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A B S T R A C T

Human Action Quality Assessment (AQA), which aims to automatically evaluate the performance of actions
executed by humans, is an emerging field of human action analysis. Although many review articles have been
conducted for human action analysis fields such as action recognition and action prediction, there is a lack of
up-to-date and systematic reviews related to AQA. This paper aims to provide a systematic literature review of
existing papers on vision-based human AQA. This systematic review was rigorously conducted following the
PRISMA guideline through the databases of Scopus, IEEE Xplore, and Web of Science in July 2024. Ninety-six
research articles were selected for the final analysis after applying inclusion and exclusion criteria. This review
presents an overview of various aspects of AQA, including existing applications, data acquisition methods,
public datasets, state-of-the-art methods and evaluation metrics. We observe an increase in the number of
studies in AQA since 2019, primarily due to the advent of deep learning methods and motion capture devices.
We categorize these AQA methods into skeleton-based and video-based methods based on the data modality
used. There are different evaluation metrics for various AQA tasks. SRC is the most commonly used evaluation
metric, with fifty-six out of ninety-six selected papers using it to evaluate their models. Sports event scoring,
surgical skill evaluation and rehabilitation assessment are the most popular three scenarios in this direction
based on existing papers and there are more new scenarios being explored such as piano skill assessment.
Furthermore, the existing challenges and future research directions are provided, which can be a helpful guide
for researchers to explore AQA.
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1. Introduction

Action Quality Assessment (AQA), which aims to use computer to
utomatically evaluate the quality of sequences of movements executed
y individuals, has attracted growing attention in the computer vision
ommunity (Tang et al., 2020). Conventionally, the task of assessing
uman action quality relies on the professionals observing the complete
otion and evaluating it based on established standards. However,

manual AQA faces some challenges in real life (Gharasuie, Jennings,
& Jain, 2021; Machlin, Chevan, Yu, & Zodet, 2011; MacMahon et al.,
2014; Sardari et al., 2023, 2023; Zhou, Feng, Chen, Ban & Pan, 2023).
For instance, in a regular rehabilitation training process, physical ther-
apists need to spend a considerable amount of time monitoring a
atient’s movements during exercise and providing corrective feed-
ack (Sardari et al., 2023). However, even in some developed coun-

tries such as the United States and Australia, there are only about
300 trained therapists in a million individuals, causing a shortage of
available personnel for providing manual guidance in rehabilitation
services (Bettger et al., 2019). In addition, it is expensive to recruit
professionals for long-term fitness or rehabilitation training, so not
everyone can afford these costs (Gharasuie et al., 2021; Machlin et al.,
2011). Furthermore, in some competitive sport games, referees are
required to make decisions about the performance of athletes in a
limited time under a dynamic environment (MacMahon et al., 2014).
It is challenging to manually provide objective and fair scores during a

hole game without any mistakes to avoid judging scandals (Parmar
& Morris, 2019a; Parmar & Tran Morris, 2017). Thus, there is an
rgent need to develop technological systems to help humans evaluate
he action quality. In recent years, a lot of attempts have been made
o explore using Artificial Intelligence (AI) to assess human actions.
or example, the International Football Association Board started to
ntroduce Video Assistant Referees (VAR) to assist make decisions in the
018 Fédération Internationale de Football Association (FIFA) World
up (Brunnström et al., 2023). In addition, an AI-based scoring system
as used in 2019 World Artistic Gymnastic Championships for pommel

horse, still rings and vault events (Jakab, Davis, & Whyte, 2023). As
he key technology of home-based rehabilitation (Baca, Dabnichki, Hu,

Kornfeind, & Exel, 2022; Li, Hu et al., 2022; Liao, Vakanski, Xian, Paul,
& Baker, 2020), AI coach (Liao, Hwang, Wu, & Koike, 2023; Toshniwal,
atil, & Vachhani, 2022) and VAR, the development of AQA system is

urgently required. It can play a critical role in providing individuals
with feedback on their executed exercises, enabling them to adjust their
movement in time to maximize the benefits of training and reduce the
2 
risk of injuries in the absence of professionals. Also, this could aid
professionals such as therapists and referees to make their decision and
reduce the workload burden.

Due to the diversity and complexity of human actions, the task
f AQA is still challenging and needs to be paid more effort. In con-

trast to another popular field of human action analysis, Human Ac-
tion Recognition (HAR), which focuses on classifying different coarse-
granularity features among various actions, AQA needs to discriminate
fine-granularity internal differences within a specific action, which
requires better perception ability (Wang, Yang, Zhai, Yu et al., 2021).

dditionally, while recognizing an action may only require analysing a
portion of the action (Karpathy et al., 2014), assessing the quality of an
ction need to analyse the whole action sequence (Parmar & Tran Mor-
is, 2017), which contains richer and more complex information.

In recent years, Scholars have used various modalities for human
activity analysis (Gao, Cui et al., 2023; Setiawan, Yahya, Chun, & Lee,
2022; Su et al., 2022; Sun et al., 2022; Yin, He, Soomro, & Yuan,
2023; Zhu, Lu, Gan, & Hou, 2021). It can be roughly divided into
two categories: visual modalities and non-visual modalities. Generally,
Red, Green, Blue (RGB) videos/images, depth videos/images, skeleton
data sequences and infrared sequences are considered visual modali-
ties (Karayaneva, Sharifzadeh, Jing, Chetty, & Tan, 2019; Kong & Fu,
2022), as they can obtain rich appearance or posture information for
visually presenting human action. In contrast, wearable sensors (Kim,
Lee, & Hong, 2023; Sigcha et al., 2023), audio (Do, Welch, & Sheng,
2021), radar (Li, He & Jing, 2019) and Wifi (Hao, Shi, & Liu, 2022)
can collect non-visual information to present human behaviours, which
re also used for HAR in situations where privacy protection is re-
uired. However, wearable-based methods can be invasive and cause
iscomfort during daily activities. Audio- and WiFi-based methods may
ack robustness in complex environments and be difficult to capture
ubtle internal action differences information to fulfil the requirements
f AQA. Radar-based methods can be costly. In contrast, Cameras
re ubiquitous tools of low cost in our life and can directly obtain
ubtle appearance (Chen et al., 2020). Therefore, we only focus on
ision-based methods for human AQA in this paper.

1.1. Literature survey

While quite a few reviews have been published to summarize the
dvancement of HAR (Al-Faris, Chiverton, Ndzi, & Ahmed, 2020; Islam,

Nooruddin, Karray, & Muhammad, 2022; Majumder & Kehtarnavaz,
2021; Muhamada & Mohammed, 2021; Sun, Ke et al., 2023), very
few reviews have been published to analyse the AQA. For exam-
ple, Ahad, Antar, and Shahid (2019) provided a short review of the
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computer vision-based action understanding in assistive healthcare.
They reviewed available sensing devices and benchmark datasets, as
well as summarized the challenges and difficulties in the automation
of assistive healthcare system. However, the articles relevant to AQA
in this review were limited in number and scope, as they primarily
concentrated on HAR in healthcare and rehabilitation applications.

In contrast, (Lei, Du, Zhang, Ye, & Chen, 2019) provided a clear
definition of human action evaluation and clarified the differences from
ction recognition and action prediction. Additionally, they conducted
 comprehensive survey of human AQA methods, benchmark datasets

and evaluation criteria in various fields, including healthcare, physical
rehabilitation, skill training, and sports activity scoring. However, since
the publication of this article in 2019, significant progress has been
made in the field of AQA over the past five years, which was not
included in the article.

Finally, Wang, Yang, Zhai, Yu et al. (2021) summarized the existing
video-based AQA datasets and models in sports and medical care and
discussed the challenges and future development direction. However,
there was limited attention given to models based on skeleton data,
which has been conducted in many studies in this field of research,
e.g. Huang, Yang, Luo, and Zhang (2023) and Liang, Luo, Gao, and Lu
(2021).

1.2. Motivation

AQA has immense potential for application in various real-world
scenarios requiring movement quality assessment. For example, in
healthcare, AQA forms the foundation for remote rehabilitation solu-
tions. It assists rehabilitation therapists in evaluating the movement
quality of patients, thereby reducing their workload. Additionally, in
medicine AQA can evaluate surgical skills, thus lowering the cost of
training specialized surgeons. In the fitness domain, AQA can help
trainees improve their exercise quality without the supervision of a
personal trainer, reducing the risk of injury. In sports, AQA can support
referees in scoring, alleviating their pressure and maintaining fairness
and objectivity. Therefore, AQA has vast prospects and is worth further
research.

In recent years, although many methods and a wide range of ap-
lications have been proposed for AQA, there is a lack of up-to-date
nd systematic reviews related to AQA. This paper aims to investigate
he current state of AQA, including its applications, data acquisition
echniques, available datasets, methods, evaluation metrics, as well
s the challenges and future directions in the field. We aim to offer
aluable insights and a foundational reference for researchers and
ractitioners, driving further innovation and development in AQA.

1.3. Contribution

The contributions of this paper are as follows:

• To the best of our knowledge, this study represents the first
systematic literature review to investigate up-to-date research
in vision-based AQA. It provides a comprehensive synthesis of
current advancements and emerging trends in the field.

• This study offers a detailed examination of 96 papers, including
their applications, datasets, data modalities, methods, and eval-
uation metrics. We conducted a rigorous statistical analysis and
categorization based on these aspects. This review can serve as a
guideline for new researchers entering the field.

• This review identifies current challenges in existing research, pro-
viding valuable insights and recommendations for future studies.
These suggestions are intended to inspire the development of new
methods and applications within the AQA field.
3 
Table 1
Databases and search terms employed in this article.

Sources Keywords

Scopus
IEEE Xplore
Web of Science

action quality assessment
action assessment
action quality evaluation
human action evaluation
movement quality
assessment

Search String:
TITLE-ABS-KEY (‘‘action quality assessment’’
OR ‘‘action assessment’’
OR ‘‘action quality evaluation’’
OR ‘‘human action evaluation’’
OR ‘‘movement quality assessment’’ )
AND ( LIMIT-TO ( DOCTYPE , ‘‘ar’’ )
OR LIMIT-TO ( DOCTYPE , ‘‘cp’’ ) )
AND ( LIMIT-TO ( SUBJAREA , ‘‘COMP’’ ) )
AND ( LIMIT-TO ( LANGUAGE , ‘‘English’’ ) )

The remainder of our paper is structured as follows: Section 2 shows
he research methodology. The research question, search strategy and

selection process are defined in this section. In Section 3, application,
data acquisition, datasets, methods, and metrics are reviewed based on
selected literature. The analysis and findings based on our research re-
sults are presented in Section 4. Section 5 shows current challenges and
future research in AQA field. The conclusion is provided in Section 6.

2. Research methodology

This review was performed according to the systematic literature
review process proposed by Kitchenham, Charters, et al. (2007) and the
referred Reporting Items for Systematic Reviews and Meta-Analyses
PRISMA) updated guideline for reporting systematic reviews (Page

et al., 2021).

2.1. Research question

This article aims to review current literature relevant to vision-
based human AQA and provide a comprehensive understanding of
application, equipment, datasets, models and evaluation metrics. In
particular, the following research questions were defined:

1. What are the existing applications of AQA?
2. What are the data acquisition methods for AQA?
3. What existing datasets have been used for AQA?
4. What are the methods used for AQA?
5. What are the most common metrics used to evaluate AQA model?

2.2. Search strategy

To conduct the systematic review, keywords and boolean operators
ere utilized to create the search string. ‘‘Action quality assessment’’
nd some synonyms were defined as key items to search relevant
rticles (see Table 1). Please note that we did not use any keywords

associated with vision since a variety of words can represent vision,
such as RGB, video and some names of optical equipment. Scopus, IEEE
Explore and Web of Science were selected as the databases. In addition,
we did not set time constraints in order to produce a comprehensive
review including earlier research. The search was conducted on 16 July
2024 and the search strategy was utilized across the title, abstract and
keywords of articles within the databases to find articles related to the
topic. Table 1 shows the databases, the keywords and an example of
the search string.

Studies were included if they satisfied the following inclusion crite-
ria: (1) published in a journal or conference proceedings, (2) related to
computer science, (3) published in English. Additionally, the following
exclusion criteria were applied: (1) duplicated articles, (2) articles that
resented results of surveys or reviews, (3) articles not related to using

vision-based methods, and (4) articles not related to human AQA.
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Table 2
Overview of existing applications in AQA.

