
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/174481/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Anggoro, Angga, Corcoran, Padraig , De Widt, Dennis and Li, Yuhua 2024. Harmonized system code
classification using supervised contrastive learning with sentence BERT and multiple negative ranking loss.

Data Technologies and Applications 10.1108/DTA-01-2024-0052

Publishers page: https://doi.org/10.1108/DTA-01-2024-0052

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Data Technologies & Applications
Harmonized System Code Classification using Supervised

Contrastive Learning with Sentence BERT and Multiple
Negative Ranking Loss

Journal: Data Technologies and Applications

Manuscript ID DTA-01-2024-0052.R1

Manuscript Type: Article

Keywords: Sentence BERT, Multiple Negative Ranking Loss, Harmonised System
Code, Trade Transactions, Support Vector Machine, Random Forest

Data Technologies & Applications

Data Technologies & Applications
Harmonized System Code Classification using Supervised
Contrastive Learning with Sentence BERT and Multiple

Negative Ranking Loss

Abstract
Purpose — International trade transactions, extracted from customs declarations, include
several fields, among which the product description and the product category are the most
important. The product category, also referred to as the Harmonised System Code (HS code),
serves as a pivotal component for determining tax rates and administrative purposes. A
predictive tool designed for product categories or HS codes becomes an important resource
aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing
misclassification arising from the ambiguities present in product nomenclature, thus mitigating
the challenges associated with code interpretation. Moreover, deploying this tool would
streamline the validation process for government officers dealing with extensive transactions,
optimising their workload and enhancing tax revenue collection within this domain.
Design/methodology/approach — This study introduces a methodology focused on the
generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT)
framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following
a contrastive learning paradigm. The procedure involves the construction of pairwise samples,
including anchors and positive transactions. The proposed method is evaluated using two
publicly available real-world datasets, specifically the India Import 2016 and United States
Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling
strategies, loss functions, and training parameters are explored within the experimental setup.
The acquired representations serve as inputs for traditional machine learning algorithms
employed in predicting the product categories within trade transactions.
Findings — Encoding trade transactions utilising SBERT with MNR loss facilitates the
creation of enhanced embeddings that exhibit improved representational capacity. These fixed-
length embeddings serve as adaptable inputs for training machine learning models, including
Support Vector Machine (SVM) and Random Forest, intended for downstream tasks of HS
code classification. Empirical evidence supports the superior performance of our proposed
approach compared to fine-tuning transformer-based models in the domain of trade transaction
classification.
Originality/value — Our approach generates more representative sentence embedding by
creating the networks architectures from scratch with the SBERT framework. Instead of
exploiting a data augmentation method generally used in contrastive learning for measuring
the similarity between the samples, we arranged positive samples following a supervised
paradigm and determined loss through distance learning metrics. This process involves
continuous updating of the Siamese or bi-encoder network to produce embeddings derived
from commodity transactions. This strategy aims to ensure that similar concepts of transactions
within the same class converge closer within the feature embedding space, thereby improving
the performance of downstream tasks.
Keywords — Sentence BERT, Multiple Negative Ranking Loss, Harmonised System Code,
Trade Transactions, Support Vector Machine, Random Forest
Paper type — Research paper

Page 1 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
1. Introduction

International trade, a fundamental component of the global economy, encompasses the
exchange of goods or commodities across national borders through import and export activities.
The continuous evolution of logistics technology and the expansion of e-commerce have
notably amplified the volume of trade transactions over time. As a consequence, customs duties
and taxes, pivotal components of a country's fiscal structure, contribute considerably to its
overall revenue. Statistics from the World Customs Organization (World Customs
Organization, 2022) suggest that, on average, 25.2% of a nation's tax revenue is derived from
these customs duties and taxes, demonstrating the substantial impact of international trade on
national economies.

The governmental role in governing international trade involves the establishment of
tariffs, the regulation of import and export permissions for various commodities, and the
negotiation and facilitation of trade agreements among nations. In facilitating international
trade, traders are mandated to submit a customs declaration containing comprehensive details
about the traded goods. This declaration comprises a comprehensive portrayal of the
commodity alongside the allocation of a Harmonised System code (HS code) that identifies its
categorisation, as prescribed by the (World Customs Organization, 2013). HS codes serve a
pivotal role in ascertaining the applicable tax rates for products and fulfilling essential
administrative functions within international trade frameworks. However, the process of
selecting an appropriate HS code can be challenging due to the ambiguities contained in the
textual descriptions within the product nomenclature system, making precise identification a
complex task.

Machine learning offers a viable solution for predicting the categorical classification of
products based on their descriptions. This predictive capability is useful for traders to prevent
unintentional misclassification of products, which could result in penalties or fines. Moreover,
with the escalating volume of transactions, regulatory authorities strive to ensure traders'
adherence to procedural protocols during product exchanges. The validation of these
transactions plays an essential role in verifying traders' compliance with tax obligations,
thereby safeguarding national revenues.

Integrating automated technological support is imperative in this context. It prevents
the introduction of subjective judgement, often influenced by the varying experiences of
different officers, ensuring unbiased decision-making. Simultaneously, it ensures the timely
provision of services without disrupting the trading processes, thereby bolstering the efficiency
and integrity of international trade operations.

The prediction of HS codes, leveraging product description declarations, necessitates
the conversion of textual commodity data into numerical representations to facilitate machine
learning classification tasks. The field of natural language processing (NLP) has witnessed
substantial evolution in recent decades. Within this progression, considerable focus has been
devoted to transforming sequences into numerical structures, manifesting in both sparse and
dense representations of language.

The advent of Large Language Models (LLMs), such as Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019) marked a pivotal milestone
in NLP. Built upon the transformer model architecture with attention mechanisms (Vaswani et
al., 2017), BERT introduced a revolutionary paradigm in textual representation. Trained on
vast corpora, BERT models exhibit robust efficacy in encapsulating textual information and
exhibiting exceptional performance in various language-related tasks. Its distilled variant,
known as DistilBERT (Sanh et al., 2020), accomplishes a 40% reduction in size compared to
BERT while retaining an impressive 97% of its language understanding capabilities and
enhancing operational speed by 60%. Prior research endeavours have involved fine-tuning a
DistilBERT model using a dataset comprising product descriptions from trade transactions.

Page 2 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
These efforts have showcased promising outcomes in predicting HS codes for previously
unseen transactions (Anggoro et al., 2023). This empirical evidence underlines the potential
efficacy of employing DistilBERT in HS code prediction tasks within the realm of customs
declaration processing.

This study represents an extension and enhancement of the prior work laid by (Anggoro
et al., 2023) by investigating the generation of sentence embeddings tailored for trade
transactions, achieved through the customisation of the SBERT framework's foundational
components. Diverging from previous methodologies focused on fine-tuning transformer-
based models, this research focuses on utilising the SBERT framework (Reimers and
Gurevych, 2019). SBERT adopts siamese or bi-encoder network architecture, effectively
producing more meaningful and representative embeddings. These embeddings are
subsequently leveraged in a downstream task, specifically HS code prediction.

The methodology proposed in this research is rigorously assessed by utilising two
publicly available datasets that include international trade transactions originating from diverse
countries. The empirical findings distinctly illustrate the efficacy of generating sentence
embeddings with the SBERT model and subsequently employing traditional machine learning
algorithms for text classification. As a result, this approach surpasses the performance achieved
by fine-tuning transformer-based models. The results explicitly highlight the pivotal role of
enhanced transaction representation in improving model performance in HS code prediction
tasks.

2. Related Works
2.1. Classification Task for Commodity Trade

Advancements within the research field of NLP have flourished over recent decades,
consequently enhancing model performance within the domain of text classification (Kowsari
et al., 2019). Classification tasks have found extensive applications as downstream tasks,
aiming to categorise textual data into specific classes. Within the domain of international trade,
product descriptions serve as the input data, while the product category or HS code stands as
the designated labels. Both elements are imperative for training the model within the supervised
learning paradigm, providing knowledge to the model to enable subsequent predictions of
product categories or HS codes based on the product descriptions.

Numerous approaches have been explored to facilitate classification tasks, commencing
with conventional methods like fuzzy logic (Singh and Sahu, 2004), which are characterised
by their simplicity and limited adaptability. Such systems tend to rely heavily on personal
knowledge and demonstrate limitations in addressing intricate issues, often resulting in
divergent assessments and biassed justifications.

Traditional machine learning classifiers, such as SVM and Random Forest, have
exhibited notable efficacy (Altaheri and Shaalan, 2020). In this particular study, Term
Frequency-Inverse Document Frequency (TF-IDF) is employed as a feature to portray
transaction content. This technique yields sparsely represented features, disregarding
grammatical nuances and word sequencing. Diverging from the bag-of-words approach, TF-
IDF assigns weights to words based on their relative significance, thereby attributing higher
values to rare words compared to commonly occurring ones.

The conversion of textual data into numerical representations plays a critical role in the
development of predictive tools through computational algorithms in the field of machine
learning. Over the past decade, a multitude of scholarly efforts has been dedicated to the
vectorisation or embedding of textual inputs, aiming to produce meaningful numerical
representations. In the academic work by (Spichakova and Haav, 2020), the authors applied
the technique of Doc2Vec, as introduced by Le and Mikolov in 2014 (Le and Mikolov, 2014),
to represent commodity transactions. Unlike Word2Vec's focus on word-level embeddings,

Page 3 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Doc2Vec's main feature lies in its ability to encapsulate the semantic understanding of entire
documents or transactions. Both methodologies share the common objective of converting
textual data into numerical representations but generate embedding in a context-independent
approach.

Convolutional Neural Networks (CNN) are another deep learning architecture that has
been applied in diverse commodity classification tasks. For example, (He et al., 2021) and
(Zhou et al., 2022) employ CNNs in the context of Chinese commodity declaration tasks. Their
use of CNNs suggests the versatility of these architectures in handling textual data related to
commodity descriptions, exemplifying CNNs' adaptability across diverse data modalities.

In parallel, the Long Short-Term Memory network (LSTM), a recurrent neural network
(RNN) architecture proficient in capturing long-range dependencies in sequential data, featured
prominently in the work of (Du et al., 2021). They applied LSTM to model the sequential
nature of commodity transactions, aiming to capture and encode the intricate sequential
information within the transactional records. This use of LSTM underscores its suitability for
tasks involving temporal data processing, such as transactional records analysis in commodity
classification studies.

