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Abstract
Purpose — International trade transactions, extracted from customs declarations, include 
several fields, among which the product description and the product category are the most 
important. The product category, also referred to as the Harmonised System Code (HS code), 
serves as a pivotal component for determining tax rates and administrative purposes. A 
predictive tool designed for product categories or HS codes becomes an important resource 
aiding traders in their decision to choose a suitable code. This tool is instrumental in preventing 
misclassification arising from the ambiguities present in product nomenclature, thus mitigating 
the challenges associated with code interpretation. Moreover, deploying this tool would 
streamline the validation process for government officers dealing with extensive transactions, 
optimising their workload and enhancing tax revenue collection within this domain.
Design/methodology/approach — This study introduces a methodology focused on the 
generation of sentence embeddings for trade transactions, employing Sentence BERT (SBERT) 
framework in conjunction with the Multiple Negative Ranking (MNR) Loss function following 
a contrastive learning paradigm. The procedure involves the construction of pairwise samples, 
including anchors and positive transactions. The proposed method is evaluated using two 
publicly available real-world datasets, specifically the India Import 2016 and United States 
Import 2018 datasets, to fine-tune the SBERT model. Several configurations involving pooling 
strategies, loss functions, and training parameters are explored within the experimental setup. 
The acquired representations serve as inputs for traditional machine learning algorithms 
employed in predicting the product categories within trade transactions.
Findings — Encoding trade transactions utilising SBERT with MNR loss facilitates the 
creation of enhanced embeddings that exhibit improved representational capacity. These fixed-
length embeddings serve as adaptable inputs for training machine learning models, including 
Support Vector Machine (SVM) and Random Forest, intended for downstream tasks of HS 
code classification. Empirical evidence supports the superior performance of our proposed 
approach compared to fine-tuning transformer-based models in the domain of trade transaction 
classification.
Originality/value — Our approach generates more representative sentence embedding by 
creating the networks architectures from scratch with the SBERT framework. Instead of 
exploiting a data augmentation method generally used in contrastive learning for measuring 
the similarity between the samples, we arranged positive samples following a supervised 
paradigm and determined loss through distance learning metrics. This process involves 
continuous updating of the Siamese or bi-encoder network to produce embeddings derived 
from commodity transactions. This strategy aims to ensure that similar concepts of transactions 
within the same class converge closer within the feature embedding space, thereby improving 
the performance of downstream tasks.
Keywords — Sentence BERT, Multiple Negative Ranking Loss, Harmonised System Code, 
Trade Transactions, Support Vector Machine, Random Forest
Paper type — Research paper
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1. Introduction

International trade, a fundamental component of the global economy, encompasses the 
exchange of goods or commodities across national borders through import and export activities. 
The continuous evolution of logistics technology and the expansion of e-commerce have 
notably amplified the volume of trade transactions over time. As a consequence, customs duties 
and taxes, pivotal components of a country's fiscal structure, contribute considerably to its 
overall revenue. Statistics from the World Customs Organization (World Customs 
Organization, 2022) suggest that, on average, 25.2% of a nation's tax revenue is derived from 
these customs duties and taxes, demonstrating the substantial impact of international trade on 
national economies.

The governmental role in governing international trade involves the establishment of 
tariffs, the regulation of import and export permissions for various commodities, and the 
negotiation and facilitation of trade agreements among nations. In facilitating international 
trade, traders are mandated to submit a customs declaration containing comprehensive details 
about the traded goods. This declaration comprises a comprehensive portrayal of the 
commodity alongside the allocation of a Harmonised System code (HS code) that identifies its 
categorisation, as prescribed by the (World Customs Organization, 2013). HS codes serve a 
pivotal role in ascertaining the applicable tax rates for products and fulfilling essential 
administrative functions within international trade frameworks. However, the process of 
selecting an appropriate HS code can be challenging due to the ambiguities contained in the 
textual descriptions within the product nomenclature system, making precise identification a 
complex task.

Machine learning offers a viable solution for predicting the categorical classification of 
products based on their descriptions. This predictive capability is useful for traders to prevent 
unintentional misclassification of products, which could result in penalties or fines. Moreover, 
with the escalating volume of transactions, regulatory authorities strive to ensure traders' 
adherence to procedural protocols during product exchanges. The validation of these 
transactions plays an essential role in verifying traders' compliance with tax obligations, 
thereby safeguarding national revenues.

Integrating automated technological support is imperative in this context. It prevents 
the introduction of subjective judgement, often influenced by the varying experiences of 
different officers, ensuring unbiased decision-making. Simultaneously, it ensures the timely 
provision of services without disrupting the trading processes, thereby bolstering the efficiency 
and integrity of international trade operations.

The prediction of HS codes, leveraging product description declarations, necessitates 
the conversion of textual commodity data into numerical representations to facilitate machine 
learning classification tasks. The field of natural language processing (NLP) has witnessed 
substantial evolution in recent decades. Within this progression, considerable focus has been 
devoted to transforming sequences into numerical structures, manifesting in both sparse and 
dense representations of language.

The advent of Large Language Models (LLMs), such as Bidirectional Encoder 
Representations from Transformers (BERT) (Devlin et al., 2019) marked a pivotal milestone 
in NLP. Built upon the transformer model architecture with attention mechanisms (Vaswani et 
al., 2017), BERT introduced a revolutionary paradigm in textual representation. Trained on 
vast corpora, BERT models exhibit robust efficacy in encapsulating textual information and 
exhibiting exceptional performance in various language-related tasks. Its distilled variant, 
known as DistilBERT (Sanh et al., 2020), accomplishes a 40% reduction in size compared to 
BERT while retaining an impressive 97% of its language understanding capabilities and 
enhancing operational speed by 60%. Prior research endeavours have involved fine-tuning a 
DistilBERT model using a dataset comprising product descriptions from trade transactions. 
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These efforts have showcased promising outcomes in predicting HS codes for previously 
unseen transactions (Anggoro et al., 2023). This empirical evidence underlines the potential 
efficacy of employing DistilBERT in HS code prediction tasks within the realm of customs 
declaration processing.

This study represents an extension and enhancement of the prior work laid by (Anggoro 
et al., 2023) by investigating the generation of sentence embeddings tailored for trade 
transactions, achieved through the customisation of the SBERT framework's foundational 
components. Diverging from previous methodologies focused on fine-tuning transformer-
based models, this research focuses on utilising the SBERT framework (Reimers and 
Gurevych, 2019). SBERT adopts siamese or bi-encoder network architecture, effectively 
producing more meaningful and representative embeddings. These embeddings are 
subsequently leveraged in a downstream task, specifically HS code prediction.

The methodology proposed in this research is rigorously assessed by utilising two 
publicly available datasets that include international trade transactions originating from diverse 
countries. The empirical findings distinctly illustrate the efficacy of generating sentence 
embeddings with the SBERT model and subsequently employing traditional machine learning 
algorithms for text classification. As a result, this approach surpasses the performance achieved 
by fine-tuning transformer-based models. The results explicitly highlight the pivotal role of 
enhanced transaction representation in improving model performance in HS code prediction 
tasks.

2. Related Works
2.1. Classification Task for Commodity Trade

Advancements within the research field of NLP have flourished over recent decades, 
consequently enhancing model performance within the domain of text classification (Kowsari 
et al., 2019). Classification tasks have found extensive applications as downstream tasks, 
aiming to categorise textual data into specific classes. Within the domain of international trade, 
product descriptions serve as the input data, while the product category or HS code stands as 
the designated labels. Both elements are imperative for training the model within the supervised 
learning paradigm, providing knowledge to the model to enable subsequent predictions of 
product categories or HS codes based on the product descriptions.

Numerous approaches have been explored to facilitate classification tasks, commencing 
with conventional methods like fuzzy logic (Singh and Sahu, 2004), which are characterised 
by their simplicity and limited adaptability. Such systems tend to rely heavily on personal 
knowledge and demonstrate limitations in addressing intricate issues, often resulting in 
divergent assessments and biassed justifications.

Traditional machine learning classifiers, such as SVM and Random Forest, have 
exhibited notable efficacy (Altaheri and Shaalan, 2020). In this particular study, Term 
Frequency-Inverse Document Frequency (TF-IDF) is employed as a feature to portray 
transaction content. This technique yields sparsely represented features, disregarding 
grammatical nuances and word sequencing. Diverging from the bag-of-words approach, TF-
IDF assigns weights to words based on their relative significance, thereby attributing higher 
values to rare words compared to commonly occurring ones.

The conversion of textual data into numerical representations plays a critical role in the 
development of predictive tools through computational algorithms in the field of machine 
learning. Over the past decade, a multitude of scholarly efforts has been dedicated to the 
vectorisation or embedding of textual inputs, aiming to produce meaningful numerical 
representations. In the academic work by (Spichakova and Haav, 2020), the authors applied 
the technique of Doc2Vec, as introduced by Le and Mikolov in 2014 (Le and Mikolov, 2014), 
to represent commodity transactions. Unlike Word2Vec's focus on word-level embeddings, 
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Doc2Vec's main feature lies in its ability to encapsulate the semantic understanding of entire 
documents or transactions. Both methodologies share the common objective of converting 
textual data into numerical representations but generate embedding in a context-independent 
approach.