Application Numbers Related paper

Sports event scoring 53 Bai et al. (2022), Dadashzadeh, Duan, Whone, and Mirmehdi (2024), Dong et al. (2021), Du, He,
Wang, and Wang (2023), Fang, Zhou and Li (2023), Farabi et al. (2022), Gan et al. (2024), Gao, Pan,
Zhang and Zheng (2023), Gedamu, Ji, Yang, Shao, and Shen (2023), He et al. (2024), Hirosawa,
Kato, Yamashita, and Aoki (2023), Huang and Li (2024), Ji et al. (2023), Ke, Xu, Lin, and Guo
(2024), Lei, Li, Zhang, Du, and Gao (2023), Lei, Zhang, and Du (2021), Lei, Zhang, Du, Hsiao, and
Chen (2020), Li, Chai, and Chen (2018), Li, Chai and Chen (2019), Li, Cui, Kitahara and Sagawa
(2022), Li, Lei, Zhang and Du (2021), Li, Lei, Zhang, Du and Gao (2022), Li, Zhang, Dong, Lei and
Du (2022), Li, Zhang, Dong, Lei and Du (2023), Li, Zhang, Lei et al. (2022), Lian and Shao (2023),
Liu, Cheng and Ikenaga (2023), Liu, Zhai, Zheng and Fang (2023), Matsuyama, Kawaguchi, and Lim
(2023), Nagai, Takeda, Matsumura, Shimizu, and Yamamoto (2021), Nekoui, Cruz, and Cheng (2021),
Pan, Gao, and Zheng (2019, 2022), Parmar and Morris (2019a, 2019b), Parmar and Tran Morris
(2017), Pirsiavash, Vondrick, and Torralba (2014), Roditakis, Makris, and Argyros (2021), Sun, Hu
et al. (2023), Tang et al. (2020), Wang, Du, Li and Wang (2020), Wang, Yang, Zhai, Chen and Zhang
(2021), Xiang, Tian, Reiter, Hager, and Tran (2018), Xu, Rao et al. (2022), Xu, Zeng and Zheng
(2022), Yu, Rao, Zhao, Lu and Zhou (2021), Zeng et al. (2020), Zeng and Zheng (2024), Zhang, Chen
et al. (2024), Zhang, Dai et al. (2023), Zhang, Dong, Lei, Yang and Du (2022, 2023), Zhang, Pan,
Gao and Zheng (2022, 2024), Zhang, Wang, Zhuang and Wang (2023), Zhang, Xiong and Mi (2022)
and Zhou, Ma, Shum and Liang (2023)

Surgical skill evaluation 13 Baby et al. (2022), Dadashzadeh et al. (2024), Gao, Pan et al. (2023), Gao et al. (2020), Ke et al.
(2024), Pan et al. (2019, 2022), Sun, Hu et al. (2023), Tang et al. (2020), Yu, Rao et al. (2021),
Zhang, Chen et al. (2024), Zhang, Pan et al. (2024) and Zhou, Ma et al. (2023)

Rehabilitation assessment 13 Dadashzadeh et al. (2024), Fang, Luo et al. (2023), Kanade, Sharma, and Muniyandi (2023a, 2023b),
Li, Ling and Xia (2023), Mourchid and Slama (2023), Sardari et al. (2024), Venkataraman and Turaga
(2016), Venkataraman et al. (2016, 2013, 2014), Yu, Liu, and Chan (2020) and Yu, Liu, Chan, and
Chen (2024)

Physical exercise assessment 3 Çeliktutan, Akgül, Wolf, and Sankur (2013), Chariar, Rao, Irani, Suresh, and Asha (2023) and Dajime,
Smith, and Zhang (2020)

Fitness action assessment 4 Jin et al. (2016), Joung, Byun, and Baek (2023), Li, Hu, Guo, Wang and Shen (2021) and Wang et al.
(2023)

Martial arts assessment 4 Li, Hu et al. (2022), Li, Tian and Li (2023), Wang, Li, and Hu (2022) and Yuan (2024)

Behaviour therapy 5 Li, Bhat and Barmaki (2021), Li, Chheang et al. (2023), Yu, Liu, Chan, Yang and Wang (2021),
Zhang, Zhou and Liu (2023) and Zhou, Cai et al. (2023)

Piano skill assessment 1 Parmar, Reddy, and Morris (2021)

Hand skill evaluation 2 Wang, Jin, Wang, Wang and Li (2020) and Zhang, Pan et al. (2024)

Golf skill assessment 1 Ingwersen et al. (2023)

Pull-ups test 1 Liu, Wang et al. (2023)

Running performance analysis 2 Freire-Obregón, Lorenzo-Navarro, and Castrillón-Santana (2022) and Freire-Obregon, Lorenzo-Navarro,
Santana, Hernandez-Sosa, and Castrillon-Santana (2023)

Daily action assessment 1 Gao, Pan et al. (2023)

Windsurfing assessment 1 Nagai, Takeda, Suzuki, and Seshimo (2024)

Dance assessment 1 Hipiny, Ujir, Alias, Shanat, and Ishak (2023)
q
s
i

2.3. Selection process

Firstly, the primary studies were identified according to the search
strategy mentioned before. Next, articles were screened by their title,
bstract and keywords and irrelevant articles were removed. In addi-
ion, the full text of the articles was analysed to check if it meets the
ligibility. Finally, the references of the selected articles were reviewed
n order to identify additional relevant studies.

In total, 230 articles were retrieved from the databases by applying
the search strategy. After removing duplicates and irrelevant articles
by applying the criteria, 94 research articles remained. Next, the ref-
erences of the selected papers were reviewed to identify additional
relevant studies, resulting in a final list of 96 papers for the systematic
literature review. Fig. 1 illustrates the entire procedure of identifica-
tion, screening, eligibility assessment and inclusion for the final list
f papers. Fig. 2 shows the yearly distribution of included 96 articles

published in the field of AQA from 2013 to 2024. It is worth noting that
ue to this systematic review being conducted in July 2024, the number
f articles published in 2024 is limited (only 13). We can observe that
here has been a significant increase in the number of publications since

2019 with the growing attention in AQA.
4 
3. Results

A total of 96 peer-reviewed research papers on AQA were studied.
This section presents a systematic view of the application, data ac-
uisition, datasets, methods and evaluation metrics mentioned in the
elected papers, organized according to the research questions defined
n Section 2. A summary of the 96 papers is presented in Table 13 in

Appendix.

3.1. Application

With the prosperity and development of motion capture devices and
deep learning methods, scholars have tried to apply AQA to various
real-world scenarios, including sports event scoring, surgical skill eval-
uation, rehabilitation assessment, physical exercise assessment, fitness
action assessment, Tai Chi Quan gesture assessment, social behaviour
analysis, piano skill evaluation, hand skill evaluation, pull-up test,
running performance analysis and daily action assessment. In Table 2,
we summarize the existing applications of AQA and the number of
identified papers. It should be noted that one AQA method may be
applied to multiple fields in a study. For example, Yu, Rao et al.
(2021) proposed a contrastive regression framework and applied it to
sports event scoring and surgical skill evaluation. We observed the
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Fig. 1. Systematic literature review process.

Fig. 2. The number of publications in AQA by year of publication. The red dashed
ine shows the fit of the number of publications from 2013 to 2024.

number of papers related to sports event scoring far exceeds those
n other domains. This is because there are some publicly available
atasets, which can promote the development. The top 3 common
xisting applications in AQA are sports event scoring (53 identified
apers), surgical skill evaluation (13) and rehabilitation assessment
13). Furthermore, as shown in Table 2, AQA has been applied to some

new fields, such as piano skill assessment.

3.2. Data acquisition

As mentioned before, there are several vision-based data modalities,
uch as RGB, depth, skeleton data and infrared sequences. However,
5 
among the papers we have identified, RGB video information and skele-
ton information are the most commonly used data to evaluate action
quality, as they can provide rich interpretable features. In addition,
some other information can be used in conjunction with them such
as depth and audio data. It is worth noting that we did not find
any research in selected papers that utilized infrared sequences for
AQA. Therefore, we grouped data acquisition into RGB video data and
skeleton data.

3.2.1. RGB video data
In recent years, with the development of deep learning, many stud-

es try to use convolutional neural networks (CNN) to extract motion
eatures directly from RGB videos. These RGB videos are captured by
arious cameras, such as professional sports cameras, web cameras
nd smartphone cameras. Due to the diverse range of available RGB

cameras and the limited mention of specific models in the literature,
we did not provide a detailed list of all the models.

3.2.2. Skeleton data
There are three main methods to acquire skeleton data: optical

motion capture systems, depth cameras and pose estimation algorithms.
In Table 3, we summarize skeleton data acquisition in AQA based
on the included 96 papers. We identified 6 related papers using op-
tical motion capture systems, 14 using depth cameras and 18 using
pose estimation algorithms methods. We described each skeleton data
acquisition method below.

Optical motion capture systems. In the earlier stage of vision-based AQA,
ptical motion capture systems such as Vicon, Qualisys, and Vinci

Surgical System were used to obtain the skeleton data. These systems
are regarded as the golden standard in optical tracking sensors because
of their excellent performance in tracking joints’ positions in both static
and dynamic scenarios. However, the poor flexibility (multiple cameras
must be installed before capturing), high-cost and poor comfort (partic-
ipants need to wear markers during the capturing process) limit them
o a conditioned laboratory with environment settings.

Commercial depth cameras. With the advent of some low-cost com-
mercial depth cameras, more devices are available for AQA research.
Microsoft released Kinect v1, Kinect v2 and Kinect Azure in 2012,
2014 and 2019 respectively. Kinect v1 is embedded with a vision RGB
camera, a Structured light depth camera, multiple microphones, and
a motorized tilt. It can capture resolution of 640 × 480 RGB and
320 × 240 depth images at a frame rate of 30 fps as well as provide
15 or 20 joints’ 3D coordinates by Microsoft Software Development
Kit (SDK). Kinect v2 adopts a time-of-flight depth sensor instead of
SL sensor to improve depth perception ability based on Kinect v1. It
can capture a resolution of 1920 × 1080 RGB and 512 × 424 depth
images at a frame rate of 30 fps. Azure Kinect, the latest Kinect, is much
smaller and lighter than the previous two generations. It can capture
a resolution of 3840 × 2160 RGB and a maximum of 1024 × 1024
depth images at a frame rate of 30 fps. In addition, Asus Xtion Pro
Live is embedded with a RGB camera, a structured light depth camera
2 microphones, which allows developers to record audio and track 15
body joints in a whole body movement. It can capture a resolution of
1280 × 1024 RGB images at a frame rate of 30 fps and a resolution of
640 × 480 depth images at a frame rate of 30 fps. Table 4 shows the

ain features of these mentioned commercial depth cameras.

Pose estimation algorithms. The advent of human pose estimation al-
gorithms also enables us to obtain skeleton information more easily,
which can detect the keypoints of the human body in RGB videos
and provide 3D real-time coordinates. Generally speaking, there are
wo types of human pose estimation algorithms: top-down methods
nd bottom-up methods (Lan, Wu, Hu, & Hao, 2023). For top-down

methods, each person is first detected and assigned to a separate
bounding box. Then, the keypoints are estimated in each bounding



J. Liu et al.

S

h

r

i

i

c
I
m

d
w

Expert Systems With Applications 263 (2025) 125642 
Table 3
Overview of skeleton data acquisition.

Data acquisition Numbers Related paper

Pptical motion
capture system

6 Venkataraman and Turaga (2016), Venkataraman et al. (2016, 2013, 2014), Yu et al. (2020) and Yu,
Liu et al. (2021)

Depth cameras 14 Chariar et al. (2023), Dajime et al. (2020), Fang, Luo et al. (2023), Jin et al. (2016), Kanade et al.
(2023a, 2023b), Li, Hu et al. (2022), Li, Ling et al. (2023), Mourchid and Slama (2023), Sardari et al.
(2024), Wang et al. (2022), Yu et al. (2020, 2024) and Yu, Liu et al. (2021)

Pose estimation
algorithms

18 Gao, Pan et al. (2023), Hipiny et al. (2023), Hirosawa et al. (2023), Joung et al. (2023), Lei et al.
(2023, 2020), Li, Chheang et al. (2023), Li, Hu et al. (2021), Li, Lei et al. (2021, 2022), Li, Tian
et al. (2023), Liu, Wang et al. (2023), Nekoui et al. (2021), Pirsiavash et al. (2014), Wang, Jin et al.
(2020), Wang et al. (2023), Zhang, Wang et al. (2023) and Zhang, Zhou et al. (2023)
Table 4
Overview of RGB-D cameras.

Depth sensors Year RGB camera Depth camera Measuring range Field of view Skeleton joints

Kinect v1 2012 1280 × 960 px at 12 Hz
640 × 480 px at 30 Hz

Structured light
320 × 240 px at 30 Hz

0.8–4 m H:57◦, V:43◦ 20

Kinect v2 2014 1920 × 1080 px at 30 Hz Time-of-flight
512 × 424 px at 30 Hz

0.5–4.5 m H:70◦, V:60◦ 25

Azure Kinect 2019 3840 × 2160 px at 30 Hz Time-of-flight
640 × 576 px at 30 Hz
512 × 512 px at 30 Hz
1024 × 1024 px at 15 Hz

0.5–3.86 m; 0.5–5.46 m;
0.25–2.88 m; 0.25–2.21 m.
(varies in different modes)

H:75◦, V:65◦

H:120◦, V:120◦
32

Asus Xtion Pro Live 2012 1280 × 1024 px at 30 Hz Structured light
640 × 480 px at 30 Hz
320 × 240 px at 60 Hz

0.8 m–3.5 m H:58◦, V:45◦ 15
c
o
c

c

Table 5
Overview of pose estimation algorithms.

