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Electricity Energy System
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IEEE, Lamine Mili, Life Fellow, IEEE, and Mert Korkali, Senior Member, IEEE

Abstract—Although global sensitivity analysis (GSA) is gaining
increasing popularity in power systems due to its ability to
measure the importance of uncertain inputs, it has not been
explored in the integrated energy system (IES) in the existing
literature. Indeed, when coupled multi-energy systems (e.g.,
heating networks) are considered, the power system operation
states are inevitably altered. Accordingly, its associated GSA,
which relies on Monte Carlo simulations (MCS), becomes even
more computationally prohibitive since it not only increases the
model complexity but also faces large uncertainties. To address
these issues, this paper proposes a double-loop generalized
unscented transform (GenUT)-based strategy that, for the first
time, explores the GSA in the IES while simultaneously achieving
high computing efficiency and accuracy. More specifically, we
first propose a GenUT method that can propagate the moment
information of correlated input variables following different types
of probability distributions in the IES. We further design a
double-loop sampling scheme for GenUT to evaluate the GSA
for correlated uncertainties in a cost-effective manner. The
simulations of multiple heat- and power-coupled IESs reveal the
excellent performance of the proposed method.

Index Terms—Double-loop sampling, generalized unscented
transformation, global sensitivity analysis, integrated energy
system.

I. INTRODUCTION

THE IES combines various types of energy systems,
including electricity, heat and gas systems, to meet mul-

tiple demands for energy consumption and improve energy
efficiency [1], [2]. Obviously, it benefits from the diversity of
resources and the flexibility of operation through the coupling
components between different systems, such as the combined
heat and power (CHP) units in the electrical heating system
(HN) [3]. However, the dimension of uncertainty also increases
due to the complicated integration between several energy sys-
tems, whose fluctuated states must be considered accordingly
to ensure secure operation of the IES [4]. Therefore, stochastic
analysis (e.g., probabilistic energy flow (PEF)) has recently
been advocated in the literature to evaluate the uncertain nature
of IESs [5].

Y. Li, Y. Xu, S. Lu, and W. Gu are with the Electrical Engineering
Department, Southeast University, Nanjing, Jiangsu 210096, China (e-mail:
{liyibo, yijunxu, wgu}@seu.edu.cn).

S. Yao is with the School of Engineering, Cardiff University, UK, CF24
3AA (e-mail: YaoS8@cardiff.ac.uk).

L. Mili is with the Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Northern Virginia Center, Falls Church, VA 22043
USA (e-mail: lmili@vt.edu).

M. Korkali is with the University of Missouri, Department of Electrical
Engineering and Computer Science, Columbia, MO 65211 USA (e-mail:
korkalim@missouri.edu).

This work was supported by the National Natural Science Foundation of
China under Granted No. 52325703.

(Corresponding author: Yijun Xu.)

Apparently, the PEF computing procedure will have a
foreseeable high computational burden if we take into ac-
count all the variabilities [6]. This is unnecessary since some
variabilities may have little impact on the system operating
states, which can be simply ignored while preserving accurate
uncertainty analysis results. This is why sensitivity analysis
(SA) is well used by researchers in uncertainty quantification
(UQ) to measure the importance of the system inputs with
respect to their impact on the system outputs. In general,
SA methods can be classified into two categories, namely,
local sensitivity analysis (LSA) and GSA [7], [8]. The former
estimates the sensitivity through the derivative of the system
output in terms of the input variable. Although simple, it loses
its accuracy when the system is nonlinear, as it contains only
information in proximity to the IES operating point [9]. The
latter (i.e., GSA) aims to estimate the importance of every
input variable related to the uncertainty of the model output.
As this article explains, when nonlinearity in the system cannot
be ignored, GSA can better determine the sensitivity of the
system output to the full range of input variables.

To realize the GSA, a prerequisite based on the uncertainty
propagation technique quantifies the variances generated in the
output variables as a result of variations in the input variables
[10]. Due to this, traditional MCS inevitably suffers from a
prohibitive computing burden. So, it comes as no surprise
that some surrogate-based methods have been proposed. More
specifically, Xu et al. [11] first proposed a polynomial chaos
expansion (PCE) surrogate model to alleviate computing costs
in GSA analysis in power systems. It successfully ranks the
critical priority for renewable energy generation that affects
the voltage saddle point. Wang et al. [12] further extended this
surrogate model associated with the principal component anal-
ysis to investigate the impacts of uncertainties on microgrids.
Furthermore, using a Gaussian process emulator, also known
as the Kriging model [13], [14], Ye et al. [15] analyzed the
Sobol index of the distribution system voltages with respect
to stochastic photovoltaics (PV) and load variations. Although
surrogate models can alleviate the computational burden of
evaluating a large number of samples, their construction
can still require additional time, particularly for dimension-
sensitive surrogate models such as PCE, where the curse of
dimensionality cannot be neglected. Moreover, despite the
ability of surrogate models to emulate the behavior of physical
models, they still exhibit discrepancies from the actual models,
resulting in inevitable errors to some degree.

Although previous work has primarily relied on surrogate
models for assessing the GSA, we discovered that there is an-
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other approach. Alternatively, among various UQ techniques,
the unscented transformation method is known for its cost-
effectiveness [16]. However, its exploration within the GSA
framework of power systems remains unachieved, let alone
the GSA of the IES, which is the focus of our research.
[17], [18]. Despite the fact that the traditional unscented
transformation (TUT) method has been criticized for failing
to provide complete probability density functions (PDFs) of
a system’s states in probabilistic power flow analysis, it is
indeed quite suitable for GSA, which only requires variance
to be estimated from the UT for its associated criteria (e.g.,
the Sobol and Kucherenko indices) [17]. However, designing
a UT-based scheme within the GSA framework remains a
challenge. Indeed, on the one hand, the traditional UT method
is designed only for Gaussian variables that cannot be guaran-
teed in practice [19]. On the other hand, the precise sampling
strategy for UT-based methods to analyze GSA indices for
independent and correlated inputs remains an open problem
in power systems.

To address the above challenges, we propose a novel double-
loop GenUT-based strategy that explores the GSA in the IES
for the first time. The simulation results reveal the excellent
performance of the proposed method in the GSA of the IES.
The main contributions of this paper are summarized below.

• Considering that the coupling of the HN can have an
impact on the power system operation states where their
intrinsic uncertainties from the loads and renewables are
also non-negligible, we investigate the GSA for the IES
for the first time.