Convolutional Neural Networks (CNN) are another deep learning architecture that has 
been applied in diverse commodity classification tasks. For example, (He et al., 2021) and 
(Zhou et al., 2022) employ CNNs in the context of Chinese commodity declaration tasks. Their 
use of CNNs suggests the versatility of these architectures in handling textual data related to 
commodity descriptions, exemplifying CNNs' adaptability across diverse data modalities. 

In parallel, the Long Short-Term Memory network (LSTM), a recurrent neural network 
(RNN) architecture proficient in capturing long-range dependencies in sequential data, featured 
prominently in the work of (Du et al., 2021). They applied LSTM to model the sequential 
nature of commodity transactions, aiming to capture and encode the intricate sequential 
information within the transactional records. This use of LSTM underscores its suitability for 
tasks involving temporal data processing, such as transactional records analysis in commodity 
classification studies.

Transformer-based models have emerged as pivotal tools in academic research, 
showcasing substantial advancements over traditional RNN-based architectures. In particular, 
models like BERT (Devlin et al., 2019) have demonstrated remarkable performance owing to 
their adeptness in capturing intricate syntactic and semantic representations, primarily 
facilitated by the integration of attention mechanisms (Vaswani et al., 2017). In the domain-
specific application for Portuguese goods classification, (de Lima et al., 2022) effectively 
employed BERTimbau, a pre-trained BERT model tailored explicitly for Portuguese language 
tasks and a recent study conducted by (Lee et al., 2023) employed KoBERT and KLUE, Korean 
pre-trained language models, as the backbone to propose predictions of HS codes derived from 
item descriptions and prior decisions, while also providing explanations for these predictions. 
This utilisation exemplifies the adaptability and efficacy of transformer-based models in 
addressing language-specific classification challenges.

Furthermore, the development of DistilBERT (Sanh et al., 2020) marked a significant 
advancement, presenting a compelling alternative with comparable performance to BERT but 
with reduced computational demands due to its smaller model size. This innovation has 
contributed to enhancing efficiency, particularly in resource-constrained computational 
environments. The study conducted by (Anggoro et al., 2023) showcased the implementation 
of the DistilBERT model within the domain of international trade transactions for commodity 
classification.

The application of sentence-level embeddings to product declarations has been 
previously explored through the implementation of Universal Sentence Encoder (USE) (Chen 
et al., 2021) and SBERT (Pain, 2021). These studies employ an unsupervised learning approach 
to assess the accuracy of assigned HS codes by utilising similarity scores. In the study by (Chen 
et al., 2021), USE is applied to convert historical product declarations into centroid vectors that 
represent each HS code. To evaluate this method, unlabelled product description vectors are 
compared against each HS code centroid vector in the lookup table, with the highest similarity 
score indicating the correct HS code. Conversely, the study by (Pain, 2021) involves matching 
a trade manifest against all descriptions in the commodity reference, with both sources 
vectorized using the SBERT model. The top k-matched commodities are then suggested as the 
correct code based on the cosine similarity score.

More recently, a study by (Navasardyan, 2024) employed a LLM, GPT-3, to determine 
the appropriate HS code by leveraging a prompting strategy. This approach offered the distinct 
advantage of providing explanations for the model's selection of the product category, 
enhancing interpretability in the classification process. However, the scalability of this method 
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for handling large volumes of transactions remains uncertain. Another study by (Lee et al., 
2024) proposes an explainable decision-support model that utilizes Korea transformer-based 
models as its backbone to facilitate HS code prediction. The predicted candidates are 
supplemented with confidence scores and highlighted product references to enhance 
interpretability.

The review presented above underscores that numerous model architectures have been 
systematically developed within the trade domain to facilitate efficient and accurate automated 
product classification. In light of the increasing focus on model performance in recent 
literature, this research seeks to contribute to these advancements by developing a model aimed 
at improving the accuracy of product classification in trade operations. Our proposed approach 
involves representing trade transactions at the sentence level and fine-tuning the model through 
a contrastive learning paradigm. This constrastive learning approach uses a novel loss function 
to generate transaction embeddings, thereby enhancing the overall performance of the model.

Based on the discussion above, several key distinctions of this study from previous 
works can be highlighted:
1. Firstly, this research focuses on extracting features to generate full sentence or transaction 

embeddings, unlike in the work of (Altaheri and Shaalan, 2020), which utilised TF-IDF. 
By adopting this approach, we aim to capture the semantic meaning in the product 
descriptions, taking into account the entire context rather than treating it as a collection of 
isolated words. This allows for more accurate classification, especially when products have 
multiple attributes that must be considered simultaneously.

2. In contrast to the approach of (Spichakova and Haav, 2020), which generates vector 
embeddings for entire documents using Doc2Vec or sliding convolutional filter pooled to 
form text representation (He et al., 2021; Zhou et al., 2022), our method employs LLMs 
transformer-based models, which have been trained with large corpora producing rich 
representations. Furthermore, our approach fine-tunes the transformer model at the 
sentence level using pairwise sentences and a contrastive learning method different from 
the work of (Anggoro et al., 2023), which uses aggregated token to represent the text. This 
enables the embeddings to capture not only syntax but also the semantic meaning of 
product descriptions more effectively, making the transaction representations more 
comprehensive.

3. Additionally, our approach prioritises efficiency and flexibility by converting product 
descriptions into fixed-length embeddings, preferable for further downstream tasks. Using 
a supervised approach, the embeddings can be integrated with various classification 
algorithms, thereby creating more discriminative boundaries for classifying product 
descriptions. This approach is expected to yield higher performance compared to the 
unsupervised methods employed by (Chen et al., 2021; Pain, 2021).

2.2. Sentence Representation
Conventional word embedding operates at the word level and often relies on padding 

to ensure uniform input sizes. The process involves averaging or pooling individual word 
embeddings to generate sentence-level embeddings from the input text. However, this method 
tends to obscure the semantic meaning encapsulated within the entire sentence. Conversely, in 
transformer-based models like BERT, the conventional methodology for generating complete 
sentence embeddings involves averaging the output of the final layer of the model or employing 
the [CLS] token. Nevertheless, this approach is criticised for its suboptimal performance in 
tasks that measure semantic similarity (Wang and Kuo, 2020).

SBERT (Reimers and Gurevych, 2019) provides a noteworthy example of sentence-
level frameworks that leverage pre-trained transformer-based models as their backbone 
encoder. The architecture of SBERT comprises Siamese encoders crafted to encapsulate the 
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semantic essence of sentences via semantic textual similarity assessments. A pivotal facet of 
SBERT involves employing a pre-trained transformer model as the foundational structure for 
encoding textual inputs. The resulting output traverses an additional pooling layer, yielding a 
fixed-length dimensional vector. When paired with objective functions, this methodology 
involves feeding the network with pairwise or triple input sequences in order to update the 
shared weights of a bi-encoder network to capture the essence of sentence embeddings.

Numerous pre-trained SBERT models are readily accessible and can be directly 
employed for the generation of sentence embeddings. These pre-trained models have 
undergone rigorous training using meticulously labelled sentence pairs, such as those sourced 
from the Stanford Natural Language Inference dataset (Bowman et al., 2015). However, an 
alternative avenue involves tailoring the SBERT framework's foundational elements during the 
training phase, such as configuring encoders and loss functions and employing domain-specific 
datasets, as undertaken in our study, rather than relying solely on existing pre-trained models. 
This methodology enables the customisation of pre-trained models to support the specific 
requirements of the domain, thereby enhancing the quality of embeddings utilised for 
subsequent classification tasks.

In the implementation of SBERT for HS code classification described in the study by 
(Pain, 2021), an existing pre-trained SBERT model is employed without additional fine-tuning 
to vectorize documents. These embeddings are then matched, based on semantic textual 
similarity, to a lookup table containing product references, which have been vectorized using 
the same model, to identify the top k-matched commodities associated with the HS code. 

In contrast, our approach involves developing a custom SBERT model that is fine-tuned 
using domain-specific datasets configured in pairwise samples following a contrastive learning 
approach. This fine-tuning process is further refined through specific configuration settings 
during the training phase, including tailored loss functions, pooling layers, and hyperparameter 
optimization, with the aim of generating transaction embeddings that can be effectively utilised 
for downstream tasks, such as product classification, within a supervised learning framework.

2.3. Loss Function
The process of identifying and adjusting the loss function represents a pivotal stage in 

enhancing a model's performance (Wang et al., 2022). Our investigation aims to assess the 
impact of combining a generated sentence embedding from a specific domain with a particular 
loss function on the subsequent task performance.

In the context of multi-class classification tasks, the combination of softmax and cross-
entropy loss remains prevalent within deep learning architectures. The primary objective of 
using cross-entropy loss is to aid the model's label prediction ability. This loss function is 
favoured due to its robust theoretical underpinnings and widespread applicability, often 
standing as a strong competitor to alternative loss functions (Andreieva and Shvai, 2021). 
However, it is important to note certain limitations associated with cross-entropy loss, such as 
its susceptibility to noisy labels and poor margins, which consequently impact the model's 
generalisation performance (Khosla et al., 2021; Pang et al., 2020).