Algorithms Maximum
keypoints

Method Can detect
multi-person

OpenPose (Cao et al., 2017) 135 Bottom-up Yes
PoseNet (Papandreou et al., 2017) 17 Top-down Yes
MediaPipe (Bazarevsky et al., 2020) 33 Top-down No
MoveNet (Jo & Kim, 2022) 17 Bottom-up Yes

box. For bottom-up methods, all the keypoints of human body are
first detected and then grouped into different persons. OpenPose (Cao,
imon, Wei, & Sheikh, 2017), the first open-source 2D multi-person

pose estimation algorithm, was released in 2017. It can detect body,
and, foot, and facial keypoints on a single image with a total of 135

keypoints. MoveNet (Jo & Kim, 2022), which was released in 2021, is
a pose detection model that detects 17 keypoints of a single person in
eal-time. MediaPipe (Bazarevsky et al., 2020) was released in 2020

and it can detect a maximum of 33 keypoints (3D landmarks) from an
RGB input. PoseNet (Papandreou et al., 2017) was released in 2017 and
t can detect 17 keypoints in a single person. Table 5 shows the main

features of these pose estimation algorithms.

3.3. Dataset

We reviewed various public vision-based AQA datasets. The major-
ty of them are focused on sports event scoring in Olympic events such

as diving, skating and gymnastic vault. Because ground-truth scores
an be obtained in these sports through the detailed scoring criteria.
n addition, some datasets are related to exercise or rehabilitation
ovement assessment, including Tai Chi Chuan assessment, gait quality

assessment and rehabilitation movement assessment, while others are
related to skill rating such as piano skill rating, and surgical skill rating.
We can find some researchers try to build AQA dataset in various
fields, such as piano skill assessment. The datasets are listed in Table 6
according to published year and described below.

MIT Olympics dataset (Pirsiavash et al., 2014): The MIT Olympics
ataset consists of diving and figure skating videos of Olympics and
orldwide championships. For diving, a total of 159 videos with slow
6 
motion are collected, each is almost 150 frames and captured at a
frame rate of 60 fps. In addition, ground truth scores from judges and
feedback proposals of actions from professional coaches are provided.
For figure skating, 150 videos and judge’s score are collected, each is
about 4200 frames and captured at a frame rate of 24 fps.

JIGSAW (Gao et al., 2014): The JIGSAW dataset is JHU-ISI Gesture
and Skill Assessment Working Set, collected from 8 doctors with differ-
ent levels of skill for three surgical tasks: suturing, needle-passing and
knot-tying. All doctors repeated each task 5 times and the kinematic
and video data was captured by the Vinci Surgical System. As a result,
36 samples of knot-tying, 28 samples of needle-passing and 39 samples
of suturing were recorded and ground-truth scores from domain experts
were provided.

UNLV-vault, skating, diving (Parmar & Tran Morris, 2017): The
UNLV-Dive dataset consists of 370 samples, which is extended from
MIT-Dive by including more rounds. The UNLV-Vault dataset contains
176 samples with an average length of almost 75 frames. UNLV-Skating
includes 171 videos with an average length of 4500 frames.

UMONS-TAICHI (Tits et al., 2018): the UMONS-TAICHI dataset
contains 2200 samples of 13 classes of Tai Chi Quan martial art gestures
performed by 12 participants with various skill levels. It was collected
by 3D motion capture system Qualisys at 179 Hz and Microsoft Kinect
V2 at 30 Hz simultaneously. In addition, the levels of participants are
evaluated by domain experts on a scale of 0 to 10.

Walking gait dataset (Nguyen et al., 2018): The Walking gait dataset
ontains 81 samples performed by 9 participants with 9 different levels
f walking gates, which is appropriate for gait quality assessment. To
reate the asymmetry walking gates, each participant was required to

walk without a pad and walk with 8 types of different pads under the
foot. each sample contains 1200 consecutive frames captured by Kinect
V2. point cloud, skeleton, and frontal silhouette data are provided in
the dataset.

UI-PRMD dataset (Vakanski et al., 2018): The UI-PRMD dataset
ontains 10 different movements which are commonly used for patients

in physical rehabilitation programs. 10 healthy participants were asked
to perform each movement 10 repetitions in both correct and incorrect
manners. The angle and position of joints were collected by Kinect v2
and Vicon optical tracking system simultaneously.
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Table 6
Overview of publicly available datasets.

Dataset Scene Action
categories

Samples Data modality Website

MIT Olypics (Pirsiavash et al., 2014) Sports 2 309 video data kihttps:
//redirect.cs.umbc.edu/hpirsiav/quality.html

JIGSAWS (Gao et al., 2014) Skill 3 103 kinematic data
video data

https://cirl.lcsr.jhu.edu/research/hmm/datasets/
jigsaws_release/

UNLV-vault (Parmar & Tran Morris,
2017)

Sports 1 370 video data http://rtis.oit.unlv.edu/datasets.html

UNLV-skating (Parmar &
Tran Morris, 2017)

Sports 1 176 video data http://rtis.oit.unlv.edu/datasets.html

UNLV-diving (Parmar & Tran Morris,
2017)

Sports 1 171 video data http://rtis.oit.unlv.edu/datasets.html

UMONS-TAICHI (Tits, Laraba,
Caulier, Tilmanne, & Dutoit, 2018)

Exercise 13 2200 kinematic data https://github.com/numediart/UMONS-TAICHI

Walking gait (Nguyen, Huynh, &
Meunier, 2018)

Rehabilitation 9 81 kinematic data http://www-
labs.iro.umontreal.ca/labimage/GaitDataset/

UI-PRMD (Vakanski, Jun, Paul, &
Baker, 2018)

Rehabilitation 10 100 kinematic data https://webpages.uidaho.edu/ui-prmd/

AQA-7 (Parmar & Morris, 2019a) Sports 7 1189 video data http://rtis.oit.unlv.edu/datasets.html
MTL-AQA (Parmar & Morris, 2019b) Sports 16 1412 video data https://github.com/ParitoshParmar/MTL-AQA
FIS-V (Xu et al., 2019) Sports 1 500 video data https://github.com/loadder/MS_LSTM
Rhythmic Gymnastics (Zeng et al.,
2020)

Sports 4 1000 video data https://github.com/qinghuannn/ACTION-NET

TASD-2 (Gao et al., 2020) Sports 2 606 video data https://www.isee-ai.cn/~gaojibin/ProjectAIM.html
PISA (Parmar et al., 2021) Skill 1 992 video data https://github.com/ParitoshParmar/Piano-Skills-

Assessment
FineDiving (Xu, Rao et al., 2022) Sports 1 3000 video data https://github.com/xujinglin/FineDiving
NETS (Baby et al., 2022) Skill 1 100 video data
PaSk (Gao, Pan et al., 2023) Sports 1 1018 video data Empty
FineFS (Ji et al., 2023) Sports 1 1167 kinematic data

video data
https://github.com/yanliji/FineFS-dataset

MMASD (Li, Chheang et al., 2023) Behaviour 11 1315 2D & 3D kinematic
data
optical flow data

https://github.com/Li-Jicheng

LOGO (Zhang, Dai et al., 2023) Sports 12 200 video https://github.com/shiyi-zh0408/LOGO
a

c
t
i
t
d

v
p
e

AQA-7 (Parmar & Morris, 2019a): The AQA-7 dataset contains 1189
amples from seven Olympics events, including singles diving-10 m
latform, gymnastic vault, big air skiing, big air snowboarding, syn-
hronous diving-3 m springboard, synchronous diving-10 m platform,
nd trampoline. Although score rules and ranges are different among
hese sports, the ground-truth score is provided in the dataset.

MTL-AQA (Parmar & Morris, 2019b): the MTL-AQA dataset, the
largest diving dataset to date and the first multitask AQA dataset, was
eleased in 2019. It contains 1412 diving samples collected from 16
ifferent events, including male and female athletes, single or syn-
hronized diving, 3 m springboard and 10 m platform. Furthermore,
he AQA score (including final score, difficulty degree and execution
core) from judges, diving classes, and text commentary from television
nalysts are provided to ensure this dataset can be used for multitask
earning.

FIS-V (Xu et al., 2019): As a long-term AQA video dataset, the FIS-
 contains 500 high-quality figure skating videos from international
ompetitions. Each video is about 4300 frames, captured at a frame
ate of 25 fps. In addition, Total Element Score (TES) and Total Program
omponent Score (PCS) which are given by nine judges to evaluate the

performance of the skater at each stage over the whole competition are
provided in the dataset.

Rhythmic Gymnastics Dataset (Zeng et al., 2020): As a long-term
AQA video dataset, the Rhythmic Gymnastics contains 1000 samples
of 4 types of gymnastic routines from the International Rhythmic

ymnastics Competition, including ball, clubs, hoop and ribbon. Each
ideo is about 95 s, captured at a frame rate of 25 fps. Moreover, three

types of scores from professional referees are provided: a difficulty
score, an execution score and a total score.

TASD-2 (Gao et al., 2020): The TASD-2 dataset contains 606 samples
f synchronous diving-3 m springboard, and synchronous diving-10 m
latform captured in front view, which can be used for interactive
ction assessment. Each video was clipped to 102 frames with a for-
at of 320 × 240. In addition, the difficulty score, execution score,
7 
synchronization score and final score from professional referees were
nnotated in the dataset.

PISA (Parmar et al., 2021): The PISA dataset, collected from piano-
playing videos on YouTube, is the first piano skill assessment dataset.
It contains 992 unique samples and each sample contains 160 frames.
Player skill level, song difficulty level, name of the song, and a bound-
ing box around the pianist’s hands are provided in the dataset.

FineDiving (Xu, Rao et al., 2022): The Finediving dataset, which
is the first fine-grained sports video in AQA, was released in 2022. It
ontains 3000 samples collected from different diving events such as
he Olympics, World Championships, World Cup and European Aquat-
cs Championships on YouTube. Action scores, action types, sub-action
ypes, coarse- and fine-grained temporal boundaries are provided in the
ataset.

NETS (Baby et al., 2022): The NETS dataset contains 100 short
videos captured from a box trainer, which is used for imparting neuro-
endoscope skills. 6 neuro-endoscope experts and 6 trainees were asked
to transfer 6 rings in a pre-defined manner using biopsy forceps and an
endoscope and videos were captured by a camera at a frame rate of 25
fps. In addition, the skills were evaluated by an expert neurosurgeon
on a scale of 1 to 10.

PaSk (Gao, Pan et al., 2023): The PaSk dataset contains 1018 videos
collected from pair figure skating events. The length of each video
aries between 100 to 1000 frames, depending on the duration of the
erformance. Furthermore, the dataset includes the final score of the
ntire performance and sub-scores of every independent action given

by referees.
FineFS (Ji et al., 2023): The FineFS dataset contains 1167 skat-

ing videos, including 729 short program videos and 438 free skating
videos. The length of each video is around 160 s and 240 s for
short program and free skating respectively. The frame rate is 25 fps.
RGB and Skeleton data are both provided in this dataset. In addition
to TES and PCS, more detailed annotations are provided including

https://redirect.cs.umbc.edu/hpirsiav/quality.html
https://redirect.cs.umbc.edu/hpirsiav/quality.html
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
https://cirl.lcsr.jhu.edu/research/hmm/datasets/jigsaws_release/
http://rtis.oit.unlv.edu/datasets.html
http://rtis.oit.unlv.edu/datasets.html
http://rtis.oit.unlv.edu/datasets.html
https://github.com/numediart/UMONS-TAICHI
http://www-labs.iro.umontreal.ca/labimage/GaitDataset/
http://www-labs.iro.umontreal.ca/labimage/GaitDataset/
https://webpages.uidaho.edu/ui-prmd/
http://rtis.oit.unlv.edu/datasets.html
https://github.com/ParitoshParmar/MTL-AQA
https://github.com/loadder/MS_LSTM
https://github.com/qinghuannn/ACTION-NET
https://www.isee-ai.cn/~gaojibin/ProjectAIM.html
https://github.com/ParitoshParmar/Piano-Skills-Assessment
https://github.com/ParitoshParmar/Piano-Skills-Assessment
https://github.com/xujinglin/FineDiving
https://github.com/yanliji/FineFS-dataset
https://github.com/Li-Jicheng
https://github.com/shiyi-zh0408/LOGO
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base value, grade of execution, skating skills, transition, performance,
choreography, interpretation and scores from multiple judges.

MMASD (Li, Chheang et al., 2023): The MMASD dataset includes
315 videos segmented from play therapy intervention recordings of
2 children with ASD. Four types of data are provided in this dataset

including optical flow, 2D skeleton, 3D skeleton, and clinician ASD
valuation scores of children. The average length of each video is about
 s with a 25 to 30 fps frame rate.

LOGO (Zhang, Dai et al., 2023): The LOFO dataset focuses on
ulti-person long-form artistic swimming scenarios. It contains 200

ideos from 26 artistic swimming events with 8 athletes in each sample
along with an average length of 204 s. Formation labels to depict
group information of multiple athletes, detailed annotations on action
rocedures and scores are collected.