• To overcome the difficulties of the TUT method in han-
dling correlated non-Gaussian distributions, we propose
utilizing a GenUT method that is able to adapt to the
statistics of most probability distributions (e.g., Weibull
and Beta). Also, it matches higher moments (i.e., the
skewness and kurtosis) of non-Gaussian uncertainties
than TUT, which assures high computing accuracy [20].

• To analyze the GSA of the IES in a GenUT manner, we
further designed a double-loop sampling scheme that can
be perfectly merged with the GenUT framework, allowing
us to analyze the Sobol index for the correlated inputs in
a computationally efficient way [21].

The remainder of this paper is organized as follows. The
IES is introduced in Section II. GSA for IES is presented
in Section III. A novel GSA framework based on GenUT is
proposed in Section IV. The simulation results are presented
in Section V, followed by the conclusions in Section VI.

II. PROBABILISTIC ENERGY FLOW ANALYSIS FOR IES

In this section, we formulate the IES model considering the
coupling facilities and the coupling mode between the power
system and the HN. Then, we describe the uncertainties in IES
for its probabilistic analysis.

A. Formulations of the HN and Power System

1) The Heating Network (HN)
According to the flow balance and energy conservation

constraints, the energy flow equations in the HN are expressed

as [22], [23]

T out
i − T a =

(
T in
i − T a) · e−

λL
cṁi , ∀i ∈ E, (1)∑

i

(ṁin
d,i · T in

d,i) = Td ·
∑
i

ṁin
d,i, ∀d ∈ Vi, i ∈ Ein

d , (2)

T out
d,j = Td, ∀d ∈ Vi, j ∈ Eout

d , (3)

φi = cṁi(T
s
i − T r

i ), ∀i ∈ E ∪ V. (4)

Here, T in
i denotes the temperature of the water when it

flows into the ith pipe while T out
i denotes the temperature

of the water when it flows out of the ith pipe. T a denotes the
ambient temperature outside the HN. E/V denotes the set of
all pipes/nodes in the HN; Ein

d /Eout
d denotes the set of pipes

with water flowing into/out of Node d; Vi denotes the set of
nodes at both ends of Pipe i; ṁi is the mass flow rate of water
in the ith pipe while ṁin

d,i is the mass flow rate of water in the
ith pipe flowing into Node d; T out

d,i denotes the temperature
of water at Node d when it flows out of the ith pipe; T s

i /T
r
i

is the temperature of supply/return water in the ith pipe; φi
is the injected heat power at Node i or extracted heat power
flow in Pipe i; the parameter c is the specific heat capacity of
water; λ is the overall heat transfer coefficient of each pipe
per unit length; and L represents the pipe length.

In addition, (1) shows that when water flows through a pipe,
its temperature drops exponentially along with the length of
the pipe. Equation (2) calculates the temperature of the mixture
after the water from multiple pipes mixes at the same node.
Equation (3) means that the temperature of the water that flows
out of the same pipe while injecting into different branches
remains the same. Equation (4) reveals that the heat power at
Node i is determined by the mass flow and the temperature
difference between the supply and return water.

Moreover, since the loop-pressure equation should be satis-
fied for closed-loop pipes [24], we have

BKdiag (ṁ)| ṁ| = 0, (5)

where B is the loop incidence matrix that links the loop to the
pipes. The associated elements are set to +1/ − 1 to define
the same/opposite direction of the flow. Additionally, when
the pipe is not part of the loop, it is set to 0; K is a diagonal
matrix with the resistance coefficients of each pipe on its main
diagonal, determined mainly by diameter and flow velocity; ṁ
is the vector of mass flow within each pipe; and diag (x) is
the operator that returns a diagonal matrix with the elements
of vector x on its main diagonal. Equation (5) also states that
the sum of head losses in a closed loop must be zero. Fig. 1
gives an example of a simple HN with one loop. Here, water
flows from the heat source at high temperature, bringing heat
to heat loads through the supply pipes. Then, the water flows
out of heat loads with low temperatures. It finally flows back
to the heat source, completing a circulation in a HN.
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Fig. 1: A simple HN with a loop.

2) The Power System
The AC power flow model of power systems is expressed

as [25]

PG,k − PD,k = Vk

m∑
i=1

Vi(Gki cos(δki) +Bki sin(δki)), (6)

QG,k −QD,k = Vk

m∑
i=1

Vi(Gki sin(δki)−Bki cos(δki)), (7)

where m is the bus number; PG,k and QG,k denote the active
and reactive power injections at Bus k, respectively; PD,k
and QD,k denote the active and reactive power consumed at
Bus k, respectively; Vi and Vk are the voltage magnitudes at
Buses i and k, respectively; δki represents the angle difference
between Buses k and i; Gki and Bki are the conductance and
susceptance of the line between Buses k and i, respectively.

B. The Coupling Facilities and Coupling Mode of the IES

The power system and the HN are linked through coupling
facilities, including backpressure CHP units, electric boilers,
and heat pumps. These coupling facilities work as electrical
and heat interfaces with different heat-to-power ratios. Their
models can be described as [26]

φbp = P bpηbp, (8)

φeb = P ebηeb, (9)

φhp = P hpCOPhp, (10)

where superscript bp/eb/hb represents the backpressure unit/-
electric boiler/heat pump, respectively. φ and P represent
heat/electrical power of coupling facilities, ηbp/ηeb/COPhp

represents the heat-to-power ratio of CHP/efficiency of an
electric boiler/efficiency of a heat pump, respectively.

More specifically, to assess the impacts of HN on the
operating states of the power system, we adopt the operating
mode of these two systems as suggested by Yao et al. [27].
Here, the coupling mode depends on whether the coupling
node serves as the slack bus in the power system or the HN,
as the slack bus is utilized to compensate for the unbalanced
power between the supply and demand sides.

If one of the coupling nodes serves as the slack node of
the HN, its heat power output is first determined by solving
the HN energy flow model. Then, its coupled electric power
is determined by the ratio of heat and electricity power (8),
(9), and (10). If none of the coupling facilities serves as the
slack bus of the power systems, the coupling facilities should

serve as PV buses if they are CHPs or PQ buses if they are
electric boilers or heat pumps. The whole computing process
can be summarized as follows: HN → coupling facilities →
power system, as was derived in [27]. This procedure is also
summarized in Fig. 2, where the components of an IES are
presented in detail.

Fuel

CHP

Thermal 
power unit

Renewable  
energy

Heat pump Electric boiler

Battery energy 
storage

Fig. 2: Plots for the components of the IES system that
consist of CHP units, the electric boiler, the heat pump, the
traditional thermal power unit, the battery energy storage and
the renewable energy generation. Among them, the batteries
exchange the electrical energy with the power system through
the charging and discharging processes. Electric boilers and
heat pumps can transform electricity into heat energy, while
CHP units can generate both heat and power. Their associated
coupling facilities act as a bridge connecting the power system
and the HN in this IES.