Transformer-based models have emerged as pivotal tools in academic research,
showcasing substantial advancements over traditional RNN-based architectures. In particular,
models like BERT (Devlin et al., 2019) have demonstrated remarkable performance owing to
their adeptness in capturing intricate syntactic and semantic representations, primarily
facilitated by the integration of attention mechanisms (Vaswani et al., 2017). In the domain-
specific application for Portuguese goods classification, (de Lima et al., 2022) effectively
employed BERTimbau, a pre-trained BERT model tailored explicitly for Portuguese language
tasks and a recent study conducted by (Lee et al., 2023) employed KoBERT and KLUE, Korean
pre-trained language models, as the backbone to propose predictions of HS codes derived from
item descriptions and prior decisions, while also providing explanations for these predictions.
This utilisation exemplifies the adaptability and efficacy of transformer-based models in
addressing language-specific classification challenges.

Furthermore, the development of DistilBERT (Sanh et al., 2020) marked a significant
advancement, presenting a compelling alternative with comparable performance to BERT but
with reduced computational demands due to its smaller model size. This innovation has
contributed to enhancing efficiency, particularly in resource-constrained computational
environments. The study conducted by (Anggoro et al., 2023) showcased the implementation
of the DistilBERT model within the domain of international trade transactions for commodity
classification.

The application of sentence-level embeddings to product declarations has been
previously explored through the implementation of Universal Sentence Encoder (USE) (Chen
et al., 2021) and SBERT (Pain, 2021). These studies employ an unsupervised learning approach
to assess the accuracy of assigned HS codes by utilising similarity scores. In the study by (Chen
et al., 2021), USE is applied to convert historical product declarations into centroid vectors that
represent each HS code. To evaluate this method, unlabelled product description vectors are
compared against each HS code centroid vector in the lookup table, with the highest similarity
score indicating the correct HS code. Conversely, the study by (Pain, 2021) involves matching
a trade manifest against all descriptions in the commodity reference, with both sources
vectorized using the SBERT model. The top k-matched commodities are then suggested as the
correct code based on the cosine similarity score.

More recently, a study by (Navasardyan, 2024) employed a LLM, GPT-3, to determine
the appropriate HS code by leveraging a prompting strategy. This approach offered the distinct
advantage of providing explanations for the model's selection of the product category,
enhancing interpretability in the classification process. However, the scalability of this method

Page 4 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
for handling large volumes of transactions remains uncertain. Another study by (Lee et al.,
2024) proposes an explainable decision-support model that utilizes Korea transformer-based
models as its backbone to facilitate HS code prediction. The predicted candidates are
supplemented with confidence scores and highlighted product references to enhance
interpretability.

The review presented above underscores that numerous model architectures have been
systematically developed within the trade domain to facilitate efficient and accurate automated
product classification. In light of the increasing focus on model performance in recent
literature, this research seeks to contribute to these advancements by developing a model aimed
at improving the accuracy of product classification in trade operations. Our proposed approach
involves representing trade transactions at the sentence level and fine-tuning the model through
a contrastive learning paradigm. This constrastive learning approach uses a novel loss function
to generate transaction embeddings, thereby enhancing the overall performance of the model.

Based on the discussion above, several key distinctions of this study from previous
works can be highlighted:
1. Firstly, this research focuses on extracting features to generate full sentence or transaction

embeddings, unlike in the work of (Altaheri and Shaalan, 2020), which utilised TF-IDF.
By adopting this approach, we aim to capture the semantic meaning in the product
descriptions, taking into account the entire context rather than treating it as a collection of
isolated words. This allows for more accurate classification, especially when products have
multiple attributes that must be considered simultaneously.

2. In contrast to the approach of (Spichakova and Haav, 2020), which generates vector
embeddings for entire documents using Doc2Vec or sliding convolutional filter pooled to
form text representation (He et al., 2021; Zhou et al., 2022), our method employs LLMs
transformer-based models, which have been trained with large corpora producing rich
representations. Furthermore, our approach fine-tunes the transformer model at the
sentence level using pairwise sentences and a contrastive learning method different from
the work of (Anggoro et al., 2023), which uses aggregated token to represent the text. This
enables the embeddings to capture not only syntax but also the semantic meaning of
product descriptions more effectively, making the transaction representations more
comprehensive.

3. Additionally, our approach prioritises efficiency and flexibility by converting product
descriptions into fixed-length embeddings, preferable for further downstream tasks. Using
a supervised approach, the embeddings can be integrated with various classification
algorithms, thereby creating more discriminative boundaries for classifying product
descriptions. This approach is expected to yield higher performance compared to the
unsupervised methods employed by (Chen et al., 2021; Pain, 2021).

2.2. Sentence Representation
Conventional word embedding operates at the word level and often relies on padding

to ensure uniform input sizes. The process involves averaging or pooling individual word
embeddings to generate sentence-level embeddings from the input text. However, this method
tends to obscure the semantic meaning encapsulated within the entire sentence. Conversely, in
transformer-based models like BERT, the conventional methodology for generating complete
sentence embeddings involves averaging the output of the final layer of the model or employing
the [CLS] token. Nevertheless, this approach is criticised for its suboptimal performance in
tasks that measure semantic similarity (Wang and Kuo, 2020).

SBERT (Reimers and Gurevych, 2019) provides a noteworthy example of sentence-
level frameworks that leverage pre-trained transformer-based models as their backbone
encoder. The architecture of SBERT comprises Siamese encoders crafted to encapsulate the

Page 5 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
semantic essence of sentences via semantic textual similarity assessments. A pivotal facet of
SBERT involves employing a pre-trained transformer model as the foundational structure for
encoding textual inputs. The resulting output traverses an additional pooling layer, yielding a
fixed-length dimensional vector. When paired with objective functions, this methodology
involves feeding the network with pairwise or triple input sequences in order to update the
shared weights of a bi-encoder network to capture the essence of sentence embeddings.

Numerous pre-trained SBERT models are readily accessible and can be directly
employed for the generation of sentence embeddings. These pre-trained models have
undergone rigorous training using meticulously labelled sentence pairs, such as those sourced
from the Stanford Natural Language Inference dataset (Bowman et al., 2015). However, an
alternative avenue involves tailoring the SBERT framework's foundational elements during the
training phase, such as configuring encoders and loss functions and employing domain-specific
datasets, as undertaken in our study, rather than relying solely on existing pre-trained models.
This methodology enables the customisation of pre-trained models to support the specific
requirements of the domain, thereby enhancing the quality of embeddings utilised for
subsequent classification tasks.

In the implementation of SBERT for HS code classification described in the study by
(Pain, 2021), an existing pre-trained SBERT model is employed without additional fine-tuning
to vectorize documents. These embeddings are then matched, based on semantic textual
similarity, to a lookup table containing product references, which have been vectorized using
the same model, to identify the top k-matched commodities associated with the HS code.

In contrast, our approach involves developing a custom SBERT model that is fine-tuned
using domain-specific datasets configured in pairwise samples following a contrastive learning
approach. This fine-tuning process is further refined through specific configuration settings
during the training phase, including tailored loss functions, pooling layers, and hyperparameter
optimization, with the aim of generating transaction embeddings that can be effectively utilised
for downstream tasks, such as product classification, within a supervised learning framework.

2.3. Loss Function
The process of identifying and adjusting the loss function represents a pivotal stage in

enhancing a model's performance (Wang et al., 2022). Our investigation aims to assess the
impact of combining a generated sentence embedding from a specific domain with a particular
loss function on the subsequent task performance.

In the context of multi-class classification tasks, the combination of softmax and cross-
entropy loss remains prevalent within deep learning architectures. The primary objective of
using cross-entropy loss is to aid the model's label prediction ability. This loss function is
favoured due to its robust theoretical underpinnings and widespread applicability, often
standing as a strong competitor to alternative loss functions (Andreieva and Shvai, 2021).
However, it is important to note certain limitations associated with cross-entropy loss, such as
its susceptibility to noisy labels and poor margins, which consequently impact the model's
generalisation performance (Khosla et al., 2021; Pang et al., 2020).

The ranking loss function, also recognised as contrastive loss or margin loss, operates
with the main objective of learning an embedding space where pairs of similar samples
maintain close proximity while dissimilar ones are positioned far apart. This aspect stands as a
pivotal element in learning input representations. Contrastive learning is adaptable to both
supervised and unsupervised data, with its prevalence evident in the self-supervised learning
paradigm, specifically the augmentation of data within vision computing (Chen et al., 2020).
However, when applied to textual data, data augmentation poses inherent challenges due to the
discrete nature of such data (Gao et al., 2021). Effective augmentation of textual data

Page 6 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
necessitates a comprehensive understanding of the data, considering that altering the data can
significantly modify its semantic meaning.

Nevertheless, several methodologies have been employed to augment textual data
within the domain of NLP. For instance, BART (Lewis et al., 2020) implements a technique
involving the random manipulation of word positions within sentences, while CERT (Fang et
al., 2020) facilitates back-translation as a means of augmenting input data. Recent
advancements have explored augmentation techniques such as word deletion, reordering, and
substitution specifically tailored for enhancing sentence representations (Wu et al., 2020) and
utilising text data augmentation approach based on ChatGPT (Dai et al., 2023). Although,
based on our knowledge, a systematic way of generating augmentation data is not currently
available.

In addition to employing data augmentation techniques to optimise the efficacy of the
contrastive loss function, the arrangement of input samples during training plays a critical role
in optimising this objective function, particularly when utilising labels that facilitate the
creation of pairwise or triplet samples. MNR loss (Henderson et al., 2017) incorporates a
learning strategy specifically designed to maximise the similarity between paired samples of
input representations. This particular loss function necessitates inputs to be structured in pairs,
with each pair comprising an anchor (the premise) and a corresponding positive sample. Hence,
the presence of positive samples stands as a key component within this methodology,
particularly in the context of supervised contrastive learning. This approach relies on labelled
datasets to create training samples for the models under study (Moukafih et al., 2022).

The fusion of SBERT with MNR loss presents a considerable enhancement of sentence
representations as described by the SBERT author (Reimers, 2022). This contrast against the
original SBERT method utilising Softmax loss emphasises the advancements achieved through
this approach (Reimers and Gurevych, 2019). An additional adaptation within the scope of
MNR loss is the Systematic MNR loss, which takes into account the mean of both forward and
backward pairs, representing a further refinement within the spectrum of MNR loss variations.

3. Methodology
In this section, we describe our methodology for generating sentence embeddings for

descriptions of products that appear in international trade transactions. These embeddings serve
as the foundational elements for subsequent downstream tasks, particularly in the domain of
product classification. Figure 1 shows the building blocks of our method.