3.4. Methods

In the last decade, various methods have been proposed for assess-
ng action quality. Generally speaking, based on data modalities, there
re two directions to evaluate action quality: skeleton-based methods
nd video-based methods.

3.4.1. Skeleton-based methods
As skeleton data contains intuitive structural body pose and joint

nformation, which is suitable for action analysis. Thus, in the earlier
tage, many studies attempted to evaluate the performance of actions
y hand-crafted methods, which calculate the similarity between the
keleton sequence of reference and subjects such as Dynamic Time
arping (DTW) and Euclidean distance. Subsequently, with the ad-

ancement of machine learning algorithms, approach such as Support
ector Machines (SVM), decision tree, ridge regression, support vector
egression and random forest have been employed for AQA tasks based
n skeleton features. In recent years, with the prosperity of deep
earning models, Graph Convolutional Networks (GCNs) have been
roposed and successfully applied to human AQA based on skeleton
opological structures. Meanwhile, the advent of low-cost 3D motion
ameras (such as Kinect)and pose-tracking estimators (such as Open
ose) makes acquiring skeleton information much easier, which pro-
otes the development of skeleton-based methods. In this section, we

rouped skeleton-based methods into traditional methods and GCN
ethods.

Traditional methods. Çeliktutan et al. (2013) artificially added different
levels of Gaussian noise to the joint positions of graph-based stan-
dard performed sequence to acquire the wrong sequence and then
utilized SVM to classify correct and wrong sequence for action quality
assessment. Venkataraman and Turaga (2016), Venkataraman et al.
(2013) designed a Home-based Adaptive Mixed Reality Rehabilitation
HAMRR) system to track wrist movements during therapy treatment.
hey also trained SVM regression model for evaluating the level of

functional ability of stroke patients by using dynamical shape fea-
tures built from HAMRR system data as input and Functional Activity
Score (FAS) from the Wolf Motor Function Test (WMFT) as ground
truth. The Pearson correlation coefficient was used to evaluate the
performance of proposed AQA framework. In addition, based on the
kinematic feature of stroke patients’ wrist trajectory, they proposed a
hierarchical model using decision trees (Breiman, Friedman, Olshen, &
Stone, 1984) to evaluate movement quality of reaching and grasping a
one target (Venkataraman et al., 2014). Furthermore, a linear model

was proposed for movement quality assessment based on the kinematic
feature of wrist trajectories like trajectory error, jerkiness, velocity and
peak speed (Venkataraman et al., 2016). Jin et al. (2016) used Dynamic
pace-Time Warping (DSTW) (Yao & Zhu, 2009) and 3D Euclidean
pace to compute the similarity of joints between user actions and stan-
ard actions for action quality assessment. Lei et al. (2020) employed

OpenPose to extract skeleton data from RGB videos and then used
8 
support vector regression and ridge regression for AQA based on the
feature of joint trajectories and joint displacement sequences. Wang, Jin
et al. (2020). employed PosePrior to estimate the 3D hand coordinates
nd utilized Long Short-Term Memory (LSTM), Discrete Cosine Trans-

form with Support Vector Classifier (DCT+SVC), and Discrete Fourier
Transform with Support Vector Classifier (DFT+SVC) for human hand
action quality assessment. Dajime et al. (2020) used multiclass logistic
regression to classify movement quality by domain knowledge-based
Kinematic features from Kinect joint position data. Based on Iterative

losest Point (ICP) algorithm (Besl & McKay, 1992; Li, Cui, Guo, Hu, &
Shen, 2020), Li, Hu et al. (2021) proposed a local–global geometrical
registration strategy by aligning the skeleton sequence from coach and
subjects to find difference for fitness action assessment. To achieve
pull-ups action quality assessment, Liu, Wang et al. (2023) divided
the pull-ups cycle into five distinct states and defined corresponding
scoring criteria for each state, and then proposed PEPoseNet to extract
human pose features and applied random forest classifier to obtain final
score. Hipiny et al. (2023) collected a ranked TikTok dataset and used
a pairwise method to predict the better dancer in a pair of videos. Fang,
uo et al. (2023) developed a mixed reality-based game for post-
troke rehabilitation and set some thresholds to calculate the movement
uality. They evaluated the proposed method by calculating the Intra-
roup Correlation Coefficient (ICC) between predicted scores and the
round truth scores from therapists. Wang et al. (2023) fused the DTW

and classification results to evaluate the performance of BaDuanJin
ovements.

GCN. Yan, Xiong, and Lin (2018) first applied GCN for modelling dy-
namic skeletons and action recognition. They built a spatial–temporal
graph model and proposed Spatial–Temporal Graph Convolutional Net-

orks (ST-GCN) based on a sequence of skeleton graphs, where the
oints of the human body were considered as nodes, the natural con-
ections between joints as spatial edges, and the connections between
he same joint across consecutive frames as temporal edges.

With the outstanding performance of GCN in human action recog-
ition (Yan et al., 2018; Yu et al., 2020) attempted to utilize GCN to

detect abnormal actions. They employed GCN based on skeleton data
to classify correct and incorrect actions and conducted experiments on
UI-PRMD public dataset. In addition, aiming to utilize GCN to monitor
the outcomes of behavioural therapies for Alzheimer’s disease, Yu, Liu
et al. (2021) proposed a tow-task GCN (2T-GCN) based on skeleton
data to detect abnormality and predict numerical evaluation scores
o indicate the severity of Alzheimer’s disease patients. Numerical
valuation scores were calculated from the probability distribution of
he final SoftMax layer of 2T-GCN model. They further conducted ex-
eriments on both public UI-PRMD dataset and their own Elderly Home
xercise (EHE) dataset to validate the consistency of the predicted score
ith the clinical evaluation. Li, Hu et al. (2022) proposed a home-

based fitness action analysis system with Kinect Azure camera. They
ollected the RGB-D images and 3D skeletons of 11 subjects perform-

ing the 24-form Tai Chi and applied ST-GCN framework to classify
different levels of 24-form Tai Chi Quan. To assess action quality in
long-term sports videos, Li, Lei et al. (2021, 2022) proposed a spatial–
temporal pose feature learning framework for AQA in figure skating
videos based on skeleton information estimated by Openpose. First,
they designed a Spatial-Temporal Posed Extraction module (STPE) by
utilizing ST-GCN (Yan et al., 2018) as the backbone to extract spatial
and temporal features of skeletal data. Then, to capture temporal
nformation between skeletal subsequences in long-term videos, an

inter-Action Temporal Relation Extraction model (ATRE) implemented
by LSTM (Hochreiter & Schmidhuber, 1997) was proposed. Finally,
they used a full connect network to regress the final score and evaluated
the effectiveness on the MIT-Skate and FIS-V datasets. Zhang, Wang
et al. (2023) proposed a Structural-Feature Adaptive Fusion Graph
Convolutional Network (SFAGCN) consisting of GCN and TCN blocks
for extracting spatio-temporal features, and then employed attention
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Table 7
Overview of feature extraction methods.

Method Numbers Related work

2D-CNN 10 Baby et al. (2022), Li, Zhang, Dong et al. (2022), Li, Zhang et al. (2023), Li, Zhang, Lei et al. (2022),
Matsuyama et al. (2023), Nekoui et al. (2021), Parmar et al. (2021), Wang, Du et al. (2020), Yuan
(2024) and Zeng et al. (2020)

I3D 28 Bai et al. (2022), Dadashzadeh et al. (2024), Fang, Zhou et al. (2023), Freire-Obregón et al. (2022),
Gao, Pan et al. (2023), Gao et al. (2020), Gedamu et al. (2023), Huang and Li (2024), Ke et al.
(2024), Lei et al. (2021), Li, Bhat et al. (2021), Liu, Cheng et al. (2023), Liu, Zhai et al. (2023),
Nekoui et al. (2021), Pan et al. (2019, 2022), Roditakis et al. (2021), Tang et al. (2020), Wang,
Yang, Zhai, Chen et al. (2021), Xu, Rao et al. (2022), Yu, Rao et al. (2021), Zeng et al. (2020), Zeng
and Zheng (2024), Zhang, Pan et al. (2022, 2024), Zhang, Xiong et al. (2022), Zhou, Cai et al.
(2023) and Zhou, Ma et al. (2023)

C3D 7 Li et al. (2018), Li, Chai et al. (2019), Li, Cui et al. (2022), Nagai et al. (2021), Parmar and Morris
(2019a, 2019b) and Parmar and Tran Morris (2017)

VST 5 Du et al. (2023), Ji et al. (2023), Xu, Zeng et al. (2022), Zeng and Zheng (2024) and Zhang, Dai
et al. (2023)

P3D 4 Dong et al. (2021), Xiang et al. (2018) and Zhang, Dong et al. (2022, 2023)

X3D 2 Freire-Obregon et al. (2023) and He et al. (2024)

Attention 13 Bai et al. (2022), Gao, Pan et al. (2023), Ji et al. (2023), Lei et al. (2021), Li, Cui et al. (2022), Liu,
Cheng et al. (2023), Nekoui et al. (2021), Sun, Hu et al. (2023), Wang, Du et al. (2020), Wang, Yang,
Zhai, Chen et al. (2021), Xu, Zeng et al. (2022), Zeng et al. (2020) and Zhang, Pan et al. (2024)
t

o

t
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n
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mechanism to fuse spatial features extracted by GCN, temporal features
extracted by TCN and spatio-temporal features extracted by SFAGCN
for action quality assessment. Joung et al. (2023) proposed a vir-
ual joint-based GCN to learn motion information based on contrast
earning. In addition, a Degraded Negative Contrasting method was
roposed to improve the model performance in contrast learning. To
everage pose feature, Lei et al. (2023) proposed a multi-skeleton

structures graph convolutional network (MS-GCN) and combined with
 temporal attention block for long-duration activity. Li, Ling et al.

(2023) combined multi-task learning and contrastive learning. They
proposed a GCN-based siamese network to predict action recognition
and action assessment simultaneously from a pair of exercises. Based
n GCN, Mourchid and Slama (2023) used multiple residual layers

to extract features from different levels and intergrated the attention
mechanism for feature enhancement. Zhang, Wang et al. (2023) pro-
osed structure-feature fusion adaptive graph convolutional networks
SFAGCN) which employed the attention mechanism to adaptive fuse
patial and temporal features. Yu et al. (2024) proposed an ensemble-
ased graph convolutional network and explored the fusion strategy
n graph-based models for skeleton-based exercise assessment. They

employed GCN-based methods to assess exercises and fused information
in different levels including data, model, feature and decision levels.

In addition to GCN, some studies applied other deep learning
ethods to extract skeleton features. Kanade et al. (2023a) utilized

ransformer encoder after the CNN-based extractor to improve the
performance in physical exercise assessment. Furthermore, they also
ombined CNN and LSTM for AQA in the following work (Kanade
t al., 2023b). Chariar et al. (2023) collected a dataset and proposed a
etwork based on LSTM and attention for squat analysing. Li, Tian et al.

(2023) applied transformer for martial arts recognition and evalua-
tion. Hirosawa et al. (2023) introduced the specialist’s gaze information
and employed VGG for predicting jump execution scores in figure
skating. Zhang, Zhou et al. (2023) combined CNN and LSTM methods
o predict the Autism Diagnostic Observation Schedule (ADOS) score
ased on skeletal data for autism spectrum disorder analysis. Sardari

et al. (2024) proposed a Light Physical Rehabilitation Assessment
LightPRA) method based on TCN to improve computational efficiency.

3.4.2. Video-based methods
The development of feature extraction methods in the video-based

AQA is closely related to video understanding, which can be generally
categorized into 2D-CNN, 3D-CNN and attention mechanisms. In the
early stages, inspired by the breakthrough of CNN in the image do-
main (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, et al.,
9 
1995), numerous studies have begun applying CNNs to extract fea-
ures for video understanding (Gkioxari & Malik, 2015; Hou, Chen, &

Shah, 2017; Jain, Tompson, LeCun, & Bregler, 2015; Karpathy et al.,
2014; Peng & Schmid, 2016; Zolfaghari, Oliveira, Sedaghat, & Brox,
2017), thereby advancing the development of video-based AQA meth-
ds. Some 2D-CNNs such as ResNet, TCN, SCN are commonly used to

extract spatial and temporal features in frames for AQA. Then, with
he advent of 3D networks, Convolution 3D networks (C3D) (Tran,
ourdev, Fergus, Torresani, & Paluri, 2015), Inflated 3D convolutional
etworks (I3D) (Carreira & Zisserman, 2017) and Pseudo-3D ResNet

(P3D) (Qiu, Yao, & Mei, 2017), are commonly used to capture spa-
tiotemporal features from RGB videos and then complete a regression
or classification task for AQA. Currently, with the advanced ability of
transformer and attention mechanisms in capturing global temporal
relationships, some studies have applied attention mechanisms in AQA.
In Table 7, we summarized the commonly used feature extraction
methods in video-based AQA based on included 96 papers. We can find
I3D is the most commonly used feature extraction method in AQA. It
is worth noting that in recent years, there has been a growing trend in
studies that employ attention mechanisms to enhance feature extraction
capability.

