Supplementary figures

Supplementary figure 1

b

Comparison of quantitative measures (MJF-14 PLA on SH-SY5Y cells)

Supplementary figure 1: Technical controls and additional quantification measures for MJF-14 PLA in SH-SY5Y cells. a Technical negative PLA control without the ligase in the reaction mixture show virtually no PLA signal, confirming specificity of signal in the images presented in Fig. 1. Representative images of cultures immunostained with MJF-14 PLA (red), α -tubulin (grey), and DAPI nuclear stain (blue). Arrows indicate the rare signal in the red channel. Scale bars = 50 µm. b Comparison of various quantification measures in one set of cultures ± α -synuclein overexpression and ± ASI1D treatment. Increasing fold difference in signal (especially between - α -syn and + α -syn conditions) is seen when quantifying PLA area/cell or integrated density of PLA signal/cell compared to PLA particle counts/cell. Graphs display mean ± SEM from one replicate and each dot signifies one image. Experiments were performed minimum three times independently, and groups were compared using a Kruskal-Wallis one-way ANOVA followed by the Dunn post hoc test. *** p<0.001, **** p<0.0001. .

Supplementary figure 2: AS-141G PFFs are invisible to the MJF-14 antibody and increase signal-to-noise ratio in immuno-fluorescence staining of human cortical neurons.

a-b Immunofluorescence of human cortical neurons treated with either S129A PFFs, AS-141G PFFs, or PBS, and fixed after 2 hours (**a**) or 7 days (**b**). Representative images of cultures immunostained with MJF-14 (grey), total α -synuclein (LB509, red), β III-tubulin (purple), and DAPI nuclear stain (blue) show strong detection of exogenous S129A PFFs with MJF-14 after 2 hours, while AS-141G PFFs don't generate any signal (**a**). After 7 days, increased MJF-14 staining is seen with both S129A and AS-141G PFF treatment, but considerable background staining, perhaps from non-internalized PFFs, is still present in S129A PFF cultures. In contrast, α -synuclein deposits in AS-141G PFF cultures are easily identifiable based on the MJF-14 staining (**b**). Scale bars = 20 μ m.

а

Group 1: Intense neuronal counterstain

Group 2: Weak neuronal counterstain

#1 DGM	#20 DGM	#33 DGM
	A State State State	
ya a a a a a a a a a a a a a a a a a a		
i alla company i a		
		3

С

b

	Sensitivity	Precision	Accuracy
Definition	true positive	true positive	true positive
Demition	true positive + false negative	true positive + false positive	true positive + false positive + false negative

е

d

Group 1: Intense counterstain								
	Sensitivity Precision Accuracy							
#8 SGM	0.71	0.85	0.63					
#9 DGM	0.91	0.69	0.65					
#22 SGM	0.88	0.70	0.64					
Mean	0.83	0.75	0.64					

Group 2: Weak counterstain

	Sensitivity	Precision	Accuracy
#1 DGM	0.90	0.53	0.50
#20 DGM	0.98	0.68	0.67
#33 DGM	0.74	0.77	0.61
Mean	0.87	0.66	0.59

Supplementary figure 3: Optimization of automated segmentation of chromogenic PLA-stained human anterior cingulate cortex.

a-b ROIs used for optimization of PLA signal and nuclei segmentation grouped into either intense counterstain (**a**) or weak counterstain (**b**). Numbers indicate case ID, while SGM and DGM signify superficial and deep grey matter, respectively. The total number of PLA particles per image and classification into counterstain group for all cases can be found in Suppl. Table 1. **c** Definition of parameters for evaluation of segmentation classifier performance. **d-e** Final parameter values for intense (**d**) and weak (**e**) neuronal counterstain groups, respectively.

Supplementary figure 4

Strategy for image segmentation and analysis

Supplementary figure 4: Strategy for image segmentation and quantification of PLA in human anterior cingulate cortex sections.