C. Uncertainties in IES
1) Loads
In IES, electrical load demands are uncertain. We assume

electrical loads have constant power factors and the active
power of electrical loads follows a normal distribution as [28]

p(ψlp) =
1√

2πσψlp

exp

[
−
(
ψlp − µψlp

)2
2σψlp

2

]
, (11)

where p denotes the PDF; ψlp represents the active power of
electrical loads; µψlp and σψlp denote the mean and standard
deviation of active power of electrical loads.

In addition, we consider the uncertainties in the HN. We
assume the heat loads at every node, namely, one district HN,
also follow a normal distribution as [29], [30]

p(φlp) =
1√

2πσφlp

exp

[
−
(
φlp − µφlp

)2
2σφlp

2

]
, (12)

where φlp represents heat power; µφlp and σφlp denote the
mean and standard deviation of heat power.

2) Wind Generation
The wind generation is widely considered in the probabilis-

tic power flow [31]. The wind speed in the long timescale is
commonly described by the Weibull distribution as follows1:

1The probability distribution is a statistical concept over a long timescale, so
it hardly varies in the short term [28]. If the parameters of the input probability
distributions vary, we need to reconduct the GSA.
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p(v) =

{
k
λ (

v
λ )
k−1e−(v/λ)k v ≥ 0

0 v < 0
, (13)

where v represents the wind speed and λ is the scale parameter
and k is the location parameter. Furthermore, following [32]
its relationship with the active power of a wind farm, Pw, can
expressed as

Pw =


0 v ≤ vci

C1 (v − vci) vci < v ≤ vr

Pr vr ≤ v ≤ vco

0 v > vco

, (14)

where vci is the cut-in wind speed, vr is the rated wind speed,
vco is the cut-out wind speed and Pr is the rated active power
output of a wind farm. Here, the slope C1 is given by

C1 =
Pr

(vr − vci)
. (15)

3) Solar Generation
Over a long timescale, solar radiation is characterized by

the Beta distribution [33] as

p (r) =
Γ(κ+ ε)

Γ(κ)Γ(ε)

(
r

rmax

)κ−1(
1− r

rmax

)ε−1

, (16)

where κ and ε are shape parameters, r and rmax are the actual
and maximum solar radiations. The active output power of a
PV is a function of radiation, which can be expressed as

Ps =


r2

rcrstd
Pd 0 ≤ r < rc

r
rstd
Pd rc ≤ r ≤ rstd

Pd r > rstd

(17)

where rc is the certain radiation point; rstd is the rated solar
radiation; Pd is the rated power of a PV; and Ps is the active
power of a PV.

4) Uncertainty Mitigation
In IES, energy storage helps ensure a continuous and stable

power supply from renewable energy generation. Batteries are
common storage devices [34], [35]. When wind speed or solar
radiation is low, the batteries are discharged as compensation
for renewable output power. On the contrary, when the wind
speed or solar radiation is high, the batteries are charged to
prevent excessive injection of renewable power. The proposed
control strategy for battery charging and discharging is defined
as [35]

Pb =

 τdownPn − Pg Pg < τdownPn
τupPn − Pg Pg > τupPn

0 τdownPn ≤ Pg ≤ τupPn

(18)

where Pb is the output power of the battery; Pg is the actual
output power of the renewable generation; Pn is the rated
power of the renewable generation; and τdown and τup are
the set coefficients for the lower and upper bounds of the
renewable output power, respectively.

Till now, we are able to analyze the PEF by considering the
aforementioned uncertainties as [36]

g = f (x1, . . . , xn) , (19)

where x = {x1, . . . , xn} represents n-dimensional random
input variables (e.g., loads and renewable generation); g
represents random output variables of the system states (e.g.,
voltage and power).

Remark 1. Obviously, for an IES consisting of a power
system and several district HNs, the operating states of a
power system can be impacted by the HNs through the
coupling facilities. This also holds in the probabilistic analysis
since the HNs have intrinsic uncertainties from the demands.
Therefore, the GSA cannot simply ignore coupled HNs while
only focusing on a power system for an IES. This is the topic
that we will discuss next.

III. GSA WITH CORRELATED RANDOM INPUTS

In this section, we first introduce the theory of Sobol indices
for variance-based GSA. We then deduce the expressions of
the Sobol indices with correlated input variables associated
with their computational strategy using MCS.

A. Definition of Variance-based GSA Indices

For (19), let us consider a subset of the variables of x,
namely y = (x1, . . . , xs), 1 ≤ s < n, associated with its com-
plementary subset z = (x1, . . . , xn−s) so that x = {y, z}.
The total variance, D, of f (x1, . . . , xn) can be decomposed
as

D = Dy [Ez [f (y, z̄)]] + Ey [Dz [f (y, z̄)]] , (20)

where E[·] and D[·] represent the expectation and the variance
of the function. z is generated from a joint PDF, p(y, z), while
z̄ is generated from a conditional PDF, p(y, z̄|y). The ratio

Sy =
Dy[Ez(f(y, z̄))]

D
(21)

is known as the first-order Sobol index of y [37], [38]. Its full
expression is given by

Sy =
1

D

[∫
Rs

p(y) dy

[∫
Rn−s

f(y, z̄)p(y, z̄) dz̄

]2
− f20

]
,

(22)
where f0 is the total expectation of f (x1, . . . , xn). Here, a
more practical form of calculation is expressed as

Sy =
1

D

[∫
Rs

p(y) dy

[∫
Rn−s

f(y, z̄)p(y, z̄ | y) dz̄

×
∫
Rn−s

f (y, z̄′) p (y, z̄′ | y) dz̄′
]
− f20

]
.

(23)

Implementing (23) requires two groups of samples z̄ and z̄′

from the conditional distribution of p(y, z̄|y), respectively.