Page 7 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

Figure 1. The proposed supervised contrastive learning process using the SBERT framework is illustrated. The
transformer-model encodes product description, which is then passed through a pooling layer. During the training
phase, anchor samples are paired with corresponding positive samples (from the same class). The model learns to
minimise the distance between these anchor-positive pairs in the latent space while maximising the distance
between the anchor and samples from other classes (negative samples). Finally, the fine-tuned model is employed
to generate transaction embeddings, which are then utilised in a downstream classification task. Source: Author's
own work.

3.1. Datasets
Numerous studies have addressed the task of HS code prediction, as evidenced by prior

research endeavours (Altaheri and Shaalan, 2020; de Lima et al., 2022). However, access to
datasets relevant to this domain remains notably limited within the public domain. To address
this limitation, we obtained two publicly available datasets from distinct sources: the 2016
India trade dataset (Zauba, 2023) and the 2018 U.S. trade dataset (Enigma, 2023). These
datasets encompass thousands of products across a wide range of categories, providing a robust
foundation for comprehensive exploration within the field. Additionally, since our backbone
model, BERT and DistilBERT, have been trained on a large corpus of English text, utilising
these English-language datasets offers significant advantages. This alignment facilitates the
model's ability to generalise more effectively, thereby enhancing its potential to achieve
optimal performance.

The datasets under consideration originate from customs declaration forms, as depicted
in figure in Appendix I, encompassing a diverse array of elements. Among these attributes,
particular focus is directed towards two key components: the product description and the HS
code. The HS code assumes significance within this context as it serves as the ground truth or
label for each transaction. This globally standardised coding system, as endorsed by the World
Customs Organization, typically comprises a six-digit label widely utilised in trade

Page 8 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
transactions. In particular, additional digits may be appended to this code, depending on local
jurisdictional requirements. In our study, we specifically selected the initial two digits of HS
codes, referred to as chapters (digits 84 and 85), encompassing products such as electrical
machinery, televisions, personal computers, and mechanical appliances. These items are
considered particularly challenging to classify (Lee et al., 2023; Spichakova and Haav, 2020).

The distribution of classes within the chosen HS code chapters reveals a substantial
imbalance, with an average ratio of 30:1 observed between the majority and minority classes
across two distinct datasets. Specifically, these datasets pertain to telephone sets and
bulldozers, constituting commodities for the major class, contrasting with battery chargers and
agricultural machinery, representing the products of the minority class. A detailed breakdown
of the dataset distribution is provided in Table I. For each dataset subset, we randomly allocated
70% of transactions for the fine-tuning of the SBERT model, reserving the remaining 30% for
training and validation purposes within the machine learning classifier framework.

Datasets Number of
Classes

Number of
Transactions

Datasets 1 (India commodity trade transactions) 172 66,522
Datasets 2 (U.S. commodity trade transactions) 112 58,003

Table I. The number of transactions and the corresponding commodity classes used in this study for the India and
U.S. trade datasets.

The product descriptions within the transactions serve as textual narratives describing
product details, covering not only the primary product identity but also its specifications, such
as product type, serial number, weight, and dimensions, as seen in Table II. Additionally, these
descriptions occasionally provide information about the product's condition or status.
Moreover, a large number of product descriptions deviate from the conventions of natural
language, lacking contextual coherence and frequently contain out-of-vocabulary terms.

Data pre-processing tasks frequently involve cleaning and manipulating textual inputs,
a common practice in data preparation pipelines when dealing with textual data. Evidence from
prior studies suggests that selecting an appropriate preprocessing task can enhance the
performance of classification tasks (Uysal and Gunal, 2014). To investigate the efficacy of
eliminating non-essential information in improving model performance within trade
transactions, we conducted specialised preprocessing. This approach involved extracting and
retaining crucial product-related details while discarding extraneous information. The
preprocessing steps encompassed converting text into lowercase, removing duplicate
transactions, cleaning alphanumeric characters, and preserving tokens with a minimum length
of two characters. Gensim, an open-source software library, was employed to facilitate these
preprocessing steps.

Table II illustrates examples covering both the original transactions and the outcomes
subsequent to the cleaning procedures. According to this approach, there was an 8% reduction
in the number of tokens within Dataset 1 and a 19% reduction within the second dataset. This
step aimed to evaluate the impact of removing non-essential information on model
performance, specifically customised for trade transactions.

Page 9 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
HS Code Commodity Description (Original) Commodity Descrition (Pre-procecessed)
85423100 INTEGRATED CIRCUIT LOGIC MONO ASTBL

MULTVIB 14TSSOP 1741605
INTEGRATED CIRCUIT LOGIC MONO ASTBL
MULTVIB TSSOP

85423100 INTEGRATED CIRCUIT OP AMP LOW OFFSET
500KHZ 14DIP 9604782

INTEGRATED CIRCUIT OP AMP LOW OFFSET
KHZ DIP

84713010 X2 LAPTOP LENOVO MODEL THINKPAD T430 LAPTOP LENOVO MODEL THINKPAD
84713010 LAPTOP- NOTEBOOK TP X250 4G 500 W10D

PRODUCT NO.20CLS5PX1Y(LAPTOP) (BIS NO.R-
41001171

LAPTOP NOTEBOOK TP PRODUCT NO CLS PX
LAPTOP BIS NO

85285100 LED MONITOR, S22E360H, 21.5, INDIA,
LB50/S22ECO, LS22E360HS/XL (22)(60 PCS) (FOR
COMPUTER) (SAMSUNG)

LED MONITOR INDIA LB ECO LS HS XL PCS FOR
COMPUTER SAMSUNG

84713010 20BUS39E0M LENOVO THINKPAD T450 W/IMGAE
512GB (LAPTOP)

BUS LENOVO THINKPAD IMGAE GB LAPTOP

85285100 LCD MONITOR 15 WIDE: 16M38A-B.ATR (MODEL
NO:16M38A-B) COMPUTER MONITOR FOR ADP
USE ONLY WITHOUT TUNER

LCD MONITOR WIDE ATR MODEL NO
COMPUTER MONITOR FOR ADP USE ONLY
WITHOUT TUNER

85285100 FOC ITEM : LCD MONITOR FOR COMPUTER
SHARP 13.3 3200X1800 PANEL ASSEMBLY (CABLE
AND ACRYLIC STAND)

FOC ITEM LCD MONITOR FOR COMPUTER SHARP
PANEL ASSEMBLY CABLE AND ACRYLIC STAND

Table II. The comparison of the original product descriptions with their modified versions after the preprocessing
stage. The modifications include removal of irrelevant information, which are commonly applied for the
classification models.

3.2. SBERT and Pretrained Models
The enhancement of transformer-based models for generating sentence representations

as our aim in this study is facilitated through the utilisation of the SBERT framework. The
adopted fine-tuned model is expected to possess the capability to capture relationships between
words, attributes, and concepts within product descriptions. This method of representation
allows for the generation of encoded product descriptions that produce similar embeddings for
transactions within the same category, thereby promoting logical grouping based on semantic
similarities. Consequently, the clustered shared semantics of transactions have the potential to
enhance discriminability, thereby improving the effectiveness of downstream tasks.

To instantiate our proposed framework, a collection of data comprising textual
information along with corresponding ground truth labels (i.e., HS codes) for the textual data
is imperative. Implementing the SBERT model requires the construction of pairwise samples
derived from the international trade dataset, serving as the foundational element for model
training. Our approach adopts a supervised methodology for constructing these pairwise
samples, drawing inspiration from the work of (Moukafih et al., 2022), where the experimental
setup utilises labels derived from the data for binary classification tasks, particularly in
sentiment analysis methods. However, our research deals with a more fine-grained and
challenging classification problem involving numerous product categories spanning hundreds
of classes.

To illustrate the construction of pairwise samples, it comprises two samples, referred
to as an anchor sample and a positive sample. An anchor sample refers to a transaction extracted
from the dataset, while the positive sample is a randomly selected transaction that shares the
same class label as the anchor sample. Exploiting labels from datasets in constructing pairwise
samples is chosen instead relying on conventional data augmentation methods which is often
employed in contrastive learning frameworks. Our consideration of this approach is justified
by the reason that modifying information within trade transactions negatively impacts the
model's ability to produce accurate outcomes.

Figure 2.a. provides a visual representation of the methodology employed for
constructing pairwise samples used for training the model. Positive samples, representing
transactions sharing identical class labels as the anchor samples, are randomly selected from
the training datasets. Initially, in our approach, each anchor within the training datasets is
designated to possess solely one positive sample. However, as depicted in Figure 2.b, our

Page 10 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
methodology is also flexible enough to allow an anchor to be associated with multiple positive
samples.

Figure 2. The figure demonstrates the pairwise sample construction process. For each anchor sample, a positive
sample is randomly selected from the dataset, all belonging to the same class as the anchor (left). However, an
anchor can have more than one positive samples, allowing the model to learn from diverse representations within
the same class (right). Source: Author's own work.

In our experimental design, a designated backbone encoder, such as a pre-trained
transformer-based model, is chosen as the core feature extractor to facilitate the embedding of
textual data. Our decision not to utilise existing pre-trained SBERT models, as demonstrated
in the work of (Pain, 2021), derives from our motivation to evaluate the performance of fine-
tuned transformer-based models (Anggoro et al., 2023) in comparison to our method of fine-
tuning transformer-based models through a contrastive learning approach using SBERT
framework. To achieve this, we employed BERT and DistilBERT as feature extractors for our
datasets and then configured the dataset structure to facilitate the generation of pairwise
samples. The systematic structuring of the dataset into paired instances laid the groundwork
for training the SBERT model using customised data, with the primary objective of maximising
its efficacy performance for the subsequent task.

The subsequent step involves the establishment of a standardised, consistent-sized
sentence embedding. This is accomplished by integrating a pooling layer following obtaining
the output from the transformers-based encoder, as illustrated in Figure 1. Diverse pooling
strategies are available to facilitate this process. For instance, the MEAN strategy involves
computing the mean of all vectors, while the MAX pooling strategy takes into account the
component-wise maximum value among the output vectors. Another strategy uses the [CLS]
token pooling method, which is derived from the final layer of the underlying pre-trained
model. This token aims to encapsulate and aggregate word representations for the entire phrase.
Additionally, an alternative option involves the concatenation of multiple pooling outputs,
offering a flexible approach to yield customised fixed-length embeddings. These diverse
pooling strategies enable the transformation of variable-length textual data into consistent,
fixed-sized sentence embeddings, enhancing the utility and applicability of the generated
representations within downstream tasks. Our intention is to apply a number of different
pooling strategies to investigate their influence on the model's performance.