First, a test cohort consisting of 6 images was selected for the development and optimization of the automated classifier to segment the images (comprising differences in both PLA signal density and counterstain; see Suppl. Fig. 3). The test cohort was manually annotated before training of the classifier, which was then validated in its ability to correctly classify PLA signals and both glial and neuronal nuclei. For the classification of the entire ACC cohort, each image was then segmented and probability maps for nuclei and PLA signal were obtained. To define neuronal nuclei, a probability threshold was added, and particles larger than 350 pixels ($36.7 \mu m^2$, corresponding to an approx. diameter larger than 7 μm) were considered neuronal nuclei. To define PLA particles, a probability threshold was similarly added, fused particles separated using Watershed segmentation and particles with a size of 4-30 pixels (approx. 0.4-3.2 μm^2) counted. In addition, the total number of neuronal nuclei was counted, and total tissue area as well as glial/neuropil/extracellular area were computed, along with PLA particle counts in these compartments. For the single neuron analysis, each neuron was then analysed individually with 1) selection of nucleus, 2) fitting of a convex hull to include the indentations left by the PLA signal in the nuclei map, 3) application of the nuclear selection to the PLA signal map, counting of particles and clearing, and 4) expansion of nuclear selection by 3.5 μm to estimate cytoplasm, followed by counting of cytoplasmic PLA particles. Finally, each neuron was grouped in one of nine groups according to nuclear and cytoplasmic PLA particle counts.

Supplementary figure 5

LB-negative neurons

LB-positive neurons

Supplementary figure 5: LB-positive large neurons contain less PLA signal than their neighbouring LB-negative neurons. Large neurons (outlined in white in merged channels image) from DLB frontal cortex samples were manually selected based on DAPI-staining, and single-neuron PLA images were extracted and grouped into LB-positive (neuron 8) and LB-negative (neurons 1-7) neurons. Merged image displays PLA signal in red, pS129-positive LBs in grey, and nuclei in blue, while single-neuron images are shown in greyscale. LB-positive neurons contained significantly less PLA signal than neighbouring LB-negative neurons (p=0.0451). Groups were compared using a Wilcoxon matched pairs signed rank test, as they did not pass normality. Scale bar = 20 μ m. n=28 images were analysed (containing a total of 30 LB-positive neurons and 114 LB-negative large neurons). Data are displayed as mean ± SEM of PLA particle area/image. * p<0.05.

Supplementary figure 6

MJF-14 PLA (Navinci) / pS129 / DAPI

MJF-14 PLA (Navinci) / DAPI

b

Supplementary figure 6: Validation stainings for Navinci MJF-14 PLA on DLB motor cortex.

a Chromogenic PLA overview of the motor cortex from DLB (top) and non-neurodegenerative control (bottom), stained with MJF-14 PLA from either Duolink or Navinci, exemplifying areas with preferential staining in the neuropil or the cell body. Note that strong labelling of inclusions is only seen with Navinci MJF-14 PLA. Scale bars = 20 μ m. **b** Maximum intensity projection incl. orthogonal views of DLB motor cortex stained for Navinci MJF-14 PLA (red), serine-129 phosphorylated α -synuclein (pS129, grey), and DAPI nuclear stain (blue). Arrowhead indicates a pS129-labelled LB, which is also labelled by the Navinci MJF-14 PLA, in contrast to the Duolink MJF-14 PLA results in Fig. 3e. Scale bar = 20 μ m.

Supplementary figure 7

Supplementary figure 7: Non-expanded supplementary stainings for expansion PLA experiment.

Confocal images from non-expanded staining samples in the expansion PLA setup, with excitatory presynaptic terminals (VGLUT1, white), α -synuclein aggregate PLA (Navinci MJF-14 PLA, blue), and total α -synuclein (Asyn2-Nb, red). A Lewy neurite (most likely located in an axon) is stained by Asyn2-Nb (arrowhead), while examples of apparent PLA-VGLUT1 co-localization are indicated by arrows. An increased brightness version of the Asyn2-Nb channel is shown on the right. Scale bar = 2 μ m.

b

Supplementary figure 8: Technical negative PLA controls and IHC staining of mouse models.

a Technical negative control staining for MJF-14 PLA, lacking either the ligase in the PLA reaction (preventing signal formation) or the primary PLA antibody. The lack of signal in the controls demonstrate that insufficient blocking of endogenous peroxidase is not the cause for signal in ASKO mice. **b** MJF-14 IHC also shows signal presence in ASKO mouse tissue, confirming the issue to be antibody-related. As both α -/ β -/ γ -synuclein triple knockout and α -/ β -KO mice are blank, cross-detection of β -synuclein is most likely the cause of the signal. Scale bars = 20 µm.