B. GSA for Gaussian Variables

Now, let us present how to compute Sy under the Gaussian
assumption. Assume that γ is a vector of n-dimensional
normal distributed random variables, namely ξ1, . . . , ξn, its
complementary subsets, α and β, are α = (ξ1, . . . , ξs),
β = (ξ1 . . . , ξn−s). The mean vector and covariance matrix
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of γ are µγ and Σγ , respectively, which can be partitioned as
follows:

µγ =

[
µα

µβ

]
,Σγ =

[
Σα Σαβ

Σβα Σβ

]
, (24)

where the mean vectors and covariance matrices of α and
β are µα, µβ and Σα, Σβ. Its conditional distribution,
p
(
α, β̄|α

)
, also follows a normal distribution as

p
(
α, β̄|α

)
= ϕn−s

(
α, β̄|α

)
, (25)

with its mean vector, µβc, and covariance matrix, Σβc, as

µβc = µβ +ΣβαΣ
−1
α (α− µα), (26)

Σβc = Σβ −ΣβαΣ
−1
α Σαβ, (27)

where µβc is a function of α and Σβα is constant. Therefore,
for correlated normal variables, (23) becomes

Sα =
1

D

[∫
Rs

ϕs(α) dα

[∫
Rn−s

f(α, β̄)ϕn−s
(
α, β̄|α

)
dβ̄

×
∫
Rn−s

f
(
α, β̄′)ϕn−s (α, β̄′|α

)
dβ̄′
]
− f20

]
,

(28)
where ϕs and ϕn−s are the PDFs of the s- and (n − s)-
dimensional multivariate normal variables, respectively.

C. GSA for Non-Gaussian Variables

The accuracy of the GSA depends on the accuracy of the
correlation modeling. The Gaussian copula is the most widely
used method employed for simulating non-Gaussian variables
with correlations. Equation (28) is derived under the Gaussian
assumption, the wind speeds and solar radiations, however,
are non-Gaussian variables. Therefore, we apply the Gaussian
copula to the GSA of the IES. For the non-Gaussian input
variables, let us first define their associated Gaussian copula
as [39]

C (u1, u2, . . . , un;ρ) =ΦN
(
Φ−1 (u1) ,Φ

−1 (u2) , . . . ,

Φ−1 (un)
)
,

(29)

where (u1, u2, . . . , un) are the n-dimensional uniform distri-
butions. ΦN denotes the cumulative probability distribution
function (CPDF) of n-dimensional multivariate standard nor-
mal variables with the correlation matrix ρ. Φ−1 denotes the
inverse CDF of the univariate standard normal distribution.
By applying the cumulative probability distribution function,
the input variable xi following arbitrary distributions can be
transformed into the standard Gaussian variable ξi through a
uniform distribution, ui, as

ξi = Φ−1 (ui) i = 1, . . . , n, (30)

The original input variables can be expressed via the inverse
transformation as

Ri = F−1
i (ξi) i = 1, . . . , n, (31)

where Fi denotes the CDF of the ith input variable. Applying
(29), (30) and (31), Sy for correlated non-normal variables
tends to be

Sy =
1

D

[∫
Rs

ϕs(α) dα

[∫
Rn−s

f(y, z̄)ϕn−s
(
α, β̄|α

)
dβ̄

×
∫
Rn−s

f (y, z̄′)ϕn−s
(
α, β̄′|α

)
dβ̄′
]
− f20

]
,

(32)
where

y =
(
F−1
1 (Φ(ξ1)) , . . . , F

−1
s (Φ(ξs))

)
,

z̄ =
(
F−1
1

(
Φ(ξ̄1)

)
, . . . , F−1

(n−s)
(
Φ(ξ̄(n−s))

))
.

(33)

Discussion. Note that the Sobol index is generally applicable
for any form of input random variables given the PDFs and
correlations. Since the expression of Sy for the correlated
variables is complicated, it typically requires a double-loop
sampling strategy for the MCS. More specifically, the outer-
loop samples are drawn from the target input variable, y,
while the inner-loop samples are drawn from the conditioned
complementary variables, z̄. Clearly, this would require the
traditional MCS to evaluate large amounts of samples, which
can be computationally prohibitive, making GSA unsuitable
for use in IES. For more details, the reader is referred to
[11], [40].

IV. A NOVEL GSA COMPUTATIONAL STRATEGY BASED
ON GENERALIZED UNSCENTED TRANSFORMATION

The MCS suffers from a high computational burden to
estimate the integration value in (32). This motivates us to
design a cost-effective, double-loop GenUT-based approach
[40].

A. The Proposed GenUT for UQ in the IES

1) Limitation of TUT
Although TUT can propagate uncertainties by approximat-

ing moments of input variables through a nonlinear function,
it is developed under the Gaussian assumption and can only
match the first two moments of input variables with an
arbitrary distribution, and the weight associated with the sigma
point is set artificially [41], [42]. Unlike the TUT, the GenUT
can preserve more information through the diagonal compo-
nents of the skewness and kurtosis, which better characterize
higher-moment information with the same number of sigma
points as the TUT method.

2) The Proposed GenUT
The crucial step of the GenUT method involves generating

2n+ 1 critical samples, known as sigma points, to match the
moments of n input variables. They can be obtained through

χ0 = x, w0,

χi = x− ai
√
P [i], w′,

χi+n, = x+ bi
√
P [i], w′′,

(34)

for i ∈ {1, . . . , n}. Here, χi is the ith sigma point. a and b
are parameters that reflect the moments of the input variables.
w are the weights associated with sigma points. x is the



6 IEEE TRANSACTIONS ON POWER SYSTEMS

mean vector of the input variables.
√
P [i]is the ith column

of
√
P , which can be calculated by Cholesky decomposition.

The moments of sigma points should be equal to those of the
input variables. Thus, we have

E[χ] = x,

E
[
(χ− x)(χ− x)

⊺]
= P ,

E
[
(χ− x)⊙3

]
= S̆,

E
[
(χ− x)⊙4

]
= K̆.

(35)

Here, ⊙ represents the Hadamard product. Š is the di-
agonal component of the skewness tensor denoted as
Š = [S111, S222, . . . , Snnn]

⊺, and Ǩ is the diago-
nal component of the kurtosis tensor denoted as Ǩ =
[K1111,K2222, . . . ,Knnnn]

⊺. By simplifying (35), we have
constraint equations for parameters a , b and weights w as

2n∑
i=0

wi = 1,

−w′ ⊙ a+w′′ ⊙ b = 0,

w′ ⊙ a⊙2 +w′′ ⊙ b⊙2 = 1,

−w′ ⊙ a⊙3 +w′′ ⊙ b⊙3 =
√
P

⊙−3
S̆.

(36)

Then, we set a as the free parameters. After simplifying (36),
we have

a⊙2 + S
√
P

⊙−3
a+ S⊙2P⊙−3 −KP⊙−2 = 0. (37)

Obviously, it is a quadratic form of a that yields

a =
1

2

(
−
√
P

⊙−3
S̆ +

√
4
√
P

⊙−4
K̆ − 3

(√
P

⊙−3
S̆
)⊙2

)
.