As we mentioned before, AQA needs to analyse the whole video and
capture the internal fine-granularity feature of an action, which is more
hallenging. Thus, a lot of frameworks have been proposed for different

AQA tasks.
Some studies proposed to evaluate the action performance stage

by stage as each stage contributes differently to the overall score.
For example, a complete diving performance can be divided into five
stages: beginning, jumping, dropping, entering into water and ending,
and each stage contributes differently to the total score. Xiang et al.
(2018) Firstly rated diving actions stage by using Encoder–Decoder
Temporal Convolutional Network (ED-TCN) (Lea, Flynn, Vidal, Re-
iter, & Hager, 2017; Lea, Vidal, Reiter, & Hager, 2016) to generate
5 segments of full videos, using 4 P3D models to extract feature
presentations of 4 crucial segments and then using fully connected
layer, SVR or LR to predict the score based on average of all stage-
wise features. Dong et al. (2021) proposed a multiple-substage network
for diving action quality assessment. Firstly, they applied ED-TCN to
segment videos into five stages and employed P3D residual network to
extract spatial and temporal features of each stage, and then fed into
five decreasing FC networks to generate five substage score features.
Finally, a liner regression model was used to predict the final score.
In addition, Zhang, Dong et al. (2022) proposed a label-reconstruction-
based Pseudo Subscore Learning (PSL) method to build pseudo-substage
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sore by setting the activation function of the last layer in FC net-
orks as Sigmoid function. By dividing diving into multiple phrases
nd summing the predicted scores of individual segments, Liu, Zhai

et al. (2023) improved the perfomance on baseline AQA models. To
improve the interpretability of AQA model, Matsuyama et al. (2023)
roposed an interpretable rubric-informed segmentation (IRIS) network
o segment figure skating into different category sequences and predict

the score in figure skating. Huang and Li (2024) proposed Semantic-
equence Performance Regression network to enhance the semantic

information by segmenting an action into unequal-length clips. Zhang,
an et al. (2024) proposed an adaptive stage-aware assessment skill
ransfer (AdaST) framework to transfer assessment knowledge among
elevant skills.

Some studies applied multi-task learning framework in AQA, Parmar
nd Morris (2019b) utilized C3D model to realize action quality score,

action recognition and commentary tasks simultaneously and they
found multitask learning can achieve better performance in AQA com-
pared with Single AQA task because of better generalization. Based
on the multi-task learning framework, Zhang, Xiong et al. (2022)
ombined AQA task with caption generation auxiliary task and action
ecognition auxiliary task to obtain better generalization. In addition,

they utilized I3D to extract features of video clips and proposed to
add adversarial loss into Time-aware attention mechanism to capture
the relationship between different video clips for AQA task. Li, Bhat
et al. (2021) utilized I3D to extract features from child and therapist
ideo pairs and employed multi-task learning to realize action quality
ssessment task, movement synchrony estimation task and intervention
ction recognition task simultaneously. Gan et al. (2024) proposed

a large-scale benchmark SkatingVerse that covers multiple tasks in
ction understanding including action localization, recognition and
ssessment.

Some studies applied contrastive regression framework in AQA.
To capture the subtle difference, Yu, Rao et al. (2021) proposed a

ontrastive Regression (CoRe) framework based on residual learning
or AQA. They utilized I3D to extract features of the input videos

and exemplar videos and aggregate them with the score of exemplar
videos, and then employed group-aware regression tree to regress the
difference of the scores between the input videos and exemplar videos.
Based on Yu’s work, Bai et al. (2022) proposed a Temporal Parsing

ransformer (TPT) to extract fine-grained temporal part-level features
nd combined them with contrastive regression framework for AQA. In

addition, Li, Zhang, Lei et al. (2022) employed ResNet and a temporal
encoder network to extract features and combined with a new proposed
Pairwise Contrastive Learning Network (PCLN) for AQA. And then, to
improve the reliability and obtain better interpretability, Xu, Rao et al.
(2022) proposed a procedure-aware approach by utilizing transformer
decoder (Dosovitskiy et al., 2020) based on the contrastive regression
framework for AQA and demonstrated its effectiveness on FineDiving
the first fine-grained sports video dataset constructed by them. Liu,

heng et al. (2023) proposed a triple-stream contrastive transformer
which introduces a replay branch to learn features under different
views. Zhou, Cai et al. (2023). proposed a contrastive-based AQA
method and applied it to the proposed video-based augmented reality
visualization system for juvenile dermatomyositis assessment. Ke et al.
(2024) proposed a two-path target-aware contrastive regression frame-
work by fusing direct loss and contrastive loss to improve assessment
performance.

In addition, some studies applied distribution learning framework
in AQA. Inspired by the fact that the final score in diving is uncer-
tain and obtained by multiple judges, Tang et al. (2020) proposed
n Uncertainty-Aware score Distribution Learning (USDL) method for
QA. They utilized I3D to extract features from video clips and learn

he Gaussian distribution of scores rather than a single final score label,
o directly predict the score distribution of an action. Furthermore,
onsidering the final score was calculated based on the execution
 s

10 
score of each judge and the difficulty degree, a multi-path uncertainty-
aware score distributions learning (MUSDL) method was proposed
to leverage these components. Lei et al. (2021) used I3D to extract
eatures of evenly divided video segments and then employed the
ttention mechanism and distribution learning strategy of Tang et al.

(2020) to learn temporal weights on different action stages to balance
significance of different segments in sports video for action quality
assessment. Inspired by Tang, Li, Zhang, Dong et al. (2022) applied
Gaussian to model the score label instead of MSE and utilized ResNet
nd a frame sequence-based temporal encoder convolutional network
o extract temporal and spatial features of full-video frames instead
f video clips for AQA. Ji et al. (2023) proposed a Localization-

assisted Uncertainty Score Disentanglement Network (LUSD-Net) that
locates technical subaction and utilizes uncertainty regression to en-
hance feature disentanglement for scoring figure skating. Li, Zhang
et al. (2023) used the Gaussian loss function to compute the error
etween the predicted score and the label score. Lian and Shao (2023)

employed kernel density estimation to reweight labels to solve the data
imbalanced issue in regression for action quality assessment. Zhang,

hen et al. (2024) proposed a distribution auto-encoder module to learn
uncertainty and reduce the imbalance of data.

Some studies focus on modelling asymmetric interaction among
agents for AQA as there are asymmetric relations among agents (e.g.,
between subjects and objects) in non-individual actions in our real-
world scenarios. Gao et al. (2020) used attention mechanism to com-
ine whole-scene features extracted by I3D and the asymmetric in-
eractions between agents within an action extracted by proposed
symmetric Interaction Module (AIM) for interactive action quality
ssessment. In the subsequent study (Gao, Pan et al., 2023), they im-
roved the Asymmetric interaction module by proposing an automatic
ssigner and an asymmetric interaction network search module. The
ormer can automatically discriminate primary and secondary agents,
hile the latter can adaptively learn the asymmetric interactions be-

ween these agents. Furthermore, they collected two new datasets,
TASD-2 for synchronous diving and PaSk for pair figure skating.

Some studies try to explore self-supervised and semi-supervised
methods in AQA as acquiring domain experts’ professional annotations
is challenging in AQA field. Zhang, Pan et al. (2022) first applied
semi-supervised learning and proposed a self-supervised based frame-
work for action quality assessment, which can complete AQA task
with only a small amount of labelled data. Similarly, Roditakis et al.
(2021) proposed a self-supervised method. They utilized Temporal
Cycle Consistency (TCC) learning (Dwibedi, Aytar, Tompson, Sermanet,
& Zisserman, 2019) method to realize video alignment and combined

CC and I3D to extract features for action quality assessment. Zhang,
ong et al. (2023) developed a label-reconstruction-based pseudo-

subscore learning (PSL) method for the lack of substage quality in
AQA. He et al. (2024) introduced a weakly supervised framework to
learn rich correlation information between two videos and improved
AQA performance.

Some studies attempted to extract features from human motions
rather than background scenes as humans occupy only a small part
of scenes in videos. Zeng et al. (2020) proposed a hybrid dynAmic-
static Context-aware attenTION NETwork (ACTION-NET) to capture
both video dynamic information and static posture information for AQA
in skating and rhythmic gymnastics long videos. First, they utilized
I3D networks to extract dynamic feature from video segments and
static posture features from some sampled frames processed by human
detection. Moreover, a context-aware attention module consisting of
a temporal instance-wise graph convolutional network unit and an
attention unit was used to aggregate these features. Finally, a fully
connected layer was used to concatenate features and regress the final
score. Pan et al. (2019) considered the detailed joint interaction and
proposed Joint Relation Graph (JRG) to extract the difference and
ommonalty features of joints during motion. Based on I3D and regres-
ion model, they extract features of the whole scene videos and local
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joints videos for assessing Olympic events. in addition, considering the
judging criteria are different in different sports events such as diving,
ymnastics, and snowboarding. Pan et al. (2022) proposed adaptive

action assessment approach, by utilizing a differentiable network archi-
ecture search mechanism (Liu, Simonyan, & Yang, 2018) to adaptively
esign different architectures for different actions. Nekoui et al. (2021)
tilized a two-stream network (EAGLE-Eye) comprising of proposed
oints Coordination Assessor (JCA) block and proposed Appearance
ynamics Assessor (ADA) blocks to capture both appearance and pose

eatures for AQA. Considering the long-term AQA tasks, They also
roved that empowering the network with more JCA and ADA blocks
an capture long-term global features. To mitigate the impact of scene
nformation, Nagai et al. (2021) imposed scene adversarial loss and
uman-masked regression loss to C3D-AVG model for action quality
ssessment with ignoring scene context.

In order to learn more features, scholars have applied attention
mechanism and transformer in AQA. Wang, Du et al. (2020) uti-
lized Spatial Convolutional Network (SCN) (Szegedy, Vanhoucke, Ioffe,
hlens, & Wojna, 2016) and Temporal Convolutional Network (TCN)
Lea et al., 2017) to extract spatio-temporal features and then em-

ployed an attention mechanism to fuse features in temporal dimensions
for AQA task. Wang, Yang, Zhai, Chen et al. (2021) adopted self-
attention mechanism and proposed a Tube Self-Attention Network
(TSA-Net) to extract more contextual information from videos for AQA.
They utilized the proposed TSA mechanism to aggregate features ex-
tracted from I3D and tracking results from Visual Object Tracking
(VOT) tracker, and then fed these features into I3D for action quality
ssessment. Li, Cui et al. (2022) utilized 3D ResNet to extract fea-
ures and used Multilayer Perception (MLP), Variational Autoencoder

(VAE) and Vision Transformer to regress the gymnastic score. Xu, Zeng
et al. (2022) proposed a Grade-decoupling Likert Transformer model.

hey adopted transformer (Liu et al., 2022; Vaswani et al., 2017)
ncoder–decoder architecture to decouple a long-term action video
nto different level features which can obtain different corresponding
rades, and then applied Likert Scoring (Likert, 1932) to aggregate
ifferent grades to generate the final quality score. Sun, Hu et al.

(2023) proposed GRU-based spatial and temporal pooling methods to
nhance the spatio-temporal features from the feature extractor. Fang,
hou et al. (2023) employed transformer encoder to enhance the

context information between the features extracted by I3D. Gedamu
et al. (2023) introduced a Fine-grained spatio-temporal pasing network
FSPN) to extract subtle intra-class variation in AQA. Dadashzadeh

et al. (2024) proposed a parameter efficient, continual pretraining
(PECoP) framework. They introduce learnable 3D adapters which can
learn in-domain information to enhance generalization ability when
transferring knowledge. Zhou, Ma et al. (2023) proposed a hierarchical
GCN framework dedicated to learning the semantic context across
video clips. Zhang, Dai et al. (2023) built a novel multi-person long-
orm video (LOGO) dataset and proposed a group-aware model to

capture relations among multiple athletes.
Some studies fused multiple modalities for AQA. Parmar et al.

(2021) try to assess piano skills by concatenating video features and
udio features. Wang, Yang, Zhai, and Zhang (2024) proposed a mul-

timodel framework CPR-CLIP to recognize incorrect external cardiac
ompression action in Cardiopulmonary Resuscitation skill training.

Nagai et al. (2024) developed a novel multimodal in-the-wild (MMW)-
QA dataset and proposed a transformer-based baseline model for

freestyle windsurfing assessment. In addition to RGB video, Inertial
easurement Unit (IMU) data and Global Positioning System (GPS)

ata are provided in the dataset. Zeng and Zheng (2024) considered
the audio information for sports with background and proposed a
Progressive Adaptive Multimodal Fusion Network (PAMFN) that fused
RGB,optical flow and Audio information for AQA in figure skating and
rhythmic gymnastics.
11 
3.5. Evaluation metrics

Taking into account the difference between the evaluation metrics
pplied in different types of data, we studied the selected 96 research

articles and categorized the evaluation metrics into skeleton-based and
video-based metrics.