The ranking loss function, also recognised as contrastive loss or margin loss, operates 
with the main objective of learning an embedding space where pairs of similar samples 
maintain close proximity while dissimilar ones are positioned far apart. This aspect stands as a 
pivotal element in learning input representations. Contrastive learning is adaptable to both 
supervised and unsupervised data, with its prevalence evident in the self-supervised learning 
paradigm, specifically the augmentation of data within vision computing (Chen et al., 2020).  
However, when applied to textual data, data augmentation poses inherent challenges due to the 
discrete nature of such data (Gao et al., 2021). Effective augmentation of textual data 
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necessitates a comprehensive understanding of the data, considering that altering the data can 
significantly modify its semantic meaning.

Nevertheless, several methodologies have been employed to augment textual data 
within the domain of NLP. For instance, BART (Lewis et al., 2020) implements a technique 
involving the random manipulation of word positions within sentences, while CERT (Fang et 
al., 2020) facilitates back-translation as a means of augmenting input data. Recent 
advancements have explored augmentation techniques such as word deletion, reordering, and 
substitution specifically tailored for enhancing sentence representations (Wu et al., 2020) and 
utilising text data augmentation approach based on ChatGPT (Dai et al., 2023). Although, 
based on our knowledge, a systematic way of generating augmentation data is not currently 
available.

In addition to employing data augmentation techniques to optimise the efficacy of the 
contrastive loss function, the arrangement of input samples during training plays a critical role 
in optimising this objective function, particularly when utilising labels that facilitate the 
creation of pairwise or triplet samples. MNR loss (Henderson et al., 2017) incorporates a 
learning strategy specifically designed to maximise the similarity between paired samples of 
input representations. This particular loss function necessitates inputs to be structured in pairs, 
with each pair comprising an anchor (the premise) and a corresponding positive sample. Hence, 
the presence of positive samples stands as a key component within this methodology, 
particularly in the context of supervised contrastive learning. This approach relies on labelled 
datasets to create training samples for the models under study (Moukafih et al., 2022).

The fusion of SBERT with MNR loss presents a considerable enhancement of sentence 
representations as described by the SBERT author (Reimers, 2022). This contrast against the 
original SBERT method utilising Softmax loss emphasises the advancements achieved through 
this approach (Reimers and Gurevych, 2019). An additional adaptation within the scope of 
MNR loss is the Systematic MNR loss, which takes into account the mean of both forward and 
backward pairs, representing a further refinement within the spectrum of MNR loss variations.

3. Methodology
In this section, we describe our methodology for generating sentence embeddings for 

descriptions of products that appear in international trade transactions. These embeddings serve 
as the foundational elements for subsequent downstream tasks, particularly in the domain of 
product classification. Figure 1 shows the building blocks of our method. 
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Figure 1. The proposed supervised contrastive learning process using the SBERT framework is illustrated. The 
transformer-model encodes product description, which is then passed through a pooling layer. During the training 
phase, anchor samples are paired with corresponding positive samples (from the same class). The model learns to 
minimise the distance between these anchor-positive pairs in the latent space while maximising the distance 
between the anchor and samples from other classes (negative samples). Finally, the fine-tuned model is employed 
to generate transaction embeddings, which are then utilised in a downstream classification task. Source: Author's 
own work.

3.1. Datasets
Numerous studies have addressed the task of HS code prediction, as evidenced by prior 

research endeavours (Altaheri and Shaalan, 2020; de Lima et al., 2022). However, access to 
datasets relevant to this domain remains notably limited within the public domain. To address 
this limitation, we obtained two publicly available datasets from distinct sources: the 2016 
India trade dataset (Zauba, 2023) and the 2018 U.S. trade dataset (Enigma, 2023). These 
datasets encompass thousands of products across a wide range of categories, providing a robust 
foundation for comprehensive exploration within the field. Additionally, since our backbone 
model, BERT and DistilBERT, have been trained on a large corpus of English text, utilising 
these English-language datasets offers significant advantages. This alignment facilitates the 
model's ability to generalise more effectively, thereby enhancing its potential to achieve 
optimal performance.

The datasets under consideration originate from customs declaration forms, as depicted 
in figure in Appendix I, encompassing a diverse array of elements. Among these attributes, 
particular focus is directed towards two key components: the product description and the HS 
code. The HS code assumes significance within this context as it serves as the ground truth or 
label for each transaction. This globally standardised coding system, as endorsed by the World 
Customs Organization, typically comprises a six-digit label widely utilised in trade 
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transactions.  In particular, additional digits may be appended to this code, depending on local 
jurisdictional requirements. In our study, we specifically selected the initial two digits of HS 
codes, referred to as chapters (digits 84 and 85), encompassing products such as electrical 
machinery, televisions, personal computers, and mechanical appliances. These items are 
considered particularly challenging to classify (Lee et al., 2023; Spichakova and Haav, 2020).

The distribution of classes within the chosen HS code chapters reveals a substantial 
imbalance, with an average ratio of 30:1 observed between the majority and minority classes 
across two distinct datasets. Specifically, these datasets pertain to telephone sets and 
bulldozers, constituting commodities for the major class, contrasting with battery chargers and 
agricultural machinery, representing the products of the minority class. A detailed breakdown 
of the dataset distribution is provided in Table I. For each dataset subset, we randomly allocated 
70% of transactions for the fine-tuning of the SBERT model, reserving the remaining 30% for 
training and validation purposes within the machine learning classifier framework.

Datasets Number of 
Classes

Number of 
Transactions

Datasets 1 (India commodity trade transactions) 172 66,522
Datasets 2 (U.S. commodity trade transactions) 112 58,003

Table I. The number of transactions and the corresponding commodity classes used in this study for the India and 
U.S. trade datasets.

The product descriptions within the transactions serve as textual narratives describing 
product details, covering not only the primary product identity but also its specifications, such 
as product type, serial number, weight, and dimensions, as seen in Table II. Additionally, these 
descriptions occasionally provide information about the product's condition or status. 
Moreover, a large number of product descriptions deviate from the conventions of natural 
language, lacking contextual coherence and frequently contain out-of-vocabulary terms.

Data pre-processing tasks frequently involve cleaning and manipulating textual inputs, 
a common practice in data preparation pipelines when dealing with textual data. Evidence from 
prior studies suggests that selecting an appropriate preprocessing task can enhance the 
performance of classification tasks (Uysal and Gunal, 2014). To investigate the efficacy of 
eliminating non-essential information in improving model performance within trade 
transactions, we conducted specialised preprocessing. This approach involved extracting and 
retaining crucial product-related details while discarding extraneous information. The 
preprocessing steps encompassed converting text into lowercase, removing duplicate 
transactions, cleaning alphanumeric characters, and preserving tokens with a minimum length 
of two characters. Gensim, an open-source software library, was employed to facilitate these 
preprocessing steps.

Table II illustrates examples covering both the original transactions and the outcomes 
subsequent to the cleaning procedures. According to this approach, there was an 8% reduction 
in the number of tokens within Dataset 1 and a 19% reduction within the second dataset. This 
step aimed to evaluate the impact of removing non-essential information on model 
performance, specifically customised for trade transactions.
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HS Code Commodity Description (Original) Commodity Descrition (Pre-procecessed)
85423100 INTEGRATED CIRCUIT LOGIC MONO ASTBL 

MULTVIB 14TSSOP 1741605
INTEGRATED CIRCUIT LOGIC MONO ASTBL 
MULTVIB TSSOP

85423100 INTEGRATED CIRCUIT OP AMP LOW OFFSET 
500KHZ 14DIP 9604782

INTEGRATED CIRCUIT OP AMP LOW OFFSET 
KHZ DIP

84713010 X2 LAPTOP LENOVO MODEL THINKPAD T430 LAPTOP LENOVO MODEL THINKPAD
84713010 LAPTOP- NOTEBOOK TP X250 4G 500 W10D 

PRODUCT NO.20CLS5PX1Y(LAPTOP) (BIS NO.R-
41001171

LAPTOP NOTEBOOK TP PRODUCT NO CLS PX 
LAPTOP BIS NO

85285100 LED MONITOR, S22E360H, 21.5, INDIA, 
LB50/S22ECO, LS22E360HS/XL (22)(60 PCS) (FOR 
COMPUTER) (SAMSUNG)

LED MONITOR INDIA LB ECO LS HS XL PCS FOR 
COMPUTER SAMSUNG

84713010 20BUS39E0M LENOVO THINKPAD T450 W/IMGAE 
512GB (LAPTOP)

BUS LENOVO THINKPAD IMGAE GB LAPTOP

85285100 LCD MONITOR 15 WIDE: 16M38A-B.ATR (MODEL 
NO:16M38A-B) COMPUTER MONITOR FOR ADP 
USE ONLY WITHOUT TUNER

LCD MONITOR WIDE ATR MODEL NO 
COMPUTER MONITOR FOR ADP USE ONLY 
WITHOUT TUNER

85285100 FOC ITEM : LCD MONITOR FOR COMPUTER 
SHARP 13.3 3200X1800 PANEL ASSEMBLY ( CABLE 
AND ACRYLIC STAND)

FOC ITEM LCD MONITOR FOR COMPUTER SHARP 
PANEL ASSEMBLY CABLE AND ACRYLIC STAND

Table II. The comparison of the original product descriptions with their modified versions after the preprocessing 
stage. The modifications include removal of irrelevant information, which are commonly applied for the 
classification models.