(38)
Also, using (36), we have the relationships among free param-
eters a and b through

b = a+
√
P

⊙−3
S̆. (39)

Similarly, the relationships among w, a, and b hold for

w′′ = 1⊘ b⊘ (a+ b),

w′ = w′′ ⊙ b⊘ a,
(40)

where ⊘ represents the Hadamard division. Up to this point,
we can evaluate the PEF using the GenUT-based sigma points
as

Yi = f
(
χi
)
, (41)

y =

2n∑
i=0

wiYi, (42)

Py =

2n∑
i=0

wi
(
Yi − y

) (
Yi − y

)⊺
. (43)

Since GenUT is applicable for correlated variables, we can
sample from the uncertainties in the IES directly. Then, (41)-
(43) are applied to approximate the total expectation, f0, and
total variance, D, for the operating states of the IES.

B. The Proposed Double-loop-based GSA using GenUT

To further utilize GenUT for GSA, we need to merge it into
the double-loop sampling scheme.

1) Outer-loop Sampling
Now, based on (26), the mean of the conditioned variables,

µβc, is a function of the conditioning variable, α. Thus, we
can first sample from the conditioning variable, α, using
(34) as the outer layer. Since α only has one dimension
for the first-order Sobol index, we get 3 sigma points as
χα = (χ0

α, χ
1
α, χ

2
α) as well as the associated weights as

ωα = (ω0
α, ω

1
α, ω

2
α). Then, we can calculate the conditional

expectation, µβc, for each value in χα as

µ0
βc = µβ +ΣβαΣ

−1
α (χ0

α − µα),

µ1
βc = µβ +ΣβαΣ

−1
α (χ1

α − µα),

µ2
βc = µβ +ΣβαΣ

−1
α (χ2

α − µα).

(44)

2) Inner-loop Sampling
Next, we sample the conditioned variables as the inner layer

with the total dimension for the sigma points of 2(n − 1).
Here, note that two groups of samples, namely, β̄ and β̄′, are
required as shown in (28). They have the same statistics and
are independent of each other, which leads to

µk(β̄,β̄′) =

[
µkβc
µkβc

]
,Σ(β̄,β̄′) =

[
Σβc 0
0 Σβc

]
, (45)

for k ∈ {0, 1, 2}. Here, µk
(β̄,β̄′)

and Σ(β̄,β̄′) are the expectation
and covariance matrix of (β̄, β̄′), respectively, under the
condition of χkα. Then, we sample from (β̄, β̄′) using GenUT
as

χ0
k = µk(β̄,β̄′), ω0

β̄(k),

χik = µk(β̄,β̄′) − ai
√
Σ(β̄,β̄′)

[i]
, ωiβ̄(k),

χ
i+2(n−1)
k = µk(β̄,β̄′) + bi

√
Σ(β̄,β̄′)

[i]
, ω

i+2(n−1)

β̄(k)
,

(46)
for i ∈ {1, . . . , 2(n − 1)} and k ∈ {0, 1, 2}. ai and bi can
be obtained from (38) and (39). Then, the sigma points are
divided into two groups, i.e., (χβ̄(k),χ

′
β̄(k)), corresponding

to (β̄, β̄′).
3) Calculating the Sobol Index
Now, to evaluate the responses of the IES, we need to

transform the Gaussian distributed α and β into physical
space. To do so, using (33), χβ̄(k),χβ̄′(k) and χα can be
transformed into χz̄(k), χz̄′(k), and χy that can be directly
computed in the PEF model as

gjk = f(χky,χ
j
z̄(k)),

g′j
k = f(χky,χ

j
z̄′(k)),

(47)

for j ∈ {0, 1, . . . , 4(n− 1)} and k ∈ {0, 1, 2}.
According to (32), Sy for correlated non-normal variables

sampling by double-loop GenUT can be presented in the
following form:

Sy =
1

D

 2∑
k=0

ωkα

4(n−1)∑
j=0

ωjβ(k)g
j
kg

′j
k − f20

 . (48)



LI et al.: GENERALIZED UNSCENTED TRANSFORMATION FOR VARIANCE-BASED SENSITIVITY ANALYSIS FOR IES 7

4) Computational Burden Analysis
The computing time of this GSA is mainly determined

by the total number of realizations, NGenUT, of the energy
flow model. Under our proposed GenUT-based double-loop
scheme, to estimate Sy for n variables, NGenUT is

NGenUT = n× 3× [2× 2(n− 1) + 1]. (49)

More specifically, in the inner layer, there are two groups of
conditioned variables (z̄, z̄′). Since both z̄ and z̄′ have n −
1 dimensions, the dimension of the inner layer is 2(n − 1),
generating 2× 2× (n− 1) + 1 sigma points. Also, the outer
layer only has one variable that generates 2×1+1 = 3 sigma
points. So, analyzing Sy for one variable requires evaluating
the energy flow for 3× [2× 2× (n− 1)+1] times. Therefore,
to analyze Sy for all the n variables, NGenUT is n× 3× [2×
2× (n− 1) + 1] as shown in (49).
Remark 2. GenUT sampling is suitable for GSA. Although
GenUT cannot provide the entire PDF of the output, the GSA
only needs the expectation and variance of the outputs, which
can be accurately approximated by GenUT. The proposed
double-loop GenUT sampling strategy for GSA generates only
a few samples compared to MCS. This enables us to evaluate
the GSA for the IES cost-effectively while providing all the
information required for calculating the Sobol index. The
procedure of the proposed GenUT-based GSA is summarized
in Fig. 3.

Start

Build the energy flow model of IES as (1) to (10)

End

Build  the  model of  the uncertain renewables, 

loads and energy storage devices as (11) to (18)

Choose the variable      from the uncertain 

variables to conduct GSA

Rank the Sobol indices of all variables

All variables are analyzed?

Outer-loop sampling from     through GenUT

Inner-loop sampling from the other variables 

through GenUT

Calculate the Sobol indices of       as (48)

i=i+1

No

Yes

yi

yi

yi

Fig. 3: Overall flowchart of proposed method.

V. SIMULATION RESULTS

In this section, we test the performance of the proposed
method using the two IESs based on the IEEE 30 and 118-
bus systems, both of which consist of a power system and
several district HNs.