3.5.1. Skeleton-based metrics
We present the overview of evaluation metrics in skeleton-based

ethods, as shown in Table 8. We can find there are no uniform
etrics to evaluate skeleton-based AQA models, as the definition of

evaluation tasks varies in different studies. Some studies define AQA
s a regression task such as scoring the movements of athletes in
lympic games. Therefore, the performance of AQA models is eval-
ated by calculating the correlation between predicted scores from
odels and ground truth scores. In skeleton-based methods, Spearman’s
ank Correlation (SRC), Pearson Correlation Coefficient (PCC), Mean
ank Correlation (MRC) and Intra-group Correlation Coefficient (ICC)
re used to calculate the similarity between ground truth and predicted
esults. Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
ean Euclidean Distance (MED), Mean Absolute Error (MAE) and
uclidean Distance (ED) are used to measure the error between the
round truth and predicted results. Additionally, some studies label the
uality of actions into different discrete levels which can be formulated
s a classification problem and Classification Accuracy (CA), F1-score,
recision, are employed to evaluate the skeleton-based AQA models.
he most commonly used evaluation metric is SRC, which is employed

n a total of 13 articles, followed by CA, which is used in 10 articles.
he Spearman’s rank correlation (SRC) is defined as:

𝜌 =
∑

𝑖(𝑝𝑖 − �̄�)(𝑞𝑖 − 𝑞)
√

∑

𝑖(𝑝𝑖 − �̄�)2
∑

𝑖(𝑞𝑖 − 𝑞)2
(1)

3.5.2. Video-based metrics
In Table 9, we summarized the evaluation metrics in video-based

ethods. We can observe that Spearman’s Rank Correlation (SRC),
earson Correlation Coefficient (PCC) and Kendall Correlation (KC)
re used to calculate the similarity between ground truth and predicted
esults. Additionally, Mean Squared Error (MSE), Root Mean Squared
rror (RMSE), Mean Euclidean Distance (MED), Mean Absolute Error
MAE), and the relative 𝓁2-distance (R-𝓁2) are used to measure the error
etween the ground truth and predicted results. Classification Accuracy
CA), mean Average Precision (𝑚AP) and mean Average Precision of the
ulti-modal image-text model (𝑚𝑚𝑖𝑡 𝑚AP) are employed to evaluate

he classification tasks in video-based AQA models. SRC is the most
requently used evaluation metric, employed in a total of 56 articles,
hich is 45 more than the second most used metric, R-𝓁2. The relative
2-distance (R-𝓁2) is defined as:

𝑅-𝓁2 =
1
𝑁

𝑁
∑

𝑛=1
(

|

|

𝑠𝑛 − �̂�𝑛||
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

)2 (2)

Due to the fact that SRC is the most commonly used evaluation
etric in both skeleton-based and video-based methods, we present

he SRC performance of some state-of-the-art methods on three com-
only used datasets: MTL-AQA, AQA-7 and JIGSAW datasets, which

re shown in Tables 10–12. It is worth noting that in MTL-AQA diving
ataset, studies in Bai et al. (2022), Tang et al. (2020) and Yu, Rao
t al. (2021) do not directly predict the final score. Instead, they predict
he execution score first and then multiply it by the difficulty degree
abel to obtain the final score, resulting in two sets of results (one
ith difficulty degree labels and another without). For AQA-7 dataset,

he Fisher’s z-value (Faller, 1981) is used to measure the average SRC
across actions.
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Table 8
Overview of evaluation metrics in skeleton-based methods.

Evaluation metrics Numbers Related paper

SRC 13 Gao, Pan et al. (2023), Hirosawa et al. (2023), Lei et al. (2023), Li, Hu et al. (2021), Li, Lei et al.
(2021, 2022), Nekoui et al. (2021), Pan et al. (2019), Wang et al. (2022), Yu et al. (2024), Yu, Liu
et al. (2021), Zhang, Wang et al. (2023) and Zhang, Zhou et al. (2023)

CA 10 Çeliktutan et al. (2013), Chariar et al. (2023), Dajime et al. (2020), Li, Hu et al. (2022), Li, Ling
et al. (2023), Li, Tian et al. (2023), Liu, Wang et al. (2023), Wang, Jin et al. (2020), Wang et al.
(2022) and Yu et al. (2020)

PCC 5 Venkataraman and Turaga (2016), Venkataraman et al. (2016, 2013, 2014) and Wang et al. (2022)

MAE 4 Hirosawa et al. (2023), Kanade et al. (2023a), Mourchid and Slama (2023) and Sardari et al. (2024)
RMSE 3 Hirosawa et al. (2023), Kanade et al. (2023b) and Sardari et al. (2024)
ED 3 Jin et al. (2016), Yu et al. (2024) and Yu, Liu et al. (2021)
MRC 2 Lei et al. (2020) and Pirsiavash et al. (2014)
MSE 1 Li, Lei et al. (2022)
MED 1 Li, Lei et al. (2021)
ICC 1 Fang, Luo et al. (2023)
F1-score 1 Joung et al. (2023)
Precision 1 Hipiny et al. (2023)
Table 9
Overview of evaluation metrics in video-based methods.

Evaluation metrics Numbers Related paper

SRC 56 Baby et al. (2022), Bai et al. (2022), Dadashzadeh et al. (2024), Dong et al. (2021), Du et al. (2023),
Fang, Zhou et al. (2023), Farabi et al. (2022), Gan et al. (2024), Gao, Pan et al. (2023), Gao et al.
(2020), Gedamu et al. (2023), He et al. (2024), Hirosawa et al. (2023), Huang and Li (2024), Ji et al.
(2023), Ke et al. (2024), Lei et al. (2021), Li, Bhat et al. (2021), Li et al. (2018), Li, Chai et al.
(2019), Li, Zhang, Dong et al. (2022), Li, Zhang et al. (2023), Li, Zhang, Lei et al. (2022), Lian and
Shao (2023), Liu, Cheng et al. (2023), Liu, Zhai et al. (2023), Matsuyama et al. (2023), Nagai et al.
(2021, 2024), Nekoui et al. (2021), Pan et al. (2019, 2022), Parmar and Morris (2019a, 2019b),
Parmar and Tran Morris (2017), Roditakis et al. (2021), Sun, Hu et al. (2023), Tang et al. (2020),
Wang, Du et al. (2020), Wang, Yang, Zhai, Chen et al. (2021), Xiang et al. (2018), Xu, Rao et al.
(2022), Xu, Zeng et al. (2022), Yu, Rao et al. (2021), Zeng et al. (2020), Zeng and Zheng (2024),
Zhang, Chen et al. (2024), Zhang, Dai et al. (2023), Zhang, Dong et al. (2022, 2023), Zhang, Pan
et al. (2022, 2024), Zhang, Wang et al. (2023), Zhang, Xiong et al. (2022), Zhou, Cai et al. (2023)
and Zhou, Ma et al. (2023)

R-𝓁2 11 Bai et al. (2022), Fang, Zhou et al. (2023), Gedamu et al. (2023), He et al. (2024), Ke et al. (2024),
Lian and Shao (2023), Liu, Cheng et al. (2023), Xu, Rao et al. (2022), Zhang, Dai et al. (2023), Zhou,
Cai et al. (2023) and Zhou, Ma et al. (2023)

MSE 7 Du et al. (2023), Ingwersen et al. (2023), Li, Bhat et al. (2021), Li, Cui et al. (2022), Yuan (2024)
and Zhang, Dong et al. (2022, 2023)

MED 5 Lei et al. (2021), Li et al. (2018), Li, Chai et al. (2019) and Zhang, Dong et al. (2022, 2023)
CA 3 Freire-Obregón et al. (2022), Parmar et al. (2021) and Zhang, Pan et al. (2024)
MAE 3 Freire-Obregon et al. (2023), Hirosawa et al. (2023) and Sun, Hu et al. (2023)
PCC 1 Matsuyama et al. (2023)
RMSE 1 Hirosawa et al. (2023)
KC 1 Ingwersen et al. (2023)
𝑚AP and 𝑚𝑚𝑖𝑡 𝑚AP 1 Wang et al. (2024)
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4. Discussion

This section analyses the research results and presents findings
ccording to the research questions defined in Section 2. In addition,

the limitation of this review is discussed.

4.1. Summary of reviewed studies

To present a systematic literature review on vision-based human
AQA, we defined 5 research questions related to the application, data
acquisition, datasets, methods and evaluation metrics in Section 2. 96
esearch articles were studied to answer the research questions. The
ain findings are as follows:

4.1.1. Application
Table 2 presents the existing applications of AQA and related stud-

ies, which can enable researchers to efficiently find research related
o their specific field of interest. As illustrated, AQA has been applied
o various scenarios but mainly focuses on three scenarios: sports
vent scoring, surgical skill evaluation and rehabilitation assessment.
12 
Notably, sports event scoring has attracted the most attention, with 53
out of the 96 selected papers dedicated to this field. This is because
here are some publicly available datasets in the sports scoring domain,
hich can facilitate research in this area. Due to the growing demand

for movement assessment, AQA is now being applied to an increasing
umber of new domains, such as behaviour therapy, fitness, exercise,
iano, hand skill, daily action, windsurfing and dance etc. In these
pplications, AQA can reduce the workload of professionals, explore
ew supervision and feedback mechanisms, and enhance the efficiency
f training. Specifically, in medical rehabilitation, AQA can provide
recise assessments of patients’ progress, allowing therapists to tailor
reatment plans more effectively. In the fitness industry, AQA can offer
eal-time feedback to improve workout effectiveness and reduce the
isk of injuries. The application of AQA in new domains like dance,
indsurfing, and piano demonstrates its versatility and adaptability.

4.1.2. Data acquisition
We can find optical motion capture systems, depth cameras and pose

estimation algorithms are commonly used methods to obtain skeleton
data in Table 3. Specifically, pose estimation algorithms present the
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Table 10
Overview of the performance of state-of-the-art methods in MTL-AQA dataset. The
old number indicates the best performance. ‘w/o DD’ means without difficulty degree
abels, ‘w/o DD’ means with difficulty degree labels.
Methods (w/o DD) Year SRC

Pose+DCT (Pirsiavash et al., 2014) 2014 0.2682
C3D-SVR (Parmar & Tran Morris, 2017) 2017 0.7716
C3D-LSTM (Parmar & Tran Morris, 2017) 2017 0.8489
MSCADC-STL (Parmar & Morris, 2019b) 2019 0.8472
MSCADC-MTL (Parmar & Morris, 2019b) 2019 0.8612
C3D-AVG-STL (Parmar & Morris, 2019b) 2019 0.8960
C3D-AVG-MTL (Parmar & Morris, 2019b) 2019 0.9044
USDL (Tang et al., 2020) 2020 0.9066
CoRe (Yu, Rao et al., 2021) 2021 0.9341
TSA-NeT (Wang, Yang, Zhai, Chen et al., 2021) 2021 0.9422
TPT (Bai et al., 2022) 2022 0.9451
HGCN (Zhou, Ma et al., 2023) 2023 0.9390
T2CR (Ke et al., 2024) 2024 0.9464

Methods (w/DD) Year SRC

USDL (Tang et al., 2020) 2020 0.9231
MUSDL (Tang et al., 2020) 2020 0.9273
CoRe (Yu, Rao et al., 2021) 2021 0.9512
TPT (Bai et al., 2022) 2022 0.9607
HGCN (Zhou, Ma et al., 2023) 2023 0.9536
T2CR (Ke et al., 2024) 2024 0.9638

most used approach to obtain skeleton data. This is because pose
stimation algorithms can capture joint coordinates through standard

RGB cameras in real time, reducing the need for expensive hardware.
epth cameras are also popular for capturing skeleton data because
f their low cost and flexibility. However, the optical motion capture

system is the least option for capturing. Although it can obtain the
highest tracking accuracy, it also requires specialized equipment and
controlled environments, which limits its application. In conclusion,
the emergence of commercial depth cameras and pose estimation algo-
rithms enables us to obtain skeleton information easily for AQA tasks,
which can promote the development of datasets and the application of
AQA.

4.1.3. Datasets
As shown in Table 6, we can observe many datasets in various

domains, including sports scoring, rehabilitation and exercise evalua-
tion, surgical skill rating, piano skill rating, etc., have been proposed in
recent years, indicating the increasing attention to AQA research. How-
ever, most of them focus on Olympic event scoring, while a few focus
n medical care and other action categories. The reason is probably
hat recruiting domain experts to annotate data can also be time-
onsuming and expensive (Roditakis et al., 2021). The Olympics event
ill publicize game videos and provide the ground truth of the judges’

cores, allowing researchers to build datasets more easily. In addition,
privacy concern is a challenge in constructing medical AQA datasets.
In the early stages, AQA datasets typically provided only an overall
core in their annotations, which limited the interpretability of the

models. The recently proposed AQA datasets (Ji et al., 2023; Xu, Rao
et al., 2022; Zhang, Dai et al., 2023) provide fine-grained annotations
to enhance the interpretability of AQA models. This increased level
of detail allows for a more nuanced understanding of the assessed
ctions, giving researchers richer information for model training and
valuation. Furthermore, existing AQA datasets primarily focus on
ingle-person with short-duration actions, with comparatively fewer

datasets addressing multi-person with long-duration actions. Addition-
ally, most datasets provide either video or skeletal data exclusively,
with only a few datasets offering multiple types of data.