3.2. SBERT and Pretrained Models
The enhancement of transformer-based models for generating sentence representations 

as our aim in this study is facilitated through the utilisation of the SBERT framework. The 
adopted fine-tuned model is expected to possess the capability to capture relationships between 
words, attributes, and concepts within product descriptions. This method of representation 
allows for the generation of encoded product descriptions that produce similar embeddings for 
transactions within the same category, thereby promoting logical grouping based on semantic 
similarities. Consequently, the clustered shared semantics of transactions have the potential to 
enhance discriminability, thereby improving the effectiveness of downstream tasks.

To instantiate our proposed framework, a collection of data comprising textual 
information along with corresponding ground truth labels (i.e., HS codes) for the textual data 
is imperative. Implementing the SBERT model requires the construction of pairwise samples 
derived from the international trade dataset, serving as the foundational element for model 
training. Our approach adopts a supervised methodology for constructing these pairwise 
samples, drawing inspiration from the work of (Moukafih et al., 2022), where the experimental 
setup utilises labels derived from the data for binary classification tasks, particularly in 
sentiment analysis methods. However, our research deals with a more fine-grained and 
challenging classification problem involving numerous product categories spanning hundreds 
of classes.

To illustrate the construction of pairwise samples, it comprises two samples, referred 
to as an anchor sample and a positive sample. An anchor sample refers to a transaction extracted 
from the dataset, while the positive sample is a randomly selected transaction that shares the 
same class label as the anchor sample. Exploiting labels from datasets in constructing pairwise 
samples is chosen instead relying on conventional data augmentation methods which is often 
employed in contrastive learning frameworks. Our consideration of this approach is justified 
by the reason that modifying information within trade transactions negatively impacts the 
model's ability to produce accurate outcomes.

Figure 2.a. provides a visual representation of the methodology employed for 
constructing pairwise samples used for training the model. Positive samples, representing 
transactions sharing identical class labels as the anchor samples, are randomly selected from 
the training datasets. Initially, in our approach, each anchor within the training datasets is 
designated to possess solely one positive sample. However, as depicted in Figure 2.b, our 
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methodology is also flexible enough to allow an anchor to be associated with multiple positive 
samples.

Figure 2. The figure demonstrates the pairwise sample construction process. For each anchor sample, a positive 
sample is randomly selected from the dataset, all belonging to the same class as the anchor (left). However, an 
anchor can have more than one positive samples, allowing the model to learn from diverse representations within 
the same class (right). Source: Author's own work.

In our experimental design, a designated backbone encoder, such as a pre-trained 
transformer-based model, is chosen as the core feature extractor to facilitate the embedding of 
textual data. Our decision not to utilise existing pre-trained SBERT models, as demonstrated 
in the work of (Pain, 2021), derives from our motivation to evaluate the performance of fine-
tuned transformer-based models (Anggoro et al., 2023) in comparison to our method of fine-
tuning transformer-based models through a contrastive learning approach using SBERT 
framework. To achieve this, we employed BERT and DistilBERT as feature extractors for our 
datasets and then configured the dataset structure to facilitate the generation of pairwise 
samples. The systematic structuring of the dataset into paired instances laid the groundwork 
for training the SBERT model using customised data, with the primary objective of maximising 
its efficacy performance for the subsequent task.

The subsequent step involves the establishment of a standardised, consistent-sized 
sentence embedding. This is accomplished by integrating a pooling layer following obtaining 
the output from the transformers-based encoder, as illustrated in Figure 1. Diverse pooling 
strategies are available to facilitate this process. For instance, the MEAN strategy involves 
computing the mean of all vectors, while the MAX pooling strategy takes into account the 
component-wise maximum value among the output vectors. Another strategy uses the [CLS] 
token pooling method, which is derived from the final layer of the underlying pre-trained 
model. This token aims to encapsulate and aggregate word representations for the entire phrase. 
Additionally, an alternative option involves the concatenation of multiple pooling outputs, 
offering a flexible approach to yield customised fixed-length embeddings. These diverse 
pooling strategies enable the transformation of variable-length textual data into consistent, 
fixed-sized sentence embeddings, enhancing the utility and applicability of the generated 
representations within downstream tasks. Our intention is to apply a number of different 
pooling strategies to investigate their influence on the model's performance.
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3.3. MNR Loss Method

Distance functions play a fundamental role in contrastive learning, serving to quantify 
embedded representations of pairwise samples. Commonly employed metrics encompass 
Manhattan distances, Euclidean distances, and similarity functions like cosine similarity and 
dot products. Furthermore, it is worth mentioning that while dot products can be influenced by 
vector size and direction, cosine similarity primarily hinges on the angle between vectorised 
representations. (Thakur et al., 2021) observe that cosine similarity demonstrates a preference 
for shorter documents compared to the dot product, which tends to favour longer documents. 
In our experiment, we utilised both similarity metrics across various datasets originating from 
different countries.

When employing cosine similarity to compare paired samples, the resulting values tend 
to be relatively small. To overcome this, a scaling factor is introduced as a temperature 
parameter (Radford et al., 2021). However, determining the optimal scale value remains an 
ongoing challenge. Some approaches involve setting the value at 1 and gradually increasing it 
over several training batches (Henderson et al., 2020), while the SBERT's author advocates 
setting the scale value to 20, demonstrating efficacy, particularly in scenarios employing cross-
entropy loss.

MNR loss is particularly suitable in scenarios where only positive samples are utilised 
as training datasets. This loss function necessitates inputs structured in a batch configuration, 
comprising n sentence pairs [(a1, b1), (a2, b2), …, (an, bn)], wherein randomly selected pairs (ai, 
bi) represent positive pairs, and n denotes the number of pairs. MNR loss aims to minimise the 
distance between similar pairs (ai, bi) while concurrently maximising the distance between 
dissimilar pairs (ai, bj), where i ≠ j. This objective culminates in the eventual training outcome, 
attracting similar transactions closer together while concurrently pushing dissimilar 
transactions apart within the feature embedding space. Appendix II encapsulates a pseudocode 
representation of the MNR Loss.

3.3. Machine Learning Classifier
The refined representations acquired through the fine-tuned SBERT model capture 

semantic and syntactic features extracted from commodity transactions, projecting an 
optimistic influence on the subsequent performance of downstream tasks. Our next objective 
involves the application of traditional machine learning classifiers to undertake the 
classification task. Within our experimental paradigm, we employ two classifiers: SVM and 
Random Forest. Our consideration is to employ traditional machine learning classifiers, 
assuming that the models will continue to generate well-performing results due to the 
representative transaction embeddings generated through our methodology.

The classifiers are utilised in their standard configurations without further configuring 
their hyperparameters in our experiment. The selection of Random Forest and SVM is not only 
grounded in their recognition as superior traditional machine learning models (Fernández-
Delgado et al., 2014), but also is motivated by their proven efficacy in handling high-
dimensional data, a characteristic prevalent in our dataset, and their extensive adoption within 
the machine learning domain for classification tasks. SVM, renowned for its ability to learn 
linear hyperplanes for data point classification, excels, particularly with high-dimensional data 
and multiple classes. SVM employs the kernel trick, such as Radial Basis Function (RBF) 
kernel, to handle nonlinear classification problems, thus demonstrating the substantial 
capability of achieving reliable classifications (Zareapoor et al., 2018). On the other hand, 
Random Forest, an ensemble-based algorithm introduced by (Breiman, 2001), emerges as a 
classifier choice because of its proven competence in managing high-dimensional and noisy 
text data (Islam et al., 2019). This algorithm leverages ensembles of trees to generate 
predictions, effectively reducing overfitting tendencies and mitigating biases inherent in such 
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datasets. In addition, the random forest algorithm is often regarded as a straightforward 
technique to tune in comparison to boosted algorithms, such as XGBoost and typically requires 
more training time, particularly during the prototyping phase.

4. Experiments
4.2. Experimental setup

The experimentation framework was conducted in Python3, employing diverse APIs, 
including PyTorch, HuggingFace, SBERT, scikit-learn, and additional tools such as the LIME 
package for interpretability. The computational infrastructure for conducting these experiments 
was provided by the cluster computing resources. The utilised environment featured GPU, 
complemented by high memory capacity, enabling efficient and robust computational 
processing for the experimental procedures.

4.3. Building Customised SBERT
This section presents the orchestration of building blocks within the SBERT 

framework, illustrating the configuration setup employed to fine-tune the network. Steps in this 
process include defining encoder and training sample configurations, establishing the loss 
function, and specifying various hyperparameters instrumental during the training phase.

4.3.1. Encoders, Pooling Strategy and Positive Samples
Pre-trained transformer-based models, specifically BERT and DistilBERT, are sourced 

from the HuggingFace hub to serve as encoders tasked with vectorising textual inputs. Both 
variants of these pre-trained models - being the base models and uncased or case-insensitive - 
were employed in our study. Regarding the pooling strategy, we evaluate each individual 
strategy, including MEAN, MAX, and the specialised [CLS] token pooling strategy. This 
configuration resulted in the generation of 768-dimensional features for each product 
transaction embedding.