A. Demo with the IES based on the IEEE 30-bus system

1) The Test System
First, a relatively small-scale IES is constructed to evaluate

the performance of the proposed method. As shown in Fig.
4, IES consists of an IEEE 30-bus power system and 3
modified Barry Island 35-node district HNs as subsystems
[43]. We select active power flows through Line 2-6 (i.e.,
P2−6) as the output variable. The power system and 3 HNs are
coupled through 2 backpressure CHPs at Buses 13, 22, and 1
regenerative electric boiler at Bus 7. The heat-to-power ratio
of CHP is set to 1.3, and the efficiency of an electric boiler
is set to 0.8 [43]. Assume that all heat loads in the same HN
are aggregated as one uncertainty source. Therefore, they are
modeled as three Gaussian variables in this case. Each district
heating subsystem’s total base heat load is 10.8 MW. Also, let
us assume that all heat loads follow a normal distribution with
a mean value equal to the base loads and a standard deviation
equal to 20% of the mean values. Besides, we consider the
uncertainty of 3 electrical loads located at Bus 2, Bus 7, and
Bus 12, named EL 1, EL 2, and EL 3, respectively. Uncertain
electrical loads are assumed to follow a normal distribution
with a mean value equal to the base loads and a standard
deviation equal to 10% of the mean values.

For every HN, Source 1 is selected as the slack node, which
serves as the coupling node connected to the power system.
Its slack node Bus 1 does not serve as the coupling node
in the power system. Therefore, the electric boiler at Bus 7
is equivalent to the electric load of the power system, and
the backpressure CHPs at Buses 13 and 22 are equivalent to
the generators of the power system. The active power of the
coupling nodes is determined by the heat loads of the HNs.

To assess the efficiency and accuracy of the GenUT-based
GSA, the results of the proposed method are compared with
the results of the MCS-based GSA with a sample size of 5,000.

2) GSA with Independent Loads
In this section, we evaluate the importance of independent

heat loads and electrical loads for their impact on the power
system. First, we compare the performance of the proposed
GenUT-based GSA and the PCE-based GSA. Then, we con-
duct LSA and distinguish the differences between LSA and
GSA.

a) Comparsion with the PCE
We use the MCS as the baseline method to compare the

proposed GenUT method with the PCE method. The GSA
results obtained by GenUT are 0.308, 0.126 0.169, 0.015,
0.286, and 0.073. The GSA results obtained by PCE are
0.309, 0.126, 0.169, 0.015, 0.303, and 0.078. The GSA results
obtained by MCS are 0.320, 0.124, 0.167, 0.012, 0.279, and
0.076. Note that the Sobol index of the fourth variable has
a tiny value, which indicates that the input variable has a
negligible effect on the output variable. In this scenario, the
error of the Sobol index of the fourth variable can be ignored.
The mean error of the rest variables obtained by the GenUT
is 2.6%. The mean error of the other variables obtained by the
PCE is 3.5%. The simulation time for the GenUT and PCE
methods are 2.02 s and 3.91 s, respectively.
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Fig. 4: Schematic diagram of IES based on the IEEE 30-bus
system with 3 HNs (left) as well as the detailed diagram for
Barry Island (right) of each HN.

The results show that the proposed GenUT-based GSA is
more accurate and efficient than the PCE-based GSA. The
reason lies in the fact that the PCE is a surrogate-based UQ
method. So, it takes extra time to build the surrogate model.
However, GenUT is based on moment information propagation
through the physical model. This leads to an apparent decrease
in computing costs. In addition, when the input probabilistic
distribution changes, only the moment information needs to be
modified. Therefore, GenUT-based GSA is easy to implement.

b) Comparison with the LSA
It should be emphasized that the LSA method is solely

applicable to its specific operation point. The evaluation results
vary significantly at different operation points. It is commonly
acknowledged that this tool is ill-suited for a system where
the operation points are randomly located.

Here, let us demonstrate this property for the LSA at two
different operating points of the IES. In the first operating
point, the loads are set to their base values. In the second
operating point, the loads have a 20% perturbation relative
to the base value. The LSA is calculated by the derivative
of the system output corresponding to the inputs. The LSA
index of the ith input variable is defined as Li = |∆g/∆xi|,
where ∆xi stands for the small deviation of the ith uncertain
load, ∆g stands for the small deviation of the output caused
by the small deviation of the inputs. The LSA indices of the
first operating point are 0.055, 0.313, 0.240, 0.300, 0.224,
and 0.263. The LSA indices of the second operating point
are 0.053, 0.385, 0.235, 0.353, 0.215, and 0.251. These two
operation points lead to totally different LSA results. This is
the intrinsic limitation that LSA cannot address when facing
uncertain inputs that might exhibit different operation points.

In essence, the LSA is based on the derivative of the system

output only at the specific operation point, while the GSA
is based on the variance quantification of the system output,
which can naturally account for all possible operation points
through its statistical inputs. These two kinds of sensitivity
are fundamentally different. Therefore, the indices of the
LSA and the GSA cannot be compared. In addition, the IES
operating point varies when considering uncertain inputs. The
simulation results show that the LSA indices change with
different operating points. Therefore, GSA is more suitable for
evaluating the IES system when considering uncertain inputs.

3) GSA with Different Correlations among Loads
To comprehensively analyze the impacts of correlated heat

loads and electrical loads on power systems, the correlation
coefficients of electrical loads are all set at 0.6. The correlation
coefficients between heat loads in HNs 1 and 3 (i.e., ρ13)
and in HNs 2 and 3 (i.e., ρ23) are both set at 0.4 while the
correlation coefficient between heat loads in HNs 1 and 2 (i.e.,
ρ12) increases from −0.6 to 0.6 with an interval of 0.2. The
correlation matrix of heat loads in different HNs and electrical
loads is shown by

r =


1 ρ12 0.4
ρ12 1 0.4 0
0.4 0.4 1

1 0.6 0.6
0 0.6 1 0.6

0.6 0.6 1

 . (50)

In this part, the MCS method with a sample size of 10,000
provides the benchmark of the GSA results. Furthermore, the
Latin hypercube sampling (LHS) technique is employed, using
a sample size of 1,000, to compare against the proposed
GenUT-based GSA. Figures 5–7 compare the Sy calculated
by GenUT, MCS, and LHS methods, respectively. Sy of HNs
1 and 2 decrease and Sy of HN 3 and EL 1 to EL 3 increases
with increasing ρ12. When the correlation coefficient is 0.6, Sy
of HNs 1 and 2 is close to 0, indicating that HN 3 and EL 1
to EL 3 have a more critical impact on P2−6. The results
reveal that variations in the correlation coefficients lead to
changes in the Sy of the HNs. The reason is that the correlation
coefficients between the heat loads influence the statistical
characteristics of the operating states of the IES. Therefore,
considering the correlation between random input variables is
crucial to the ranking for the importance of input uncertainties.