4.1.4. Methods
The AQA methods can be divided into skeleton-based methods and

ideo-based methods.
13 
For skeleton-based methods, handcrafted methods were applied for
AQA based on skeleton data collected by professional motion tracking
systems in the earlier stage (Çeliktutan et al., 2013; Venkataraman
et al., 2013, 2014). These methods can be able to solve two binary
classification AQA problems (e.g., correct/incorrect), but it is difficult
o design discriminate rules for complex activities in long-duration
ideos. Due to the rapid development of deep learning and the advent
f low-cost 3D motion cameras (e.g., Kinect), as well as pose-tracking

estimators (e.g., OpenPose, MediaPipe), GCN has been successfully ap-
plied to human AQA based on the extracted skeleton data and attracted
more attention (Li, Lei et al., 2021, 2022; Yu et al., 2020; Yu, Liu
et al., 2021). These methods can evaluate human action quality by only
focusing on postures and ignoring background information.

For video-based methods, as shown in Table 7, some general net-
work backbones including 2D-CNN, I3D, C3D, P3D and attention mech-
anisms have been applied for capturing spatiotemporal features from
RGB videos in AQA (Gao et al., 2020; Parmar & Tran Morris, 2017;
Xiang et al., 2018; Xu, Zeng et al., 2022). I3D is the most commonly
sed feature extraction method. Furthermore, various strategies and

frameworks have been proposed for AQA tasks, such as stage-by-
stage strategy, multi-task learning framework, contrastive regression
ramework, distribution learning framework, asymmetric interaction
ramework, self-supervised based framework, motion-focused strategy,
ttention-based strategy and multi-modal models. These methods can
ssess complicated movement and predict a specific score by regressing
xtracted features from the whole video.

4.1.5. Evaluation metrics
We found Skeleton-based algorithms and video-based algorithms

share both similarities and differences in their choice of evaluation
etrics. We found that different metrics can be used to evaluate the
erformance of AQA models, depending on the definition of action
uality in both skeleton-based and video-based methods. Spearman
ank correlation (SRC) coefficient is the most commonly used metric
n both skeleton-based and video-based methods for calculating the
orrelation between predicted scores and ground truth scores (Li, Chai

et al., 2019; Pan et al., 2019; Parmar & Morris, 2019a). Classification
accuracy is commonly used to evaluate AQA models that predict action
quality at discrete levels (Çeliktutan et al., 2013; Dajime et al., 2020;
Yu et al., 2020). However, R-𝓁2 is currently the second most frequently
sed metric in video-based methods but has not yet been employed in
keleton-based methods. AQA has been defined as either a regression
r classification task in both methods. However, the proportion of
QA models defined as classification tasks is higher in skeleton-based
ethods compared to video-based methods.

4.2. Potential threats to validity and limitations

Our systematic literature review only includes 96 of 230 research
articles retrieved from three main STEM databases: IEEE Explore, Web
of Science and Scopus. However, some studies published only in other
databases and some non-English studies were not considered in this
paper, which may impact us to provide more insight into AQA.

We provide the performance of some state-of-the-art methods on
hree commonly used datasets: MTL-AQA, AQA-7 and JIGSAW, due to
 sufficient number of studies have applied the same metric to these
atasets. However, the comparison of different models in additional
atasets is not shown in this paper due to the available space.

5. Current challenges and future research

In Fig. 2, We can observe there is an increase in the number of
studies in AQA since 2019. This can be concluded for these reasons:
(1) The emergence of commercial depth cameras and pose estimation
algorithms enables us to obtain skeleton information easily for AQA
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Table 11
Overview of the performance of state-of-the-art methods in AQA-7 dataset. ‘‘–’’ means that the result did not provide in the literature. Bold numbers are the best performances.

Methods Year Diving Gym vault Skiing Snow board Sync. 3 m Sync. 10 m Avg. SRC

Pose+DCT (Pirsiavash et al., 2014) 2014 0.5300 – – – – – –
ST-GCN (Yan et al., 2018) 2018 0.3286 0.5770 0.1681 0.1234 0.6600 0.6483 0.4433
C3D-LSTM (Parmar & Tran Morris, 2017) 2019 0.6047 0.5636 0.4593 0.5029 0.7912 0.6927 0.6165
C3D-SVR (Parmar & Tran Morris, 2017) 2019 0.7902 0.6824 0.5209 0.4006 0.5937 0.9120 0.6937
JRG (Pan et al., 2019) 2019 0.7630 0.7358 0.6006 0.5405 0.9013 0.9254 0.7849
USDL (Tang et al., 2020) 2020 0.8099 0.7570 0.6538 0.7109 0.9166 0.8878 0.8102
EAGLE-Eye (Nekoui et al., 2021) 2021 0.8331 0.7411 0.6635 0.6447 0.9143 0.9158 0.8140
CoRe (Yu, Rao et al., 2021) 2021 0.8824 0.7746 0.7115 0.6624 0.9442 0.9078 0.8401
TSA-Net (Wang, Yang, Zhai, Chen et al., 2021) 2021 0.8379 0.8004 0.6657 0.6962 0.9493 0.9334 0.8476
Adaptive (Pan et al., 2022) 2021 08 306 0.7593 0.7208 0.6940 0.9588 0.9298 0.8500
TPT (Bai et al., 2022) 2022 0.8969 0.8043 0.7336 0.6965 0.9456 0.9545 0.8715
PCLN (Li, Zhang, Lei et al., 2022) 2022 0.8697 0.8759 0.7754 0.5778 0.9629 0.9541 0.8795
HGCN (Zhou, Ma et al., 2023) 2023 0.8867 0.7917 0.7326 0.6447 0.9213 0.9424 0.8501
T2CR (Ke et al., 2024) 2024 0.8901 0.8393 0.7139 0.7052 0.9418 0.9558 0.8726
f
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Table 12
Overview of the performance of state-of-the-art methods in JIGSAW dataset. Bold
umbers are the best performances.
Methods Year S NP KT Avg. SRC

ST-GCN (Yan et al., 2018) 2018 0.31 0.39 0.58 0.43
JRG (Pan et al., 2019) 2019 0.36 0.54 0.75 0.57
USDL (Tang et al., 2020) 2020 0.64 0.63 0.61 0.63
MUSDL (Tang et al., 2020) 2020 0.71 0.69 0.71 0.70
AIM (Gao et al., 2020) 2020 0.63 0.65 0.82 0.71
CoRe (Yu, Rao et al., 2021) 2021 0.84 0.86 0.86 0.85
TPT (Bai et al., 2022) 2022 0.88 0.88 0.91 0.89
HGCN (Zhou, Ma et al., 2023) 2023 0.89 0.91 0.90 0.90
T2CR (Ke et al., 2024) 2024 0.93 0.89 0.89 0.91

tasks. (2) The advent of public datasets encourages more data-driven-
based research. (3) The development of deep learning methods, such as
3D networks and attention mechanisms, makes it possible to capture
the internal fine-granularity feature of actions in the RGB video for
assessment of actions. Although there has been significant progress over
the past few years, various challenges still exist in developing vision-
based models to automatically assess action quality in real scenarios.

e will explain below.

5.1. Application

For many real-world applications, especially in sports and fitness,
real-time processing is crucial. However, most existing video-based

ethods require huge computing costs and time, limiting their practical
application. Additionally, the application of AQA in some common
activities, such as dancing, football and basketball remains quite lim-
ted and requires more in-depth exploration. Conducting additional
esearch in these areas could unveil new possibilities and enhance the
ffectiveness of AQA in various real-world scenarios.

In the future, AQA applications can be integrated with virtual Re-
ality (VR) and Augmented Reality (AR) technologies to provide richer,
more interactive experiences for scenarios requiring movement quality
assessment. With the advent of generative models (Guo et al., 2024;
Hong, Ding, Zheng, Liu, & Tang, 2022), research on generating actions
s emerging, and AQA can be employed to evaluate the quality of these
enerated actions, thereby enhancing the performance of AI generative
odels.

5.2. Dataset

Regarding the public available AQA datasets shown in Table 6, there
re several challenges. First, most existing AQA datasets are limited

to small size and a single type of action, as the AQA criteria vary
for different types of actions and the annotations of AQA datasets are
typically conducted by domain experts, which can be time-consuming

Roditakis et al., 2021; Zhang, Pan et al., 2022). Thus,
and expensive (
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building a diverse and large-scale dataset is still a challenge in AQA.
There are some similarities in the evaluation of different actions and
skills, which can be useful in training models. In the future, we can
create a large dataset encompassing a broader range of action types
and a larger number of samples. This can benefit the development of
larger models with enhanced generalization capabilities. Second, most
existing AQA datasets only provide RGB video information, which is
limited to the data modality. In addition to RGB video information,
other modalities such as depth information, skeletal data, audio, text
and wearable sensor data can also be utilized for assessing action
quality. With the development of multi-modal learning, such as Con-
trastive Language–Image Pre-training (CLIP) (Radford et al., 2021)
and Align and Prompt (ALPRO) (Li, Li, Li, Niebles and Hoi, 2022),
uture datasets can include more data modalities to facilitate future
esearch. The combination of different types of data enables a more
omprehensive analysis by capturing the intricacies of both appearance
nd movement dynamics. Third, the majority of existing datasets offer
imited annotations, typically including only an overall score, which
onstrains the interpretability of the models. In future AQA dataset
onstruction, incorporating more detailed annotations such as sub-
ction types, temporal boundaries, and sub-scores can further enhance
odel interpretability. Fourth, datasets specifically designed for the as-

essment of multi-person actions, such as group dances, are limited and
eserve further research. Fifth, current datasets are mostly derived from
eal-world data. With the advancement of generative models, there is
 notable lack of datasets that assess generated actions. In the future,
ntegrating generated data with real-world data could expand both the
ize and diversity of AQA datasets, providing a more comprehensive
esource for model development and evaluation.

5.3. Methods

Although existing AQA methods have achieved remarkable
rogress, many efforts are still required to enhance their efficiency

and accuracy. Existing models are mainly focusing on supervised learn-
ing, but it is time-consuming and challenging to label all samples in
AQA dataset. Therefore, semi-supervised learning and unsupervised
learning can be conducted more in future research. In addition, due
to the rapid development of transformer in both image and video
omains (Liu et al., 2022; Vaswani et al., 2017), future research can

delve further into its ability to capture motion features in AQA tasks.
Furthermore, most existing studies assess the action quality by using
C3D, P3D and I3D to extract features from RGB videos, which makes
features contain ambiguous scene information and ignore the internal
connections between joints. In contrast, GCN can extract features from
skeleton data which contains intuitive structural body pose and joint
information. However, acquiring accurate posture from motion cameras
and pose estimators is challenging in fast movements and occluded
situations. To overcome this challenge, although some studies (Gao,
Pan et al., 2023; Nekoui et al., 2021; Pan et al., 2019) combine
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Table 13
Overview of all identified papers. (CA = Classification accuracy, PCC = Pearson correlation coefficient, SRC = Spearman correlation coefficient, MED = Mean euclidean distance,
MRC = Mean rank correlation, KC = Kendall correlation, MSE = Mean square error, MAE = Mean absolute error, ED = Euclidean distance, R-𝓁2 = Relative 𝓁2-distance), ICC =

he Intra-group Correlation Coefficient.
# Ref. Application Dataset Data Methods Evaluation metrics

1 Çeliktutan et al. (2013) Physical exercise Perturbed Workout
SU-10 Gesture

Skeleton SVM CA

2 Venkataraman et al. (2013) Stroke rehabilitation Stroke Rehabilitation Skeleton SVM PCC
3 Venkataraman et al. (2014) Stroke rehabilitation self-created Skeleton Decision Tree PCC
4 Pirsiavash et al. (2014) Olympic games MIT-Diving

MIT-Skating
Skeleton Pose+DCT+SVR MRC

5 Jin et al. (2016) Fitness self-created Skeleton DTW ED
6 Venkataraman et al. (2016) Stroke rehabilitation self-created Skeleton linear model PCC
7 Venkataraman and Turaga (2016) Stroke rehabilitation Stroke Rehabilitation Skeleton SVM PCC
8 Parmar and Tran Morris (2017) Olympic games MIT-Diving

MIT-Skating
UNLV-Vault
UNLV-Divng

Video C3D-SVR
C3D-LSTM

SRC

9 Li et al. (2018) Olympic games UNLV-Diving
UNLV-Vault
MIT-Skating

Video C3D SRC, MED

10 Xiang et al. (2018) Olympic games UNLV-Dive Video ED-TCN+P3D+FC/LR/SVR SRC
11 Parmar and Morris (2019b) Olympic games MTL-AQA Video C3D SRC
12 Li, Chai et al. (2019) Olympic games MIT-Diving