A dedicated function is developed to facilitate the creation of pairwise sentences, where 
each pair comprises an anchor and a positive sample aimed at training the SBERT model. 
Within this function, positive samples were randomly selected without replacement, thereby 
organising the training datasets to feed the Siamese network. This methodology produces 
46,565 pairs for Dataset 1 and 39,612 pairs for Dataset 2. Initially configured with one positive 
sample for one anchor, our experimentation also involves exploring the impact of assigning 
three positive samples for one anchor. This adjustment expanded the number of pairs, allowing 
an investigation into the correlation between model performance and increased sample number 
despite the longer training duration incurred with a larger number of samples.

Following the completion of training samples, model training is conducted in batches 
for multiple pairs (anchor, positive) in parallel. Batch sizes of 8 and 32 are evaluated to identify 
potential enhancement in model performance with larger batch sizes. This approach draws 
inspiration from the established effectiveness of increased batch sizes in contrastive learning.

4.3.2. MNR Loss Experiment
Our aim involves the establishment of diverse parameter configurations associated with 

the loss function. These configurations include adjusting the scale parameter, the selection of 
a suitable similarity function, and the application of the Symmetric MNR loss function, which 
computes the average of forward and backward loss values. The chosen similarity functions 
for measuring distances between sentence embeddings include cosine similarity and dot 
product. In the absence of a comprehensive systematic study offering insights into an optimal 
scaling factor to amplify the magnitude of cosine-similarity scores, we initiate our 
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investigations with a scaling factor of 20. The square root of the dimensional feature size, which 
is 23 in this study (Henderson et al., 2020), is utilised as a reference metric. Subsequently, we 
incrementally increase the scale parameter to 50 to systematically explore its influence on the 
model's performance and identify changes in model behaviour and efficacy.

4.3.3. Hyperparameters
Additionally, a range of hyperparameter adjustments is systematically introduced 

during the training phase to enhance the algorithm's efficacy, a strategy commonly employed 
for optimisation purposes (Weerts et al., 2020). The batch size, a critical parameter, is varied 
between 8 and 32, meticulously selected to match the computational memory capacity. The 
number of epochs for the training phase is explored across 10 and 30 iterations, impacting the 
depth and extent of model training. Finally, the learning rate is examined within the range of 
2e-5 and 5e-5 using AdamW as optimizer, responsible for the magnitude of adjustments made 
to model weights during training.

5. Results and Discussion
This section outlines the results of the experiments conducted across various settings. 

In this analysis, we present the model performance of two machine learning algorithms - SVM 
and Random Forest classifiers. These algorithms leverage features generated from the fine-
tuned SBERT model.

5.1. Model Training and Metrics
In our evaluation process, we adopt the k-fold cross-validation methodology to assess 

the classifier's performance. The datasets were partitioned into 5 folds, using a stratified cross-
validation approach, ensuring each fold preserved a balanced representation across classes. 
This strategy is effective in handling the inherent imbalances within the datasets, thereby 
fostering robust evaluation outcomes.

To comprehensively evaluate model performance, we use Cohen's Kappa, macro-
average, micro-average, and weighted average for precision, recall, and F1-score. Cohen's 
Kappa is a metric used for evaluating the performance of classification models that can be 
applied to text data (Kolesnyk and Khairova, 2022). Macro-average treats each class equally, 
while micro-average evaluates performance globally by aggregating all instances. The 
weighted average adjusts for class imbalance by factoring in class sizes. These metrics ensure 
a balanced and thorough assessment of our model's effectiveness across different class 
distributions. Particularly, our emphasis resides on the F1 score due to its robustness in 
handling imbalanced datasets, providing a balanced assessment of the classifier's performance 
in scenarios with unequal class distributions.

5.2.  Performance of Model and Model Size
Table III illustrates a marked enhancement in model performance resulting from our 

proposed method as compared to the fine-tuning transformer-based model conducted in this 
study (Anggoro et al., 2023). Specifically, our model exhibits substantial improvements in the 
weighted average F1 score, elevating it from 0.8406 to 0.8620 when employing SVM and 
achieving 0.8656 with the Random Forest algorithm for Dataset 1. Similar notable 
improvements are observed in Dataset 2, demonstrating a 4% increase in weighted average F1 
score with both SVM and Random Forest classifiers compared to the most optimal results 
attained through fine-tuning the transformer models—BERT or DistilBERT.

Regarding the model size implications, employing the SBERT with DistilBERT as 
encoder in tandem with SVM, produces a model size comparable to that of the fine-tuned 
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DistilBERT model. However, the utilisation of SBERT + BERT as encoder in conjunction with 
the Random Forest algorithm results in an expanded model size exceeding that of fine-tuning 
the BERT model. These findings underscore the intricate trade-offs between model 
performance enhancements and resultant model sizes associated with distinct algorithmic 
configurations.

Macro-average Micro-average Weighted average
Dataset Method Cohen 

Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1
Model
Size

Fine-tuning BERT 0.8406 0.8444 0.8426 0.8462 0.8097 0.8426 0.8426 0.8181 0.8426 0.8406 418 MB
Fine-tuning DistilBERT 0.8386 0.8383 0.8407 0.8428 0.8088 0.8407 0.8407 0.8183 0.8407 0.8390 255 MB
SBERTenc.BERT + SVM 0.8611 0.8700 0.8629 0.8686 0.8370 0.8629 0.8629 0.8464 0.8629 0.8620 449 MB
SBERTenc.DistilBERT + SVM 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603 291 MB
SBERTenc.BERT + RF 0.8647 0.8691 0.8664 0.8711 0.8445 0.8664 0.8664 0.8512 0.8664 0.8656 631 MB

1

SBERTenc.DistilBERT + RF 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637 511 MB

Fine-tuning BERT 0.7680 0.7508 0.7711 0.7750 0.7127 0.7711 0.7711 0.7210 0.7711 0.7689 418 MB
Fine-tuning DistilBERT 0.7626 0.7398 0.7658 0.7677 0.7032 0.7658 0.7658 0.7130 0.7658 0.7630 255 MB
SBERTenc.BERT + SVM 0.7982 0.7881 0.8009 0.8090 0.7603 0.8009 0.8009 0.7681 0.8009 0.8013 437 MB
SBERTenc.DistilBERT + SVM 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953 278 MB
SBERTenc.BERT + RF 0.7972 0.7846 0.7998 0.8077 0.7624 0.7998 0.7998 0.7681 0.7998 0.8005 512 MB

2

SBERTenc.DistilBERT + RF 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958 371 MB

Table III. The metric highlights the improved performance between baseline models (Fine-tuned BERT and 
DistilBERT) and fine-tuned SBERT combined with SVM and Random Forest classifiers. Key metrics such as 
Cohen's Kappa, along with macro, micro, and weighted averages of precision, recall, and F1 score, demonstrate 
that the fine-tuned SBERT-based models combining with SVM and Random Forest outperform the baselines in 
terms of classification performance.

5.3. Analysis of Model Explanation
Table IV demonstrates a substantial decline in model performance for F1 score ranging 

from 6% to 8% for both datasets’ consequent to the elimination of certain information during 
the pre-processing phase. This reduction in performance suggests that the conventional pre-
processing pipeline, often incorporated with the removal of alphanumeric details, may not be 
directly transferable or suitable for trade transactions within this context.

Macro-average Micro-average Weighted average
Dataset Method Cohen Kappa

Pre Rec F1 Pre Rec F1 Pre Rec F1
SVM
Pre-processed data 0.7803 0.804 0.7831 0.7923 0.7402 0.7831 0.7831 0.757 0.7831 0.7790
Original data 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
Pre-processed data 0.8007 0.8225 0.8033 0.8121 0.7690 0.8033 0.8033 0.7848 0.8033 0.8017

1

Original data 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
Pre-processed data 0.7143 0.7196 0.7183 0.7338 0.6621 0.7183 0.7183 0.6795 0.7183 0.7185
Original data 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
Pre-processed data 0.7165 0.7119 0.7203 0.7318 0.665 0.7203 0.7203 0.6788 0.7203 0.7203

2

Original data 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table IV. The model performance across different data pre-processing techniques. Key metrics such as weighted 
average precision, recall, and F1-score demonstrate how different pre-processing methods impact classification 
accuracy.

Page 15 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Data Technologies & Applications
In order to offer a more comprehensive explanation for the model's behaviour in HS 

code prediction, we employed the LIME explanation method (Ribeiro et al., 2016) to conduct 
an illustrative case study. We opted for LIME over alternative model interpretability 
techniques, such as SHAP, due to its stability and better for human interpretation, aligning with 
the context of our study, particularly in its application to Random Forest (Man and Chan, 2020). 
Figure 3 illustrates the comparison between the model trained to utilise the original product 
descriptions and its counterpart trained on modified datasets resulting from specialised 
preprocessing treatments. In particular, the model exhibits a higher prediction probability in 
determining the category when utilising the original text in contrast to the modified text. This 
discrepancy in predictive performance underscores the significance of specific attributes within 
the commodity description, such as the explicit mention of "512 GB", which impacts the 
model's decision-making process regarding label assignment to the description.

a. original product description

b. pre-processed product description

Figure 3. This figure compares the LIME visualisations of model predictions using different data pre-processing 
techniques. The visualisations indicate higher prediction probabilities for the original text (a), suggesting that the 
model's confidence in its predictions decreases after certain preprocessing steps (b). This observation implies that 
retaining specific textual information during preprocessing may enhance prediction accuracy.