Page 11 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
3.3. MNR Loss Method

Distance functions play a fundamental role in contrastive learning, serving to quantify
embedded representations of pairwise samples. Commonly employed metrics encompass
Manhattan distances, Euclidean distances, and similarity functions like cosine similarity and
dot products. Furthermore, it is worth mentioning that while dot products can be influenced by
vector size and direction, cosine similarity primarily hinges on the angle between vectorised
representations. (Thakur et al., 2021) observe that cosine similarity demonstrates a preference
for shorter documents compared to the dot product, which tends to favour longer documents.
In our experiment, we utilised both similarity metrics across various datasets originating from
different countries.

When employing cosine similarity to compare paired samples, the resulting values tend
to be relatively small. To overcome this, a scaling factor is introduced as a temperature
parameter (Radford et al., 2021). However, determining the optimal scale value remains an
ongoing challenge. Some approaches involve setting the value at 1 and gradually increasing it
over several training batches (Henderson et al., 2020), while the SBERT's author advocates
setting the scale value to 20, demonstrating efficacy, particularly in scenarios employing cross-
entropy loss.

MNR loss is particularly suitable in scenarios where only positive samples are utilised
as training datasets. This loss function necessitates inputs structured in a batch configuration,
comprising n sentence pairs [(a1, b1), (a2, b2), …, (an, bn)], wherein randomly selected pairs (ai,
bi) represent positive pairs, and n denotes the number of pairs. MNR loss aims to minimise the
distance between similar pairs (ai, bi) while concurrently maximising the distance between
dissimilar pairs (ai, bj), where i ≠ j. This objective culminates in the eventual training outcome,
attracting similar transactions closer together while concurrently pushing dissimilar
transactions apart within the feature embedding space. Appendix II encapsulates a pseudocode
representation of the MNR Loss.

3.3. Machine Learning Classifier
The refined representations acquired through the fine-tuned SBERT model capture

semantic and syntactic features extracted from commodity transactions, projecting an
optimistic influence on the subsequent performance of downstream tasks. Our next objective
involves the application of traditional machine learning classifiers to undertake the
classification task. Within our experimental paradigm, we employ two classifiers: SVM and
Random Forest. Our consideration is to employ traditional machine learning classifiers,
assuming that the models will continue to generate well-performing results due to the
representative transaction embeddings generated through our methodology.

The classifiers are utilised in their standard configurations without further configuring
their hyperparameters in our experiment. The selection of Random Forest and SVM is not only
grounded in their recognition as superior traditional machine learning models (Fernández-
Delgado et al., 2014), but also is motivated by their proven efficacy in handling high-
dimensional data, a characteristic prevalent in our dataset, and their extensive adoption within
the machine learning domain for classification tasks. SVM, renowned for its ability to learn
linear hyperplanes for data point classification, excels, particularly with high-dimensional data
and multiple classes. SVM employs the kernel trick, such as Radial Basis Function (RBF)
kernel, to handle nonlinear classification problems, thus demonstrating the substantial
capability of achieving reliable classifications (Zareapoor et al., 2018). On the other hand,
Random Forest, an ensemble-based algorithm introduced by (Breiman, 2001), emerges as a
classifier choice because of its proven competence in managing high-dimensional and noisy
text data (Islam et al., 2019). This algorithm leverages ensembles of trees to generate
predictions, effectively reducing overfitting tendencies and mitigating biases inherent in such

Page 12 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
datasets. In addition, the random forest algorithm is often regarded as a straightforward
technique to tune in comparison to boosted algorithms, such as XGBoost and typically requires
more training time, particularly during the prototyping phase.

4. Experiments
4.2. Experimental setup

The experimentation framework was conducted in Python3, employing diverse APIs,
including PyTorch, HuggingFace, SBERT, scikit-learn, and additional tools such as the LIME
package for interpretability. The computational infrastructure for conducting these experiments
was provided by the cluster computing resources. The utilised environment featured GPU,
complemented by high memory capacity, enabling efficient and robust computational
processing for the experimental procedures.

4.3. Building Customised SBERT
This section presents the orchestration of building blocks within the SBERT

framework, illustrating the configuration setup employed to fine-tune the network. Steps in this
process include defining encoder and training sample configurations, establishing the loss
function, and specifying various hyperparameters instrumental during the training phase.

4.3.1. Encoders, Pooling Strategy and Positive Samples
Pre-trained transformer-based models, specifically BERT and DistilBERT, are sourced

from the HuggingFace hub to serve as encoders tasked with vectorising textual inputs. Both
variants of these pre-trained models - being the base models and uncased or case-insensitive -
were employed in our study. Regarding the pooling strategy, we evaluate each individual
strategy, including MEAN, MAX, and the specialised [CLS] token pooling strategy. This
configuration resulted in the generation of 768-dimensional features for each product
transaction embedding.

A dedicated function is developed to facilitate the creation of pairwise sentences, where
each pair comprises an anchor and a positive sample aimed at training the SBERT model.
Within this function, positive samples were randomly selected without replacement, thereby
organising the training datasets to feed the Siamese network. This methodology produces
46,565 pairs for Dataset 1 and 39,612 pairs for Dataset 2. Initially configured with one positive
sample for one anchor, our experimentation also involves exploring the impact of assigning
three positive samples for one anchor. This adjustment expanded the number of pairs, allowing
an investigation into the correlation between model performance and increased sample number
despite the longer training duration incurred with a larger number of samples.

Following the completion of training samples, model training is conducted in batches
for multiple pairs (anchor, positive) in parallel. Batch sizes of 8 and 32 are evaluated to identify
potential enhancement in model performance with larger batch sizes. This approach draws
inspiration from the established effectiveness of increased batch sizes in contrastive learning.

4.3.2. MNR Loss Experiment
Our aim involves the establishment of diverse parameter configurations associated with

the loss function. These configurations include adjusting the scale parameter, the selection of
a suitable similarity function, and the application of the Symmetric MNR loss function, which
computes the average of forward and backward loss values. The chosen similarity functions
for measuring distances between sentence embeddings include cosine similarity and dot
product. In the absence of a comprehensive systematic study offering insights into an optimal
scaling factor to amplify the magnitude of cosine-similarity scores, we initiate our

Page 13 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
investigations with a scaling factor of 20. The square root of the dimensional feature size, which
is 23 in this study (Henderson et al., 2020), is utilised as a reference metric. Subsequently, we
incrementally increase the scale parameter to 50 to systematically explore its influence on the
model's performance and identify changes in model behaviour and efficacy.

4.3.3. Hyperparameters
Additionally, a range of hyperparameter adjustments is systematically introduced

during the training phase to enhance the algorithm's efficacy, a strategy commonly employed
for optimisation purposes (Weerts et al., 2020). The batch size, a critical parameter, is varied
between 8 and 32, meticulously selected to match the computational memory capacity. The
number of epochs for the training phase is explored across 10 and 30 iterations, impacting the
depth and extent of model training. Finally, the learning rate is examined within the range of
2e-5 and 5e-5 using AdamW as optimizer, responsible for the magnitude of adjustments made
to model weights during training.

5. Results and Discussion
This section outlines the results of the experiments conducted across various settings.

In this analysis, we present the model performance of two machine learning algorithms - SVM
and Random Forest classifiers. These algorithms leverage features generated from the fine-
tuned SBERT model.

5.1. Model Training and Metrics
In our evaluation process, we adopt the k-fold cross-validation methodology to assess

the classifier's performance. The datasets were partitioned into 5 folds, using a stratified cross-
validation approach, ensuring each fold preserved a balanced representation across classes.
This strategy is effective in handling the inherent imbalances within the datasets, thereby
fostering robust evaluation outcomes.

To comprehensively evaluate model performance, we use Cohen's Kappa, macro-
average, micro-average, and weighted average for precision, recall, and F1-score. Cohen's
Kappa is a metric used for evaluating the performance of classification models that can be
applied to text data (Kolesnyk and Khairova, 2022). Macro-average treats each class equally,
while micro-average evaluates performance globally by aggregating all instances. The
weighted average adjusts for class imbalance by factoring in class sizes. These metrics ensure
a balanced and thorough assessment of our model's effectiveness across different class
distributions. Particularly, our emphasis resides on the F1 score due to its robustness in
handling imbalanced datasets, providing a balanced assessment of the classifier's performance
in scenarios with unequal class distributions.

5.2. Performance of Model and Model Size
Table III illustrates a marked enhancement in model performance resulting from our

proposed method as compared to the fine-tuning transformer-based model conducted in this
study (Anggoro et al., 2023). Specifically, our model exhibits substantial improvements in the
weighted average F1 score, elevating it from 0.8406 to 0.8620 when employing SVM and
achieving 0.8656 with the Random Forest algorithm for Dataset 1. Similar notable
improvements are observed in Dataset 2, demonstrating a 4% increase in weighted average F1
score with both SVM and Random Forest classifiers compared to the most optimal results
attained through fine-tuning the transformer models—BERT or DistilBERT.

Regarding the model size implications, employing the SBERT with DistilBERT as
encoder in tandem with SVM, produces a model size comparable to that of the fine-tuned

Page 14 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
DistilBERT model. However, the utilisation of SBERT + BERT as encoder in conjunction with
the Random Forest algorithm results in an expanded model size exceeding that of fine-tuning
the BERT model. These findings underscore the intricate trade-offs between model
performance enhancements and resultant model sizes associated with distinct algorithmic
configurations.