4) Computing Accuracy
Then, the computing accuracy of different correlation levels

is evaluated. The results obtained with the MCS are used as a
benchmark. Table I shows the errors of the GenUT method for
the total expectation, E, the total standard deviation, σ, and the
average errors of Sy for P2−6 when the correlation between
the heat loads of HN 1 and 2 increases from −0.6 to 0.6. The
results show that the double-loop GenUT accurately conducts
GSA with different correlations of the input variables. The
average errors of Sy are contained within the interval of 2.2%
to 5.3%. Moreover, the estimation of E and σ has a high
level of accuracy. The average error of E is 0.054% while the
average error of σ is 0.9%. The estimation of E has a higher
accuracy than that of σ because the expectation is first-order
statistics, while the variance is second-order statistics. So, it
is easier for GenUT to estimate lower-order statistics.
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5) Computing Efficiency
Our proposed method significantly decreases the computing

time compared with the MCS and the LHS. The computation
time of the three methods for the GSA evaluation is shown in
Table II. The reason is that GenUT selects a small number of
critical samples instead of randomly selecting a large number
of samples. Therefore, the proposed method significantly al-
leviates the computational burden while preserving excellent
computing accuracy.

TABLE I: Total Expectation, Total Variance Errors, and Av-
erage Errors of Sy of P2−6 with Different Correlation Levels

Correlation ρ12 E error [%] σ error [%] Sy error [%]
−0.6 0.101 0.56 3.18

−0.4 0.153 0.92 4.29

−0.2 0.005 0.23 2.20

0 0.007 0.81 5.28

0.2 0.07 1.40 3.78

0.4 0.014 2.14 4.82

0.6 0.028 0.26 4.32

TABLE II: The Computation Time of IES based on the IEEE
30-bus System

Proposed method MCS LHS
Time [s] 2.02 931.9 87.7

Fig. 5: Sy at different correlation ρ12 calculated by GenUT.

B. Application to the IEEE 118-bus-system-based IES
In this section, we evaluate the performance of the proposed

method on the IES on a larger scale. The GenUT-based method
is applied to IES based on the modified IEEE 118-bus system,
which is shown in Fig. 8. IES consists of the IEEE 118-bus
power system, 8 modified 35-node Barry Island district heating
subsystems, 2 solar PVs, and 2 wind farms. Assume that the
ambient temperature and the global heat transfer coefficient
both follow a normal distribution with a mean equal to the
base value and a standard deviation equal to 20% of the mean
values. There are 14 sources of uncertainty in this case. The
two solar PVs are named PV 1 and PV 2, and are connected
to Bus 36 and Bus 54, respectively. The capacities of PV 1

Fig. 6: Sy at different correlation ρ12 calculated by MCS.

Fig. 7: Sy at different correlation ρ12 calculated by LHS.

and PV 2 are both 100 MW. The parameters κ are set to
0.9 and 0.8, respectively. The parameters ε are 0.9 and 0.8,
respectively. The parameters of the solar PVs are cited from
[28]. The two wind farms are named WF 1 and WF 2, and are
connected to Bus 59 and Bus 88, respectively. The capacities
of WF 1 and WF 2 are both 300 MW. The location parameters
k are 1.5 and 1.7, respectively. The scale parameters λ are 8.1
and 8.5, respectively. The parameters of the wind farms are
cited from [17]. Each renewable generation unit is connected
to a battery for energy storage. The lower bound τdown is 0.2,
and the upper bound is 0.8. Assume that all batteries have
adequate capacity. We neglect the dynamic process of charging
and discharging the battery. The parameters of the batteries
are cited from [35]. The power system and 8 HNs are coupled
through 4 backpressure cogeneration units at Buses 10, 25,
49, and 65, 2 heat pumps at Buses 11 and 15, and 2 electric
boilers at Buses 59 and 90. The heat-to-power ratio of CHP,
an electric boiler’s efficiency, and a heat pump’s efficiency
are set to 1.3, 0.8, and 3, respectively [44]. The correlation
coefficients between the heat loads of each two HNs are set
to 0.4. The correlation coefficient between WF 1 and WF 2 is
set to 0.4. The correlation coefficient between PV 1 and PV
2 is set to 0.4.
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Fig. 8: Schematic diagram of the IES based on the IEEE 118-
bus system.

1) GSA with Different Capacities of HNs
To comprehensively evaluate the impacts of heat loads on

power systems, we consider 9 different levels of capacity of
HNs. The total base heat loads of each HN are set to 10.8
MW, 21.6 MW, 43.2 MW, 64.8 MW, 108 MW, 216 MW, 324
MW, 432 MW, and 540 MW while keeping the correlation
coefficients between variables unchanged. Assume that all heat
loads follow a normal distribution with the mean value being
the base value and the standard deviation equal to 20% of the
mean values.

We select active power, P23−32, as the output variable to
analyze the Sy of WF 2, PV 2, HNs 1, HNs 3, the ambient
temperature, and the global heat transfer coefficient. Figs. 9(a)
and 9(c) show Sy calculated by the proposed GenUT method
under different capacities. Fig. 9(a) regards batteries while
Fig. 9(c) disregards batteries. When the capacities of the HNs
are small, Sy of WF 2 is high, while Sy of the HNs 1 and 3
are close to 0. This makes sense since the loads in the HNs
are quite small compared to the renewable generation capacity
in this case. The uncertainty in wind farms and PVs is the
main factor leading to the fluctuation of P23−32. The Sy of
HNs 1 and 3 increase as we increase the capacity of HNs,
indicating that HNs have a greater impact on P23−32. The
Sy value of HN 1 stabilizes after the heat loads exceed 324
MW. This is because the Sy values of other HNs increase,
thereby reducing the impact of HN 1. Comparing Figs. 9(a)
and 9(c), the Sy of WF and PV both decrease when batteries
are involved. These phenomena indicate that energy storage
mitigates the uncertainties caused by renewable generation,
reducing the importance of WFs and PVs.

2) GSA with Different Fluctuations of Uncertainties
We consider 9 degrees of fluctuation in HNs. Let us

assume that all heat loads follow a normal distribution with
mean values equal to the base loads of 324 MW, and the
standard deviations, σ, equal to 1%, 3%, 5%, 7%, 10%, 15%,
20%, 25%, and 30% of the mean values while keeping the
correlation coefficients among random variables unchanged.