As shown in Table V, for the results of using one and three positive samples, it becomes 
apparent that augmenting the number of positive samples paired with an anchor influences the 
model's performance. Broadly observed across both datasets, an increase in the number of 
positive samples demonstrates an improvement in the weighted average F1 score within the 
range of 2% to 3%. These outcomes, consistent across the SVM and Random Forest algorithms, 
indicate the advantages of increased positive sample pairing on the model's predictive efficacy 
for both datasets. Nevertheless, it is assumed that there exists an optimal quantity of positive 
pairs necessary to attain peak performance, after which further increases may not yield 
additional improvements.
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Macro-average Micro-average Weighted average

Dataset Samples Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
1 anchor, 1 positive 0.8365 0.8485 0.8386 0.8458 0.7965 0.8386 0.8386 0.8105 0.8386 0.8360
1 anchor, 3 positive 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
1 anchor, 1 positive 0.8412 0.8552 0.8432 0.8492 0.8051 0.8432 0.8432 0.8200 0.8432 0.8410

1

1 anchor, 3 positive 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
1 anchor, 1 positive 0.7706 0.7621 0.7738 0.7847 0.7165 0.7738 0.7738 0.7304 0.7738 0.7735
1 anchor, 3 positive 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
1 anchor, 1 positive 0.7668 0.7517 0.7699 0.7770 0.7137 0.7699 0.7699 0.7244 0.7699 0.7688

2

1 anchor, 3 positive 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table V. The table compares the impact of using different numbers of positive samples per anchor on model 
performance. Some metrics are used to demonstrate how increasing the number of positive samples improves 
classification accuracy across two datasets.

The experimentation also provides insights into the outcomes derived from varying 
configurations of the loss function, such as strategies like MEAN, MAX, and [CLS] token. On 
the whole, Table VI shows the result of the implementation of the pooling strategies based on 
the experimental findings. The absence of a dominating pooling strategy across the 
experimental outcomes underscores the unavailability of a clear distinction among the pooling 
strategies concerning their impact on model performance.

Macro-average Micro-average Weighted average
Dataset Pooling Strategy Cohen Kappa

Pre Rec F1 Pre Rec F1 Pre Rec F1
SVM
CLS 0.8594 0.8696 0.8612 0.8675 0.8300 0.8612 0.8612 0.8425 0.8612 0.8603
Mean 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Max 0.8564 0.8637 0.8582 0.8645 0.8269 0.8582 0.8582 0.8377 0.8582 0.8574
Random Forest
CLS 0.8611 0.8676 0.8629 0.8686 0.8359 0.8629 0.8629 0.8453 0.8629 0.8621
Mean 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

1

Max 0.8593 0.8618 0.8611 0.8672 0.835 0.8611 0.8611 0.8414 0.8611 0.8605
SVM
CLS 0.7963 0.7991 0.7990 0.8114 0.7555 0.7990 0.7990 0.7690 0.7990 0.8006
Mean 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Max 0.7927 0.7866 0.7955 0.8068 0.7529 0.7955 0.7955 0.7629 0.7955 0.7966
Random Forest
CLS 0.7957 0.7857 0.7984 0.8084 0.7561 0.7984 0.7984 0.7654 0.7984 0.7997
Mean 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

2

Max 0.7909 0.7812 0.7937 0.8038 0.7513 0.7937 0.7937 0.7594 0.7937 0.7945

Table VI. The table compares model performance using various data pooling strategies, including CLS token, 
MEAN pooling, and MAX pooling. The results show that all three strategies yield similar or comparable 
performance across key metrics.

Table VII shows the implications arising from various configurations of the loss 
function on the model's performance. In the initial comparison, employing the Symmetric 
MNR loss showcases similar performance in the weighted average F1 score when compared 
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with the MNR loss function across both datasets. Furthermore, augmenting the scale parameter 
for the similarity function does not substantially affect the model's performance. Additionally, 
the adoption of a distinct similarity function, specifically the dot-product, as an alternative to 
the cosine similarity demonstrates decreased performance for Dataset 1 and relatively 
comparable results for Dataset 2.

Macro-average Micro-average Weighted average
Dataset Loss Function 

Parameters
Cohen 
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
MNR Loss - (Scale:20, 
Cosine Similarity)

0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603

Symmetric MNR Loss 0.8609 0.8722 0.8627 0.8686 0.8342 0.8627 0.8627 0.8455 0.8627 0.8616
Scale - 50 0.8579 0.8679 0.8597 0.8661 0.8268 0.8597 0.8597 0.8388 0.8597 0.8585
Dot Product 0.8512 0.8624 0.8531 0.8585 0.8135 0.8531 0.8531 0.8278 0.8531 0.8508
Random Forest
MNR Loss - (Scale:20, 
Cosine Similarity)

0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

Symmetric MNR Loss 0.8638 0.8702 0.8655 0.8707 0.8389 0.8655 0.8655 0.8478 0.8655 0.8645
Scale - 50 0.8612 0.8687 0.8630 0.8688 0.8340 0.8630 0.8630 0.8440 0.8630 0.8620

1

Dot Product 0.8569 0.8675 0.8587 0.8641 0.8279 0.8587 0.8587 0.8397 0.8587 0.8574
SVM
MNR Loss - (Scale:20, 
Cosine Similarity)

0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953

Symmetric MNR Loss 0.7968 0.787 0.7996 0.809 0.7531 0.7996 0.7996 0.7638 0.7996 0.8002
Scale - 50 0.7905 0.7906 0.7933 0.8056 0.7469 0.7933 0.7933 0.7606 0.7933 0.7947
Dot Product 0.7911 0.7863 0.7939 0.8084 0.7392 0.7939 0.7939 0.7533 0.7939 0.7954
Random Forest
MNR Loss - (Scale:20, 
Cosine Similarity)

0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Symmetric MNR Loss 0.7957 0.7782 0.7984 0.8068 0.7546 0.7984 0.7984 0.7606 0.7984 0.7989
Scale - 50 0.7906 0.7856 0.7934 0.804 0.7518 0.7934 0.7934 0.7618 0.7934 0.7944

2

Dot Product 0.7945 0.7875 0.7973 0.8057 0.7519 0.7973 0.7973 0.7617 0.7973 0.7974

Table VII. The table presents the performance comparison of the model with various configurations of the loss 
function. Key metrics are evaluated, showing how different loss functions settings impact model accuracy.

5.4. Parameters Importance
Multiple adjustments in hyperparameters, encompassing variations in batch size, the 

number of epochs, and the learning rate, are implemented during the fine-tuning of SBERT to 
observe their impacts on downstream tasks.

As depicted in Table VIII, the analysis of model training parameters reveals different 
impacts on optimising the weighted average F1 score. Specifically, employing a larger batch 
size appears to yield a modestly positive effect on enhancing the weighted average F1 score. 
Furthermore, augmenting the training iterations or epochs results in approximately 2% 
improvement in the weighted average F1 scores for SVM and Random Forest classifiers. In 
particular, varying the learning rate exhibits disparate outcomes: a lower learning rate (2e-5) 
demonstrates better outcomes for Dataset 1 and Dataset 2, as observed across both SVM and 
Random Forest classifiers.
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Macro-average Micro-average Weighted average

Dataset Hyperparameters 
Training

Cohen 
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Batch 8 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Batch 32 0.8619 0.8805 0.8637 0.8699 0.8359 0.8637 0.8637 0.8504 0.8637 0.8626
Epoch 10 0.8411 0.8523 0.8432 0.8499 0.7980 0.8432 0.8432 0.8129 0.8432 0.8402
Epoch 30 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 2e-5 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 5e-5 0.8488 0.8554 0.8507 0.8557 0.8228 0.8507 0.8507 0.8326 0.8507 0.8496
Random Forest
Batch 8 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Batch 32 0.8667 0.8834 0.8684 0.8736 0.8416 0.8684 0.8684 0.8554 0.8684 0.8673
Epoch 10 0.8475 0.8525 0.8494 0.8547 0.8136 0.8494 0.8494 0.8242 0.8494 0.8476

1

Epoch 30 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 2e-5 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 5e-5 0.8471 0.8515 0.8491 0.8541 0.8213 0.8491 0.8491 0.8299 0.8491 0.8481

SVM
Batch 8 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Batch 32 0.7937 0.8017 0.7964 0.8093 0.7513 0.7964 0.7964 0.7670 0.7964 0.7977
Epoch 10 0.7779 0.7669 0.7809 0.7916 0.7189 0.7809 0.7809 0.7320 0.7809 0.7795
Epoch 30 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 2e-5 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 5e-5 0.7886 0.7824 0.7914 0.8026 0.7510 0.7914 0.7914 0.7603 0.7914 0.7928
Random Forest
Batch 8 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Batch 32 0.7939 0.7864 0.7967 0.8062 0.7506 0.7967 0.7967 0.7619 0.7967 0.7972
Epoch 10 0.7813 0.7658 0.7842 0.7922 0.7321 0.7842 0.7842 0.7418 0.7842 0.7839

2

Epoch 30 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 2e-5 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 5e-5 0.7854 0.7716 0.7882 0.7974 0.7473 0.7882 0.7882 0.7536 0.7882 0.7891

Table VIII. The table presents the impact of various hyperparameter configurations on model performance. Key 
metrics are employed to assess the effectiveness of different learning rates, batch sizes, and epochs. The results 
show that optimal hyperparameter tuning can significantly improve the model’s classification accuracy and overall 
performance.