Macro-average Micro-average Weighted average
Dataset Method Cohen

Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1
Model
Size

Fine-tuning BERT 0.8406 0.8444 0.8426 0.8462 0.8097 0.8426 0.8426 0.8181 0.8426 0.8406 418 MB
Fine-tuning DistilBERT 0.8386 0.8383 0.8407 0.8428 0.8088 0.8407 0.8407 0.8183 0.8407 0.8390 255 MB
SBERTenc.BERT + SVM 0.8611 0.8700 0.8629 0.8686 0.8370 0.8629 0.8629 0.8464 0.8629 0.8620 449 MB
SBERTenc.DistilBERT + SVM 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603 291 MB
SBERTenc.BERT + RF 0.8647 0.8691 0.8664 0.8711 0.8445 0.8664 0.8664 0.8512 0.8664 0.8656 631 MB

1

SBERTenc.DistilBERT + RF 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637 511 MB

Fine-tuning BERT 0.7680 0.7508 0.7711 0.7750 0.7127 0.7711 0.7711 0.7210 0.7711 0.7689 418 MB
Fine-tuning DistilBERT 0.7626 0.7398 0.7658 0.7677 0.7032 0.7658 0.7658 0.7130 0.7658 0.7630 255 MB
SBERTenc.BERT + SVM 0.7982 0.7881 0.8009 0.8090 0.7603 0.8009 0.8009 0.7681 0.8009 0.8013 437 MB
SBERTenc.DistilBERT + SVM 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953 278 MB
SBERTenc.BERT + RF 0.7972 0.7846 0.7998 0.8077 0.7624 0.7998 0.7998 0.7681 0.7998 0.8005 512 MB

2

SBERTenc.DistilBERT + RF 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958 371 MB

Table III. The metric highlights the improved performance between baseline models (Fine-tuned BERT and
DistilBERT) and fine-tuned SBERT combined with SVM and Random Forest classifiers. Key metrics such as
Cohen's Kappa, along with macro, micro, and weighted averages of precision, recall, and F1 score, demonstrate
that the fine-tuned SBERT-based models combining with SVM and Random Forest outperform the baselines in
terms of classification performance.

5.3. Analysis of Model Explanation
Table IV demonstrates a substantial decline in model performance for F1 score ranging

from 6% to 8% for both datasets’ consequent to the elimination of certain information during
the pre-processing phase. This reduction in performance suggests that the conventional pre-
processing pipeline, often incorporated with the removal of alphanumeric details, may not be
directly transferable or suitable for trade transactions within this context.

Macro-average Micro-average Weighted average
Dataset Method Cohen Kappa

Pre Rec F1 Pre Rec F1 Pre Rec F1
SVM
Pre-processed data 0.7803 0.804 0.7831 0.7923 0.7402 0.7831 0.7831 0.757 0.7831 0.7790
Original data 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
Pre-processed data 0.8007 0.8225 0.8033 0.8121 0.7690 0.8033 0.8033 0.7848 0.8033 0.8017

1

Original data 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
Pre-processed data 0.7143 0.7196 0.7183 0.7338 0.6621 0.7183 0.7183 0.6795 0.7183 0.7185
Original data 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
Pre-processed data 0.7165 0.7119 0.7203 0.7318 0.665 0.7203 0.7203 0.6788 0.7203 0.7203

2

Original data 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table IV. The model performance across different data pre-processing techniques. Key metrics such as weighted
average precision, recall, and F1-score demonstrate how different pre-processing methods impact classification
accuracy.

Page 15 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
In order to offer a more comprehensive explanation for the model's behaviour in HS

code prediction, we employed the LIME explanation method (Ribeiro et al., 2016) to conduct
an illustrative case study. We opted for LIME over alternative model interpretability
techniques, such as SHAP, due to its stability and better for human interpretation, aligning with
the context of our study, particularly in its application to Random Forest (Man and Chan, 2020).
Figure 3 illustrates the comparison between the model trained to utilise the original product
descriptions and its counterpart trained on modified datasets resulting from specialised
preprocessing treatments. In particular, the model exhibits a higher prediction probability in
determining the category when utilising the original text in contrast to the modified text. This
discrepancy in predictive performance underscores the significance of specific attributes within
the commodity description, such as the explicit mention of "512 GB", which impacts the
model's decision-making process regarding label assignment to the description.

a. original product description

b. pre-processed product description

Figure 3. This figure compares the LIME visualisations of model predictions using different data pre-processing
techniques. The visualisations indicate higher prediction probabilities for the original text (a), suggesting that the
model's confidence in its predictions decreases after certain preprocessing steps (b). This observation implies that
retaining specific textual information during preprocessing may enhance prediction accuracy.

As shown in Table V, for the results of using one and three positive samples, it becomes
apparent that augmenting the number of positive samples paired with an anchor influences the
model's performance. Broadly observed across both datasets, an increase in the number of
positive samples demonstrates an improvement in the weighted average F1 score within the
range of 2% to 3%. These outcomes, consistent across the SVM and Random Forest algorithms,
indicate the advantages of increased positive sample pairing on the model's predictive efficacy
for both datasets. Nevertheless, it is assumed that there exists an optimal quantity of positive
pairs necessary to attain peak performance, after which further increases may not yield
additional improvements.

Page 16 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Samples Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
1 anchor, 1 positive 0.8365 0.8485 0.8386 0.8458 0.7965 0.8386 0.8386 0.8105 0.8386 0.8360
1 anchor, 3 positive 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
1 anchor, 1 positive 0.8412 0.8552 0.8432 0.8492 0.8051 0.8432 0.8432 0.8200 0.8432 0.8410

1

1 anchor, 3 positive 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
1 anchor, 1 positive 0.7706 0.7621 0.7738 0.7847 0.7165 0.7738 0.7738 0.7304 0.7738 0.7735
1 anchor, 3 positive 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
1 anchor, 1 positive 0.7668 0.7517 0.7699 0.7770 0.7137 0.7699 0.7699 0.7244 0.7699 0.7688

2

1 anchor, 3 positive 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table V. The table compares the impact of using different numbers of positive samples per anchor on model
performance. Some metrics are used to demonstrate how increasing the number of positive samples improves
classification accuracy across two datasets.

The experimentation also provides insights into the outcomes derived from varying
configurations of the loss function, such as strategies like MEAN, MAX, and [CLS] token. On
the whole, Table VI shows the result of the implementation of the pooling strategies based on
the experimental findings. The absence of a dominating pooling strategy across the
experimental outcomes underscores the unavailability of a clear distinction among the pooling
strategies concerning their impact on model performance.

Macro-average Micro-average Weighted average
Dataset Pooling Strategy Cohen Kappa

Pre Rec F1 Pre Rec F1 Pre Rec F1
SVM
CLS 0.8594 0.8696 0.8612 0.8675 0.8300 0.8612 0.8612 0.8425 0.8612 0.8603
Mean 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Max 0.8564 0.8637 0.8582 0.8645 0.8269 0.8582 0.8582 0.8377 0.8582 0.8574
Random Forest
CLS 0.8611 0.8676 0.8629 0.8686 0.8359 0.8629 0.8629 0.8453 0.8629 0.8621
Mean 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

1

Max 0.8593 0.8618 0.8611 0.8672 0.835 0.8611 0.8611 0.8414 0.8611 0.8605
SVM
CLS 0.7963 0.7991 0.7990 0.8114 0.7555 0.7990 0.7990 0.7690 0.7990 0.8006
Mean 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Max 0.7927 0.7866 0.7955 0.8068 0.7529 0.7955 0.7955 0.7629 0.7955 0.7966
Random Forest
CLS 0.7957 0.7857 0.7984 0.8084 0.7561 0.7984 0.7984 0.7654 0.7984 0.7997
Mean 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

2

Max 0.7909 0.7812 0.7937 0.8038 0.7513 0.7937 0.7937 0.7594 0.7937 0.7945

Table VI. The table compares model performance using various data pooling strategies, including CLS token,
MEAN pooling, and MAX pooling. The results show that all three strategies yield similar or comparable
performance across key metrics.

Table VII shows the implications arising from various configurations of the loss
function on the model's performance. In the initial comparison, employing the Symmetric
MNR loss showcases similar performance in the weighted average F1 score when compared

Page 17 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
with the MNR loss function across both datasets. Furthermore, augmenting the scale parameter
for the similarity function does not substantially affect the model's performance. Additionally,
the adoption of a distinct similarity function, specifically the dot-product, as an alternative to
the cosine similarity demonstrates decreased performance for Dataset 1 and relatively
comparable results for Dataset 2.

Macro-average Micro-average Weighted average
Dataset Loss Function

Parameters
Cohen
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
MNR Loss - (Scale:20,
Cosine Similarity)

0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603

Symmetric MNR Loss 0.8609 0.8722 0.8627 0.8686 0.8342 0.8627 0.8627 0.8455 0.8627 0.8616
Scale - 50 0.8579 0.8679 0.8597 0.8661 0.8268 0.8597 0.8597 0.8388 0.8597 0.8585
Dot Product 0.8512 0.8624 0.8531 0.8585 0.8135 0.8531 0.8531 0.8278 0.8531 0.8508
Random Forest
MNR Loss - (Scale:20,
Cosine Similarity)

0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

Symmetric MNR Loss 0.8638 0.8702 0.8655 0.8707 0.8389 0.8655 0.8655 0.8478 0.8655 0.8645
Scale - 50 0.8612 0.8687 0.8630 0.8688 0.8340 0.8630 0.8630 0.8440 0.8630 0.8620

1

Dot Product 0.8569 0.8675 0.8587 0.8641 0.8279 0.8587 0.8587 0.8397 0.8587 0.8574
SVM
MNR Loss - (Scale:20,
Cosine Similarity)

0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953

Symmetric MNR Loss 0.7968 0.787 0.7996 0.809 0.7531 0.7996 0.7996 0.7638 0.7996 0.8002
Scale - 50 0.7905 0.7906 0.7933 0.8056 0.7469 0.7933 0.7933 0.7606 0.7933 0.7947
Dot Product 0.7911 0.7863 0.7939 0.8084 0.7392 0.7939 0.7939 0.7533 0.7939 0.7954
Random Forest
MNR Loss - (Scale:20,
Cosine Similarity)

0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Symmetric MNR Loss 0.7957 0.7782 0.7984 0.8068 0.7546 0.7984 0.7984 0.7606 0.7984 0.7989
Scale - 50 0.7906 0.7856 0.7934 0.804 0.7518 0.7934 0.7934 0.7618 0.7934 0.7944

2

Dot Product 0.7945 0.7875 0.7973 0.8057 0.7519 0.7973 0.7973 0.7617 0.7973 0.7974

Table VII. The table presents the performance comparison of the model with various configurations of the loss
function. Key metrics are evaluated, showing how different loss functions settings impact model accuracy.

5.4. Parameters Importance
Multiple adjustments in hyperparameters, encompassing variations in batch size, the

number of epochs, and the learning rate, are implemented during the fine-tuning of SBERT to
observe their impacts on downstream tasks.

