial for precise tumor boundary delineation.
ith only 3.07 million parameters and 15.79 GFLOPs, LATUP-Net is

ighly suited for resource-constrained environments, offering a feasi-
le solution for real-time clinical deployment. While models like Zhu
t al. surpass LATUP-Net in certain DSC scores, the efficiency and
ompetitive performance across HD95 metrics highlight the real-world
pplicability of our model in brain tumor segmentation tasks.

5.6. Limitations and future directions

Our model leverages multi-sequence MRI data for brain tumor seg-
mentation and has demonstrated good performance on the BraTS 2020
nd 2021 datasets, particularly when compared to other lightweight
odels working with similar data. However, we acknowledge that our
ork was trained on a relatively small dataset of about 1200 patients,
hich limits our understanding of the full covariance of potential
ata variations across different centers. This limitation is not unique
o our study, as many segmentation models face similar challenges
hen dealing with multi-center data variations, especially regarding

he availability of diverse data sources. We believe that access to larger,
ore heterogeneous datasets could help address these limitations, but

his is an ongoing challenge within the field.
Other key limitations of our study lie in the consistency of model

nd parameter selection. While we have designed an effective ar-
hitecture, the process of consistently selecting optimal models and
ine-tuning hyperparameters has not been as rigorous as it could be.
his challenge is partly due to the availability of computational re-
ources, which restricts us from systematically testing a wider range of
odels and configurations. A more thorough exploration of model and
 t

14 
parameter selection would be ideal, but this would require significant
dditional resources. As a result, we acknowledge that the model
election process could be improved and we plan to address this in
uture work.

Future work also includes adapting the architecture to other medical
maging segmentation tasks and refining the balance between atten-
ion and convolutional features, particularly to enhance our model’s
ensitivity to tumor regions and reduce variations in segmentation
erformance across different regions. Another crucial direction will be

to explore the model’s robustness when faced with incomplete or miss-
ing MRI modalities, a common scenario in real-world clinical settings.
Ensuring that LATUP-Net can maintain high segmentation performance
even when some modalities are unavailable will enhance its practical
applicability in diverse medical environments. Additionally, we are
currently studying the robustness and explainability of our model,
which are critical for clinical applications [64]. However, this ongoing
research extends beyond the scope of the present paper and will be
ddressed in future studies.

6. Conclusion

In this work, we have unveiled the LATUP-Net network, an en-
hanced U-Net variant for 3D brain tumor segmentation designed to
be lightweight in its computational demand. This model substantially
decreases the number of parameters needed while maintaining, and
in some aspects surpassing, the segmentation performance of state-
of-the-art methods. With 3.07 M parameters, about 59 times fewer
parameters than the state-of-the-art nnU-Net with 181.56 M parame-
ters, LATUP-Net underscores an advancement where efficient modeling
oupled with parallel convolutions can lead to a significant reduction
n overfitting risk and more judicious use of computational resources.

Our model demonstrates an impressive ability to delineate tumor
boundaries with high accuracy, as evidenced by its performance in
Hausdorff distance (HD95) measurements. These achievements indicate
the model’s potential utility in clinical settings, where precise seg-
mentations are integral to formulating effective treatment plans. Fur-
hermore, LATUP-Net’s lightweight architecture, requiring only 15.79
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GFLOPs, makes it particularly suitable for deployment in resource-
onstrained environments, such as developing countries, where com-
utational resources may be limited.

A pivotal aspect of our research is incorporating attention mecha-
nisms, which refine our model’s capability to focus on salient features

ithin MRI scans. Our comparative analysis across different atten-
ion mechanisms, such as SE, CBAM, and ECA, reveals that while all
ontribute to accuracy improvements, SE provides a balance between
erformance and parameter efficiency, particularly in delineating en-
anced tumors. However, the enhancements brought by attention are
ound to be nuanced. The slight underperformance in Dice score coeffi-
ients for enhancing tumor segmentation suggests that attention mech-
nisms do not unilaterally enhance performance across all regions. This
s corroborated by gradient-weighted class activation mapping (Grad-
AM) and confusion matrix analyses. These investigations highlight
cenarios where attention mechanisms seem to focus too narrowly on
ocal features, occasionally at the expense of contextual understanding,
eading to potential misclassification between regions with texturally
imilar features. The attention-enhanced model, while showing promise
n segmenting small regions, also illustrates that there are instances
here traditional convolutions may suffice and that the features they

apture can be integral to achieving precise segmentations.
The LATUP-Net model stands as a testament to the possibility of

chieving state-of-the-art performance with a fraction of the compu-
ational cost, highlighting a promising direction for medical image
nalysis research and the development of practical, accessible tools
or brain tumor segmentation. In real-world clinical applications, how-
ver, the dependency on multi-sequence MRI data presents a practical
hallenge, as some modalities may be unavailable in certain settings.
ddressing this limitation is a key consideration for future work.
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