Navinci MJF-14 PLA (dilution curve)

Supplementary figure 9: Dilution curve of Navinci MJF-14 PLA in mouse models. Navinci MJF-14 PLA at dilutions up to 1:200,000 demonstrate that the antibody cannot be diluted further to abolish signal in the ASKO mice without simultaneously losing all signal in the ASO transgenic mice. Scale bars = 20 μm.

Supplementary tables

Supplementary Table 1 Demography of the DLB cases

	Sex	Age	Post-mortem delay (hours)	Disease duration (years)	Braak stage	Brain regions
DLB 1	Female	82	11	12	VI	Frontal cortex
DLB 2	Female	80	9.5	17	VI	Frontal cortex Motor cortex

Supplementary Table 2 Main cause of death in PD and control cases

Case number	Main cause of death
Control 1	Carcinoma of the lung
Control 2	Renal failure
Control 3	Myocardial infarction
Control 4	Ischaemic heart disease
Control 5	Renal failure
Control 6	Gastrointestinal tract bleeding
Control 7	Metastatic carcinoma
Control 8	Post-operation
Control 9	Sepsis
Control 10	Myocardial infarction
PD stage IV-1	Acute myocardial infarction
PD stage IV-2	Cardiopulmonary arrest
PD stage IV-3	Cardiorespiratory failure
PD stage IV-4	Ischaemic heart disease
PD stage IV-5	Cerebrovascular event
PD stage IV-6	Pneumonia
PD stage IV-7	Pneumonia
PD stage IV-8	Dehydration
PD stage IV-9	Pneumonia
PD stage IV-10	Ischaemic heart disease
PD stage VI-1	Cerebrovascular event
PD stage VI-2	Carcinoma of the prostate
PD stage VI-3	Renal failure, acute myocardial infarction
PD stage VI-4	Pulmonary embolism
PD stage VI-5	Pneumonia
PD stage VI-6	Senile dementia
PD stage VI-7	Cardiorespiratory arrest
PD stage VI-8	Cerebrovascular accident
PD stage VI-9	End-stage Parkinson's disease
PD stage VI-10	End-stage Parkinson's disease

Supplementary Table 3 PLA particles/case and division of cases by counterstain efficiency

Section no.	Category	ACC region	Group 1: Intense counterstain	Group 2: Weak counterstain	PLA particles/image	Section no.	Category	ACC region	Group 1: Intense counterstain	Group 2: Weak counterstain	PLA particles/image
	Control	DGM		X	15	20		DGM		X	60
1	Control	SGM		X	4	28	PD stage VI	SGM		X	110
2		DGM		X	349	20	DD atoms IV	DGM	Х		1049
2	PD stage IV	SGM		X	377	29	PD stage IV	SGM	Х		1093
2	DD stars 1/1	DGM		Х	366	20	Control	DGM	х		5
3	PD stage VI	SGM		Х	212	30	Control	SGM	х		22
		DGM	X		896	21	Control	DGM		X	37
8	PD stage VI	SGM	X		1413	31	Control	SGM		X	13
0	DD stars IV	DGM	X		574	22		DGM		X	1031
9	PD stage IV	SGM	X		737	32	PD stage IV	SGM		X	1109
10	C I	DGM		X	3	22		DGM		X	949
10	Control	SGM		X	3	33	PD stage VI	SGM		Х	2771
11	Control	DGM		X	17	20	38 PD stage VI	DGM		X	933
11	Control	SGM		X	15	38		SGM		X	1389
12	DD store IV	DGM		Х	446	20 5		DGM		X	1264
12	PD stage IV	SGM		X	64	39	PD stage IV	SGM		X	881
12		DGM		Х	105	40	Control	DGM		X	4
13	PD stage VI	SGM		Х	52	40	Control	SGM		X	6
10	DD stags IV	DGM		X	187	41	Control	DGM		X	8
18	PD stage IV	SGM		X	237	41	Control	SGM		X	18
10		DGM	X		736	42		DGM	Х		441
19	PD stage VI	SGM	X		958	42	PD stage IV	SGM	Х		377
20	Control	DGM		Х	21	42		DGM	Х		1006
20	Control	SGM		Х	34	43	PD stage VI	SGM	Х		895
21	Control	DGM		X	5	40		DGM		Х	344
21	Control	SGM		X	10	48	PD stage VI	SGM		Х	1092
22	DD stage IV	DGM	X		112	40	PD stage IV	DGM	Х		570
	PD stage IV	SGM	X		192	49	FD Stage IV	SGM	X		536
22	DD stage V/	DGM	X		60	50	Control	DGM	X		238
25	PD stage VI	SGM	X		28	50	Control	SGM	X		62