As depicted in Table VIII, the analysis of model training parameters reveals different
impacts on optimising the weighted average F1 score. Specifically, employing a larger batch
size appears to yield a modestly positive effect on enhancing the weighted average F1 score.
Furthermore, augmenting the training iterations or epochs results in approximately 2%
improvement in the weighted average F1 scores for SVM and Random Forest classifiers. In
particular, varying the learning rate exhibits disparate outcomes: a lower learning rate (2e-5)
demonstrates better outcomes for Dataset 1 and Dataset 2, as observed across both SVM and
Random Forest classifiers.

Page 18 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Hyperparameters
Training

Cohen
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Batch 8 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Batch 32 0.8619 0.8805 0.8637 0.8699 0.8359 0.8637 0.8637 0.8504 0.8637 0.8626
Epoch 10 0.8411 0.8523 0.8432 0.8499 0.7980 0.8432 0.8432 0.8129 0.8432 0.8402
Epoch 30 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 2e-5 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 5e-5 0.8488 0.8554 0.8507 0.8557 0.8228 0.8507 0.8507 0.8326 0.8507 0.8496
Random Forest
Batch 8 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Batch 32 0.8667 0.8834 0.8684 0.8736 0.8416 0.8684 0.8684 0.8554 0.8684 0.8673
Epoch 10 0.8475 0.8525 0.8494 0.8547 0.8136 0.8494 0.8494 0.8242 0.8494 0.8476

1

Epoch 30 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 2e-5 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 5e-5 0.8471 0.8515 0.8491 0.8541 0.8213 0.8491 0.8491 0.8299 0.8491 0.8481

SVM
Batch 8 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Batch 32 0.7937 0.8017 0.7964 0.8093 0.7513 0.7964 0.7964 0.7670 0.7964 0.7977
Epoch 10 0.7779 0.7669 0.7809 0.7916 0.7189 0.7809 0.7809 0.7320 0.7809 0.7795
Epoch 30 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 2e-5 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 5e-5 0.7886 0.7824 0.7914 0.8026 0.7510 0.7914 0.7914 0.7603 0.7914 0.7928
Random Forest
Batch 8 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Batch 32 0.7939 0.7864 0.7967 0.8062 0.7506 0.7967 0.7967 0.7619 0.7967 0.7972
Epoch 10 0.7813 0.7658 0.7842 0.7922 0.7321 0.7842 0.7842 0.7418 0.7842 0.7839

2

Epoch 30 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 2e-5 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 5e-5 0.7854 0.7716 0.7882 0.7974 0.7473 0.7882 0.7882 0.7536 0.7882 0.7891

Table VIII. The table presents the impact of various hyperparameter configurations on model performance. Key
metrics are employed to assess the effectiveness of different learning rates, batch sizes, and epochs. The results
show that optimal hyperparameter tuning can significantly improve the model’s classification accuracy and overall
performance.

5. Conclusions
This paper presents a method leveraging the SBERT framework for transaction

embedding generation using international trade transaction datasets. The approach involves
training a Siamese model network through pairwise samples and MNR loss, enhancing
transaction representations. These resultant embeddings are integrated into traditional machine
learning models like SVM and Random Forest, exhibiting enhanced performance over fine-
tuned transformer-based models in handling international trade transactions. In addition, the
experimentation provides valuable insights into transaction pre-processing and hyperparameter
selection. While generating embeddings through this method might entail substantial
computational resources, its efficacy in enhancing downstream task performance remains
significant.

Moreover, future investigation is essential to explore practical applications, particularly
in domains such as anomaly detection on international trade transactions. The inherent nature
of the feature embeddings generated by this method tends to cluster transactions with analogous
attributes within a shared embedding space. Utilising the clustering property of embeddings

Page 19 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
holds promise for identifying anomalous transactions through distance analysis, signifying a
potential opportunity for practical implementation in anomaly detection systems.

References
Altaheri, F. and Shaalan, K. (2020), “Exploring Machine Learning Models to Predict

Harmonized System Code”, in Themistocleous, M. and Papadaki, M. (Eds.),
Information Systems, Springer International Publishing, Cham, pp. 291–303, doi:
10.1007/978-3-030-44322-1_22.

Andreieva, V. and Shvai, N. (2021), “Generalization of Cross-Entropy Loss Function for Image
Classification”, Mohyla Mathematical Journal, Vol.3, pp.3-10, doi: 10.18523/2617-
7080320203-10.

Anggoro, A., Corcoran, P., Dennis, D.W. and Li, Y. (2023), “Using DistilBERT to Assign HS
Codes to International Trading Transactions”, Information Systems and Technologies
WorldCIST 2023 Volume 3, Vol. Volume 3, presented at the World Conference on
Information Systems and Technologies, Springer Cham, Pisa, Italy. available at:
https://orca.cardiff.ac.uk/id/eprint/155999/ (accessed 1 August 2023).

Bowman, S.R., Angeli, G., Potts, C. and Manning, C.D. (2015), “A Large Annotated Corpus
for Learning Natural Language Inference”, in Màrquez, L., Callison-Burch, C. and Su,
J. (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 632–642, doi: 10.18653/v1/D15-1075.

Breiman, L.E.O. (2001), “Random Forests”, Machine Learning, Vol. 45, pp. 5–32, doi:
10.1023/A:1010933404324.

Chen, H., van Rijnsoever, B., Molenhuis, M., van Dijk, D., Tan, Y.H. and Rukanova, B. (2021),
“The use of machine learning to identify the correctness of HS Code for the customs
import declarations”, 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics, pp. 1–8, doi: 10.1109/DSAA53316.2021.9564203.

Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020), “A Simple Framework for
Contrastive Learning of Visual Representations”, Proceedings of the 37th International
Conference on Machine Learning, pp. 1597–1607.

Dai, H., Liu, Z., Liao, W., Huang, X., Cao, Y., Wu, Z., Zhao, L., et al. (2023), “AugGPT:
Leveraging ChatGPT for Text Data Augmentation”, doi: 10.48550/
ARXIV.2302.13007.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019), “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”, 2019 Conference of The
North American Chapter of The Association for Computational Linguistics: Human
Language Technologies, pp. 4171–4186, doi: 10.18653/v1/N19-1423.

Du, S., Wu, Z., Wan, H. and Lin, Y. (2021), “HScodeNet: Combining Hierarchical Sequential
and Global Spatial Information of Text for Commodity HS Code Classification”,
Advances in Knowledge Discovery and Data Mining, pp. 676–689, doi: 10.1007/978-
3-030-75765-6_54.

Enigma (2018), US Imports - Automated Manifest System (AMS) Shipments 2018, at:
https://aws.amazon.com/ (accessed 1 August 2023).

Fang, H., Wang, S., Zhou, M., Ding, J. and Xie, P. (2020), “CERT: Contrastive Self-supervised
Learning for Language Understanding”, doi: 10.48550/arXiv.2005.12766.

Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014), “Do we Need
Hundreds of Classifiers to Solve Real World Classification Problems?”, Journal of
Machine Learning Research, Vol. 15 No. 90, pp. 3133–3181.

Gao, T., Yao, X. and Chen, D. (2021), “SimCSE: Simple Contrastive Learning of Sentence
Embeddings”, EMNLP 2021 - 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6894–6910, doi: 10.18653/v1/2021.emnlp-main.552.

Page 20 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
He, M., Wang, X., Zou, C., Dai, B. and Jin, L. (2021), “A Commodity Classification

Framework Based on Machine Learning for Analysis of Trade Declaration”, Symmetry,
Vol. 13 No. 6, pp. 964, doi: 10.3390/sym13060964.

Henderson, M., Al-Rfou, R., Strope, B., Sung, Y., Lukacs, L., Guo, R., Kumar, S., et al. (2017),
“Efficient Natural Language Response Suggestion for Smart Reply, doi:
10.48550/arXiv.1705.00652”.

Henderson, M., Casanueva, I., Mrkšić, N., Su, P.-H., Wen, T.-H. and Vulić, I. (2020),
“ConveRT: Efficient and Accurate Conversational Representations from
Transformers”, in Cohn, T., He, Y. and Liu, Y. (Eds.), Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 2161–2174, doi: 10.18653/v1/2020.
findings-emnlp.196.

Islam, M.Z., Liu, J., Li, J., Liu, L. and Kang, W. (2019), “A Semantics aware random forest
for text classification”, Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1061–1070, doi: 10.1145/3357384.
3357891.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., et al. (2021),
“Supervised Contrastive Learning”, arXiv, 10 March, doi: 10.48550/arXiv.2004.11362.

Kolesnyk, A.S. and Khairova, N.F. (2022), “Justification for the Use of Cohen’s Kappa
Statistic in Experimental Studies of NLP and Text Mining”, Cybernetics and Systems
Analysis, Vol. 58 No. 2, pp. 280–288, doi: 10.1007/s10559-022-00460-3.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L. and Brown, D.
(2019), “Text classification algorithms: A survey”, Information-an International
Interdisciplinary Journal, Vol. 10 No. 4, doi: 10.3390/info10040150.

Le, Q. and Mikolov, T. (2014), “Distributed Representations of Sentences and Documents”,
Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, pp.1188-1196, doi: 10.48550/arXiv.1405.4053.

Lee, E., Kim, S., Kim, S., Jung, S., Kim, H. and Cha, M. (2024), “Explainable Product
Classification for Customs”, ACM Transactions on Intelligent Systems and Technology,
Vol 15 No.2, pp.25:1–25:24, doi: 10.1145/3635158.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., et
al. (2020), “BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension”, Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 7871–7880, doi: 10.18653/v1/2020.acl-
main.703.

de Lima, R.R., Fernandes, A.M.R., Bombasar, J.R., da Silva, B.A., Crocker, P. and Leithardt,
V.R.Q. (2022), “An Empirical Comparison of Portuguese and Multilingual BERT
Models for Auto-Classification of NCM Codes in International Trade”, Big Data and
Cognitive Computing, Vol. 6 No. 1, doi: 10.3390/bdcc6010008.

Man, X. and Chan, E. (2020), “The best way to select features?”, The Journal of Financial
Data Science Winter 2021, Vol. 3 No. 1, pp. 127–139, doi: 10.3905/jfds.2020.1.047.

Moukafih, Y., Ghanem, A., Abidi, K., Sbihi, N., Ghogho, M. and Smaili, K. (2022), “SimSCL:
A Simple Fully-Supervised Contrastive Learning Framework for Text Representation”,
in Long, G., Yu, X. and Wang, S. (Eds.), AI 2021: Advances in Artificial Intelligence,
pp. 728–738, doi: 10.1007/978-3-030-97546-3_59.