5. Conclusions
This paper presents a method leveraging the SBERT framework for transaction 

embedding generation using international trade transaction datasets. The approach involves 
training a Siamese model network through pairwise samples and MNR loss, enhancing 
transaction representations. These resultant embeddings are integrated into traditional machine 
learning models like SVM and Random Forest, exhibiting enhanced performance over fine-
tuned transformer-based models in handling international trade transactions. In addition, the 
experimentation provides valuable insights into transaction pre-processing and hyperparameter 
selection. While generating embeddings through this method might entail substantial 
computational resources, its efficacy in enhancing downstream task performance remains 
significant.

Moreover, future investigation is essential to explore practical applications, particularly 
in domains such as anomaly detection on international trade transactions. The inherent nature 
of the feature embeddings generated by this method tends to cluster transactions with analogous 
attributes within a shared embedding space. Utilising the clustering property of embeddings 
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holds promise for identifying anomalous transactions through distance analysis, signifying a 
potential opportunity for practical implementation in anomaly detection systems.
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Appendix I: An Example of Declaration Form
The figure below presents an example of declaration form, with key fields such as the product 
description and HS codes highlighted. These fields are crucial for the dataset used in this study, 
where the product description serves as the input for classification tasks, and the HS codes are 
the target labels for evaluating model performance.

Appendix II: Pseudocode of Implementation MNR Loss
Algorithm 1 presents the key steps in implementing MNR loss during the training phase using 
the SCL. The process begins with the encoding phase, where input samples are passed through 
the encoder to generate latent representations. In the pooling phase, these representations are 
aggregated (e.g., via mean or max pooling) to form fixed-length vectors. Finally, the distance 
measurement is performed between the pooled anchor-positive pairs and anchor-negative pairs.

Algorithm 1: Pseudocode of implementation MNR Loss

1: Input: Datasets of trade transactions consist of tokenized and batched pairwise anchor 
and positive samples 

2: Output: Trained SBERT
3: Procedure to train SBERT with MNR Loss: 
4: BEGIN 
5: For i = 1 to num_epochs do
6: For batch in_batches do
7: # extract token embeddings from each pairwise transaction in the batch
8: anchor embeddings = extracted encoded anchor samples from transformer-based model
9: positive embeddings = extracted encoded positive samples from transformer-based 

model
10: # generate pooled vector 
11: pooled anchor = pooling function (anchor embeddings) 
12: pooled_positive = pooling function (positive embeddings) 
13: # similarity consists of n x n vectors 
14: Similarity = cosine_similarity (pooled_anchor, pooled_positive) 
15: Score = Similarity * Scale 
16: # label consists of n x n vectors with I true label and negative labels elsewhere 

in each row
17: Loss = CrossEntropyLoss (Score * Label) 
18: # calculate gradients and update the network 
19: End
20: End
22: END
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Figure 1. The proposed supervised contrastive learning process using the SBERT framework is illustrated. 
The transformer-model encodes product description, which is then passed through a pooling layer. During 
the training phase, anchor samples are paired with corresponding positive samples (from the same class). 
The model learns to minimise the distance between these anchor-positive pairs in the latent space while 
maximising the distance between the anchor and samples from other classes (negative samples). Finally, 

the fine-tuned model is employed to generate transaction embeddings, which are then utilised in a 
downstream classification task. Source: Author's own work. 

251x214mm (96 x 96 DPI) 

Page 25 of 37 Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Data Technologies & Applications
 

Figure 2. The figure demonstrates the pairwise sample construction process. For each anchor sample, a 
positive sample is randomly selected from the dataset, all belonging to the same class as the anchor (left). 

However, an anchor can have more than one positive samples, allowing the model to learn from diverse 
representations within the same class (right). Source: Author's own work. 

316x154mm (96 x 96 DPI) 

Page 26 of 37Data Technologies & Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Data Technologies & Applications
 

Figure 3. This figure compares the LIME visualisations of model predictions using different data pre-
processing techniques. The visualisations indicate higher prediction probabilities for the original text (a), 
suggesting that the model's confidence in its predictions decreases after certain preprocessing steps (b). 

This observation implies that retaining specific textual information during preprocessing may enhance 
prediction accuracy. 
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Datasets Number of 

Classes
Number of 

Transactions
Datasets 1 (India commodity trade transactions) 172 66,522
Datasets 2 (U.S. commodity trade transactions) 112 58,003

Table I. The number of transactions and the corresponding commodity classes used in this study for the India and 
U.S. trade datasets.
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HS Code Commodity Description (Original) Commodity Descrition (Pre-procecessed)
85423100 INTEGRATED CIRCUIT LOGIC MONO ASTBL 

MULTVIB 14TSSOP 1741605
INTEGRATED CIRCUIT LOGIC MONO ASTBL 
MULTVIB TSSOP

85423100 INTEGRATED CIRCUIT OP AMP LOW OFFSET 
500KHZ 14DIP 9604782

INTEGRATED CIRCUIT OP AMP LOW OFFSET 
KHZ DIP

84713010 X2 LAPTOP LENOVO MODEL THINKPAD T430 LAPTOP LENOVO MODEL THINKPAD
84713010 LAPTOP- NOTEBOOK TP X250 4G 500 W10D 

PRODUCT NO.20CLS5PX1Y(LAPTOP) (BIS NO.R-
41001171

LAPTOP NOTEBOOK TP PRODUCT NO CLS PX 
LAPTOP BIS NO

85285100 LED MONITOR, S22E360H, 21.5, INDIA, 
LB50/S22ECO, LS22E360HS/XL (22)(60 PCS) (FOR 
COMPUTER) (SAMSUNG)

LED MONITOR INDIA LB ECO LS HS XL PCS FOR 
COMPUTER SAMSUNG

84713010 20BUS39E0M LENOVO THINKPAD T450 W/IMGAE 
512GB (LAPTOP)

BUS LENOVO THINKPAD IMGAE GB LAPTOP

85285100 LCD MONITOR 15 WIDE: 16M38A-B.ATR (MODEL 
NO:16M38A-B) COMPUTER MONITOR FOR ADP 
USE ONLY WITHOUT TUNER

LCD MONITOR WIDE ATR MODEL NO 
COMPUTER MONITOR FOR ADP USE ONLY 
WITHOUT TUNER

85285100 FOC ITEM : LCD MONITOR FOR COMPUTER 
SHARP 13.3 3200X1800 PANEL ASSEMBLY ( CABLE 
AND ACRYLIC STAND)

FOC ITEM LCD MONITOR FOR COMPUTER SHARP 
PANEL ASSEMBLY CABLE AND ACRYLIC STAND

Table II. The comparison of the original product descriptions with their modified versions after the preprocessing 
stage. The modifications include removal of irrelevant information, which are commonly applied for the 
classification models.
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Macro-average Micro-average Weighted average

Dataset Method Cohen 
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

Model
Size

Fine-tuning BERT 0.8406 0.8444 0.8426 0.8462 0.8097 0.8426 0.8426 0.8181 0.8426 0.8406 418 MB
Fine-tuning DistilBERT 0.8386 0.8383 0.8407 0.8428 0.8088 0.8407 0.8407 0.8183 0.8407 0.8390 255 MB
SBERTenc.BERT + SVM 0.8611 0.8700 0.8629 0.8686 0.8370 0.8629 0.8629 0.8464 0.8629 0.8620 449 MB
SBERTenc.DistilBERT + SVM 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603 291 MB
SBERTenc.BERT + RF 0.8647 0.8691 0.8664 0.8711 0.8445 0.8664 0.8664 0.8512 0.8664 0.8656 631 MB

1

SBERTenc.DistilBERT + RF 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637 511 MB

Fine-tuning BERT 0.7680 0.7508 0.7711 0.7750 0.7127 0.7711 0.7711 0.7210 0.7711 0.7689 418 MB
Fine-tuning DistilBERT 0.7626 0.7398 0.7658 0.7677 0.7032 0.7658 0.7658 0.7130 0.7658 0.7630 255 MB
SBERTenc.BERT + SVM 0.7982 0.7881 0.8009 0.8090 0.7603 0.8009 0.8009 0.7681 0.8009 0.8013 437 MB
SBERTenc.DistilBERT + SVM 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953 278 MB
SBERTenc.BERT + RF 0.7972 0.7846 0.7998 0.8077 0.7624 0.7998 0.7998 0.7681 0.7998 0.8005 512 MB