We select active power, P23−32, as the output variable to
analyze Sy of WF 2, PV 2, HNs 1, HNs 3, the ambient

temperature and the global heat transfer coefficient. Fig. 9(b)
and 9(d) show Sy calculated by the proposed GenUT method
under different fluctuations. Fig. 9(b) regards batteries, while
Fig. 9(d) disregards batteries. When the fluctuation of HNs is
small, Sy of WF 2 is high, while Sy of HNs 1 and 3 are close
to 0. This means that the uncertainty of wind farms and PVs is
the main factor that causes the fluctuation of P23−32. The Sy
of HNs 1 and 3 increase as we increase the capacity of HNs,
indicating that HNs have a more critical impact on P23−32.
This indicates that Sy is related to the fluctuation levels of the
input variables. If the fluctuation is greater, the input variable
has a relatively greater impact on the output.

Simulation results also show that the Sobol index of ambient
temperature and the global heat transfer coefficient are both
nearly zero under different capacities and fluctuations of HNs.
This means that the uncertainties of the two variables have
little effect on the IES energy flow. This phenomenon arises
from the small scale of the Barry Island district heating
subsystems. The length of the pipe is relatively short, which
leads to little heat loss. According to (1), the exponential term
is still close to 1, even considering the uncertainties of ambient
temperature and the global heat transfer coefficient.

Fig. 9: Simulation results of the IES based on the IEEE
118-bus system under different cases. (a) Sy with respect to
capacity levels of HNs with batteries included. (b) Sy with
respect to fluctuation levels of HNs with batteries included.
(c) Sy with respect to capacity levels of HNs with batteries
excluded. (d) Sy with respect to fluctuation levels of HNs with
batteries excluded.

3) Application of GenUT-based GSA for IES UQ
GSA can be utilized to implement dimensionality reduction

when calculating the probabilistic energy flow of IES since it
computes the importance ranking of uncertainties and identi-
fies the sources of critical uncertainty. If we are interested in
a specific output of the probabilistic energy flow (e.g., active
power through a line), we can perform the GSA first; then,
we only choose the critical inputs to calculate the probabilistic
energy flow, which reduces the dimension of the uncertainties.
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To demonstrate this, we set the mean value of the total heat
load of each district heating subsystem as 324 MW with
a standard deviation equal to 20% of the mean values. We
choose active power flow, P23−32, as output. The Sy values
of all input variables calculated by the GenUT-based GSA are
presented in Fig. 10.

Fig. 10: Sy of all input variables.

There are 7 variables that have Sy larger than 0.05, they
are WF 1, PV 1, PV 2, HN 1, HN 2, HN 3, and HN 6.
The respective Sobol indices are 0.07, 0.09, 0.07, 0.21, 0.09,
0.1, and 0.06. We keep the uncertainty of the critical input
variables unchanged while setting the other input variables
as deterministic values equal to their own mean values. To
assess the performance of the application, we established
a benchmark considering all input variables. We calculated
the relative errors of the mean and standard deviation when
only the most significant uncertainty sources were taken
into account, as presented in Table III. Note that GenUT
with dimensionality reduction is abbreviated as GenUT-DR in
Table III. It shows that when we reserve the first 7 critical
variables, the standard deviation error is close to 9%. and
the expectation error is almost zero. The 95% confidence
level of P23−32 gained by MCS, GenUT, and GenUT with
dimensionality reduction methods are [76.3, 98.6], [77.5, 97.1]
and [77.5, 97.0], respectively. In general, the results obtained
by different methods are similar. However, note that the
confidence intervals are calculated by the expectation and the
variance of P23−32 under the Gaussian assumption. We can
see small differences in the results due to the tiny error of the
PEF result gained by GenUT and GenUT with dimensionality
reduction compared with MCS. This result shows that the GSA
can identify weak uncertainty sources that have little impact
on the output. Their uncertainty can be ignored in PEF studies,
reducing the dimension of the system.

TABLE III: Statistics for Different Number of Variables

Method E E error [%] σ σ error [%]
MCS 87.30 — 5.10 —

GenUT 87.28 0.030 4.99 1.94

GenUT-DR 87.26 0.046 4.96 2.65

VI. FURTHER DISCUSSIONS

A. Discussions on Confidence Intervals
For UQ, the GenUT provides the confidence intervals of

the output probability distributions only under the Gaussian
assumption. However, the GSA aims to rank the importance
priority of the input variables related to the uncertainty of the
model output, so confidence intervals are unnecessary in the
GSA [10], [11].
B. Difference between PEF and Optimal Energy Flow (OEF)

The PEF aims to assess the statistical characteristics of
the IES operating states under the uncertainties of loads
and generations. However, the OEF focuses on the optimal
operating state by optimizing the objective functions while
satisfying the constraint equations [28], [45], [46]. The GSA is
based on the uncertainty propagation technique that quantifies
the variances generated in the output variables as a result of
variations in the input variables. Therefore, PEF is applied in
GSA rather than OEF.

C. Difference between GSA and the Feature Importance
It is necessary to distinguish between GSA and a similar

concept, the feature importance. Machine learning-based fea-
ture importance is intended to score input features based on
their usefulness in predicting a target variable [47]. The GSA
apportions uncertainties of different loads and generations
to uncertainties of the output IES operating states based on
UQ. Consequently, the feature importance is fundamentally
different from the GSA.

VII. CONCLUSIONS

In this paper, we propose a GenUT-based double-loop strat-
egy that, for the first time, explores the GSA in the IES. First,
the Gaussian copula is employed to model correlations among
Gaussian and non-Gaussian variables. Second, the GenUT
method accurately approximates the expectation and variance
of the outputs by preserving higher-moment information of
the inputs. Then, inner- and outer-loop sampling strategies are
proposed to allow GenUT accessible in GSA with correlated
input variables. The following conclusions can be drawn:

1) For the IES, the uncertainty of heating loads and re-
newable generation crucially alters the power system
operation states. Moreover, the degree of effect relies on
parameters of probability distributions and correlations
among the input variables.

2) The proposed GenUT-based GSA achieves a speedup
of two orders of magnitude compared with the MCS.
Simulations in multiple IESs demonstrate its excellent
performances in GSA.

3) The paper presents comparative experiments to identify
the key factors that determine the Sobol index. The GSA
is carried out with different statistical features of the
uncertain input variables. Besides, it reveals the impact
of energy storage on GSA in the IES.

4) The GSA identifies weak uncertain inputs, whose uncer-
tainty has negligible impacts on output. This can be fur-
ther utilized for the reduction of system dimensionality,
which contributes to a more effective computation in PEF.
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In the future, we plan to explore more scenarios in which the
statistical features of heat demands and renewable generation
rapidly change.
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