Navasardyan, Z. (2024), “Interpretable and Generalizable HTS Code Classification
Framework”, Economics, Finance and Accounting, Vol. 1 No. 13, pp. 140–140, doi:
10.59503/29538009-2024.1.13-140.

Pain, K. (2021), Harmonized System Code Classification Using Transfer Learning with Pre-
Trained Weights, Dalhousie University, Halifax, 1 September.

Page 21 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Pang, T., Xu, K., Dong, Y., Du, C., Chen, N. and Zhu, J. (2020), “Rethinking Softmax Cross-

Entropy Loss for Adversarial Robustness”, 8th International Conference on Learning
Representations, ICLR 2020, Vol. 10, pp. 1–19, doi: 10.48550/arXiv.1905.10626.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., et al.
(2021), “Learning Transferable Visual Models from Natural Language Supervision”,
in Meila, M. and Zhang, T. (Eds.), International Conference on Machine Learning, pp.
8748-8763.

Reimers, N. (2022), “Sentence Transformers NLI Training Readme, GitHub”, GitHub, 19
December, available at: https://github.com/UKPLab/sentence-transformers/tree/master
/examples/training/nli (accessed 1 January 2024).

Reimers, N. and Gurevych, I. (2019), “Sentence-BERT: Sentence embeddings using siamese
BERT-networks”, EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in
Natural Language Processing and 9th International Joint Conference on Natural
Language Processing, Proceedings of the Conference, pp. 3982–3992, doi:
10.18653/v1/d19-1410.

Ribeiro, M.T., Singh, S. and Guestrin, C. (2016), “‘Why Should I Trust You?’: Explaining the
Predictions of Any Classifier”, KDD '16: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144,
doi: 10.48550/arXiv.1602.04938.

Sanh, V., Debut, L., Chaumond, J. and Wolf, T. (2020), “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter”, paper accepted at 5th Workshop on Energy
Efficient Machine Learning and Cognitive Computing - NeurIPS 2019, doi:
10.48550/arXiv.1910.01108.

Singh, A.K. and Sahu, R. (2004), “Decision Support System for HS Classification of
Commodities”, Proceedings of the 2004 IFIP International Conference on Decision
Support Systems.

Spichakova, M. and Haav, H.-M. (2020), “Using Machine Learning for Automated Assessment
of Misclassification of Goods for Fraud Detection”, in Robal, T., Haav, H.-M., Penjam,
J. and Matulevičius, R. (Eds.), Databases and Information Systems, pp. 144–158, doi:
10.1007/978-3-030-57672-1_12.

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A. and Gurevych, I. (2021), “BEIR: A
Heterogeneous Benchmark for Zero-Shot Evaluation of Information Retrieval
Models”, Thirty-Fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, doi: doi.org/10.48550/arXiv.2104.08663.

Uysal, A.K. and Gunal, S. (2014), “The Impact of Preprocessing on Text Classification”,
Information Processing & Management, Vol. 50 No. 1, pp. 104–112, doi:
10.1016/j.ipm.2013.08.006.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., et al.
(2017), “Attention Is All You Need”, NIPS'17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp.6000-6010, doi:
10.48550/arXiv.1706.03762.

Wang, B. and Kuo, C.-C.J. (2020), “SBERT-WK: A Sentence Embedding Method by
Dissecting BERT-Based Word Models”, IEEE/ACM Transactions on Audio, Speech,
and Language Processing, Vol. 28, pp. 2146–2157, doi: 10.1109/TASLP.2020.
3008390.

Wang, Q., Ma, Y., Zhao, K. and Tian, Y. (2022), “A Comprehensive Survey of Loss Functions
in Machine Learning”, Annals of Data Science, Vol. 9 No. 2, pp. 187–212, doi:
10.1007/s40745-020-00253-5.

Weerts, H.J.P., Mueller, A.C. and Vanschoren, J. (2020), “Importance of Tuning
Hyperparameters of Machine Learning Algorithms”, doi:10.48550/arXiv.2007.07588.

Page 22 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
World Customs Organization. (2013), “HS classification handbook”, at:

http://harmonizedsystem.wcoomdpublications.org/pdfs/WCOOMD_MSH_EN.pdf
(accessed 1 January 2023).

World Customs Organization. (2022), WCO Annual Report 2022-2023, World Customs
Organization, at: https://www.wcoomd.org/-/media/wco/public/global/pdf/about-
us/annual-reports/annual-report-2022_2023.pdf (accessed 1 August 2023).

Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F. and Ma, H. (2020), “CLEAR: Contrastive
Learning for Sentence Representation”, ACM Transactions on Intelligent Systems and
Technology, Volume 14, pp.1-34, doi: 10.48550/arXiv.2012.15466.

Zareapoor, M., Shamsolmoali, P., Kumar Jain, D., Wang, H. and Yang, J. (2018), “Kernelized
Support Vector Machine with Deep Learning: An Efficient Approach for Extreme
Multiclass Dataset”, Pattern Recognition Letters, Vol. 115, pp. 4–13, doi:
10.1016/j.patrec.2017.09.018.

Zauba (2016), India HS Code Data, at: https://www.zauba.com/ (accessed 1 August 2023).
Zhou, C., Che, C., Zhang, X.S., Zhang, Q. and Zhou, D. (2022), “Harmonized system code

prediction of import and export commodities based on Hybrid Convolutional Neural
Network with Auxiliary Network”, Knowledge-Based Systems, Vol. 256, p. 109836,
doi: 10.1016/j.knosys.2022.109836.

Page 23 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Appendix I: An Example of Declaration Form
The figure below presents an example of declaration form, with key fields such as the product
description and HS codes highlighted. These fields are crucial for the dataset used in this study,
where the product description serves as the input for classification tasks, and the HS codes are
the target labels for evaluating model performance.

Appendix II: Pseudocode of Implementation MNR Loss
Algorithm 1 presents the key steps in implementing MNR loss during the training phase using
the SCL. The process begins with the encoding phase, where input samples are passed through
the encoder to generate latent representations. In the pooling phase, these representations are
aggregated (e.g., via mean or max pooling) to form fixed-length vectors. Finally, the distance
measurement is performed between the pooled anchor-positive pairs and anchor-negative pairs.

Algorithm 1: Pseudocode of implementation MNR Loss

1: Input: Datasets of trade transactions consist of tokenized and batched pairwise anchor
and positive samples

2: Output: Trained SBERT
3: Procedure to train SBERT with MNR Loss:
4: BEGIN
5: For i = 1 to num_epochs do
6: For batch in_batches do
7: # extract token embeddings from each pairwise transaction in the batch
8: anchor embeddings = extracted encoded anchor samples from transformer-based model
9: positive embeddings = extracted encoded positive samples from transformer-based

model
10: # generate pooled vector
11: pooled anchor = pooling function (anchor embeddings)
12: pooled_positive = pooling function (positive embeddings)
13: # similarity consists of n x n vectors
14: Similarity = cosine_similarity (pooled_anchor, pooled_positive)
15: Score = Similarity * Scale
16: # label consists of n x n vectors with I true label and negative labels elsewhere

in each row
17: Loss = CrossEntropyLoss (Score * Label)
18: # calculate gradients and update the network
19: End
20: End
22: END

Page 24 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

Figure 1. The proposed supervised contrastive learning process using the SBERT framework is illustrated.
The transformer-model encodes product description, which is then passed through a pooling layer. During
the training phase, anchor samples are paired with corresponding positive samples (from the same class).
The model learns to minimise the distance between these anchor-positive pairs in the latent space while
maximising the distance between the anchor and samples from other classes (negative samples). Finally,

the fine-tuned model is employed to generate transaction embeddings, which are then utilised in a
downstream classification task. Source: Author's own work.

251x214mm (96 x 96 DPI)

Page 25 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

Figure 2. The figure demonstrates the pairwise sample construction process. For each anchor sample, a
positive sample is randomly selected from the dataset, all belonging to the same class as the anchor (left).

However, an anchor can have more than one positive samples, allowing the model to learn from diverse
representations within the same class (right). Source: Author's own work.

316x154mm (96 x 96 DPI)

Page 26 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

Figure 3. This figure compares the LIME visualisations of model predictions using different data pre-
processing techniques. The visualisations indicate higher prediction probabilities for the original text (a),
suggesting that the model's confidence in its predictions decreases after certain preprocessing steps (b).

This observation implies that retaining specific textual information during preprocessing may enhance
prediction accuracy.

354x204mm (96 x 96 DPI)

Page 27 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

375x93mm (96 x 96 DPI)

Page 28 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications

320x200mm (96 x 96 DPI)

Page 29 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Datasets Number of

Classes
Number of

Transactions
Datasets 1 (India commodity trade transactions) 172 66,522
Datasets 2 (U.S. commodity trade transactions) 112 58,003

Table I. The number of transactions and the corresponding commodity classes used in this study for the India and
U.S. trade datasets.

Page 30 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
HS Code Commodity Description (Original) Commodity Descrition (Pre-procecessed)
85423100 INTEGRATED CIRCUIT LOGIC MONO ASTBL

MULTVIB 14TSSOP 1741605
INTEGRATED CIRCUIT LOGIC MONO ASTBL
MULTVIB TSSOP

85423100 INTEGRATED CIRCUIT OP AMP LOW OFFSET
500KHZ 14DIP 9604782

INTEGRATED CIRCUIT OP AMP LOW OFFSET
KHZ DIP

84713010 X2 LAPTOP LENOVO MODEL THINKPAD T430 LAPTOP LENOVO MODEL THINKPAD
84713010 LAPTOP- NOTEBOOK TP X250 4G 500 W10D

PRODUCT NO.20CLS5PX1Y(LAPTOP) (BIS NO.R-
41001171

LAPTOP NOTEBOOK TP PRODUCT NO CLS PX
LAPTOP BIS NO

85285100 LED MONITOR, S22E360H, 21.5, INDIA,
LB50/S22ECO, LS22E360HS/XL (22)(60 PCS) (FOR
COMPUTER) (SAMSUNG)

LED MONITOR INDIA LB ECO LS HS XL PCS FOR
COMPUTER SAMSUNG

84713010 20BUS39E0M LENOVO THINKPAD T450 W/IMGAE
512GB (LAPTOP)

BUS LENOVO THINKPAD IMGAE GB LAPTOP

85285100 LCD MONITOR 15 WIDE: 16M38A-B.ATR (MODEL
NO:16M38A-B) COMPUTER MONITOR FOR ADP
USE ONLY WITHOUT TUNER

LCD MONITOR WIDE ATR MODEL NO
COMPUTER MONITOR FOR ADP USE ONLY
WITHOUT TUNER

85285100 FOC ITEM : LCD MONITOR FOR COMPUTER
SHARP 13.3 3200X1800 PANEL ASSEMBLY (CABLE
AND ACRYLIC STAND)

FOC ITEM LCD MONITOR FOR COMPUTER SHARP
PANEL ASSEMBLY CABLE AND ACRYLIC STAND

Table II. The comparison of the original product descriptions with their modified versions after the preprocessing
stage. The modifications include removal of irrelevant information, which are commonly applied for the
classification models.