2

SBERTenc.DistilBERT + RF 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958 371 MB

Table III. The metric highlights the improved performance between baseline models (Fine-tuned BERT and 
DistilBERT) and fine-tuned SBERT combined with SVM and Random Forest classifiers. Key metrics such as 
Cohen's Kappa, along with macro, micro, and weighted averages of precision, recall, and F1 score, demonstrate 
that the fine-tuned SBERT-based models combining with SVM and Random Forest outperform the baselines in 
terms of classification performance.
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Macro-average Micro-average Weighted average

Dataset Method Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Pre-processed data 0.7803 0.804 0.7831 0.7923 0.7402 0.7831 0.7831 0.757 0.7831 0.7790
Original data 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
Pre-processed data 0.8007 0.8225 0.8033 0.8121 0.7690 0.8033 0.8033 0.7848 0.8033 0.8017

1

Original data 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
Pre-processed data 0.7143 0.7196 0.7183 0.7338 0.6621 0.7183 0.7183 0.6795 0.7183 0.7185
Original data 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
Pre-processed data 0.7165 0.7119 0.7203 0.7318 0.665 0.7203 0.7203 0.6788 0.7203 0.7203

2

Original data 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table IV. The model performance across different data pre-processing techniques. Key metrics such as weighted 
average precision, recall, and F1-score demonstrate how different pre-processing methods impact classification 
accuracy.
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Macro-average Micro-average Weighted average

Dataset Samples Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
1 anchor, 1 positive 0.8365 0.8485 0.8386 0.8458 0.7965 0.8386 0.8386 0.8105 0.8386 0.8360
1 anchor, 3 positive 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Random Forest
1 anchor, 1 positive 0.8412 0.8552 0.8432 0.8492 0.8051 0.8432 0.8432 0.8200 0.8432 0.8410

1

1 anchor, 3 positive 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
SVM
1 anchor, 1 positive 0.7706 0.7621 0.7738 0.7847 0.7165 0.7738 0.7738 0.7304 0.7738 0.7735
1 anchor, 3 positive 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Random Forest
1 anchor, 1 positive 0.7668 0.7517 0.7699 0.7770 0.7137 0.7699 0.7699 0.7244 0.7699 0.7688

2

1 anchor, 3 positive 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Table V. The table compares the impact of using different numbers of positive samples per anchor on model 
performance. Some metrics are used to demonstrate how increasing the number of positive samples improves 
classification accuracy across two datasets.
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Macro-average Micro-average Weighted average

Dataset Pooling Strategy Cohen Kappa
Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
CLS 0.8594 0.8696 0.8612 0.8675 0.8300 0.8612 0.8612 0.8425 0.8612 0.8603
Mean 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Max 0.8564 0.8637 0.8582 0.8645 0.8269 0.8582 0.8582 0.8377 0.8582 0.8574
Random Forest
CLS 0.8611 0.8676 0.8629 0.8686 0.8359 0.8629 0.8629 0.8453 0.8629 0.8621
Mean 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

1

Max 0.8593 0.8618 0.8611 0.8672 0.835 0.8611 0.8611 0.8414 0.8611 0.8605
SVM
CLS 0.7963 0.7991 0.7990 0.8114 0.7555 0.7990 0.7990 0.7690 0.7990 0.8006
Mean 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Max 0.7927 0.7866 0.7955 0.8068 0.7529 0.7955 0.7955 0.7629 0.7955 0.7966
Random Forest
CLS 0.7957 0.7857 0.7984 0.8084 0.7561 0.7984 0.7984 0.7654 0.7984 0.7997
Mean 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

2

Max 0.7909 0.7812 0.7937 0.8038 0.7513 0.7937 0.7937 0.7594 0.7937 0.7945

Table VI. The table compares model performance using various data pooling strategies, including CLS token, 
MEAN pooling, and MAX pooling. The results show that all three strategies yield similar or comparable 
performance across key metrics.
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Macro-average Micro-average Weighted average

Dataset Loss Function 
Parameters

Cohen 
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
MNR Loss - (Scale:20, 
Cosine Similarity)

0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603

Symmetric MNR Loss 0.8609 0.8722 0.8627 0.8686 0.8342 0.8627 0.8627 0.8455 0.8627 0.8616
Scale - 50 0.8579 0.8679 0.8597 0.8661 0.8268 0.8597 0.8597 0.8388 0.8597 0.8585
Dot Product 0.8512 0.8624 0.8531 0.8585 0.8135 0.8531 0.8531 0.8278 0.8531 0.8508
Random Forest
MNR Loss - (Scale:20, 
Cosine Similarity)

0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637

Symmetric MNR Loss 0.8638 0.8702 0.8655 0.8707 0.8389 0.8655 0.8655 0.8478 0.8655 0.8645
Scale - 50 0.8612 0.8687 0.8630 0.8688 0.8340 0.8630 0.8630 0.8440 0.8630 0.8620

1

Dot Product 0.8569 0.8675 0.8587 0.8641 0.8279 0.8587 0.8587 0.8397 0.8587 0.8574
SVM
MNR Loss - (Scale:20, 
Cosine Similarity)

0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953

Symmetric MNR Loss 0.7968 0.787 0.7996 0.809 0.7531 0.7996 0.7996 0.7638 0.7996 0.8002
Scale - 50 0.7905 0.7906 0.7933 0.8056 0.7469 0.7933 0.7933 0.7606 0.7933 0.7947
Dot Product 0.7911 0.7863 0.7939 0.8084 0.7392 0.7939 0.7939 0.7533 0.7939 0.7954
Random Forest
MNR Loss - (Scale:20, 
Cosine Similarity)

0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958

Symmetric MNR Loss 0.7957 0.7782 0.7984 0.8068 0.7546 0.7984 0.7984 0.7606 0.7984 0.7989
Scale - 50 0.7906 0.7856 0.7934 0.804 0.7518 0.7934 0.7934 0.7618 0.7934 0.7944

2

Dot Product 0.7945 0.7875 0.7973 0.8057 0.7519 0.7973 0.7973 0.7617 0.7973 0.7974

Table VII. The table presents the performance comparison of the model with various configurations of the loss 
function. Key metrics are evaluated, showing how different loss functions settings impact model accuracy.
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Macro-average Micro-average Weighted average

Dataset Hyperparameters 
Training

Cohen 
Kappa Pre Rec F1 Pre Rec F1 Pre Rec F1

SVM
Batch 8 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Batch 32 0.8619 0.8805 0.8637 0.8699 0.8359 0.8637 0.8637 0.8504 0.8637 0.8626
Epoch 10 0.8411 0.8523 0.8432 0.8499 0.7980 0.8432 0.8432 0.8129 0.8432 0.8402
Epoch 30 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 2e-5 0.8595 0.8717 0.8613 0.8667 0.8335 0.8613 0.8613 0.8457 0.8613 0.8603
Learning Rate 5e-5 0.8488 0.8554 0.8507 0.8557 0.8228 0.8507 0.8507 0.8326 0.8507 0.8496
Random Forest
Batch 8 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Batch 32 0.8667 0.8834 0.8684 0.8736 0.8416 0.8684 0.8684 0.8554 0.8684 0.8673
Epoch 10 0.8475 0.8525 0.8494 0.8547 0.8136 0.8494 0.8494 0.8242 0.8494 0.8476

1

Epoch 30 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 2e-5 0.8628 0.8707 0.8646 0.8702 0.8403 0.8646 0.8646 0.8486 0.8646 0.8637
Learning Rate 5e-5 0.8471 0.8515 0.8491 0.8541 0.8213 0.8491 0.8491 0.8299 0.8491 0.8481

SVM
Batch 8 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Batch 32 0.7937 0.8017 0.7964 0.8093 0.7513 0.7964 0.7964 0.7670 0.7964 0.7977
Epoch 10 0.7779 0.7669 0.7809 0.7916 0.7189 0.7809 0.7809 0.7320 0.7809 0.7795
Epoch 30 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 2e-5 0.7917 0.7807 0.7945 0.8056 0.7463 0.7945 0.7945 0.7562 0.7945 0.7953
Learning Rate 5e-5 0.7886 0.7824 0.7914 0.8026 0.7510 0.7914 0.7914 0.7603 0.7914 0.7928
Random Forest
Batch 8 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Batch 32 0.7939 0.7864 0.7967 0.8062 0.7506 0.7967 0.7967 0.7619 0.7967 0.7972
Epoch 10 0.7813 0.7658 0.7842 0.7922 0.7321 0.7842 0.7842 0.7418 0.7842 0.7839

2

Epoch 30 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 2e-5 0.7924 0.7771 0.7952 0.8045 0.7498 0.7952 0.7952 0.7565 0.7952 0.7958
Learning Rate 5e-5 0.7854 0.7716 0.7882 0.7974 0.7473 0.7882 0.7882 0.7536 0.7882 0.7891

Table VIII. The table presents the impact of various hyperparameter configurations on model performance. Key 
metrics are employed to assess the effectiveness of different learning rates, batch sizes, and epochs. The results 
show that optimal hyperparameter tuning can significantly improve the model’s classification accuracy and 
overall performance.
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