UNLV-Diving
UNLV-Vault

Video C3D SRC, MED

13 Pan et al. (2019) Olympic games
surgical skill training

AQA-7 Dataset
JIGSAWS Dataset

VideoSkeleton I3D SRC

14 Parmar and Morris (2019a) Olympic games AQA-7 Dataset Video C3D-LSTM SRC
15 Dajime et al. (2020) Physical exercise self-created Skeleton MLR CA
16 Yu et al. (2020) Rehabilitation exercise UI-PRMD Skeleton GCN CA
17 Wang, Jin et al. (2020) Hand skill Origami Video Skeleton LSTM, DCT+SVC,

DFT+SVC
CA

18 Tang et al. (2020) Olympic games
surgical skill training

AQA-7
MTL-AQA
JIGSAWS

Video I3D SRC

19 Zeng et al. (2020) Olympic games Rhythmic Gymnastics
MIT-Skating

Video I3D, ResNet, GCN,
Attention

SRC

20 Lei et al. (2020) Olympic games MIT-Diving
MIT-Skating
UNLV vault

Skeleton support vector regression
ridge regression

MRC

21 Gao et al. (2020) Surgical skill training JIGSAWS
TASD-2

Video I3D SRC

22 Wang, Du et al. (2020) Olympic games UNLV-Skating
UNLV-Vault
UNLV-Divng

Video SCN, TCN, Attention SRC

23 Nekoui et al. (2021) Olympic games AQA-7 VideoSkeleton I3D, HRNet, Attention,
TCN, SCN

SRC

24 Yu, Rao et al. (2021) Olympic games
surgical skill training

AQA-7
MTL-AQA
JIGSAWS

Video I3D SRC

25 Nagai et al. (2021) Olympic games MTL-AQA Video C3D SRC
26 Parmar et al. (2021) Piano skill PISA VideoAudio 3DCNN, ResNet-18 CA
27 Li, Lei et al. (2021) Olympic games MIT-Skating Skeleton ST-GCN SRC, MED
28 Dong et al. (2021) Olympic games UNLV-Diving Video ED-TCN, P3D SRC
29 Wang, Yang, Zhai, Chen et al. (2021) Olympic games AQA-7

MTL-AQA
Video Self-Attention, I3D SRC

30 Roditakis et al. (2021) Olympic games MTL-AQA Video I3D, Temporal
Cycle-Consistency (TCC)

SRC

31 Lei et al. (2021) Olympic games AQA-7 Video I3D, Attention SRC, MED
32 Li, Bhat et al. (2021) Behavioural therapies Play Therapy 13 Video I3D SRC, MSE
33 Yu, Liu et al. (2021) Behavioural therapies UI-PRMD

EHE dataset
Skeleton 2T-GCN SRC, ED

34 Li, Hu et al. (2021) Fitness actions Fitness-28 dataset SkeletonDepth Iterative Closest Point
(ICP)

SRC

35 Farabi et al. (2022) Olympic games MTL-AQA Video 3D and (2+1)D ResNets SRC
36 Freire-Obregón et al. (2022) Ultra-running TGC Video I3D CA
37 Xu, Rao et al. (2022) Olympic games FineDiving Video I3D SRC, R-𝓁2
38 Zhang, Dong et al. (2022) Sports event UNLV-Diving Video P3D SRC, MED, MSE
39 Li, Zhang, Dong et al. (2022) Olympic games AQA-7

MTL-AQA
Video ResNet, Temporal Encoder SRC

40 Li, Zhang, Lei et al. (2022) Olympic games AQA-7
MTL-AQA

Video ResNet, Temporal encoder SRC

41 Bai et al. (2022) Olympic games MTL-AQA
AQA-7
JIGSAW

Video I3D, Transformer SRC, R-𝓁2

(continued on next page)
15 
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Table 13 (continued).
42 Wang et al. (2022) Tai Chi Quan gesture UMONS-TAICHI

Walking Gait
Skeleton LSTM SRC, CA, PCC

43 Zhang, Pan et al. (2022) Olympic games MTL-AQA
Rhythmic Gymnastics

Video I3D SRC

44 Baby et al. (2022) Surgical skill training JIGSAWS
Nets

Video TCN SRC

45 Pan et al. (2022) Olympic games
surgical skill training

AQA-7
JIGSAWS

Video I3D SRC

46 Li, Lei et al. (2022) Olympic games MIT-Skating
FIS-V

Skeleton ST-GCN, LSTM SRC, MSE

47 Zhang, Xiong et al. (2022) Olympic games MTL-AQA Video I3D SRC
48 Li, Cui et al. (2022) Olympic games FineGym dataset Video C3D, MLP, VAE,

Transformer
MSE

49 Xu, Zeng et al. (2022) Olympic games Rhythmic Gymnastics
Fis-V

Video VST SRC

50 Li, Hu et al. (2022) Tai Chi Quan gesture TaiChi-24 Skeleton ST-GCN CA
51 Zhang, Wang et al. (2023) Olympic games AQA-7 Skeleton GCN, TCN SRC
52 Gao, Pan et al. (2023) Olympic games

surgical skill training
daily actions

JIGSAWS
TASD-2
PaSk
AQA-7
EPIC-Skills
BEST

VideoSkeleton I3D, Attention SRC

53 Liu, Wang et al. (2023) Pull-ups test self-created Skeleton PEPoseNet, Random Forest CA
54 Freire-Obregon et al. (2023) Ultra-running TGC20ReID video X3D MAE
55 Joung et al. (2023) Fitness SQUAT

AI-HUB FITNESS
skeleton GCN F1

56 Lei et al. (2023) Olympic games MIT-Skating
Rhythmic Gymnastics

Skeleton GCN SRC

57 Ji et al. (2023) Olympic games FineFS (proposed)
Fis-V

Video VST SRC

58 Liu, Cheng et al. (2023) Olympic games RFSJ Video I3D, Transformer,
Attention

SRC, R-𝓁2

59 Kanade et al. (2023a) Rehabilitation exercise UI-PRMD
KIMORE

Skeleton CNN, Attention MAE

60 Sun, Hu et al. (2023) Olympic games
Surgical skill training

AQA-7
JIGSAWS

Video RNN, Attention MAE

61 Kanade et al. (2023b) Rehabilitation exercise KIMORE Skeleton CNN, LSTM RMSE
62 Li, Ling et al. (2023) Rehabilitation exercise UI-PRMD

IRDS
Skeleton GCN CA

63 Chariar et al. (2023) Physical exercise self-created Skeleton LSTM, Attention CA
64 Fang, Zhou et al. (2023) Olympic games MTL-AQA

FineDiving
Video I3D, Transformer SRC, R-𝓁2

65 Hipiny et al. (2023) Dance self-created Skeleton pairwise Precision
66 Li, Zhang et al. (2023) Olympic games AQA-7

MTL-AQA
Video ResNet, Temporal Encoder SRC

67 Lian and Shao (2023) Olympic games FineDiving Video (2+1)D ResNet SRC, R-𝓁2
68 Mourchid and Slama (2023) Rehabilitation exercise UI-PRMD Skeleton GCN, Attention MAE
69 Fang, Luo et al. (2023) Rehabilitation exercise self-created Skeleton Threshold ICC
70 Matsuyama et al. (2023) Olympic games self-created Video CNN, TCN SRC, PCC
71 Zhou, Cai et al. (2023) Juvenile dermatomyositis JDM dataset Video I3D SRC, R-𝓁2
72 Li, Tian et al. (2023) Martial arts Fri2023 Skeleton Transformer CA
73 Wang et al. (2023) Fitness self-created Skeleton DTW –
74 Ingwersen et al. (2023) Golf skill self-created Video 3D ResNet MSE, KC
75 Du et al. (2023) Olympic games FS1000

Fis-v
MTL-AQA
OlympicFS

Video VST, Transformer MSE, SRC

76 Gedamu et al. (2023) Olympic games FineDiving
AQA-7
MTL-AQA

Video I3D, Transformer SRC, R-𝓁2

77 Hirosawa et al. (2023) Olympic games self-created VideoSkeleton VGG16 RMSE, SRC, MAE
78 Liu, Zhai et al. (2023) Olympic games FineDiving Video I3D SRC
79 Li, Chheang et al. (2023) Behaviour therapy MMASD – – –
80 Zhang, Dong et al. (2023) Olympic games UNLV-Diving Video P3D SRC, MSE, MED
81 Zhang, Zhou et al. (2023) Behaviour therapy DREAM Skeleton CNN, LSTM SRC
82 Zhou, Ma et al. (2023) Olympic games

surgical skill training
MTL-AQA
JIGSAWS
AQA-7

Video I3D, GCN SRC, R-𝓁2

83 Zhang, Dai et al. (2023) Olympic games LOGO Video VST, GCN SRC, R-𝓁2
84 Wang et al. (2024) Medical skill training CPR-Coach Video ResNet, Transformer mAP, mmit mAP
85 Yuan (2024) Wushu teaching Taiji Video CNN MSE
86 Huang and Li (2024) Olympic games UNLV-Dive

AQA-7
Video I3D, TCN SRC

(continued on next page)
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Table 13 (continued).
87 Dadashzadeh et al. (2024) Olympic games

surgical skill training
rehabilitation

JIGSAWS
MTL-AQA
FineDiving
PD4T

Video I3D SRC

88 Gan et al. (2024) Olympic games SkatingVerse Video – SRC
89 Zhang, Pan et al. (2024) Skill training EPIC-Skill

JIGSAWS
BEST
AQA-7

Video I3D, Attention CA, SRC

90 Ke et al. (2024) Olympic games
surgical skill training

JIGSAWS
MTL-AQA
FineDiving
AQA-7

Video I3D, Transformer SRC, R-𝓁2

91 Yu et al. (2024) Rehabilitation exercise UI-PRMD
KIMORE
EHE

Skeleton GCN SRC, ED

92 Sardari et al. (2024) Rehabilitation exercise UI-PRMD
KIMORE

Skeleton TCN MAE, RMSE

93 Nagai et al. (2024) Windsurfing MMW-AQA VideoIMU GPS Transformer SRC
94 He et al. (2024) Olympic games FineDiving Video ResNet, X3D SRC, R-𝓁2
95 Zhang, Chen et al. (2024) Olympic games

surgical skill training
AQA-7
MTL-AQA
JIGSAWS

Video I3D SRC

96 Zeng and Zheng (2024) Olympic games RG, Fis-V Video VST, I3D, AST, UNMT,
MAST

SRC
n
f
g
s

M
c
F

0

skeleton information into RGB-based methods in AQA, they do not
explore the fusion of multi-modal in features level. Recently, some
studies (Bruce, Liu, Zhang, Zhong, & Chan, 2022; Das, Dai, Yang, &
Bremond, 2021) propose multi-modal methods by integrating skeleton
and RGB data in the feature level for human action recognition and
achieve remarkable performance. Future direction can be devoted to
exploring the fusion of RGB and other useful information such as
skeleton, saliency, audio etc. in AQA tasks. There are both similarities
and distinctions in the evaluation of different actions and skills. Cur-
rently, AQA models are trained individually for each specific action,
resulting in separate models for each type of evaluation. This approach
ends to ignore the potential similarities that exist across different
ctions and skills, such as common movement patterns, evaluation
riteria, or similar performance attributes. Recognizing and utilizing
hese similarities could lead to more efficient training processes and
nhance the models’ ability to generalize across various types of actions
nd skills. With the development of large models in the computer
ision community (Kirillov et al., 2023), future research could focus
n developing methods to systematically identify and incorporate these
imilarities, thereby improving the generalization capabilities of AQA
odels. This might involve exploring cross-domain features, designing
nified frameworks for diverse evaluations, or employing advanced
lgorithms to transfer knowledge between related tasks. Enhancing

the generalization capabilities of AQA models in this way could lead
o more adaptable and effective systems that perform well across a
roader range of assessments of actions and skills.

6. Conclusion

In this paper, we systematically reviewed 96 research articles to
rovide a comprehensive and critical overview of vision-based hu-

man AQA. We included 96 research articles published in a journal
or conference in Scopus, IEEE Xplore and Web of Science until July
024 to present a comprehensive review of application, data acqui-
ition, datasets, skeleton-based methods, RGB video-based methods
nd evaluation metrics in AQA. We have observed due to the lim-
tation of datasets, most existing AQA studies focused on Olympic
vent scoring, while a small number of studies focused on health-
are and other domains. In addition, we summarized existing AQA
ethods into skeletal-based and video-based. Furthermore, we found

hat the evaluation metrics for AQA methods vary across different
tudies due to diverse definitions of AQA tasks. The most commonly
17 
used evaluation metric among these studies is SRC and we have pro-
vided the SRC performance of some state-of-the-art methods on three
commonly used datasets: MTL-AQA, AQA-7 and JIGSAW datasets. Fi-
ally, we analysed the current challenges and provided suggestions
or future research directions. This systematic review can be a helpful
uide for researchers to explore recent literature, public datasets, and
tate-of-the-art methods in AQA.
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