Page 31 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Method Cohen
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

Model
Size

Fine-tuning BERT 0.8406 0.8444 0.8426 0.8462 0.8097 0.8426 0.8426 0.8181 0.8426 0.8406 418 MB
Fine-tuning DistilBERT 0.8386 0.8383 0.8407 0.8428 0.8088 0.8407 0.8407 0.8183 0.8407 0.8390 255 MB
SBERTenc.BERT + SVM 0.8611 0.8700 0.8629 0.8686 0.8370 0.8629 0.8629 0.8464 0.8629 0.8620 449 MB
SBERTenc.DistilBERT + SVM 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603 291 MB
SBERTenc.BERT + RF 0.8647 0.8691 0.8664 0.8711 0.8445 0.8664 0.8664 0.8512 0.8664 0.8656 631 MB

1

SBERTenc.DistilBERT + RF 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637 511 MB

Fine-tuning BERT 0.7680 0.7508 0.7711 0.7750 0.7127 0.7711 0.7711 0.7210 0.7711 0.7689 418 MB
Fine-tuning DistilBERT 0.7626 0.7398 0.7658 0.7677 0.7032 0.7658 0.7658 0.7130 0.7658 0.7630 255 MB
SBERTenc.BERT + SVM 0.7982 0.7881 0.8009 0.8090 0.7603 0.8009 0.8009 0.7681 0.8009 0.8013 437 MB
SBERTenc.DistilBERT + SVM 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953 278 MB
SBERTenc.BERT + RF 0.7972 0.7846 0.7998 0.8077 0.7624 0.7998 0.7998 0.7681 0.7998 0.8005 512 MB

2

SBERTenc.DistilBERT + RF 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958 371 MB

Table III. The metric highlights the improved performance between baseline models (Fine-tuned BERT and
DistilBERT) and fine-tuned SBERT combined with SVM and Random Forest classifiers. Key metrics such as
Cohen's Kappa, along with macro, micro, and weighted averages of precision, recall, and F1 score, demonstrate
that the fine-tuned SBERT-based models combining with SVM and Random Forest outperform the baselines in
terms of classification performance.

Page 32 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Method Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Pre-processed data 0.7803 0.804 0.7831 0.7923 0.7402 0.7831 0.7831 0.757 0.7831 0.7790
Original data 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
Pre-processed data 0.8007 0.8225 0.8033 0.8121 0.7690 0.8033 0.8033 0.7848 0.8033 0.8017

1

Original data 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
Pre-processed data 0.7143 0.7196 0.7183 0.7338 0.6621 0.7183 0.7183 0.6795 0.7183 0.7185
Original data 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
Pre-processed data 0.7165 0.7119 0.7203 0.7318 0.665 0.7203 0.7203 0.6788 0.7203 0.7203

2

Original data 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table IV. The model performance across different data pre-processing techniques. Key metrics such as weighted
average precision, recall, and F1-score demonstrate how different pre-processing methods impact classification
accuracy.

Page 33 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Samples Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
1 anchor, 1 positive 0.8365 0.8485 0.8386 0.8458 0.7965 0.8386 0.8386 0.8105 0.8386 0.8360
1 anchor, 3 positive 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
1 anchor, 1 positive 0.8412 0.8552 0.8432 0.8492 0.8051 0.8432 0.8432 0.8200 0.8432 0.8410

1

1 anchor, 3 positive 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
1 anchor, 1 positive 0.7706 0.7621 0.7738 0.7847 0.7165 0.7738 0.7738 0.7304 0.7738 0.7735
1 anchor, 3 positive 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
1 anchor, 1 positive 0.7668 0.7517 0.7699 0.7770 0.7137 0.7699 0.7699 0.7244 0.7699 0.7688

2

1 anchor, 3 positive 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table V. The table compares the impact of using different numbers of positive samples per anchor on model
performance. Some metrics are used to demonstrate how increasing the number of positive samples improves
classification accuracy across two datasets.

Page 34 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Pooling Strategy Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
CLS 0.8594 0.8696 0.8612 0.8675 0.8300 0.8612 0.8612 0.8425 0.8612 0.8603
Mean 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Max 0.8564 0.8637 0.8582 0.8645 0.8269 0.8582 0.8582 0.8377 0.8582 0.8574
Random Forest
CLS 0.8611 0.8676 0.8629 0.8686 0.8359 0.8629 0.8629 0.8453 0.8629 0.8621
Mean 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

1

Max 0.8593 0.8618 0.8611 0.8672 0.835 0.8611 0.8611 0.8414 0.8611 0.8605
SVM
CLS 0.7963 0.7991 0.7990 0.8114 0.7555 0.7990 0.7990 0.7690 0.7990 0.8006
Mean 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Max 0.7927 0.7866 0.7955 0.8068 0.7529 0.7955 0.7955 0.7629 0.7955 0.7966
Random Forest
CLS 0.7957 0.7857 0.7984 0.8084 0.7561 0.7984 0.7984 0.7654 0.7984 0.7997
Mean 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

2

Max 0.7909 0.7812 0.7937 0.8038 0.7513 0.7937 0.7937 0.7594 0.7937 0.7945

Table VI. The table compares model performance using various data pooling strategies, including CLS token,
MEAN pooling, and MAX pooling. The results show that all three strategies yield similar or comparable
performance across key metrics.

Page 35 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Loss Function
Parameters

Cohen
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
MNR Loss - (Scale:20,
Cosine Similarity)

0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603

Symmetric MNR Loss 0.8609 0.8722 0.8627 0.8686 0.8342 0.8627 0.8627 0.8455 0.8627 0.8616
Scale - 50 0.8579 0.8679 0.8597 0.8661 0.8268 0.8597 0.8597 0.8388 0.8597 0.8585
Dot Product 0.8512 0.8624 0.8531 0.8585 0.8135 0.8531 0.8531 0.8278 0.8531 0.8508
Random Forest
MNR Loss - (Scale:20,
Cosine Similarity)

0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

Symmetric MNR Loss 0.8638 0.8702 0.8655 0.8707 0.8389 0.8655 0.8655 0.8478 0.8655 0.8645
Scale - 50 0.8612 0.8687 0.8630 0.8688 0.8340 0.8630 0.8630 0.8440 0.8630 0.8620

1

Dot Product 0.8569 0.8675 0.8587 0.8641 0.8279 0.8587 0.8587 0.8397 0.8587 0.8574
SVM
MNR Loss - (Scale:20,
Cosine Similarity)

0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953

Symmetric MNR Loss 0.7968 0.787 0.7996 0.809 0.7531 0.7996 0.7996 0.7638 0.7996 0.8002
Scale - 50 0.7905 0.7906 0.7933 0.8056 0.7469 0.7933 0.7933 0.7606 0.7933 0.7947
Dot Product 0.7911 0.7863 0.7939 0.8084 0.7392 0.7939 0.7939 0.7533 0.7939 0.7954
Random Forest
MNR Loss - (Scale:20,
Cosine Similarity)

0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Symmetric MNR Loss 0.7957 0.7782 0.7984 0.8068 0.7546 0.7984 0.7984 0.7606 0.7984 0.7989
Scale - 50 0.7906 0.7856 0.7934 0.804 0.7518 0.7934 0.7934 0.7618 0.7934 0.7944

2

Dot Product 0.7945 0.7875 0.7973 0.8057 0.7519 0.7973 0.7973 0.7617 0.7973 0.7974

Table VII. The table presents the performance comparison of the model with various configurations of the loss
function. Key metrics are evaluated, showing how different loss functions settings impact model accuracy.

Page 36 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Data Technologies & Applications
Macro-average Micro-average Weighted average

Dataset Hyperparameters
Training

Cohen
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Batch 8 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Batch 32 0.8619 0.8805 0.8637 0.8699 0.8359 0.8637 0.8637 0.8504 0.8637 0.8626
Epoch 10 0.8411 0.8523 0.8432 0.8499 0.7980 0.8432 0.8432 0.8129 0.8432 0.8402
Epoch 30 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 2e-5 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 5e-5 0.8488 0.8554 0.8507 0.8557 0.8228 0.8507 0.8507 0.8326 0.8507 0.8496
Random Forest
Batch 8 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Batch 32 0.8667 0.8834 0.8684 0.8736 0.8416 0.8684 0.8684 0.8554 0.8684 0.8673
Epoch 10 0.8475 0.8525 0.8494 0.8547 0.8136 0.8494 0.8494 0.8242 0.8494 0.8476

1

Epoch 30 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 2e-5 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 5e-5 0.8471 0.8515 0.8491 0.8541 0.8213 0.8491 0.8491 0.8299 0.8491 0.8481

SVM
Batch 8 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Batch 32 0.7937 0.8017 0.7964 0.8093 0.7513 0.7964 0.7964 0.7670 0.7964 0.7977
Epoch 10 0.7779 0.7669 0.7809 0.7916 0.7189 0.7809 0.7809 0.7320 0.7809 0.7795
Epoch 30 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 2e-5 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 5e-5 0.7886 0.7824 0.7914 0.8026 0.7510 0.7914 0.7914 0.7603 0.7914 0.7928
Random Forest
Batch 8 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Batch 32 0.7939 0.7864 0.7967 0.8062 0.7506 0.7967 0.7967 0.7619 0.7967 0.7972
Epoch 10 0.7813 0.7658 0.7842 0.7922 0.7321 0.7842 0.7842 0.7418 0.7842 0.7839

2

Epoch 30 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 2e-5 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 5e-5 0.7854 0.7716 0.7882 0.7974 0.7473 0.7882 0.7882 0.7536 0.7882 0.7891

Table VIII. The table presents the impact of various hyperparameter configurations on model performance. Key
metrics are employed to assess the effectiveness of different learning rates, batch sizes, and epochs. The results
show that optimal hyperparameter tuning can significantly improve the model’s classification accuracy and
overall performance.

Page 37 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