Supplementary Table 4 Comparison of the signal density of PLA and IHC (data presented as mean ± SEM)

	Controls	PD stage IV	PD stage VI
Total PLA/mm ²	140.28±466.41	2766.61±464.53***	3178.48±494.15***
Total deposit particles/mm ²	2.91±5.81	16.75±5.79	39.20±6.03*** [#]
Total LBs/mm ²	0.11±1.81	3.62±1.80	14.47±1.87*** ^{###}

Univariate tests with covarying age, sex, PMD. Compared to control, *** p<0.001. Compared to stage IV PD, #p<0.05, ### p<0.001.

Supplementary Table 5 Neuronal signal density of PLA and IHC (data presented as mean ± SEM)

	Controls	PD stage IV	PD stage VI
PLA particle containing neurons (%)	6.76±5.54	70.50±5.52***	63.51±5.75***
Deposit particle containing neurons (%)	0.50±1.90	4.70±1.80	10.70±1.90***#
LB containing neurons (%)	0.00±0.59	0.87±0.58	4.13±0.61*** ^{###}

Univariate tests with covarying age, sex, PMD. Compared to control, *** p<0.001. Compared to stage IV PD, p=0.05, p=0.001. The covariate value in the LB containing neurons of control was rounded to 0.00.

Supplementary Table 6 Average PLA particle count in affected neurons (data presented as mean ± SEM)

	Controls	PD stage IV	PD stage VI
Superficial grey matter (SGM)	1.09±0.58	2.09±0.54	3.40±0.60*
Deep grey matter (DGM)	1.12±0.29	2.23±0.24**	2.18±0.26*

Univariate tests with covarying age, sex, PMD. Compared to control, * p<0.05, ** p<0.01.

Supplementary Table 7 Neuronal, extracellular, and glial density of PLA signals in controls versus PD (data presented as mean ± SEM)

	Category criteria	Controls	PD stage IV	PD stage VI
Proportion of neuronal nuclear type in total neurons (%)	With≥one particle in the neuronal nucleus	1.67±1.20	6.23±1.08**	5.44±1.11*
Proportion of cytoplasmic type in total neurons (%)	With≥one particle in the neuronal cytoplasm	6.64±3.98	6.64±3.98 41.08±3.58***	
Proportion of mixed type in total neurons (%)	With≥one particle in the neuronal nucleus and cytoplasm	0.28±4.84	23.44±4.36***	27.14±4.48***
Proportion of PLA particle c (%)	ontaining neurons	6.76±5.54	70.50±5.52***	63.51±5.75***
Extracellular & glial PLA/mm ²		63.10±336.93	1778.30±335.57***	2336.68±349.74***
Proportion of total PLA particles located in neuronal nuclei & cytoplasm (%)		35.81±8.14	33.63±4.62	28.92±2.96
Proportion of total PLA pa neuropil/extracellular/	rticles located in glial space (%)	64.19±8.14	66.37±4.62	71.08±2.96

Univariate tests with covarying age, sex, PMD. Compared to control, * p<0.05, ** p<0.01, *** p<0.001.